AN{]]

Karlsruhe Institute of Technology

Motivation

High-latency networks (UMTS, VPN, TOR) have recently become very
popular due to mobility, privacy, and anonymity considerations.
Browsing the www over high-latency networks is frustrating as the
underlying protocols are not designed to work well in such a scenario.

Problem Analysis
@ Today's webpages contain embedded objects
(DOM-tree/page requisites)
@ These may recursively embed objects
@ Embedded css file may embed images
B Objects are typically spread across multiple domains
@ Static images, scripts, advertisements on different domains
@ 20 most popular Alexa Top 500 pages: 443 domain names
@ Fetching requires the following sequential steps per domain

@ Domain name resolution 1 round-trip
@ TCP connection setup 1 round-trip
@ Get “index.html” file 1 round-trip
@ Get page requisites (mult. connections, keep-alive, pipelining)
Network: Campus DSL UMTS TOR
Average RTT: 12ms 27 ms 326 ms 1228 ms

@ |Interpretation of DOM-tree is done in the client browser

@ Hinders parallelization (e.g., “index.htm|” needs to be interpreted
to convey embedded contents)

@ Aggravates high-latency problem (stop-and-wait behavior)
@ Leads to poor bandwidth utilization
@ Causes a large fraction of the total delay

Initial part of an HTTP GET request with a RTT of 300ms

. 0.329s 0.97s

224 HTTP Traffic
222 TCP Connection Setup

220 DNS Traffic

218

216

214

212

210 e RS
28 |48

Transmitted and Received Bytes

Time [s]

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Wormhole

An Active HTTP-Tunnel for High-Latency Networks

Konrad Miller <miller@kit.edu>

Proposed Solution

@ Active HTTP-Tunnel
@ Wormhole entry at high-latency, low-bandwidth link
® Wormhole exit at low-latency, high-bandwidth link

® Wormhole entry acts as a web proxy for the browser
@ Passes browser queries through the tunnel
@ Serializes all traffic through a single TCP connection
@ Keeps connection alive between requests

® Wormhole exit fetches and parses objects
® Resolves all domain names
@ Returns object data to Wormhole entry

@ Piggybacks a list of page requisites that will be pushed
subsequently

® Wormhole entry can hold back future requests for announced
contents until the data arrives unsolicitedly

@ Server push vs. client cache
® Wormhole exit is unaware of browser cache’s state
@ Redundant data is pushed to the Wormhole entry

® Wormhole implements a self synchronizing cache to mitigate
this effect

B Entry caches received objects

B Exit has knowledge of entry’s cache contents

B Object hash is saved on exit-side instead of full object
a

Only an index into the cache needs to be transferred for a
cache-hit

System Architecture Group
Am Fasanengarten 5

76131 Karlsruhe/Germany
http://os.ibds.kit.edu

Evaluation

B Implementation with C++/Qt4

B Measurement with vanilla Mozilla Firefox and tcpdump
B Link traffic shaping with tc (netem, htb)

Initial Results
@ Latency is reduced greatly

140 Default Mozilla Firefox 3.5 ——

g‘ Wormhole
5 120

3

& 100

X,

S 80 -

©

a

- 60

i)

€ 40

0

s

=2 20

L
0 5) 10 15 20 25
Time [s]

® Wormhole-Cache significantly reduces re-transfers of redundant
data

Cache No Proxy Wormhole Ratio
TX: cold 190.4 Kib 48.5 Kib 0.25
RX: cold 1089.1 Kib 1049.3 Kib 0.96
TX: hot 49.2 Kib 21.7 Kib 0.44
RX: hot 148.0 Kib 196.8 Kib 1.33

Future Work/Next Steps

@ Thorough evaluation (e.g., scalability of Wormhole exit)
® Compare different scenarios

No proxy, local proxy, remote proxy

Cold, warm, hot caches; different caching parameters
Compression on and off

Different latencies/data rates



	Wormhole

