
Wormhole – An Active HTTP Tunnel
Konrad Miller

System Architecture Group
Karlsruhe Institute of Technology, Germany

miller@kit.edu

Abstract
Browsing the world wide web over a high-latency net-
work connection is frustrating. We propose an “active”
HTTP Tunnel, Wormhole, to significantly reduce web-
page load times in such a scenario.

1 Motivation
Advances in laptop and smartphone technology as well
as in so called 3G networks have made it possible to
be connected to the Internet at all times. Probably
the most frequently used network application on such
systems is the World Wide Web (WWW). Commonly
used networks such as UMTS and HSDPA offer high
data throughput, but are unfortunately prone to high
latencies.

The protocols used most widely for browsing the
WWW today are HTTP over TCP. Those protocols
were designed in a time when webpages consisted of
only a single text file. They are far from optimal for
today’s webpages often requiring tens to hundreds of
files, e.g., js, css, and images, for proper display.

Fetching a webpage can be split into at least four
steps:

Domain name resolution: one UDP roundtrip, the
mapping may be cached for future requests

TCP connection setup: one roundtrip, as the ACK
packet may piggyback data

Get index file: one roundtrip, cannot be parallelized
with page requisites

Get page requisites: fetch page requisites, supple-
mentary files needed to display the webpage. Usu-
ally over 6-8 parallel connections, possibly reveal-
ing further requisites (e.g. via css, js)

Using TCP as a transport protocol in such a way is
problematic: TCP’s slowstart mechanism hinders the
utilization of the full bandwidth for many roundtrips

leading to major slowdowns if roundtrips take a long
time [3]. When fetching only one small file per connec-
tion, the aggregated latencies introduced by connection
setups and slow-starts are significant; the user cannot
profit from the available high bandwidth.

2 Related Work
Techniques to mitigate this and similar problems have
been developed and integrated into the HTTP stan-
dard in the past: keep-alive [4] saves many roundtrips
by reusing existing connections for multiple files and
pipelining [5] reduces idle periods which are due to the
stop-and-wait behavior of keep-alive once the connec-
tion is established. However, the implemented improve-
ments do not solve all of the existing problems: The
client still has to resolve the domain name, and to wait
for TCP connection setup following the slowstart mech-
anism. This procedure leads to wasted bandwidth right
after initiating an HTTP request and thus to longer
webpage load times.

Other proposed improvements include changing the
transport protocol to UDP, which leads to problems due
to the lack of congestion control [6]. Google recently
suggested the session layer protocol Spdy [2], which in-
troduces the possibility for servers to push content to
clients. Spdy does not address the DNS and TCP slow-
start problems and is wasting bandwidth by repeatedly
retransferring data, rendering the web-caching mecha-
nisms ineffective. Furthermore, it requires modification
of existing server and client software.

3 Our Approach
We propose to use an “active” HTTP Tunnel through
the high-latency network as a solution to the problems
stated above. One tunnel endpoint, WormholeEntry, re-
sides on the browser’s side, possibly on the same node
as the browser itself. The other tunnel endpoint, Worm-
holeExit, resides on the far side of the high-latency net-

1



work. The WormholeEntry acts as an HTTP proxy for
the web client.

All communication is serialized through a persistent
TCP connection between WormholeEntry and Worm-
holeExit. This connection may be established before
the first webpage is requested, so the connection setup
does not play a role for the user-perceived latency when
fetching a webpage.

DNS look-ups are not performed by the client directly
anymore. Instead, the HTTP request including the
headers is sent to the WormholeExit, which performs do-
main name resolution, connects to the target webserver,
and fetches the requested data. Before sending the con-
tent and return-headers back to the WormholeEntry,
the WormholeExit determines if the received content is
a cascading style sheet or an HTML document. If so,
it parses the file to discover further page requisites. A
list of such page requisites is then appended to the re-
ply. These links are also appended to a fetch queue and
the data is unsolicitedly sent to the WormholeEntry as
soon as it has been fetched by the WormholeExit. Each
of them may in turn require additional objects, which
are also announced to the WormholeEntry and added
to the fetch queue recursively.

Receiving a reply, the WormholeEntry learns which
page requisites will be sent shortly and delivers the re-
ceived content to the client. When the client asks for
a known page requisite, the request is not forwarded to
the WormholeExit but blocked until the requested data
has been unsolicitedly received.

The depicted protocol leads to redundant transfers of
files which already reside in the client’s cache if the web-
page is refreshed or sub-pages with overlapping contents
(e.g., same style sheet, images) are visited, since the
WormholeExit is lacking information about data that
is already present in the WormholeEntry or web client.
To counter this effect, we propose two different mech-
anisms. Firstly, the WormholeEntry appends a “Date
header” if it requests a URL which has been received
before. This header is passed to the webserver, whose
standard behavior is to reply with a “200 OK” status
and the same date, omitting the actual data, if it has
not changed. This in turn leads to no further requi-
sites being found in the empty body. Secondly, a self-
synchronizing cache is used to circumvent the retrans-
mission of previously sent data. The cache contains
hash values of data which has been sent before. When
data needs to be retransmitted, an index into the cache
is transmitted instead. In addition to these techniques,
all messages passing through the tunnel are compressed
using the gzip algorithm, to reduce the amount of trans-
mitted data.

4 Initial Results and Conclusion
We have implemented Wormhole using C++/Qt4.5 and
built a test-setup using a current Firefox browser in its
default configuration.

Initial benchmarks against the first 20 webpages of
the Alexa Top 500 list [1] show very promising results.
Where standard HTTP over TCP seldomly used the
available bandwidth, slowing down the webpage load
times significantly, Wormhole uses all of the available
bandwidth right after the first roundtrip time. The
main open problem we have encountered was with
JavaScript, which is not interpreted in the Wormhole-
Exit but may lead to additional page requisites.

Wormhole has currently only passed initial feasibility
tests. A thorough evaluation remains to be done. We
plan to benchmark the latency reduction in different
scenarios, comparing it to different proxy configurations.
A question which needs to be answered in the ongoing
work is how much each of the techniques contributes,
e.g., if the compression is worth the CPU cycles, or if
the introduced cache is effective. Moreover, the work
raises the question if the bandwidth saving techniques
are surpassed by the regular caching mechanisms, whose
effectivity has been limited by our approach. Further
investigations must show how well Wormhole performs,
and if the WormholeExit scales to a large number of
WormholeEntries in realistic scenarios.

References
[1] Alexa top 500 sites, http://www.alexa.com, Febru-

ary 2010.

[2] Spdy: An experimental protocol for a faster web,
http://dev.chromium.org/spdy, 2010.

[3] M. Allman, C. Hayes, H. Kruse, and S. Ostermann.
TCP performance over satellite links. 5th Interna-
tional Conference on Telecommunication Systems,
1997.

[4] T. Berners-Lee, R. Riedlding, and H. Frystyk.
RFC 1945: Hypertext Transfer Protocol –
HTTP/1.0, May 1996.

[5] R. T. Fielding, J. Gettys, and J. M. et al. RFC 2616:
Hypertext Transfer Protocol – HTTP/1.1, June
1999.

[6] S. Floyd and K. Fall. Promoting the use of end-to-
end congestion control in the internet. IEEE/ACM
Trans. Netw., 1999.

2


