
'

&

$

%

DM-Relay - Safe Laptop Mode
via Linux Device Mapper

Study Thesis
by

cand. inform. Fabian Franz

at the Faculty of Informatics

Supervisor: Prof. Dr. Frank Bellosa

Supervising Research Assistant: Dipl.-Inform. Konrad Miller

Day of completion: 04/05/2010

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

I hereby declare that this thesis is my own original work which I created without
illegitimate help by others, that I have not used any other sources or resources
than the ones indicated and that due acknowledgment is given where reference
is made to the work of others.

Karlsruhe, April 5th, 2010

Contents

Deutsche Zusammenfassung xi

1 Introduction 1

1.1 Problem Definition . 1

1.2 Objectives . 1

1.3 Methodology . 1

1.4 Contribution . 2

1.5 Thesis Outline . 2

2 Background 3

2.1 Problems of Disk Power Management 3

2.2 State of the Art . 4

2.3 Summary of this chapter . 8

3 Analysis 9

3.1 Pro and Contra . 9

3.2 A new approach . 13

3.3 Analysis of Proposal . 15

3.4 Summary of this chapter . 17

4 Design 19

4.1 Common problems . 19

4.2 System-Design . 21

4.3 Summary of this chapter . 21

5 Implementation of a dm-module for the Linux kernel 23

5.1 System-Architecture . 24

5.2 Log suitable for Flash-Storage . 28

5.3 Using dm-relay in practice . 31

5.4 Summary of this chapter . 31

vi Contents

6 Evaluation 33

6.1 Methodology . 33

6.2 Benchmarking setup . 34

6.3 Performed Benchmarks . 36

6.4 Results . 38

6.5 Discussion . 41

6.6 Summary of this Chapter . 42

7 Conclusion 43

7.1 Future Work . 44

Bibliography 45

List of Figures

2.1 Break-Even Time: time after which energy is saved at all 4

3.1 The proposed solution is positioned between the buffer cache and
the disk driver . 14

3.2 Read-Requests are passed through. In active or flush mode Write-
Requests are written directly to disk. In logging mode Write-Requests
are split and written to a volatile memory queue and a non-volatile
cache. 15

3.3 While the log is replayed no new read or write requests are pro-
cessed. Once the replay is complete the log is reset. 16

3.4 In recovery mode the log is replayed from the non-volatile storage
to the hard disk. 16

5.1 The proposed solution is positioned between the buffer cache and
the disk driver and an user space interface is provided. 23

5.2 The design consists of several sub tasks that communicate through
signals. An activity can be started through a signal, a queue write
or an incoming request. Tasks can also utilize variables. 25

5.3 Flash memory has erase-blocks and pages. Data can be written
only on a per page basis and each page can only be written once.
If a page needs to be re-written the whole erase-block needs to be
erased first. 29

5.4 The log is optimized for the special characteristics of flash memory.
The head-block is zeroed once and then written page per page on
a log reset pointing to the start of the log. A special UUID (symbol)
allows to differ between valid and old log entries. 30

6.1 The 10 min and 60 min traces show two extremes: While the 10
min trace has no idle times greater than 30s, the 60 min trace has
several long idle periods. 36

6.2 This diagrams show the power consumption when the 10-min trace
is replayed using different policies and mechanisms. 39

viii List of Figures

List of Tables

3.1 Comparison of different approaches to save power consumption . 10

3.2 The new approach safe laptop mode satisfies all requirements . . 14

5.1 The background task has 3 different modes of operation. 26

6.1 Four tests cases of which three are online cases have been done
to show that the solution saves energy without degrading perfor-
mance in common usage scenarios on a modern laptop. 34

6.2 Real-time traces have been recorded using two different Linux sys-
tems. 34

6.3 The power consumption of a notebook disk, a SSD and an USB
flash drive were measured for each of the 4 power states. 35

6.4 This table shows how the different policies were configured for the
offline test cases. The base column is giving a pointer how solu-
tions can be compared. While oracle is a known base in the field of
hard disk power management, laptop-mode is used as a base for
solutions using delayed writes. 37

6.5 Laptop mode is configuring certain system parameters. For each
variable in /proc/sys/vm/ the default value (def.) and the value con-
figured by laptop mode (LM) is given. 37

6.6 Different policies were measured in the 10 min trace; all values are
the mean power consumption over the measured time span. . . . 40

6.7 Different policies were measured in the 60 min trace; all values are
the mean power consumption over the measured time span. . . . 40

6.8 Different policies were measured in the live trace compiling the ker-
nel for 15 min; all values are the mean power consumption over the
measured time span. 41

6.9 The results of the 10 min and 60 minutes traces have been normal-
ized to oracle and the minimum base to show that the Safe Laptop
mode using USB log solution in a good case is 12% better than
oracle and in a more difficult case only 3% worse. 42

x List of Tables

Deutsche Zusammenfassung

Das Thema der vorliegenden Studienarbeit ist Festplatten Power Management.
Ein signifikanter Energieverbraucher in einem modernen Laptop ist weiterhin die
Festplatte. Diese Arbeit zeigt einen neuen Ansatz auf, wie der Energieverbrauch
einer Festplatte gesenkt werden kann um die Akkulaufzeit zu verlängern.

Um Strom zu sparen kann die Festplatte in einen Schlafmodus (standby) ver-
setzt werden, sobald ihre Dienste für den Moment nicht mehr benötigt werden.
Die Problematik besteht nun darin, dass nicht bekannt ist, wann dies der Fall ist
und ob es sich also lohnt die Festplatte schlafen zu legen. Denn wenn die Fest-
platte zu früh schlafen gelegt wird, kann dies sogar zu Stromverschwendung füh-
ren. Zudem hat jede Festplatte nur eine bestimmte Lebensdauer an Anfahrzyklen
(50000-600000).

In dieser Arbeit werden zuerst die bereits vorhandenen Lösungen für diesen Pro-
blembereich vorgestellt, analysiert und in zwei Kategorien eingeteilt. Die Ansätze
der ersten Kategorie beschäftigen sich vor allem mit der Frage, wann die Fest-
platte schlafen gelegt werden sollte – dafür wird versucht das Systemverhalten
möglichst gut vorherzusagen.

Die zweite Möglichkeit Strom zu sparen, basiert darauf zu verhindern, dass die
Festplatte wieder aus dem Schlafmodus aufgeweckt wird. Für Lesezugriffe gibt es
hierbei eine Vielzahl an gut funktionierenden Lösungen, die auch in den meisten
Betriebssystemen implementiert sind (Caching, Read-Ahead, ...). Für Schreibzu-
griffe existiert dagegen nur die Lösung die Schreibzugriffe zu verzögern. Durch
die Verzögerung können im Falle eines Systemcrashs Daten verloren gehen.
Beim Linux Laptop Mode – einer in der Praxis eingesetzten Lösung um Energie
auf Laptops zu sparen – sind dies sogar ganze 10 Minuten Arbeit, die verlorenge-
hen können.

Deshalb ist ein neuer Ansatz enstanden, diese Daten nicht vergänglich im Arbeits-
speicher zu verzögern, sondern auf einen nicht-flüchtigen Datenträger zu schrei-
ben, wie z.B. einen USB Stick. Allerdings benötigen die vorhandenen Lösungen

xii 0. Deutsche Zusammenfassung

entweder spezielle Hardware oder erfordern so große Eingriffe ins Betriebssy-
stem, so dass sie bisher keine breite Verwendung gefunden haben.

Der Beitrag dieser Arbeit schließt diese Lücke: Es wird ein neues Design vorge-
stellt, welches sich auf Block-Layer Ebene vor dem Festplattentreiber befindet.
Diese Lösung kann als ganz normales ladbares Modul eingebunden werden und
benötigt damit keinerlei tiefergehende Eingriffe ins System. Es kann auch im lau-
fenden Betrieb eingebunden werden, da das Linux Device-Mapper Framework
benutzt wird.

Im Anschluss werden die Probleme, die bei diesem Ansatz auftreten, diskutiert
und Lösungen vorgeschlagen. Auf der Basis dieses Designs wird dann eine kon-
krete Implementierung vorgestellt.

Um die Ergebnisse zu validieren wird der Stromverbrauch quantitativ gemessen.
Es kann gezeigt werden, dass im Vergleich zu Oracle (einer häufig verwendeten
Basis) die Lösung in einem schlechten Fall nur 3% schlechter ist und in einem
günstigen Fall sogar 12% besser. In jedem Fall aber benötigt Safe Laptop Mode
viel weniger Anfahrzyklen als Oracle, was zu einer deutlich verlängerten Festplat-
tenlebenszeit führt.

Safe Laptop Mode verbraucht im schlechtesten Fall 30% mehr Strom als der nor-
male Linux Laptop Mode – und 10% im Besten. Dies liegt daran, dass der USB
Stromverbauch auch im Idle Modus noch bei 0,1 Watt liegt und es derzeit nur
theoretisch möglich ist den USB Stick in einen Standby-Modus zu versetzen.

Außerdem zeigt die Auswertung der Benchmarks, dass weder Leistung, noch I/O-
Durchsatz, noch CPU-Overhead oder Speicherverbrauch gegenüber dem norma-
len Laptop Mode beinträchtigt werden.

Insgesamt gesehen erreicht die Arbeit ihr Ziel einen transparenten und einfach
in bestehende Systeme integrierbaren Mechanismus bereit zu stellen, der es er-
möglicht, Energie zu sparen, indem Schreibzugriffe verzögert werden ohne dabei
aber Datenverlust zu riskieren.

1. Introduction

In laptops a significant energy consumer is the hard disk. While there are many
solutions available to save hard disk energy, the most common solutions like Linux
laptop mode draw energy consumption against data safety. This might lead to
data loss and is unnecessary, because by utilizing some space on an USB flash
drive, the risk of data loss can be minimized.

1.1 Problem Definition
Unfortunately so far all available solutions either need specialized hardware or
extensive kernel changes to function and/or are only available on paper. So far
the only solution that has been officially integrated into the Linux kernel is the
so called laptop-mode and in the default setup it is possible to loose up to 10
minutes of work. Even though there has been lots of research in the field of hard
disk power management, no other solution has reached the consumer market yet.

1.2 Objectives
The objective of this work is to change that and provide a transparent energy-
saving solution inside of the block-layer, which can be integrated into consumer
systems with ease. The goal is to make using the solution so easy that it is as
complex as loading a kernel module or configuring a LVM module. And that this
solution can be as easy as using the laptop mode now. The idea of the proposed
solution is to extend the laptop mode with additional functionality – not to replace
it.

1.3 Methodology
To show that it is possible to save energy by using the approach outlined in this
study thesis, desktop traces have been recorded, replayed and evaluated. Also

2 1. Introduction

the power consumption on a live system utilizing the solution was measured with
promising results. The results have been examined quantitatively and besides
energy also the influence on performance and memory consumption has been
tested.

1.4 Contribution
The contribution of this work is a new approach to saving energy on a modern
laptop or desktop system by using a non-volatile flash memory. New about this
approach is that the core of the kernel does not need to be changed and that
energy saving policies can be implemented in user space. Also new about this
approach is that the proposed layer is completely transparent when inactive and
does not influence system behavior. With this said the solution is mainly an ex-
tension of the already well working Linux laptop mode by minimizing its hugest
drawback – the possible loss of data.

1.5 Thesis Outline
This study thesis is first taking an extensive look at the state of the art in the field
of hard disk power management. Then the pro and contra of the outlined ap-
proaches are discussed. Based on this analysis a new solution is presented. The
solution is first introduced as a high level design, then a concrete implementation
is discussed. Last, the solution is validated by evaluating quantitatively how much
energy can be saved compared to the Linux laptop mode and to normal system
behavior. At the end a conclusion is drawn and further work outlined that could
be done to allow further energy savings.

2. Background

There are many solutions for the problem of extending the battery life of laptops.
This study work concentrates on disk power management.

This chapter first introduces the problems related to disk power management,
then the field is divided into categories and after wards the state of the art for
each of these categories is presented.

2.1 Problems of Disk Power Management
In laptops a significant energy consumer is the hard disk. In idle mode a typical
2.5" hard drive usually requires between 0.5 W and 1.3 W, and from 2 W to 4 W
under load [ScRo08]. However in standby the consumption drops to 0.1-0.2 W. In
most power managed scenarios the hard disk uses between 3 and 15% of the
total power consumption of a laptop [MaVa05]. This number can increase to up to
30% for desktop systems [Gree94] with an average of 8-15% for modern desktop
systems [BiJo07].

Significant energy-savings are possible by putting the disk into a low power mode
("spinning down the disk") instead of running it in idle mode. However a number
of parameters need to be taken into consideration before power management
algorithms can be applied. On of those factors is the break-even time [LCSB+00].
The break-even time is the time a disk needs to remain in a low power state until
energy is saved at all. The formula is:

tBE =
Pspindown − estandby(tspindown + tspinup) + Pspinup

eidle − estandby

(2.1)

Additional information about the break-even time is provided in figure 2.1.

Another important factor is the life-time of a hard disk. While laptop hard disks
have a typical life-time of 600’000 spin ups and spin downs, most desktop and

4 2. Background

tBE =
Pspindown−estandby(tspindown+tspinup)+Pspinup

eidle−estandby

where

tBE = Break-Even Time; time after which energy is saved at all
Pspindown = energy needed to spin down the disk in Joule
Pspinup = energy needed to spin up the disk in Joule
tspindown = time needed to spin down the drive
tspinup = time needed to spin up the drive
estandby = average power consumption in standby
eidle = average power consumption in idle mode

Figure 2.1: Break-Even Time: time after which energy is saved at all

server hard disks have much lower values (200 spin downs per year; 50’000
cycles completely). So for example the Linux laptop mode warns to not enable the
laptop mode on a desktop system as the hard disk life-time is heavily decreased
by such aggressive power management. [Gree94, Samw04b]

2.2 State of the Art
In general energy saving policies can be implemented at several layers: In the
application layer, file system or block layer. There is a loss of information from
application to block layer and vice versa. While the application has all information
about the data written and read, but almost none about the disk state, the reverse
is true for the block layer. The block layer has all information about disk state, but
no information about the requests arriving and who is responsible for them.

Four cases of approaches can be distinguished for saving energy by spinning
down the disk:

• Predicting request timing (and such predicting sleep time of the disk) without
influencing it

• Influencing request timing on any of the three layers (and such influencing
sleep time)

• Giving more information to other layers to enable better prediction and influ-
ence

• Or a combination thereof

2.2.1 Predictive Algorithms

Normal applications are not aware of the state of the disk layer, but instead rely
on it as just being there. They are also unaware of the disk’s energy consumption.

The disk layer needs to analyze behavior of the applications to predict if the time
between incoming requests will be larger than the break-even time (see figure 2.1).
As a baseline often the so called oracle policy is used, which gives optimal energy

2.2. State of the Art 5

savings when request timing can only be predicted but not influenced. Oracle is
an imaginary device, which does know the timing of all request that will come in
the future. Oracle can be simulated by replaying traces and using the following
policy: When the time between the current and the next request is greater or
equal to the break-even time, then the disk is immediately spun down.

Another often used algorithm – twice as bad as oracle in the worst case – is called
DDT (Device Dependent Timeout). In this policy the disk is spun down after the
break-even time has passed, because from this moment on energy can be saved.

2.2.2 Cooperative I/O

However even oracle can be surpassed, when application behavior is changed
rather than only predicted. Weissel et al. show in [WeBB02] that with just lit-
tle modifications to the I/O syscall interface of existing programs further energy-
savings are possible despite many unmodified applications being run at the same
time.

With Coop-I/O, applications can declare open, read and write opera-
tions as deferrable and even abortable by specifying a time-out and
a cancel flag. This information enables the operating system to de-
lay and batch requests so that the number of power mode switches
is reduced and the device can be kept longer in a low-power mode.
[WeBB02]

2.2.3 Energy Aware File Systems

I/O Requests can also be influenced efficiently in the file system layer. Here two
approaches need to be distinguished. File systems, which are aligned to the
specific needs of hard disks and file systems optimizing its own behavior by using
the knowledge available.

Sherl shows in [Sche] that for mobile and embedded systems the file system can
be optimized using a log structured approach to save energy by minimizing seek
and rotational latencies, which is especially important if no caches are available.

The Linux laptop mode [Samw04b] on the other hand configures the file system
in a way so that non-crucial write requests are omitted: For example by removing
writing of access times.

A file system could also prioritize unimportant writes lower than important writes.
For example this imaginary file system could hold back access time data as well
as volatile data to /tmp or log files on a desktop and not spin up the hard disk
for this type of requests, while it would write "user data" directly to the disk. This
file system would weight possible data loss of unimportant data against energy
consumption. Background processes would not spin up the disk unnecessarily.

6 2. Background

2.2.4 Request-Reordering, Read-Ahead

Another technique used in most operating systems is request reordering on the
block layer, to minimize rotational and seek delays. As the operating system
nowadays does not know the exact layout of the disk, most modern disks sup-
port a mode called NCQ (Native Command Queuing), which does exactly that.
Request-Reordering does improve performance and can also save energy. How-
ever this is only possible for read requests as reordering write requests could lead
to a inconsistent system state after a crash.

With the hypothesis that applications are reading data mostly sequentially, but
only one chunk at a time, Read-Ahead was developed. By reading more data than
requested (pre-caching), further read requests from applications can be satisfied
from the read-ahead buffer without actually reading the block-device again. This
prolongs idle periods and can conserve energy.

2.2.5 Read-Caching

Caching of requests in general is also a good method to save energy and increase
performance.

Caching depends on the idea that things read once are often read a second time
and studies show that read-caches are efficient and that many read requests can
be satisfied directly from the cache. Saving disk accesses naturally prolongs idle
periods, energy is saved.

2.2.6 Write-Delaying

While read requests in most desktop scenarios are not a problem as caching is
very efficient – write requests are.

On a Linux system using ext3 as a file system for example data is committed
every five seconds. The disk and most of the other file systems have a similar
flushing behavior. After data is older than 30 seconds in Linux, it is flushed to
disk. This process is called kflushd and runs every 5 seconds. This results in an
enduring disk activity of periodic writes, which is completely counter-productive to
power management.

The reason for such aggressive flushing is the prevention of data loss. In case of
a system crash or power outage all delayed write requests would be lost. On the
other hand it would make no sense to directly write all data through as otherwise
read requests could be delayed unnecessarily and writing data in a burst gives
smooth I/O performance.

For Linux there are several implementations of the write delay method. The most
popular are Linux laptop mode and noflushd. Both do configure certain system
parameters to be able to spin down the disk for a longer period of time: For
example to prolong the already mentioned commit intervals. However in both
cases the possibility of data loss is traded for the energy savings.

To mitigate these effects, all data is written back, when the disk becomes active
again. Also the ’sync’ or ’fsync’ syscalls are recognized and requests are flushed,
when those methods are called. [Samw04b, Samw04a]

2.2. State of the Art 7

2.2.7 Write-Caching
Another possibility is to not only delay the writes, but to (also) cache them on
non-volatile storage and read them back from this storage on disk spin up.

Most write-caching solutions fall in one of two categories: Either they are based
on special hardware or are only software based.

The first cache using flash memory was already described in 1994, when a 256
MB (!) flash space did still cost 12’000 $ [MaDK94]. And already then was a flash
cache deemed a suitable way to save energy and prolong idle periods.

We find that a FlashCache can reduce the power consumption of the
storage subsystem by 20-40% and improve overall response time by
30-70% when combined with an aggressive disk management policy.
When combined with a more conservative policy, power is reduced
from 40-70% while overall re-sponse time is improved 20-60%. We
also find that durability is not a problem; a 4 MB FlashCache will last
33 years. [MaDK94]

Here the flash cache is used as a normal cache layer between hard disk and main
memory.

Eleven years later Bisson and Brandt show in [BiBr05] that this approach is not
only still feasible, but can "outperform the most powerful disk spin-down algo-
rithms":

By redirecting writes to a flash memory while a disk is spun-down we
avoid costly hard disk cycle start-stop operations, thus increasing hard
disk reliability and reducing energy consumption [BiBr05].

They also show that this approach is necessary on unchanged operating systems
due to the previously discussed periodic disk activity. They do use the flash mem-
ory just as a write-only cache.

With Smartsaver discussed in [ChJZ06] Chen et al. use the flash-cache also for
caching of selected read-requests and pre-caching and also provide a compre-
hensive flash memory management. Their results look promising as well:

Trace-driven simulations show that up to 41% of disk energy can be
saved with a relatively small amount of data written to the flash drive
[ChJZ06].

In 2008 Matthews et al. presented in [MTHC+08] a first practical application of a
flash cache approach: The Intel R© Turbo Memory technology.

Intel Turbo Memory [...] by adding a new layer to the storage hierarchy:
a platform-based and nonvolatile, disk cache [MTHC+08].

This solution is a very hardware centric solution based around a NAND-Cache
and cache controllers by Intel.

8 2. Background

2.2.8 Write-Offloading

A variant of this technique was tackled by Microsoft Research in [NaDR08] for
enterprise servers. In this technique the requests to inactive disks are not cached
on some flash media, but rather distributed to other disks that are in active state
at the time of the request. On a read cache miss the data are read back from
the media where it was stored to and the data are also synchronized once a disk
goes into active mode again.

2.2.9 Hybrid Hard Disks

A small flash cache (NVCache) is now included on most modern hard disks.
Those are called HHDs (hybrid hard disks).

But this flash cache is mainly used for pinning data permanently into the hard drive
so that system applications can be spawned immediately. Besides it can also
be used to cache writes and such avoid spinning up the disk. Hereby the logic
for spinning down the disk and pinning writes is configured to be drive specific,
though it could be handled also by the operating system.

Bisson et al. show in [BiBL07] four methods of improving I/O behavior to save
more energy for HHDs.

2.2.10 Changing Hard Drive Speeds

Another possibility to save energy is to build hard disks with varying rotating media
speeds. DRPM [GSKF03] is the most cited approach for this idea, however most
modern hard drives still do not offer these multi-speed operating modes, which
limits the application of this approach. [GSKF03, HSRJ08]

2.3 Summary of this chapter
In this chapter the problems surrounding disk management were discussed. Then
the approaches for solving this problem were classified into four categories: Ei-
ther the timing of the requests is estimated or the behavior of applications, file
system or block layer is changed to get a better usage of resources or informa-
tion (knowledge) is provided from one layer to another to get better prediction or
influence possibilities. Or a combination thereof.

In the last part the state of the art regarding power management for disks was
presented. While read requests are nowadays handled quite well with caches,
most work now concentrates on avoid spinning up the disk due to write requests.
The write requests are either delayed (with the possibility of data loss) or written
so some temporary storage internal or external to the hard disk and computer
system. With the upcoming of solid state disks a flash cache was included into
the hard disk, but still much more memory can be saved if other factors are taken
into account, then those which are known by the drive.

3. Analysis

In this chapter different properties of approaches introduced in the previous chap-
ter are presented. It is shown that there is still room for improvement leading to
the proposition of a new system design. One important factor analyzed is if the
approaches are used in practice today and if yes how widely adopted they are.

3.1 Pro and Contra

Table 3.1 shows an overview of the different approaches and its characteristics.
The advantages and disadvantages of these approaches are discussed below in
more detail, but the table can be used as a quick reference.

3.1.1 Oracle/DDT

The advantages of oracle and other prediction based algorithms like DDT (device
dependent timeout) are that they need no additional hardware and are already in
widespread use and such do save energy today. However oracle is only optimal in
cases where the timing of requests cannot be influenced. Another disadvantage
is that oracle and DDT are spinning the disk down far too often for the average
life-time of a disk. In the worst case DDT has a timeout of 20 seconds and Linux
is writing (meta)data every 30 seconds, which leads to 120 spin-downs per hour,
which is wearing the disk out very fast. The effect of this behavior (using oracle
policy) can be seen clearly in figure 6.2 in chapter 6.

DDT is also by no means as optimal as oracle, which only works offline. In fact
in the worst case spinning down the disk after the break-even time has passed
is twice as bad as oracle and leads to even worse spin-down/spin-up behavior.
(A too aggressive spin-down policy in the Ubuntu operating system has lead to
complaints of users of failing hard disks and "strange" system behavior in 2007.)

10 3. Analysis

Approach Layer without data implemented without add.
add. HW safe and tested NV-Storage

Oracle disk/block yes yes no yes
DDT disk/block yes yes yes yes
COOP-IO fs/app/block yes yes no yes
EAFS fs yes partial yes yes
Req.-Reord. block yes yes yes yes
Read-Ahead block yes yes yes yes
Read-Caching block yes yes yes yes
Write-Delay block yes no yes yes
Laptop-Mode block/fs yes no yes yes
NV-Cache block yes yes ? no
Smart-Saver block yes yes no no
ITM disk/block no yes yes no
WR-Off-Load. block yes yes no no
HHDs disk/block no yes yes no

Table 3.1: Comparison of different approaches to save power consumption

3.1.2 COOP-IO

COOP-IO has the advantage that it is directly suited to an applications block-level
needs. So it can save energy by optimizing the application behavior, which leads
to more knowledge on the file system and block-layers, which then can schedule
the I/O more efficiently. The disadvantage is that COOP-IO needs applications
and APIs to change and cooperate. This has not happened so far and so the
savings unfortunately are still of a theoretical nature.

3.1.3 Energy Aware File Systems

There are two types of energy aware file systems as stated in 2.2.3: file systems
optimized for embedded systems with low memory and no caching technology
available and file systems that make use of their knowledge. As this work as-
sumes a standard laptop or desktop system, which typically have between 512
MB and 4 GB RAM today, only the second type is analyzed.

The advantage of energy aware file systems is that they would have the necessary
data to do some classification and only send the needed requests to the block
layer and omitting things like meta-data or data written to /tmp or any other volatile
data. This would save energy by prolonging idle periods.

The disadvantages are that this model is theoretical for now and only a certain
amount of knowledge is available: Neither the state of the block layer nor the state
of the application layer is known. But the biggest disadvantage is that creating
a main-stream file system for the sole purpose of saving energy is completely
unrealistic as file systems are a very critical part of the operating system and do
need lots of testing and verifying before they are considered stable. File systems
normally need years to mature and also need to take many factors into account
to be a general purpose file system as there are lots of different interests that a
file system has to satisfy.

3.1. Pro and Contra 11

Despite this lack of a direct energy saving method, file systems can be configured
to not write meta data and also to commit data less often. And a pure volatile
/tmp can be emulated by mounting a small ramdisk to /tmp. However here is still
optimization potential by for example flagging data with a priority bit on a VFS
layer, so that the block layer can optimize based on that priority.

While optimizing file systems itself is unpractical as stated above, the layers above
and below could be optimized to be energy-aware.

3.1.4 Request-Reordering, Read-Ahead

The advantages of request-reordering and read-ahead is that they do improve I/O
performance by minimizing rotational and seek delays and also predicting data
that most likely will be requested later on. While these techniques have been
mainly developed to make I/O faster and more efficient. This leads to higher
throughout and lower latency and as a side-effect also saves energy.

The disadvantages are that Read-Ahead can also populate the cache with data
never read as it can only predict an applications behavior. And request reordering
can only be used in case of reads as reordering writes could lead to an inconsis-
tent state on a crash.

3.1.5 Read-Caching

Read-caching has the advantage that data read once or twice is often read a
second time or third time as well. This is especially true for libraries and program
files. Linux has a read-twice, cache more policy, which is giving quite good results
in practice.

The disadvantages of read-caching are that it needs system memory to work and
that the cache can be invalidated easily by reading one huge file.

3.1.6 Write-Delay

Write-Delaying has several advantages: By not writing all data directly in one
synchronous operation to the disk, requests can be scheduled more efficiently
and so data written in a burst is not interfering with read requests. Also data that
is overwritten can be directly updated in memory before it is written again and
again to the disk.

Most operating systems do write the data only periodically to the disk (Linux 5-
35 seconds) to flatten the request queue. One disadvantage of write-delaying is
the possibility of data loss. To accommodate this most operating systems have a
SYNC flag to synchronously write data to disk.

Another disadvantage is that the default write-back delay is too short to allow long
sleeping times and as already discussed can lead to the worse-case scenario of
the cycle of 20s wait, 10s sleep, wake-up, 20s wait by using the popular DDT disk
shutdown algorithm.

12 3. Analysis

3.1.7 Linux Laptop Mode

Linux Laptop Mode with Laptop Mode Tools prolongs the write-delay to up to 10
min and also configures file system parameters not to write meta data like access
times. Also – and this is the original laptop mode flag – all data is written back to
disk shortly after a read occurs (which does wake-up the disk definitely).

The advantages of this approach are that the disk can sleep longer and as the
write-requests are written at the end of a read-request also that data is written as
soon as the disk is awake.

The disadvantages are that up to 10 min of data can be lost by utilizing this
method, which is unacceptable in some cases. Also if the default configuration is
used the disk cannot sleep longer than the configured 10 min even though there
is low write traffic with only unimportant data.

3.1.8 Non-Volatile Write-Cache

To solve the problem of occurring data loss a write-cache on a non-volatile storage
media can be used.

The advantages of using a non-volatile write-cache are that the data can be saved
temporarily or persistent to this storage and the disk can be kept spun down.
Also non-volatile RAM is more energy efficient as normal memory as it needs no
refresh. However as the non-volatile memory is limited in size and still much more
expensive than normal RAM, there need to be policies when to flush and when
to write to the cache. In practice the non-volatile memory is also often the only
memory, where the data is kept. On write-back all data needs to be first read back
into main memory and then written to disk, which has the disadvantage of a small
read-back delay.

Intel Turbo Memory (ITM)

The advantages of Intel Turbo Memory are that – as it is integrated into the hard-
ware – there is a high transparency and neither kernel nor applications need to
be changed much. Only a small layer in the disk controller is needed to enable
the functionality. Also data can be written directly from the cache to the disk and
vice-versa.

However as it is a hardware only solution usage is limited to platforms supporting
the hardware and additional investment needs to be done to save energy. Also In-
tel turbo memory also does read caching, which helps as NVRAM is more energy
efficient than ram.

Reads are already cached very well by the system itself, so this might not really
be needed. However there is one case where the read cache is especially useful.
Because at system start up data necessary for the system start up can be read
both from the hard disk and from the turbo memory, which increases system start
up times. (An example, where this is used in practice is Microsoft’s ReadyBoost
technology.)

3.2. A new approach 13

Smart-Saver

The other solution is Smartsaver, which only exists on paper so far. They did an
extensive study with a disk simulator to show that by using NVRAM they can save
memory. The advantages of Smartsaver are that by using a NV-Cache disk sleep
times can be prolonged. The disadvantage of Smartsaver is that according to the
paper they need to make extensive changes in the Linux kernel, in the disk drivers
and additionally they need to add a complete new policy for writing back blocks.

Write Off-Loading

Another possibility to delay the write requests is to off-load the write requests
to other disks that are not sleeping. A challenge hereby is a naturally occurring
consistency problem and in case that the data is written to the network, also a
small read latency.

An example for that is Write-Off-Loading by Microsoft Research. This technique
however is utilized best in enterprise data centers, where lots of data storage is
available. Write Off-loading is not that relevant for desktop computer systems
as those often just have one or two hard disks and might not have a persistent
network connection in case of laptop computers.

3.1.9 Hybrid Hard Disks

Another important field of research is the usage of hybrid hard disks. HHDs do
have a small flash cache integrated on the disk. Advantages are that writes can be
cached and the hardware can also directly decide to write back cache data. The
disadvantages are that there is a custom cache write/invalidate protocol, which
means there is always a trade off between disk managed cache and operating
system managed cache. This also leads to further overhead.

At the moment the flash cache is also not yet used in the ideal way, as discussed
in [BiBL07]. Also HHDs are not yet in widespread use, especially not in laptop
computers.

3.2 A new approach
In conclusion there are two main things to do to save power:

First detect patterns and algorithms when to put the disk to sleep. This work only
briefly uses techniques from this part to decide if data should be passed through
or held back.

Second prevent usage of the block device unless absolutely necessary. This work
introduces a mechanism to hold back all writes until the disk is active or the non-
volatile request log is full, while preserving the data on a non-volatile storage.

As the analysis shows the existing solutions for using non-volatile storage for writ-
ing data are either very hardware centric or need huge changes to the operating
systems and such are not yet in widespread usage. However the solutions using
only Write-Delay with a volatile cache are working very well in several implemen-
tations, but do fail in terms of data loss.

14 3. Analysis

Approach Layer without data implemented without add.
add. HW safe and tested NV-Storage

Safe LM block yes yes yes no

Table 3.2: The new approach safe laptop mode satisfies all requirements

This work closes this gap as it provides a write delay solution, which is robust
through using non-volatile storage as backup, but on the other hand needs no
extensive hardware or kernel changes (see table 3.2). In fact as can be seen in
the implementation chapter (5) only a kernel module is needed to load and the
solution could also be hot plugged into a running system using the device mapper
framework on Linux.

File system

VFS, Block

Bu!er-Cache

dm-Relay

User space

Hardware

Disk-Driver

Figure 3.1: The proposed solution is positioned between the buffer cache and the
disk driver

So I propose to insert a solution called dm-relay inside of the block layer between
the file system and disk layers (see figure 3.1).

This layer has three tasks:

• Pass through all reads (possibly flush log before)

• Delay all writes and keep a persistent log of requests

• Write through when disk is active (possibly flush log before)

3.3. Analysis of Proposal 15

This process is outlined in figure 3.2.

HD

NV-Cache

Read Requests

RR

Write Requests

WW

active / !ush mode

Volatile Write-Cache Non-Volatile Write-Cache

Disk Queue

WW

logging mode

Figure 3.2: Read-Requests are passed through. In active or flush mode Write-
Requests are written directly to disk. In logging mode Write-Requests
are split and written to a volatile memory queue and a non-volatile
cache.

3.3 Analysis of Proposal

The read requests can be passed through directly as most of the reads are
cached and adding another cache layer would not significantly improve the cache-
hit rate. Read requests might trigger a log flush if the region of the requested data
is "dirty". However written data is often also cached by the operating system and
such this can be handled like a normal read-miss, which would also trigger a write
back of the log after the disk is active. So this is no real disadvantage.

Write requests are delayed until the disk is active again, but a persistent backup of
the requests is stored additionally on a non-volatile medium. In case that the log
fills up the disk is spun up and the delayed write requests are written to the disk.
In this case there will be a small latency before new requests can be processed.
However with an assumed log size of 512 MB delayed write requests and a hard
disk speed of 70 MB/s, the worst case is only 10 seconds (inclusive a possible
disk spin-up time) and this would also only be noticeable by the user in case of a
"dirty" region read or a synchronous write operation.

As can be seen in figure 3.3, whenever delayed write requests have been flushed
to disk, the log is reset as well.

16 3. Analysis

HD

Read Requests

RR

Write Requests

WW

Volatile Write-Cache

Disk Queue

WW

replay mode

!ush log command

after replay complete

Non-Volatile Write-Cache

NV-Cache

Figure 3.3: While the log is replayed no new read or write requests are processed.
Once the replay is complete the log is reset.

In case that the system crashes or a power outage occurs, the initial state is
restored by reloading the log into memory. While the log is re-read all other re-
quests are blocked. After log and main memory are synchronized again and the
data was written successfully through, the log is reset (see figure 3.4). This can
lead to a small recovery "delay" before the system starts up.

HDNV-Cache
recovery mode

Figure 3.4: In recovery mode the log is replayed from the non-volatile storage to
the hard disk.

This whole approach has several advantages:

• No extensive changes to hardware or kernel

• Easy to implement and use

• Does one job and does it well

3.4. Summary of this chapter 17

• Data is at minimum as safe as the log media, in normal cases much safer
(as the system does not crash every time)

• Log can be saved to even safer media (raid1, drbd) to increase reliability

• Very fast, there is only a small delay in case of log replay

• Log can be everywhere (USB flash drive, SD Card, SSD Flash, Flash, Net-
work, other active Hard disk, ...)

• Extensible (Log can be exchanged)

• Completely transparently passes through the data in active mode

• Optionally provides user space access to mechanism (flush, active, stand-
by/logging modes)

• Possible to implement different energy-saving policies

The disadvantages are:

• internal caching leads to doubling of data (once in memory and once on
non-volatile media)

• uses more memory than what would actually be needed when the data was
replayed always from cache

• needs additional non-volatile storage, which also consumes energy

• flash storage can wear out by such usage (however its possible to optimize
for this case)

• The storage must not be removed, while the system is running/after an un-
clean system shutdown, as this could lead to inconsistencies or data loss

However the simplicity of the solution far out weights these disadvantages.

3.4 Summary of this chapter
In this chapter the pro and contra of the currently existing approaches were dis-
cussed. Based on this analysis of the existing solution space a new approach was
introduced. This approach can significantly reduce power consumption (as shown
in chapter 6) by delaying all write requests while keeping a permanent backup on
non-volatile storage. The proposal was then analyzed and advantages weighted
against disadvantages.

18 3. Analysis

4. Design

This chapter describes a possible system design. Common problems that do
occur by choosing this path for the solution are discussed and solutions presented
to solve them.

On a high level the design needs to only solve the following tasks (also compare
figure 3.2):

Pass through all data

In this mode (active) the solution is completely transparent and just passes through
the data from input to output.

Delay write requests, but write a backup to non-volatile storage

In this mode (standby) the solution delays write requests until the disk is active
again. Additionally a backup is written in the form of a log structure to the non-
volatile storage.

Allow configuration of the mode used

An external (user space) program can set the mode (active/standby) that should
be used and so start or stop the logging part of the solution. This could be done
for example in anticipation of a disk going to sleep now.

4.1 Common problems

However a number of common problems can occur in these tasks, that are dis-
cussed below.

20 4. Design

4.1.1 Handling of data consistency

Because data is not written directly to the disk, but to a second medium a number
of data inconsistencies can occur. Reads cannot be passed through to the disk
when the requested region has been written to since the last flush. A dirty log can
be used to detect dirty regions and flush the log and delay reads till the flush is
completed. To make sure that data written to the log is not updated on the disk a
strict mode setting is used. Data is only passed through to the disk, when the log
is clean. Otherwise first all requests from the disk-queue are processed and then
the log is reset.

4.1.2 Handling of synchronous write requests

Write-Requests cannot just be delayed, because then synchronous write requests
would be delayed until the next log flush. Instead the write requests have to be
submitted to the log and just a clone of the write request has to be written into
the disk-queue. The synchronous operation does end then, when the data was
written successfully to the log.

4.1.3 Handling of log overflow

In case that the log overflows, all operations have to be stopped and the log has to
be flushed to disk. All pending data has to be delayed until the flush is complete.

4.1.4 Handling of system crash

In case of a system crash or power outage there are two possible states that the
log can be in: clean and dirty. In case that the log is clean the system can start
up normally. Otherwise the log needs to be first replayed and just then can new
read or write requests be processed.

4.1.5 Handling of removal of log media

As an USB flash drive can be removed easily the solution needs to know when
a log is removed or inserted again. Hot-Plug of the log media is currently not
handled.

However a possible solution is to generate an UUID to a file (possibly using a user
space helper) as soon as the disk gets active in a synchronous operation after the
log was flushed to disk. The log is then reset with this UUID.

On a system crash the recovery program would then mount the disk read/only,
read the UUID and compare it with the log. If it does not match the log is not
replayed and the user alerted.

When the log medium is removed, the solution could either fallback to a delay-only
mode or not allow operation in standby mode at all until the log media is inserted
again in which case it would be reset.

4.2. System-Design 21

4.1.6 Data-Rate is faster than log media

When the data rate of incoming write requests is faster than the log media, syn-
chronous writes will be slower than expected by the user and also data safety can
no longer be guaranteed as the log lags behind.

To solve this a simple rate limit filter is needed, which is triggering a log flush when
the amount of not processed write requests is greater than some threshold.

4.1.7 Un-smooth system behavior

The last problem is that flushing of the log by any of the above methods could
always lead to a pattern of flush-logging-flush-logging, which should be avoided.
To solve this a timer can be utilized, which is delaying the flush signal by some
amount of time. while the flush signal is active and the log state is clean data is
directly passed through to the disk without touching the log.

Additionally this timer can be reset as long as a certain amount of data is still
arriving. Before the flush signal is set to off and the log is used again, it is also a
good idea to write all dirty buffers to disk first.

4.2 System-Design
To solve all the outlined problems the proposed design consists of several sub
tasks:

• Incoming request function - Classifies the requests and passes them through
a rate-limit filter

• Background and processing task - Chooses a mode based on power state
and either passes through the request, writes data to the log, or writes data
back to disk

• Processed request function - Passes the processed requests through a rate
limit filter

• Timer function - Allows "smoothing" of write periods

• User space Message function - Allows configuration of power state

• User space Helper programs - Recovers the log or sets the power state

4.3 Summary of this chapter
This chapter showed a possible system design. Common problems have been
discussed and algorithms proposed to solve them. In the last part the system-
design was proposed with several high-level sub tasks, which are explained in
finer detail in the next chapter.

22 4. Design

5. Implementation of a dm-module
for the Linux kernel

This chapter shows how the proposed design was implemented. It starts with a
high level system-architecture overview, then gives some insights into the charac-
teristics of flash memory and how a log can utilize those and it finishes with an
insight into how the solution can be utilized in practice.

The example implementation was done for the Linux kernel based on the device
mapper framework as that allowed the most modular approach. During the devel-
opment I also wrote block level trace and replay utilities and a log analyzer.

File system

VFS, Block

Bu!er-Cache

dm-Relay

User space

Hardware

Disk-Driver

- get / set

power state

- get number

of writes

- get number

of reads

- set power

state

- set "ush

command

- set parame-

ters

Figure 5.1: The proposed solution is positioned between the buffer cache and the
disk driver and an user space interface is provided.

24 5. Implementation of a dm-module for the Linux kernel

The design was implemented in two stages: A kernel module and a user space
utility that is controlling the flush policy and also does recovery if the need arises
(see figure 5.1).

The kernel module is using standard kernel work queue and device mapper I/O
client functionalities.

5.1 System-Architecture
The architecture of the safe laptop mode module consists of several sub tasks:

• Incoming request function

– arrival function - pre-processes and classifies the incoming requests

– rate limit module - flushes the log when it is n MB behind.

• Background and processing task

– background task - processes the request queues based on mode, sets
new modes

– passthru module - passes through all requests

– disk module - clones requests and flushes request queue to hard disk

– log module - logs data to log device, reset the log, can take flash char-
acteristics into account

• Processed request function

– end_io function - post-processes processed requests

• Timer function

– timer module - Allows flushing of the request queue for a certain amount
of time

– sync module - Allows syncing of all written data via sys_sync system
call

• User space Message function

– user space interface - allows setting of parameters and modes

• User space Helper programs

– smart spindown program - Utilizes the user space interface to spin
down the disk after the break-even time.

– replay program - replays the log from log device

• dirty log module - tracks dirty and clean regions on the disk

The flow of data and signals between the sub modules is shown in figure 5.2.

5.1. System-Architecture 25

P
ro

ce
ss

e
d

 r
e

q
u

e
st

 f
u

n
ct

io
n

R
e

q
.

R
a

te
-L

im
it

Q
u

e
u

e
-

S
iz

e

D
e

cr
e

a
se

In
co

m
in

g
 r

e
q

u
e

st
 f

u
n

ct
io

n

R
e

a
d

R
e

q
.

W
ri

te

R
e

q
.

R
e

q
.

R
e

a
d

R
e

q
.

P
a

ss
th

ru

R
a

te
-L

im
it

Q
u

e
u

e
-

S
iz

e

Fl
u

sh

S
ig

n
a

l

T
im

e
r

fu
n

ct
io

n

S
ta

rt
/R

e
se

t
ti

m
e

r
Fl

u
sh

S
ig

n
a

l

sy
n

c(
)

re
se

t_
!

u
sh

()

U
se

r
sp

a
ce

 m
e

ss
a

g
e

 f
u

n
ct

io
n

!
u

sh
()

M
e

ss
a

g
e

se
t_

p
o

w
e

r_
st

a
te

()

se
t(

p
a

ra
m

s)

Fl
u

sh

S
ig

n
a

l

P
o

w
e

r

S
ta

te

E
xp

ir
e

d

Lo
g

 f
u

n
ct

io
n

a
lit

y

Lo
g

R
e

q
.

w
ri

te
_

lo
g

()

Fl
u

sh

S
ig

n
a

l re
se

t_
lo

g
()

R
e

se
t

S
ig

n
a

l

Lo
g

-S
t.

S
ig

n
a

l

o
n

d
ir

ty

cl
e

a
n

o
n

o
"

R
e

se
t

S
ig

n
a

l

o
n

R
e

a
d

-Q
u

e
u

e

W
ri

te
-Q

u
e

u
e

D
is

k-
Q

u
e

u
e

Lo
g

-Q
u

e
u

e

Fl
u

sh

S
ig

n
a

l
P

o
w

e
r

S
ta

te

B
a

ck
g

ro
u

n
d

 a
n

d
 p

ro
ce

ss
in

g
 t

a
sk

B
a

ck
g

ro
u

n
d

Ta
sk

d
is

k_
!

u
sh

()

lo
g

g
in

g

P
a

ss
th

ru

d
is

k_
cl

o
n

e
_

re
q

()

P
a

ss
th

ru

Lo
g

-S
t.

S
ig

n
a

l

M
0

M
1

o
n

M
2

L
e
g
e
n
d

M
0

 -
 d

is
k

a
ct

iv
e

 lo

g
 c

le
a

n

M
1

 -
 d

is
k

 s

ta
n

d
b

y

M
2

 -
 d

is
k

a
ct

iv
e

 lo

g
 d

ir
ty

 -

 V
a

ri
a

b
le

 -

 S
ig

n
a

l

 -

 D
a

ta
R

e
q

.

Q
u

e
u

e
-

S
iz

e

Fl
u

sh

S
ig

n
a

l

Figure 5.2: The design consists of several sub tasks that communicate through
signals. An activity can be started through a signal, a queue write or
an incoming request. Tasks can also utilize variables.

26 5. Implementation of a dm-module for the Linux kernel

Mode State Action

M0 disk-active, log-clean Pass through all data
M1 disk-standby, log-* Clone write requests and log data to nv-cache
M2 disk-active, log-dirty Only write-back, do not touch request queues

Table 5.1: The background task has 3 different modes of operation.

5.1.1 Incoming request function
Incoming requests can be classified either as read or write requests. The read
requests can depend on written data. In this case the read-requests are pushed
into a read-queue and the flush signal is set. The other read requests are just
passed through to the disk.

Write requests are passed through a rate-limit filter. This filter is incrementing a
queue-size variable by the amount of sectors to be written. Once the queue size
is above a certain threshold, the flush signal is set. This threshold is the maximal
number of sectors the log can fall behind. This prevents that the user needs to
wait for huge amounts of data until it is written to the log, as the log media is often
slower than the real media. Also at that point we can no longer guarantee the
safety of the data, so it is important to flush the data to disk.

As long as the flush signal is set and the queue size is still above another thresh-
old, the flush signal is set again. This prevents an enduring on-off-on-off cycle
which would result in permanent flushing-log writing-flushing while a huge file is
copied. The idea is that if there is still much data to process, it is not a good idea
to change back to logging mode.

The write requests are then pushed onto a write-queue.

5.1.2 Background and processing task
Both queues are associated with a work queue and a background task is respon-
sible for handling those queues. On push to one of the queues this background
task is woken up.

The background task has 4 finite states:

• disk-active/log-clean

• disk-standby/log-clean

• disk-standby/log-dirty

• disk-active/log-dirty

that map to the three modes passthrough (M0), logging (M1) and write-back (M2)
(compare table 5.1).

To calculate the disk-state both the power state and the state of the flush signal
are taken into account. The flush signal always overrides a standby power mode
and sets disk-state to active. On the other hand the flush signal is ignored when
the power state was already active. The log-state can only be set by the log
module.

5.1. System-Architecture 27

M0 - Passthrough mode

In this mode all requests from the write and read-queues are directly passed
through to the disk.

M1 - Logging mode

In this mode only write requests are processed (as read requests would have set
the flush signal anyway).

The write requests are cloned (inclusive data) and pushed to the disk queue and
then the original request is pushed to the log queue. To clone data in a memory-
saving way, only the memory map counter should be increased.

The actual logging takes place after the queues are processed. This can be
implemented either as a separate logging daemon or inside the background task.

The Log requests are written with a header to the flash-cache (see also sec-
tion 5.2) and the log-state is set to dirty.

The log also can get a reset signal, which discards all remaining requests, writes
a clean log head and sets the log-state to clean.

M2 - Write-Back mode

In this mode only requests from the disk queue are passed through to the disk;
neither read nor write-queues are touched.

Once all pending requests have been written to disk, the reset signal is sent to
the log (which then sets the log state to clean).

5.1.3 Processed request function

When the requests have been written to either the log media or to the disk media,
they are processed by the second part of the rate limit filter and the queue-size
variable is decreased by the amount of sectors written.

5.1.4 Timer function

The timer is started or reset once the flush signal is set. The timer is the only
function, which can reset the flush signal. After the timer expires, the sync()
system call is run to write all pending data to disk. This is done to avoid that the
timer expires and with the next write back of data by the kernel large amounts of
data are written to the log. Just after all data has been processed and written to
disk the flush signal is reset.

A timer is used to avoid flush-logging-flush cases like in the rate-limit filter. The
duration of the timer however should be below the write-back threshold of the
kernel, because else the flush signal might never be reset.

28 5. Implementation of a dm-module for the Linux kernel

5.1.5 User space Message function
There are three possible messages that user space can send:

• Flush Signal - Sets the flush signal to flush the log

• Power State Signal - Sets the power state of the disk

• Set Parameters - Sets parameters like max-queue-size or timer duration

The power state is not the actual power state of the disk, but rather telling the
module that now data should go to the log as the disk is about to go to sleep. Or
that the disk has just woken up and data could be written back to disk or passed
through directly. Or whatever policy the user space program wants to implement.

Power-State is directly setting the power-state variable.

5.1.6 User space Helper programs
While the recovery functionality could be also implemented inside of the kernel,
user space has the advantage that it can directly communicate with the user if
necessary (for example in the case of log corruption).

The replay program reads the log from the flash cache, checks if it is dirty and
replays the dirty parts back to the disk.

The task of the Smart Spindown program is to spin down the disk after n secs
of inactivity. Before the disk gets the standby command, smart spindown makes
sure that the log is flushed to disk, all data is synchronized via sync() command,
and that the power state is set to "standby" to avoid waking up the disk due to
further write requests.

Smart spindown also sets the mode to "standby" at start up to start the logging
functionality.

5.1.7 Utilizing a dirty log
Not shown in the diagram, but also needed is a dirty log kept in memory that is
tracking, which region of the disk is dirty and which is clean. This allows clas-
sifying read requests as dependent on pending write requests. The dirty log is
segmenting the available space and maps it to a bitmap. On a write-request
the section counter is incremented. When the write request was processed it is
decremented again. On an incoming read-request the bitmap is checked and if
the region is dirty the request is marked as dependent.

5.2 Log suitable for Flash-Storage
While any log could be used for the purpose of this work, it or the underlying file
system should support the special characteristics of flash memory, where each
cell can only be written a limited number of times.

Unfortunately in the case of commercially available USB-sticks a small software
layer is hiding the complexity of the flash memory so all work done to optimize the
usage of the flash memory is guess work as the wear-leveling-software is a black
box. However looking at how the manufacturer has formatted the stick can give
points how an ideal utilization could look like.

5.2. Log suitable for Flash-Storage 29

5.2.1 Flash Memory characteristics

As shown in figure 5.3 flash memory consists of erase blocks and pages. Each
page can only be written once. If a page needs to be re-written, the whole erase
block needs to be erased first and pages still valid in this block need to be copied
to other blocks. If a block was erased too often it fails and needs to be replaced,
so that data is always read and written to and from a backup block. Data can also
be corrupted on a read, though that is seldom the case.

Reports of failing USB flash drives after using FAT file system with "-o sync" option
indicate that most consumer wear-leveling-software is very basic and maps most
blocks in a linear way.

Page 1 Page 2 Page 3

Page 4 Page 5 Page 6

Page 7 Page 8 Page 9

Page 1 Page 2 Page 3

Page 4 Page 5 Page 6

Page 7 Page 8 Page 9

Page 1 Page 2 Page 3

Page 4 Page 5 Page 6

Page 7 Page 8 Page 9

Page 1 Page 2 Page 3

Page 4 Page 5 Page 6

Page 7 Page 8 Page 9

Page 1 Page 2 Page 3

Page 4 Page 5 Page 6

Page 7 Page 8 Page 9

Page 1 Page 2 Page 3

Page 4 Page 5 Page 6

Page 7 Page 8 Page 9

Erase-

Block 3

Erase-

Block 4

Page 1 Page 2 Page 3

Page 4 Page 5 Page 6

Page 7 Page 8 Page 9

Erase-

Block 2

Figure 5.3: Flash memory has erase-blocks and pages. Data can be written only
on a per page basis and each page can only be written once. If a page
needs to be re-written the whole erase-block needs to be erased first.

5.2.2 Optimizing the log

With that knowledge space can be traded against USB-stick lifetime. A log opti-
mized for the usage with flash memory should:

• Start on a boundary of a erase block (multiple of 256 kB)

• Always align data logged to the page size (4096 Bytes)

• Write pages sequentially, never overwrite a page.

30 5. Implementation of a dm-module for the Linux kernel

As shown in figure 5.4 the designed log does full fill these characteristics.

The log consists of head and log sections and has two types of records: head
records and log records. The log section is used as a ring-buffer. Head records
point to the start of the log in the log section and also have an UUID. Log records
consist of a meta-data and a data part and are also linked to one UUID. A log
record is always padded to the device page size.

On a reset of the log, the head record is written to the next valid position in the
head erase block. If the head erase block is full or contains no valid head records,
it is zeroed and the head record is written to position zero. The last head record
with the correct magic is the currently valid head record and its UUID is chosen.

Header

1
Req 1 Req 1 (2)

Header

2
Req 2 Req 2 (2)

Header

1
Req 1 Page 9

Head 1 Head 2 Head 3

... Head n

Header

1
Req 1 Req 1 (2)

Header

2
Req 2 Req 2 (2)

Header

1
Req 1 Page 9

Page 1 Page 2 Page 3

Page 4 Page 5 Page 6

Page 7 Page 8 Page 9

Header

1
Req 1 Req 1 (2)

Header

2
Req 2 Req 2 (2)

Header

1
Req 1 Page 9

Page 1 Page 2 Page 3

Page 4 Page 5 Page 6

Page 7 Page 8 Page 9

Erase-

Block 4

Erase-

Block 3

Figure 5.4: The log is optimized for the special characteristics of flash memory.
The head-block is zeroed once and then written page per page on
a log reset pointing to the start of the log. A special UUID (symbol)
allows to differ between valid and old log entries.

This UUID allows to differentiate between valid and old log entries and so the log
section does not need to be zeroed each time a log reset occurs. In that case only
a new UUID is chosen. In figure 5.4 the different UUIDs are shown as different
symbols.

In conclusion this means that the head block is only written on log reset (on a per
page basis) and for each request also only one write request is necessary. Also
no block is written twice until the log overflows in which case it is reset to position
zero. Hopefully the wear-leveling-software will optimize the case of an erase block

5.3. Using dm-relay in practice 31

full of zeroes and never erase the block on subsequent head log write requests to
different pages.

5.3 Using dm-relay in practice
dm-relay is a loadable kernel module and to build the solution nothing more is
needed than a simple make command. The solution can then be included before
the root device is mounted and init is started with the following commands. It
is assumed that the root-device is /dev/sdc2 and the USB flash drive partition is
available via /dev/sde1.

Load dm subsystem
modprobe dm−zero
Load kerne l module
insmod . / dm−r e l ay . ko
Setup dm t a r g e t
echo " 0 $ (blockdev −−getsz / dev / sdc2) re l ay / dev / sdc2 / dev /

sde1 $ (blockdev −−getsz / dev / sde1) " | dmsetup create
re lay−r oo t

mount roo t f i l e system
mount / dev / mapper / re lay−r oo t / mnt
S t a r t i n i t process i n new roo t
chroot / mnt / sb in / i n i t </dev / console >/dev / console

In the running system dm-relay can be send messages via dmsetup message
command like this:

dmsetup message re lay−r oo t 0 f l u s h
dmsetup message re lay−r oo t 0 a c t i v e
dmsetup message re lay−r oo t 0 standby

Now only the modified smart-spindown script needs to be run and the solution is
working completely transparent.

. / smart−spindown . sh

Smart-spindown takes care of spinning down the disk and setting dm-relay to
standby mode.

dm-relay could have also been added to a running system if the system was
utilizing the LVM2/device-mapper framework for the root partition, but this was
not the case for the KNOPPIX system used for the tests and evaluation.

5.4 Summary of this chapter
This chapter introduced the architecture of the proposed solution. It described the
various subsystems that were needed for the implementation. Then the special
characteristics of Flash memory and especially USB flash drives were described
and a log design proposed that is optimized for this kind of media. Last an insight
was given how the solution can be used in practice.

32 5. Implementation of a dm-module for the Linux kernel

6. Evaluation

This chapter shows how much energy the proposed solution can save compared
to the other approaches introduced in this work. It also examines how the pro-
posed system behaves in different scenarios including but not limited to the prob-
lems described in chapter 4.

Especially I will show that:

• The solution presented in this work is able to save almost as much energy as
the Linux laptop mode, which is only holding back the requests (and flushing
at some interval). The solution introduces only a minimal overhead while
minimizing the hugest drawback (loss of data) of the Linux laptop mode.

• In terms of memory usage this solution does not use more memory than a
solution, where write-requests are just held back and then flushed.

• In terms of CPU the solution does not have more overhead than a compara-
ble RAID1 solution.

• Latency for most read requests and most non-synchronous write requests
is the same as without the proposal.

This chapter first introduces the methodology that was used to conduct the tests.
Then the benchmarking setup is described. After wards the actual benchmarks
are presented, which are then first described and then discussed.

6.1 Methodology
To test the validity of the approach the power consumption of the implemented
prototype was actually measured in the power lab. Both, offline traces have been
replayed and online (live) measurements have been conducted (see table 6.1).
The approach was evaluated quantitatively.

34 6. Evaluation

The first test case was a realistic workload trace of someone using a laptop com-
puter for some easy tasks like programming or writing texts. As this is not 100
percent reproducible, for this part of the work traces have been recorded and
replayed.

This test case has been conducted to be able to show that energy can be saved
by using the approach and how the typical request timing of a system looks like.

The other test cases included copying a big file, compiling a kernel or just leaving
the computer idle for a while – without activity.

Test-Case Practical application On/Offline

Workstation Working on a laptop computer offline

Idle-Pattern Leaving the system unattended online
Random-Access Pattern Compiling a kernel online
Sequential-Access Pattern Copying or downloading a large file online

Table 6.1: Four tests cases of which three are online cases have been done to
show that the solution saves energy without degrading performance in
common usage scenarios on a modern laptop.

These online measurements have been conducted to measure not only energy
consumption, but especially to measure the efficiency of the solution in common
use cases; for example Latency, I/O throughput, memory and CPU usage.

6.2 Benchmarking setup
All benchmarks have been done with a KNOPPIX Live CD V6.2-2009-11-18 [Knop03],
which has been installed to the notebook disk for the online measurements. The
KNOPPIX Live CD environment has also been used to replay the traces. The
offline traces have been recorded in virtual machines running two different KNOP-
PIX versions (compare table 6.2).

Used System Version Trace

Knoppix 6.1-2009-02-10-DE 10 minute trace
Knoppix 6.2-2009-11-18-DE 60 minute trace

Table 6.2: Real-time traces have been recorded using two different Linux sys-
tems.

The tests have been conducted using a "Western Digital WD3200BEVS 320GB"
notebook disk, a 32 GB "Intel X25-E Extreme SATA Solid-State Drive" [Corp09]
as an extremely fast backing store for the log and an eight GB USB flash drive
"SanDisk Cruzer contour 8GB". The power consumption of each device can be
found in table 6.3.

The power consumption was measured by a measurement device with resistors
of 100 mOhm using a lab view script to log the measured data every 10th of a
second.

6.2. Benchmarking setup 35

Test Hardware Type Capacity active idle standby load

WD3200BEVS Disk 320GB 1.2 1.0 0.63 3.0-4.0
Intel X25-E SSD 32GB 0.59 0.59 0.59 1.0
San Disk Cruzer USB 8GB 0.1 0.1 0.0 0.2-0.36

Table 6.3: The power consumption of a notebook disk, a SSD and an USB flash
drive were measured for each of the 4 power states.

Traces were obtained using dm-statlog utility, which is using the same format
as the log header written to disk. I have decided against btrace and blkdump,
because they do much more than is needed for this work and using the log format
for traces was a good test of the log part too. Trace and replay has been verified
against /proc/sys/vm/block_dump live output.

Traces are replayed with the dm-replay utility, which is opening the disk device
directly and is replaying the data in real time back to the disk (using fsync). dm-
replay does not take into account that sleep times can be shorter due to different
access times of devices or log media. But as the results show, this is not sig-
nificant in comparison of the methods and merely a statistical error. In all test
cases besides laptop mode fsync was used to get as realistic playback timing as
possible.

To create equal circumstances at the beginning of each experiment, scripts have
been created that prepare the system always in the same way so that the state is
the same.

For the live measurements the system was started from hard disk using the safe-
laptop mode/dm-relay kernel module as root device. The log is written to a 1 GB
USB flash drive partition starting on an erase-block boundary (see section 5.2.1).

All measurements have been started with the disk being in a low-power-idle mode.
After wards the disk was set to standby and after five seconds the measurement
was started. At the end of each measurement all data still in buffers was written
to disk via the sync command. After a delay of 1 sec the disk was spun down
again.

The notebook disk is using 1.2 W in active mode. After 10s with no activity the disk
automatically changes into a low power idle mode, where it consumes only 1.0 W.
All power consumption data for the used hardware can be found in table 6.3. The
behavior of the notebook disk to always change into a low power idle mode after
10s can be seen in the A row of figure 6.2.

The disk was set to go into standby mode after 5 minutes, however whatever time
was set, the disk changed only its behavior to go after 10s into standby instead
of low power mode. To solve this issue and allow valid measurements the smart
spindown script [Samw03] was changed to monitor also writes via /sys/block/sd-
c/stat (field 5) and suspend the disk always after around 300s.

The reason for using a SSD as a log medium was to find out if a slower or faster
non-volatile storage is influencing the performance of the solution.

36 6. Evaluation

6.3 Performed Benchmarks

As already described the performed benchmarks were split into an offline and an
online (live) part.

Time between

requests in

seconds

Number of

requests

Figure 6.1: The 10 min and 60 min traces show two extremes: While the 10 min
trace has no idle times greater than 30s, the 60 min trace has several
long idle periods.

Two traces were replayed for the offline part. One from a workstation trace of
me working on the implementation while periodically saving my work, which is
having no idle time longer than 30s (there are production systems that have this
behavior). And another one where I do work on the implementation, then leave
my place and come back later to again write some code. This trace has some
pretty big idle times, which is the other extreme (also see figure 6.1).

6.3. Performed Benchmarks 37

Policy Description Log Spin-Down Base

Write-All Write all data, then spin-down - 0s min
Oracle Oracle - 0s base
LM Linux Laptop Mode RAM 20s WR-Delay
SLM Safe Laptop Mode USB 20s -
SLM Safe Laptop Mode SSD 20s -
- Normal system behavior - 5min max

Table 6.4: This table shows how the different policies were configured for the of-
fline test cases. The base column is giving a pointer how solutions can
be compared. While oracle is a known base in the field of hard disk
power management, laptop-mode is used as a base for solutions using
delayed writes.

6 Test cases were done for the offline part for both the 1h and 10min trace that
are described below (see table 6.4).

6.3.1 Write all

In this test case all data was written as fast as possible. Then the disk was spun
down immediately, then 59 min 44 sec/9 min 44 sec standby have been measured.
This is the absolute minimum.

6.3.2 Oracle

In this test case the oracle policy was implemented inside of dm-replay. dm-replay
was sending a standby command to the disk, when the time between this and the
next request was greater then the break-even time (here: 19.34s).

Description /proc/sys/vm/ variable def. LM
value value

Flush after n secs laptop_mode 0 2
Max lost work dirty_writeback_centisecs 3000 60000
Max lost work dirty_expire_centisecs 3000 60000
Percentage of dirty pages (self) dirty_ratio 20 60
Percentage of dirty pages (pdflush) dirty_background_ratio 10 1

Table 6.5: Laptop mode is configuring certain system parameters. For each vari-
able in /proc/sys/vm/ the default value (def.) and the value configured
by laptop mode (LM) is given.

6.3.3 Laptop-Mode

Laptop Mode is configuring the disk to spin down after 20 secs with no activity. All
non-synchronous write requests were delayed until the disk is active again. Then
all data was flushed. After data has reached the life-time of 10 min it is always
flushed to disk. The system parameters that laptop mode is setting can be found
in table 6.5.

38 6. Evaluation

6.3.4 Safe Laptop Mode with SSD
Safe Laptop Mode dm-relay was configured to log to the SSD. Energy was mea-
sured for both devices. The log size was set to 500 MB after which it would have
been flushed.

6.3.5 Safe Laptop Mode with USB
Safe Laptop Mode dm-relay was configured to log to the USB device. Energy was
measured for both devices. The log size was set to 500 MB after which it would
have been flushed.

6.3.6 Normal system behavior
In the normal system behavior, the disk spins down after 5 min of no read or write
activity. The trace is replayed in real time with the fsync option.

6.3.7 Normal system behavior, no-fsync
In the normal system behavior, the disk spins down after 5 min of no read or write
activity. The trace is replayed in real time, but without the fsync option, which
gives the operating system again the chance to flatten the request queue, which
leads to a smoother write-out and also saves energy.

For the online part the three measurements were done in the following way each
running normal system behavior and safe laptop mode.

6.3.8 Idle-Pattern
Some programs were started in the K Desktop Environment, but the system was
not used.

6.3.9 Random-Access-Pattern
The Linux kernel was compiled after having been untared to have a quite random
access behavior with mostly writes.

The kernel compilation was done by creating a new directory untaring the kernel
source to it and then doing a make oldconfig prepare before the measurement.
Then starting the measurement with make bzImage.

6.3.10 Sequential-Access-Pattern
A single, large file (700 MB) was copied via rsync from the ramdisk. In this case
the KNOPPIX CD-ROM Image was used.

The data was copied from a ramdisk to get maximum write performance and test
the rate limit filter.

6.4 Results
Figure 6.2 shows the energy consumption of the 10 minute trace. The mean
power consumption for this test case is displayed in table 6.6. The mean power
consumption for the 60 min trace is displayed in table 6.7.

6.4. Results 39

012345 012345 012345 012345 012345 012345

0
,0

0

0
,0

5

0
,1

0

0
,1

5

0
,2

0

0
,2

5

0
,3

0

0
,3

5

0
,4

0 012345

W
ri

te
-T

ra
ce

, D
e

la
y,

 f
sy

n
c

W
ri

te
-T

ra
ce

, D
e

la
y,

 n
o

-f
sy

n
c

W
ri

te
-T

ra
ce

, D
e

la
y,

 L
a

p
to

p
-M

o
d

e

W
ri

te
-T

ra
ce

, N
o

-D
e

la
y

 +
 S

ta
n

d
b

y

W
ri

te
-T

ra
ce

, D
e

la
y,

 O
ra

cl
e

W
ri

te
-T

ra
ce

, D
e

la
y,

 S
a

fe
 L

a
p

to
p

 M
o

d
e

 (
H

D
)

W
ri

te
-T

ra
ce

, D
e

la
y,

 S
a

fe
 L

a
p

to
p

 M
o

d
e

 (
U

S
B

)

W
ri

te
-T

ra
ce

, D
e

la
y,

 S
a

fe
 L

a
p

to
p

 M
o

d
e

 (
S

u
m

)

A B C D E F

Figure 6.2: This diagrams show the power consumption when the 10-min trace is
replayed using different policies and mechanisms.

40 6. Evaluation

6.4.1 Offline-Traces

In figure 6.2 the functionality of the laptop mode and also the flushing behavior of
the Linux kernel can be seen. For the laptop mode only the last row (F) is inter-
esting. While the disk is idle the write requests do only go to the USB flash drive,
which consumes only tiny amounts of energy compared to the hard disk. Besides
the overhead that is needed to manage the log, safe laptop mode consumes only
as as much power as the write-all/minimal test case.

Sym. Test-Case 10 min Trace Extra power Sum

A Normal, fsync 1.2169 - 1.2169
B Normal, no-fsync 1.1073 - 1.1073
C Laptop-Mode (LM) 0.6559 - 0.6559
D Write-All 0.6585 - 0.6585
E Oracle 0.8719 - 0.8719
F Safe LM, USB 0.6608 0.1066 0.7674

Table 6.6: Different policies were measured in the 10 min trace; all values are the
mean power consumption over the measured time span.

Test-Case 60 min Trace Extra power Sum

Laptop-Mode 0.6605 - 0.6605
Write-All 0.6427 - 0.6427
Oracle 0.7223 - 0.7223
SLM, USB 0.6416 0.1095 0.7511
SLM, SSD 0.6446 0.6154 1.2600
Normal, fsync 0.9542 - 0.9542
Normal, no-fsync 0.9189 - 0.9189

Table 6.7: Different policies were measured in the 60 min trace; all values are the
mean power consumption over the measured time span.

6.4.2 Online-Traces

Idle-Pattern

Due to the nature of the Knoppix system almost no background processes were
running, so in this trace there was no activity at all even though lots of desktop
applications were run. However as the 10 min offline trace shows this is not true
for all systems such the consumed energy was the same for all three modes.

Sequential-Access-Pattern

The rate limit filter can determine quickly that a huge file is written. In that case
it flushes the log, which leads to the same energy consumption as for the normal
case. The same is true for the Linux laptop mode, as it also flushes all data to
disk as soon as the sync signal is send – before the end of the measurement.

6.5. Discussion 41

Random-Access-Pattern

It can be seen in table 6.8 that safe laptop mode saves on average 0.46 W power
consumption for the whole kernel trace compilation. All data could be read from
the cache and so the safe laptop mode could be used in standby mode all the time
and did not need to write the data to the disk until the end of the measurement.
And because the kernel build is not utilizing synchronous disk accesses there also
has been no time difference in building the kernel.

Test-Case Random-Access USB power Sum

SLM, USB 0.6855 0.1494 0.8349
Normal 1.2950 - 1.2950

Table 6.8: Different policies were measured in the live trace compiling the kernel
for 15 min; all values are the mean power consumption over the mea-
sured time span.

Memory has been traced during the test cases and no change in buffers/cache
could have been seen.

Latency is the same as without the solution for the pass-through mode and much
more dependent on the latency of the log medium for logging mode. For non-
synchronous writes latency is the same as without the solution.

Tests conducted with the SSD as a log medium have shown no performance
difference to the USB storage for most system operations. Of course synchronous
writes are much faster, when the SSD is utilized, but by using the rate limit filter
this case can also be handled well.

The overhead of the solution is except for some queuing of data and some minimal
calculations for the rate filter minimal and no influence on system I/O behavior
could be noticed.

6.5 Discussion
As the results show, safe laptop mode can save power compared to the normal
system operation. However safe laptop mode is in all cases worse than laptop-
mode, because it needs to write to the USB flash drive and the USB flash drive
needs 0.1 W in idle mode. It is theoretically possible to put an USB subsystem
to sleep (and waking up is very fast and consumes only little energy) and such
for long idle times the USB subsystem could sleep as well. However: While the
standby mode is written in the specification of USB and also already works when
the system is suspended to RAM, it is at the moment not possible to enable this
functionality for a USB device from inside the Linux kernel. The Linux kernel only
can set an auto timeout, which can only be used when no driver is claiming the
device.

Table 6.9 shows that Safe Laptop Mode does consume only 3% more energy than
the oracle policy in the 60 min trace. In the 10 min trace Safe Laptop Mode even
does save 12% more energy. 30% more energy than the normal Laptop Mode

42 6. Evaluation

is consumed in the worst case, but only 10% in the best case. On average Safe
Laptop Mode has an overhead of 16% compared to the normal laptop mode.

Test-Case 10 min Trace 60 min Trace 10 min Trace 60 min Trace
(Base Oracle) (Base Min) (Base Oracle) (Base Min)

Normal, fsync 1.3956 1.8479 1.3210 1.4846
Normal, no-fsync 1.2699 1.6815 1.2721 1.4297
Laptop-Mode (LM) .7522 .9960 .9144 1.0276
Write-All .7552 1.0000 .8897 1.0000
Oracle 1.0000 1.3240 1.0000 1.1238
Safe LM, USB .8801 1.1653 1.0398 1.1686
Safe LM, SSD - - 1.7444 1.9604

Table 6.9: The results of the 10 min and 60 minutes traces have been normalized
to oracle and the minimum base to show that the Safe Laptop mode
using USB log solution in a good case is 12% better than oracle and in
a more difficult case only 3% worse.

Oracle is beaten, because even though oracle might sometimes have better en-
ergy savings, it does this by spinning up the disk 30 times per hour (60 min trace)
or in the case of the 10-min trace even every 30 seconds, which means 120 spin-
downs per hour. This might be good in terms of energy usage (however Safe
Laptop Mode is still better in the 10 min trace, and only marginally worse in the
60 min trace), but it is not good at all for the life-time of the disk.

The other measurements show that the solution can be used on a production
system without any performance limitations and that it is well suited for example
for the average kernel hacker that just needs that extra hour of laptop battery.

6.6 Summary of this Chapter
This chapter described the testing methodology and how the benchmarks were
setup. It the described the benchmarks in more detail and the presented the re-
sults of this work. In the discussion it is shown that safe laptop mode beats oracle,
but will always have the overhead of 0.1 W USB idle consumption compared to
the normal Linux laptop mode. Despite this lack the proposed solution still does
save enough energy to be usable for every day work.

7. Conclusion

The objectives presented in section 1.2 have been reached. As memory is now
available at low-cost, it is no longer a problem to hold most of the written data in
main memory and only write a backup to some non-volatile storage. The design of
the solution is very simple and to reach the functionality described only a kernel
module needs to be loaded. Common problems such as determining when to
flush the log and when to spin-down the disk have been solved successfully.

Safe Laptop Mode is mainly suited for the use in mobile computers as that is
where energy saving is most important. However the application could also be
used on desktop computers as it gets more and more important to save energy
here as well.

The evaluation shows that Safe Laptop Mode can beat oracle by 12%. Oracle
is used as a common base line to compare disk spin-down algorithms that only
predict request timing without changing it. Safe Laptop Mode only needs around
16% more energy than the minimum base line or the normal Linux Laptop Mode.
The minimum baseline is the energy needed to write all requests to disk in one
synchronous operation and then sleep for the rest of the time. Linux Laptop Mode
is at the moment the best base line for disk spin-down algorithms, which delay
writes to avoid spinning up the disk. The overhead of the safe laptop mode solely
depends on the energy usage of the used non-volatile storage; ranging from 10%
to 30% for the USB flash drive. As only up to 1 hour traces have been used for
measurements, the results are more in favor of the normal Linux Laptop Mode as
the Safe Laptop Mode has its strengths especially in long system usage as it is
not bound to flush the data to disk after a fixed interval.

Performance characteristics are excellent and the solution does not need more
Memory or CPU overhead than the normal laptop mode. Only synchronous write
requests can be as slow as the log medium, but the majority of the requests is
handled much faster.

44 7. Conclusion

In conclusion this work reaches the goal to provide a transparent and easy imple-
mentable mechanism to conserve energy by delaying writes without the possibility
of data loss.

7.1 Future Work
Safe Laptop Mode presented in this study work does save energy. However at
the moment it is not possible to standby the USB subsystem and such 0.1 W are
needed at any moment. An open question is if the USB energy consumption can
be decreased significantly and if so which effects this would have.

Another interesting field of research is the log part of the solution. There has been
a great deal of work on so called journaling file systems and it remains an open
question how this work could be used to optimize the presented log structure and
if it would even be worth to for example optimize write-requests to contain only a
delta to previous write requests.

While saving energy in mobile systems was in the focus of this thesis, it should
also be possibly to apply the presented techniques in desktop or server scenarios.
It would be interesting to see, if it is possible to include this one-disk/one-log
solution into a system with more disks such as a RAID array. Work also needs to
be done in terms of reliability of the flash medium as server systems have other
requirements.

While the prototype has been implemented successfully and the easy plug ’n’
play structure has been achieved, the work done needs to be cleaned up and
published as an open source project. Lastly it remains to be seen if the work is
adopted by users that want to save energy on their laptop without risking their
data in the process.

Bibliography

[BiBL07] T. Bisson, S.A. Brandt und D.D.E. Long. A hybrid disk-aware spin-
down algorithm with I/O subsystem support. In Proceedings of the
26th IEEE International Performance, Computing and Communica-
tions Conference. Citeseer, 2007.

[BiBr05] T. Bisson und S.A. Brandt. Reducing energy consumption using a
non-volatile storage cache. In Proc. of RTAS, Band 5. Citeseer, 2005.

[BiJo07] W. Bircher und L. John. Complete system power estimation: A trickle-
down approach based on performance events. In Proc. of, 2007,
S. 158–168.

[ChJZ06] F. Chen, S. Jiang und X. Zhang. SmartSaver: turning flash drive
into a disk energy saver for mobile computers. In Proceedings of the
2006 international symposium on Low power electronics and design.
ACM New York, NY, USA, 2006, S. 412–417.

[Corp09] Intel Corporation. Product Manual - Intel X25-
E SATA Solid State Drive, 2009. [Online:
http://download.intel.com/design/flash/nand/extreme/319984.pdf].

[Gree94] P. Greenawalt. Modeling power management for hard disks. In Pro-
ceedings of the Symposium on Modeling and Simulation of Com-
puter and Telecommunication Systems. Citeseer, 1994.

[GSKF03] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir und H. Franke.
DRPM: dynamic speed control for power management in server
class disks. In ANNUAL INTERNATIONAL SYMPOSIUM ON COM-
PUTER ARCHITECTURE, Band 30. IEEE Computer Society; 1999,
2003, S. 169–181.

[HSRJ08] A. Hylick, R. Sohan, A. Rice und B. Jones. An analysis of hard drive
energy consumption. In IEEE International Symposium on Model-
ing, Analysis and Simulation of Computers and Telecommunication
Systems, 2008. MASCOTS 2008, 2008, S. 1–10.

[Knop03] K. Knopper. Knoppix Linux Live CD. World Wide Web eletronic
publication, accessible at http://www. knoppix. org.(Accessed
18/08/2009), 2003.

46 Bibliography

[LCSB+00] Y.H. Lu, E.Y. Chung, T. Simunic, L. Benini und G. De Micheli. Quan-
titative comparison of power management algorithms. In Proceed-
ings of the Design Automation and Test Europe, Band 160. Springer,
2000.

[MaDK94] B. Marsh, F. Douglis und P. Krishnan. Flash memory file caching for
mobile computers. In PROCEEDINGS OF THE HAWAII INTERNA-
TIONAL CONFERENCE ON SYSTEM SCIENCES, Band 27. Cite-
seer, 1994, S. 451–451.

[MaVa05] Aqeel Mahesri und Vibhore Vardhan. Power Consumption Break-
down on a Modern Laptop. In Power-Aware Computer Systems,
Band 3471 der Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2005, S. 165–180.

[MTHC+08] J. Matthews, S. Trika, D. Hensgen, R. Coulson und K. Grimsrud.
Intel R© Turbo Memory: Nonvolatile disk caches in the storage hierar-
chy of mainstream computer systems. ACM Transactions on Storage
(TOS), 4(2), 2008, S. 4.

[NaDR08] D. Narayanan, A. Donnelly und A. Rowstron. Write off-loading: Prac-
tical power management for enterprise storage. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies
(FAST 2008), 2008.

[Samw03] Bart Samwel. Smart Spindown, 2003. [Online; Stand 3. April 2010;
http://www.samwel.tk/smart%5fspindown/index.html].

[Samw04a] B. Samwel. Kernel korner: extending battery life with laptop mode.
Linux Journal, 2004(125), 2004.

[Samw04b] Bart Samwel. How to conserve battery power using laptop-
mode, 2004. [Online; Stand 3. April 2010; linux-source-
2.6.31.6/Documentation/laptops/laptop-mode.txt].

[Sche] Holger Scherl. Energy-Aware File System. Studienarbeit im Fach
Informatik and der Universitaet Erlangen-Nuernberg.

[ScRo08] Patrick Schmid und Achim Roos. How Can Battery Run-
time Be Shorter?, 2008. [Online; Stand 3. April 2010;
http://www.tomshardware.com/reviews/ssd-hdd-battery,1955-
2.html].

[WeBB02] A. Weissel, B. Beutel und F. Bellosa. Cooperative I/O: A novel I/O
semantics for energy-aware applications. OPERATING SYSTEMS
REVIEW, Band 36, 2002, S. 117–130.

