Universitat Karlsruhe (TH)
Institut fur
Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Improving Memory Management with
Hardware-Generated Memory Access Profiles

Sergej Muller

Studienarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa
Betreuender Mitarbeiter: Dipl.-Inform. Raphael Neider

30.06.2009






Hiermit erklare ich, die vorliegende Arbeit selbstatlig verfasst und keine anderen
als die angegebenen Literaturhilfsmittel verwendet ziehab

| hereby declare that this thesis is a work of my own, and tinét oited sources
have been used.

Karlsruhe, den 30.06.2009

Sergej Miller






Abstract

With the rise of new memory technologies such as Flash we expect future
systems to rely on a flatter memory hierarchy using multiple heterogeneous
memory units in parallel. Operating systems face new challenges in man-
aging these memories in a cost- and energy-efficient way while maximizing
performance. We believe that the key to meet these challenges is to leverage
the full potential of each memory technology by migrating pages between
the different memories according to their current usage.

In this thesis we introduce a new memory profiling architecture that
provides the operating system with hardware generated sets of promising
candidate pages. The candidates are selected according to a customizable
strategy (e.g., least frequently used) and can be employed by the operating
system to make a migration decision.



ii



Contents

1 Introduction

1.1 Memory Hierarchy . .. ... .. ... ... .. ........
1.2 Heterogeneous Memory Management . . . . . . . ... .. ..
1.3 Approach . . . . .. ...
2 Background and Related Work
2.1 OpenProcessor Platform . . . . .. ... ... ... ......
2.2 Related Work . . . . . ... ..
2.2.1 PMUHardware . . . . .. ... ... .. ........
2.2.2  Frequent Loop Detection . .. .. ... ... .....
223 ProMem . . .. ... ... ... .
3 Design
3.1 Requirements . . . ... ... .. .. ... ... ...
3.2 Location . . . . . . . . ... Lo
3.3 Memory Profiling Unit . . . . .. ... ... .. .......
3.4 Address Monitors . . . . . . ...
3.5 Profilers . . . ... ...
3.6 Update Logic . . . .. ... ... ... ... ... ...,
4 Implementation
4.1 Address Monitors . . . . . . .. ...
4.1.1 Reference Counter Block . . . . . ... ... ......
4.1.2 Read/Write Monitors . . . . ... ... ... .....
4.2 Profiler ... ... ...
421 TOP4/FLOP4 . . .. . .. . .

4.2.2 TOP/FLOP Profiler

4.3 Memory Profiling Unit and Update Logic . . . .. ... ...

5 Conclusions

iii

11
11
12
13
14
15
16

17
17
17
18
19
19
20
22

25



v

CONTENTS



Chapter 1

Introduction

From an application programmer’s point of view the working memory should
be indefinitely large and indefinitely fast. Unfortunately, there is no single
memory technology available yet that can satisfy the programmer’s desire.
Hence, modern computing systems rely on a hierarchically organized mem-
ory architecture to leverage properties of multiple memory technologies. In
fact the working memory is physically fragmented and scattered along the
different levels of the memory hierarchy. To free the application program-
mer from handling different physical memories, virtual memory and caching
are used to simulate a large, unified, and contiguous working memory. Most
operating systems use paging to implement virtual memory along with some
approximation of the least recently used (LRU) page replacement algorithm.
Once a page is accessed, a referenced bit is set by the virtual memory system.
By periodically checking and resetting this bit, the operating system is able
to approximate the least recently used page.

With respect to improving overall cost and energy efficiency while max-
imizing performance we believe that more promising page replacing algo-
rithms can be developed by providing the operating system a detailed in-
sight into how the pages are actually used. Our beliefs are motivated by the
following trends in technology.

1.1 Memory Hierarchy

Common memory technologies such as SRAM, SDRAM, and hard disk
drives differ in properties such as latency, capacity, and price per bit. Faster
memory is typically more expensive than slower memory and therefore can
only be used to a moderate extent. To obtain a trade-off between these dif-
ferences, a memory hierarchy with multiple levels is composed. Each level
has higher bandwidth and lower latency but also a smaller size than lower
levels. The idea is to provide the application programmer with as much
cheap memory as possible at the bottom of the hierarchy while keeping ac-



2 CHAPTER 1. INTRODUCTION

cess times low by using the fast memory at the top. The key to a hierarchical
memory architecture is to recognize the two principles of memory locality
[7] which are often referred to as temporal and spatial locality. Temporal lo-
cality addresses the observation that an access to a certain memory location
is likely followed by another access to the same location shortly after again.
On the other hand, spatial locality addresses the observation that accessing
a word at a certain location is likely to be followed by an access to a close-by
word in the near future. By transferring blocks of multiple words between
the levels of the memory hierarchy, copies of the blocks in higher levels are
created and can be leveraged with respect to the principles of locality during
the next memory access. Thus, a trade-off between access times and price
is attained.

The increasing number of processors in modern computing systems puts
high demands regarding the performance of the memory subsystem. Multi-
ple concurrent threads with interleaved memory access operations challenge
the principles of memory locality. In addition to that, not only modern hard-
ware, but also modern software technologies affect the principles of locality:
The advent of object-oriented programming languages in combination with
garbage collection, dynamic languages, and the use of data structures such
as hash tables result in chaotic memory reference patterns and raise more
questions about the presence of memory locality in modern systems.

LRU exploits temporal locality, but ignores benefits that are possible by
also taking spatial locality into consideration [13]. By implementing a least
recently frequently used (LRFU) page replacement algorithm [8], Lee et al.
showed that taking also the access frequency of pages into account can result
in up to 30% performance improvement over the basic LRU algorithm.

Therefore, we believe that making replacement decisions based on de-
tailed knowledge about the actual usage of pages may foster further perfor-
mance improvements.

1.2 Heterogeneous Memory Management

Multiple memory technologies in a single system are not only motivated
by the advantages of the memory hierarchy. Memory technologies such as
SRAM, DRAM, EEPROM and Flash differ not only in access latency and
price, but also in bandwidth, writing properties, persistence, and energy
consumption. Emerging non-volatile memory technologies [11] like MRAM,
FeRAM or PCRAM may broaden the list of alternatives even more with
their own technology dependent characteristics. System architects face a
growing challenge in building modern computing systems while combining
new memory technologies in an efficient way, especially when it comes to
energy efficiency. Energy is becoming an important design consideration
while the demand for higher performance still holds.



1.3. APPROACH 3

In order to tackle these demands, we expect the memory subsystem to
flatten by supporting more than one memory technology at one hierarchy
level. In this way each kind of memory can be employed to its full value and
redundant copies of data in the hierarchy can be reduced, resulting in an
overall more efficient system design. Small embedded systems tend to avoid
memory hierarchies completely to aid real-time requirements and leave the
decision where to place application data structures to the programmer. For
instance, SRAM is fast in reading and writing properties and therefore per-
fectly suited for variables and data structures like stacks, that are constantly
accessed and modified. On the other hand, SRAM is very cost intensive and
therefore, depending on the usage of the data structure, DRAM may be a
wiser choice. Another example is program data, where read-only code is
frequently accessed in a random manner. Flash memory offers low laten-
cies and good energy efficiency when it comes to read-only data, persistence
and nowadays a moderate cost efficiency, and is therefore well suited for
frequently used code regions.

In most current embedded systems, the above allocation problem is still
solved by the programmer and results in unportable applications, since the
memory configuration may differ from system to system. There has been
only little work [3, 10] to release the programmer from this kind of burden.

We believe that dynamic approaches, where data (e.g., pages) is migrated
to the memory that fits its current usage best, will play an essential role in
future systems. However, detailed real-time information about the current
usage of data structures is necessary to make effective migration decisions.

1.3 Approach

To improve memory management tasks such as page migration, we provide
the operating system with hardware generated sets of promising candidate
pages. These sets, which we refer to as memory access profiles or profiles for
short, are generated by a dedicated device attached to the system’s memory
bus and reflect the current usage of the (physical) memory according to a
profiling policy. Individual profiling policies can be implemented and may
select, for instance, the least often accessed pages or the most often read
pages as candidates. The profiles can be accessed by the operating system
through memory mapped I/O and then be used to support a replacement
decision.

This thesis is organized as follows. Chapter 2 discusses related work and
the OpenProcessor platform on which our work is based. Chapter 3 presents
our design of a memory profiling facility. Chapter 4 addresses implementa-
tion details, while Chapter 5 concludes and discusses future work.



CHAPTER 1. INTRODUCTION



Chapter 2

Background and Related
Work

This chapter provides information on the OpenProcessor platform [12], which
is being developed as a platform for research on hardware/software co-design
with the main focus on interfaces to operating systems and positions our
work among present research results.

2.1 OpenProcessor Platform

The OpenProcessor platform is a fully featured computation environment
including all significant components of a common standalone computer sys-
tem. It is entirely written in the hardware description language Verilog and
implemented on a FPGA prototyping board. Besides other features the de-
velopment board has the following highlights that are relevant to our work:

e Xilinx XC4VLX60-FPGA with 160 18 Kibit RAM blocks
e 360 KiB internal SRAM,

e 64 MiB DDR SDRAM, and

e 4 MiB Flash memory.

Figure 2.1 depicts an overview of the OpenProcessor platform. The central
processing unit (CPU) is a reduced instruction set computer based processor
with a custom load/store instruction set architecture. It features a four
staged pipeline including load and result forwarding logic. The CPU features
a software controlled translation lookaside buffer (TLB) to provide virtual
memory support. Furthermore the CPU relies on separate instruction and
data caches. The CPU is connected to a central bus that provides access
to main memory and all of the OpenProcessor devices through memory
mapped I/O. All three memory types (external DDR SDRAM, external

)



6 CHAPTER 2. BACKGROUND AND RELATED WORK

CPU
system bus

. DMA — EMC |
memory bus

| SRAM | Flash | | DDRSDRAM | | RCU

Figure 2.1: Overview of OpenProcessor Platform

Flash, and FPGA-internal SRAM) can be accessed through an extended
memory controller (EMC) [1] in a uniform manner. All memory requests on
the system bus are redirected to a dedicated memory bus by the EMC. Meta
data such as the size and type of attached memory can be accessed through
the EMC by the operating system using memory mapped 1/O. Moreover, an
additional reference counter unit (RCU) is attached to the memory bus. The
RCU is capable of counting the number of memory accesses to a maximum
of 512 regions. Size and location of each region are freely configurable by
the operating system. A simple software interface is provided for reading
the current counter values of individual regions.

Our approach relies on the above architecture, with the exception that
we replace the RCU using a more advanced unit. Assume that we want
to determine the least used memory region in a system’s memory manage-
ment task. Using the RCU would require the operating system to read all
available counter values successively and evaluate them. Since reading one
counter value requires one memory read operation, evaluating all counters
would induce considerable overhead and affect the performance significantly.
Our approach addresses this problem. The new unit is not only capable of
counting memory references to configurable memory regions, but also eval-
uates these counters and generates memory access profiles such as the four
least referenced memory regions (e.g., pages). This leads to a more efficient
software interface which enables the operating system to determine the least
referenced region by only using a small number of operations.

2.2 Related Work

For being able to improve memory management related tasks we need to un-
derstand how the memory is actually used. We believe that memory profiling
is a key for approaching this problem. Current profiling techniques can be
classified into two broad categories: software-based and hardware-based pro-



2.2. RELATED WORK 7

filing. Common software-based profiling techniques induce additional code
to profile desired code regions or instructions and hence not only introduce
significant overhead but also change the application’s execution behavior.
In this section we concentrate on three hardware-based approaches that we
believe are worth considering before building a new facility.

2.2.1 PMU Hardware

Many modern microprocessors provide a rich set of processor specific per-
formance counters that may be used in order to aid application performance
tuning. The performance counters are implemented inside a dedicated unit
often refered to as the performance monitoring unit (PMU) and are capa-
ble of capturing internal processor events such as the number of elapsed
cycles, cache misses, or instructions executed. Several PMU models can
count events that indicate traffic between a CPU core and the memory sub-
system. In [5], S. Eranian argues that performance counters are the crucial
resource to understanding performance issues on today’s hardware including
x86, PowerPC, and Cell processors. S. Eranian also shows how performance
counters can be used to collect interesting metrics related to the memory
subsystem such as cache misses, bandwidth and access latencies. A generic
kernel interface called perfmon2 [4] for accessing the performance counters
of all major processors is also presented in this paper and offers kernel-level
sampling buffers and event set multiplexing.

However, the PMU itself does not profile memory regions and is, for in-
stance, not capable of detecting the most used memory region. The PMU
can be configured to capture cache or TLB misses. Every captured miss
increments a counter. Once a counter saturates, an interrupt is raised, the
operating system takes control and evaluates the counter values. This pro-
cedure, often referred as to event-based sampling, is inaccurate because only
few (commonly four) counters are available at the same time. Furthermore
the actual physical address where the miss occurred is hard to determine.
The introduced overhead and inaccuracy of event-based sampling makes it
unfeasible to profile multiple memory regions efficiently.

PMUs were designed to help the developer to identify the location and
cause for performance bottlenecks in an application and thus they are located
where the application is executed, namely inside the CPU. They are not
capable of capturing memory traffic that was not initiated by the CPU
itself. Hence, traffic initiated by external entities such as a DMA controller
cannot be captured. In our approach, we require non-intrusiveness and high
accuracy for the memory profiling facility.



8 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.2 Frequent Loop Detection

Detecting the most frequently executed regions of code is an increasingly
popular method for enabling dynamic software optimizations. In [6] Gordon-
Ross et al. introduced a non-intrusive architecture for accurately detecting
the most frequently executed loops of a program. The presented architecture
is cache-based and resides between the CPU and the L1 memory. A frequent
loop cache controller is connected to the address bus together with an ad-
ditional signal that is asserted whenever a short backwards branch (sbb),
a commonly used instruction in loops, is taken. The loop cache controller
increments the iteration count of detected loops. The cache is indexed using
the loop address. On a cache hit, the iteration count of the loop is read from
the cache, incremented, and written back in the next cycle. On a miss, the
instruction is added to the cache with a count of one. On a conflict miss, the
new address replaces the old address in the cache. To prevent two frequent
loops in the same address region from replacing each other, an associative
cache is used. The saturation of a counter is handled by dividing all counters
inside the cache by two using a simple right shift operation.

An adaptation of this architecture for our purposes sounds promising.
We only need to replace the sbb operation trigger with a memory access
operation like store or load. DMA operations can also be monitored by at-
taching the cache controller to the system memory bus. However, while this
architecture will be capable of detecting the most frequently used memory
regions, it will fail when it comes to detecting the least frequently used re-
gions (a detailed explanation can be found in the design chapter). This is a
highly desired feature when it comes to migrating unused system pages to a
more economical memory technology. We address this essential feature with
the architecture proposed in Chapter 3.

2.2.3 ProMem

Lysecky et al. introduced a new memory hardware-based architecture called
ProMem [9] to enable profiling in prototype oriented real-time embedded
environments. ProMem'’s architecture is based on a pipelined binary tree
structure. Each tree level is implemented using a separate module and con-
tains 2"l counting nodes with level being the current tree level (the root
has level = 0). ProMem is attached to an address bus, data bus, or a con-
catenation of both and is capable of handling incoming source patterns with
a throughput of one pattern per clock cycle. All counters are configured
through a software interface with target patterns. The captured source pat-
tern descends from one tree level to the next using a greater than comparison
with the current level’s target pattern in order to decide whether to proceed
with the left or right sibling. When the captured source pattern hits a tree
node that matches the configured target pattern, the counter in this node is



2.2. RELATED WORK 9

incremented. Reading is done by pushing the counter values in breadth-first
order out of the tree.

We initially considered to adapt this architecture for our purposes, but
encountered some troubles in incorporating the evaluation facility. Evaluat-
ing the counters with the intent to determine the least frequently matched
patterns would require traversing all counters of all levels. A challenging task
facing an architecture with multiple stages and different number of counter
values per stage. Furthermore, evaluation must happen in parallel to the
monitoring in order not to affect accuracy, but ProMem can only be used
either in reading mode or in monitoring mode. Although ProMem can be
extended to support ranges of target patterns, the binary tree architecture
is based on the assumption that these patterns do not overlap. Overlapping
pattern regions may come in handy when monitoring memory in a hierar-
chical way using different granularities. Our architecture is based on a bus
structure that trades flexibility for costs in terms of area. A trade we can
afford in our experimental environment.



10

CHAPTER 2. BACKGROUND AND RELATED WORK



Chapter 3
Design

As motivated in the introduction of this thesis a detailed understanding
about how the memory is actually used is a key for improving memory man-
agement in systems with heterogeneous memory technologies. In order to
employ usage aware page migration algorithms, a set of promising candidate
pages for replacement must be selected.

In this chapter we present a design for a hardware based profiling facility
that is capable of generating memory profiles using different profiling poli-
cies. In Section 3.1 we discuss the requirements for such a facility. Section
3.2 will analyze the best location for the facility. Section 3.3 will give an
overview over the proposed architecture and its components, and the last
three sections will discuss the individual components in detail.

3.1 Requirements

In the previous chapter we talked about existing profiling techniques and
why they do not comply with our intent to improve memory management.
In order to aid the operating system efficiently during memory management
tasks such as paging, we believe that the following four requirements must
be fulfiled:

1. Non-intrusiveness. Our major goal is to assist the operating system
in making better decisions about placing pages among different mem-
ory technologies and thus improve the system’s overall efficiency. In
order to sustain the system’s performance the profiling facility should
not interrupt the system during normal program execution and thereby
introduce changes in execution behavior that may result in additional
run-time overhead. Thus, we demand that our aiding facility must
operate without the need to interrupt the running system.

2. Accuracy. Preferably, the profiling facility should be completely ac-
curate to enable potential page migration in real-time. Especially when

11



12 CHAPTER 3. DESIGN

it comes to page migration with respect to energy efficiency, the qual-
ity of migrating algorithms depends on the accuracy of the generated
profiles. We assume that memory references may occur every clock cy-
cle and demand our facility not to miss any reference. In other words,
our facility must feature a single cycle throughput of memory reference
patterns in order to fulfil our accuracy requirements.

3. Scalability and extensibility. Profiling heterogeneous memory in
a uniform manner is not a trivial task. Different memory architec-
tures come along with diverse physical characteristics such as access
latency and energy efficiency and thus must be addressed individually
to leverage their full potential. In order to examine various mem-
ory technologies with customized profiles, it is desirable to be able
to replace profiling metrics without the need for adapting the whole
architecture of the profiling facility explicitly. Therefore, we request
support for multiple profiling policies along with a feasible way to cus-
tomize these strategies.

4. Efficient software interface. The system’s overall performance
does not only depend on its hardware abilities but also on the operat-
ing system’s performance. Memory management tasks such as paging
are critical to every operating system and must be handled efficiently.
Since our goal is to leverage the generated profiles during these man-
agement tasks, we demand a transparent and fast way for accessing
the profiles by the operating system.

In summary, our memory profiling facility must not interrupt the system
during the profiling process, has to provide adequately accurate profiles at
run-time, should be extensible, and has to expose an efficient software inter-
face to the operating system. In the following sections we develop a profiling
architecture that complies with these requirements.

3.2 Location

As seen in the related work section of the previous chapter the decision where
to place our profiling facility is an important issue. For us, the following four
locations seem to be worth considering: inside the CPU, more precisely, as a
part of the memory management unit (MMU), inside each memory module,
inside the memory controller, or directly attached to the memory bus.
Placing the profiling facility in the MMU results in an architecture sim-
ilar to performance counters most modern microprocessors already provide.
While this option offers a clean and fast interface for accessing the generated
profiles by introducing a dedicated set of CPU registers, it makes satisfying
our accuracy and non-intrusiveness requirements impossible. The strictly
limited and expensive area available on the CPU die restricts the number of



3.3. MEMORY PROFILING UNIT 13

registers that can be provided to hold access related information of mem-
ory regions. This dramatically effects accuracy, since only monitoring few
regions at the same time would be possible. Techniques like sampling could
be used to allow multiplexing of the few registers in order to increase the
number of monitored memory regions. However, this will not improve accu-
racy, since only samples of access related information at certain moments are
taken. Furthermore, sampling requires periodic evaluation of the monitored
regions and periodic reconfiguration of the profiling facility with a new set of
regions that should be monitored next. Periodic evaluation and reconfigura-
tion induces run-time overhead during normal operation and thus conflicts
with our requirement for non-intrusiveness.

Another reason against placing the profiling facility in the MMU is that
we will not be able to detect memory accesses issued by other CPUs or
external devices such as DMA controllers. Hence, the resulting profiles would
be based only on regions accessed by the corresponding CPU and not reflect
the actual usage of the physical memory.

Memory specific profilers inside each memory module are indeed an in-
teresting option to consider. Memory manufacturer would be able to in-
corporate internal memory characteristics to the full extent and provide
completely accurate profiles. The individual profiles could be stored in the
memory on the same module and accessed using common memory read in-
structions by the operating system. The only problem is that this option
would distribute profiles among the different modules and make it more dif-
ficult for the operating system to evaluate the increased number of profiles.

The remaining two possible locations, inside the controller or as a sepa-
rate device attached to the memory bus, are only of insignificant difference.
In order to support multiple memory technologies, the memory controller
can be extended as proposed by Ahues [1] in a previous work. Placing the
profiling facility inside the extended memory controller or attaching it di-
rectly to the memory bus as an additional device does not have significant
impact on our design decisions. For the ease of use we decided to go with
the latter option and develop an additional profiling module that is attached
to the memory bus. This solution is more flexible, since it depends only on
an existing memory bus and may also be used in environments without the
extended memory controller.

The next section focuses on satisfying the extensibility requirements
while delving into the internal design of the facility.

3.3 Memory Profiling Unit

In the previous section we decided to attach our profiling facility directly
to the memory bus as an additional device. Starting this section, we will
refer to this profiling facility as the memory profiling unit (MPU). This



14 CHAPTER 3. DESIGN

section outlines the high level architecture of the MPU and addresses the
requirements for an extensible architecture and a simple interface to the
operating system.

In order to cope with the requirement for an efficient software interface,
two major tasks need to be accomplished. First, we need to collect all
necessary information about the memory we want to monitor and its actual
usage by the system. More precisely, we want to monitor multiple regions
of multiple memories independently of their type, size and location. The
information we need to capture must reflect the usage of these regions. In
most cases it is sufficient to focus on the number of read accesses and the
number of write accesses. Other viable entities may include time related
information such as the last timestamp a region was read from or written
to.

Second, we need to process all collected information, generate condensed
but substantial profiles and present them to the operating system. The
operating system may access the profiles at any given time and will use
them as reference for improving its memory management strategies.

Figure 3.1 shows the proposed high level architecture of the MPU. Since
the MPU is directly attached to the memory bus it is able to analyze all
incoming accesses to physical memory. This allows us to approach the first
task by introducing monitoring units, which we refer to as address monitors,
shown on the left hand side in Figure 3.1. They are responsible for moni-
toring the bus and storing the captured information about the usage of the
memory.

We approach the second task by introducing dedicated profiling units,
which we refer to as profilers, shown on the right hand side in Figure 3.1.
Profilers analyse the access related information captured by address monitors
and transforms it into compact and representative profiles that can be used
by the operating system.

The update logic shown in the center of Figure 3.1 connects the address
monitors with the profilers and is responsible for continuously presenting all
access related information collected by the monitors to the profilers. Finally,
the MPU acts like a facade and makes all profiles accessible to the operating
system using conventional memory read instructions.

3.4 Address Monitors

Address Monitors are part of the MPU and responsible for gathering access
related information on specified regions of the memory. As shown in Figure
3.1, an address monitor is directly attached to the memory bus and “listens”
for incoming memory reference patterns. The system architect configures
each address monitor to react to specified reference patterns. When an ad-
dress monitor successfully detects a reference pattern, it is responsible for



3.5. PROFILERS 15

MPU

» MONO |« » PROF1
§ » MON1 |« » PROF2 §
s] » MON2 |« » PROF3 s)
< . — — . >
o . M (o
c M . c
n . 7]

MONnN-1 PROFm-1
address monitors update logic profilers

Figure 3.1: MPU High Level Architecture

storing and updating of the corresponding access related information. For
instance, an address monitor may update an internal register with the cur-
rent timestamp or increment a register that keeps track of the number of
read accesses to a memory region represented by a target pattern. Multiple
address monitors may be attached to the bus to enable monitoring of dif-
ferent regions. A single address monitor can also be configured to monitor
multiple reference patterns. For this purpose, each address monitor supports
retrieving of the stored information by passing an unique identifier of the
corresponding target pattern.

3.5 Profilers

The purpose of the profilers is to transform the huge amount of the access
related information gathered by the address monitors into a condensed but
representative form. While in most cases the implementation of an address
monitor is straightforward by counting how often the a memory region was
accessed, profilers must be able to implement customized profiling policies
based on different metrics to generate the desired profile. Therefore the
design has to be flexible and must not enforce many restrictions for the
implementor.

We demand from all profilers to accept two signals. The first signal
denotes a key that can be used to globally identify a data register inside an
address monitor. The second signal denotes the actual data that corresponds
to the key. How the data is actually interpreted and processed is up to the
implementation of the individual profiler. Each profiler will eventually see
all keys/value pairs from the address monitors. It is left for the profiler to
decide what key/value pairs are of interest for generating the profile. We
also make no restrictions about the contents of the generated profiles. A
profiler is free to implement its own metric along with the corresponding
results.



16 CHAPTER 3. DESIGN

3.6 Update Logic

Data gathered by the monitors must be presented to the profilers to allow
them to update their profiles. The following three update policies are worth
considering: on demand, on memory access, or periodically.

Updating profiles on demand, i.e., whenever a profile is read by the oper-
ating system, requires the update logic to present the access related informa-
tion of those memory regions that are subject to the profiler’s configuration.
In a common configuration where thousands of memory regions are profiled
by a single profiler, this would require thousands of cycles until the profile
is up-to-date and may be used by the operating system. Thus, updating the
profiles on demand results in a slow software interface and induces significant
performance overhead during memory management tasks.

Another approach to keep the profiles up-to-date is to propagate the
access related information of memory regions whenever a memory access
takes place. However, this approach restricts the number of possible profiling
policies. Consider a scenario where the monitors are used to count the
number of read accesses to a set of regions of memory. Furthermore assume
two kinds of profilers. One profiler yields the most often used memory region,
and the other one yields the least often used memory region. Propagating
only the updates to the first profiler, which is based on a “greater than”
comparison of the counter values would not cause any problems and result
in the most used region as requested. However, if we feed the second profiler,
which uses a “less than” comparison on the counter values, with the same
sequence of memory accesses the result will not be necessarily accurate. The
“less than” profiler will only get the chance to see updates on memory regions
that were actually accessed and thus never take notice of untouched memory
regions. This behaviour is futile, especially when we want to find a region
that was actually never accessed.

In order to cope with the issue of the above “less than” profiler it is
necessary to traverse the access related data of each memory regions. To
avoid performance overhead as seen in the on demand approach, an update
logic using periodic updates is reasonable. In this case the update logic pe-
riodically presents the captured access related data of all monitored regions,
one by one, to the profilers. The profilers update their generated profiles
constantly and thus allow a fast interface for reading the profiles by the
operating system.

In order to enable support for multiple address monitors and profilers
embedded into one MPU we interconnect both, address monitors and pro-
filers, using a bus-like interface. It keeps the profilers up-to-date by cycling
through all possible keys used by the address monitors to globally identify
the access related information that belongs to a memory region and present-
ing the corresponding key/value pairs to all profiles.



Chapter 4

Implementation

To validate the design from Chapter 3, we implemented a memory profiling
unit (MPU) on the OpenProcessor platform presented in Chapter 2. Our
implementation shall determine the most often used regions and the least
often used regions of memory, as they are the most promising candidates to
be moved between the different memory technologies. For this purpose, we
implemented address monitors that count the number of read/write accesses
and profilers to determine the most and the least often accessed regions.

The following sections present selected implementation issues of both the
address monitor and the profiler modules.

4.1 Address Monitors

We restrict our implementation to a fundamental address monitor that is
capable of counting read and write references to a fixed number of contiguous
and equally sized memory regions. In the first subsection we present a facility
for holding the required counters and then utilize this facility to implement
an address monitor in the second subsection.

4.1.1 Reference Counter Block

Reference counter blocks are responsible for storing a large number of coun-
ters efficiently. For instance, if we intend to monitor a memory range of
64 MiB with a granularity of 8 KiB, we require a total of 2!3 counters.
Being interested in monitoring both the number of reads and the number
of writes separately, we require twice as many counters. Needless to say,
implementing all counters using registers is unfeasible, especially on our
prototyping platform that is entirely implemented on FPGA. Fortunately,
modern FPGAs feature a large number of dual-port block RAM modules.
Our platform offers about 200 block RAM modules, each with a capacity
of 18 Kibit. In other words, a block RAM module is capable of storing 512
36 bit wide counters.

17



18 CHAPTER 4. IMPLEMENTATION

— » iAddress (31:0) oReads (35:0) ———»
— > iWriteAccess oWrites (35:0) +—»

— > iQueryIndex (8:0)

—p iStartAddress (31:0)
— > iSize (4:0)

Figure 4.1: Address Monitor Module Schematic

Since we intent to count how often a memory region was accessed, we
require logic that is capable of incrementing the value of any counter stored
on the block RAM within a single clock cycle. This problem can be solved
by leveraging the dual-port feature provided by block RAMs as suggested by
Ahues [1]. However, our design additionally demands a facility for retrieving
the value of the counters periodically in order to feed the profilers. To ac-
complish both, incrementing and retrieving counters independently requires
a memory with at least two read ports and one write port. Unfortunately
there was no native support for such memory on our prototyping platform.
We solved this problem by emulating quad-port memory using normal dual-
port memory clocked twice the system clock as described in [14]. This
approach provides us with two internal memory clock cycles each external
system cycle. We leverage the first internal cycle for a read-increment-write
operation and utilize the second cycle for reading the counter value of an
externally selected counter.

4.1.2 Read/Write Monitors

Our implementation of the address monitors uses two of these reference
counter blocks (described in the previous subsection). One block is used for
counting write accesses and the other block is used for counting read accesses
to a memory region. Figure 4.1 shows the schematic of an address monitor.
Each address monitor has two input signals: iAddress and iWriteAccess
which are connected to the internal memory bus inside the MPU. The for-
mer signal represents the actual address bus which is 32 bit wide on the
OpenProcessor platform. The latter signal denotes whether a write or a
read access is currently being done.

The address monitors are optimized for counting references of contigu-
ous memory regions. Due to the limited capacity of a block RAM used in
our reference counter block modules, we are bound to at most 512 possible
monitored regions per address monitor. The start address of the first region
and the actual size of the entire monitored memory range is configured using



4.2. PROFILER 19

—— - iCandidateValue(35:0) oFirstkey(15:0) +—»
— > iCandidateKey(15:0) oFirstvValue(35:0) +——»

oFourthKey(15:0) —»
oFourthValue(35:.0) +——»

Figure 4.2: TOP4 Module Schematic

the two inputs signals iStartAddress and iSize. While the start address
may be any valid memory address, the size is determined by the following
equation:

scope in bytes = o(iSize+9)
The monitor observes the incoming signal iAddress and tests if the

address is within the monitored memory range. If so, the monitor maps the
incoming address to a counter index via

counterIndex := (iAddress — iStartAddress) SHR iSize

Depending on the iWriteAccess signal, the counter at index counterIndex
is either incremented in the reference counter block for read accesses or in
the reference counter block for write accesses.

The input signal iQueryIndex selects a counter pair, whose value is
then presented at the output signals oWrites and oReads representing the
corresponding number of writes respectively the number of reads to the
associated region.

4.2 Profiler

We also implemented a profiler that is capable of generating profiles which
reflect the four most and the four least used memory regions. First, we
develop a helper module that serves for maintaining a sorted list of key/value
pairs. Then we implement the profiler based on this sorting facility.

4.2.1 TOP4/FLOP4

The TOP4 module implements a sorted list of arbitrary key/value pairs in
hardware and works as follows. The module monitors a bus for incoming
key/value pairs. For each cycle it compares the captured pair to a list of top
pairs rated by value. If the captured key already exists in the list, the value
of the corresponding key is updated and the list is re-sorted. If the list does



20 CHAPTER 4. IMPLEMENTATION

not contain the captured key, the value of the captured pair is used in order
to determine whether the captured pair will make it into the top. If so, the
pair with the lowest value in the list is replaced by the captured pair and
the list is re-sorted. Figure 4.2 shows the schematic of the TOP4 module.

At first glance, the procedure resembles a full associative cache, with an
additional sorting feature. In order to fulfil our requirement for single cycle
throughput we decided to settle for a small list with 4 elements. Reducing
the number of elements to be sorted allows us to sort on insertion respectively
on updates. Thus, we implemented a finite state machine that swaps the
elements depending on the position of the matched key in the list and the
position the new value would fit in. Table 4.1 shows the state transitions for
the implemented state machine. At every clock cycle we check whether the
captured key is already in the list. If so, the current position is determined.
The key position column in 4.1 denotes the detected position. The case
where the key was not in the list is denoted with a hyphen. The value
position column in 4.1 denotes the position where the captured key/value
pair should be placed according to its ranking. The case where the new pair
fails to make it into the four top pairs is also denoted with a hyphen. Based
on these two input variables the state machine updates the items of the list.
For instance, if the key of a captured pair is not inside the list, but the
value is ranked to position 3, the list would be updated as follows according
to table 4.1: The 1st and 2nd place requires no modifications. The new
key/value pair is inserted at the 3rd place. Finally the 4th place is updated
with the key/value pair of the previous 3rd place. The previous holder of
the 4th place is removed from the list.

So far, we discussed the implementation of a module that holds the top
four key/value pairs ranked by value with highest value as number one. But
we also require a module that holds the flop four key/value pairs ranked
by value with smallest value as number one. This feature can be easily
integrated into a general TOP4 module by adapting the search algorithm
for the desired position inside the list to support TOP and FLOP search.
This is possible without modifying the state machine because it only reacts
to the current key and the desired value position and does not determine
these two parameters itself.

4.2.2 TOP/FLOP Profiler

Using TOP4/FLOP4 modules we implemented a simple but effective profiler
for our MPU. The profiler is capable of generating profiles that represent the
four most referenced memory regions and the four least referenced memory
regions, each with respect to the number of write and the number of read
accesses. Figure 4.3 shows the schematic of our profiler. As demanded in the
design chapter, the profiler accepts a key via the iCounterKey signal, along
with the corresponding data via the iCounterReads and iCounterWrites



—p iProfile (3:0)

» iCounterWrites (35:0)

Figure 4.3: Top/Flop Profiler Module Schematic

4.2. PROFILER 21
key pos. ‘ value pos. 1st; 2ndy 3rd; 4th 4

- 1 new 1st; 2ndy 3rd;
- 2 - new 2nd; 3rdy
- 3 - - new 3rd;
- 4 - - - new
1 - 2nd, 3rd, 4thy update(1sty)
1 1 update(1sty) - - -
1 2 2nd, update(1sty) - -
1 3 2ndy 3rd; update(1st;) -
1 4 2nd; 3rd; 4thy update(1sty)
2 - - 3rd, 4th, update(2ndy)
2 1 update(2ndy) 1sty - -
2 2 - update(2ndy) - -
2 3 - 3rd, update(2nd;) -
2 4 - 3rd,; 4thy update(2ndy)
3 - - - 4thy update(3rdy)
3 1 update(3rd;) 1st; 2nd; -
3 2 - update(3rdy) 2nd; -
3 3 - - update(3rd;) -
3 4 - - 4thy update(3rdy)
4 - - - - update(4thy)
4 1 update(4thy) 1st; 2nd; 3rd,
4 2 - update(4thy) 2nd; 3rd,;
4 3 - - update(4th;) 3rd,
4 4 - - - update(4thy)
Table 4.1: State transition table for the TOP4/FLOP4 module

— > iCounterKey (15:0) oProfileKey (15:0) —»

—» iCounterReads (35:0) oProfileValue (35:0) —»




22 CHAPTER 4. IMPLEMENTATION

signals. Each profiler is configured by the system architect with a start and
an end key that dictate what memory regions the profiler is going to profile.
All three input signals are monitored synchronously with the system clock.
If the monitored key is within the configured range the profile is updated
using the current number of reads and the current number of writes along
with the key to identify corresponding memory region.

Each profiler instantiates four TOP4 modules to keep track of the cur-
rent top key/value pairs. Two modules are initialized as TOP4 lists. The
other two modules are initialized as FLOP4 lists. All four profiles are up-
dated, whenever the the incoming key fulfils the above criteria. The profile
entries can be accessed from outside the module by applying the iProfile
input signal that selects the profile register to be read. Each profile entry is
associated with an unique index of four bits. The most significant two bits
select the profile according the following scheme:

0 top most by read access
1 top least by read access
2 top most by write access
3 top least by write access.

The least significant two bits select the position inside the a profile, where
0 denotes the top most, respectively the least most element in the list. The
results are available at the signals oProfileValue and oProfileKey by the
next positive clock edge.

4.3 Memory Profiling Unit and Update Logic

The implementation of our first MPU consists of 32 address monitors, two
profilers, and an update logic as shown in Figure 4.4. The memory address
bus is directly wired to all address monitors. The monitors are grouped into
two banks: BANKO and BANK1. Monitors of the first bank are configured
to cover a memory range of 0..64 MiB. Covering 64 MiB with 16 monitors
and 512 counters per monitor results in a coverage of 4 MiB per monitor
or 8 KiB per counter. The second bank is configured to cover a range of
0..32 KiB with a coverage of 2 KiB per monitor and 4 byte per counter.
Since all monitors are independently of each other there is no restriction on
how the ranges are configured. Regions can overlap or reside completely
inside each other. While a top level region with coarse granularity may offer
a global view, nested regions with fine granularity can concentrate on crucial
regions in detail.

The update logic is implemented by using a 14 bit counter to scan all
counters inside the monitors. The least significant 9 bits are used to address



4.3. MEMORY PROFILING UNIT AND UPDATE LOGIC 23

BANKO 8o
32
i®
: A
» PROFILERO |
3 COUNTER H 5
S H = >33
o C » + 5
S > MUX | - X <2
o BANK1 | 25
g » PROFILERL i &
I
address monitors update logic profilers
Figure 4.4: MPU Internal Design
—— - iAddress (31:0) oProfileKey (15:0) —»
— » iWriteAccess oProfileValue (35:0) ——»

—» iProfile (4:0)

—— - iEnableMonitoring
—  » iEnableProfiling

Figure 4.5: MPU Module Schematic

the counter inside one monitor. The 5 most significant bits are used to select
the current monitor. The counter is implemented as a roll-over counter and
keeps scanning all monitors continuously. The result of the currently selected
monitor is multiplexed to a profiling bus where both profilers are attached.
The first profiler is configured to profile the monitors of the first bank. The
second profiler profiles the monitors of the second bank. Figure 4.5 shows
the schematic of the MPU module.



24

CHAPTER 4. IMPLEMENTATION



Chapter 5

Conclusions

The goal of this thesis was to provide the operating system with profiles
that reflect how memory pages are actually used by the system. The pro-
files should represent candidates that are subject to memory management
strategies such as page replacement algorithms and enable dynamic migra-
tion of pages among different memory technologies according their usage.
The profiles should be accurate and generated at run-time without affecting
the system’s performance. No previous approach to memory profiling was
able to cope with these requirements.

We introduced a new hardware based memory profiling architecture that
is capable of capturing every memory access issued by the system and of
generating accurate run-time memory access profiles of multiple memories.
Both the captured data and the profiling policies can be customized and
allow individual profiling policies.

Finally, we validated our design by implementing a profiling facility that
is able to generate profiles to determine the four most often read/written
regions and the four least often read/written regions of memory. All four
profiles can be accessed through memory mapped I/O and can efficiently be
used by the operating system.

An important question not yet answered is how to handle saturation of
counters. Since we are generally interested in qualitative profiles, a viable
solution would be to divide all counters by two once a counter saturates.
Since the division preserves the ratios of the counter values, the generated
profiles should not be adversely affected.

Future work can start by evaluating page replacement algorithms that
make use of the profiles generated in our implementation. Other profiling
policies could also be studied in future work. Especially energy aware policies
appear interesting.

Our profiling facility does not migrate pages itself, it supports the op-
erating system by selecting promising candidates. Future work develop a
facility that can migrate pages between different memories transparently

25



26 CHAPTER 5. CONCLUSIONS

and autonomously according their respective usage.



Bibliography

1]

AnuEs, B. Entwurf und Implementierung einer erweiterten Spe-
icherkontrolleinheit. Study thesis, System Architecture Group, Uni-
versity of Karlsruhe, Germany, 2008.

BAcH, S. Design and Implementation of a Debugging Unit for the
OpenProcessor Platform. Study thesis, System Architecture Group,
University of Karlsruhe, Germany, 2008.

Ecg, O. A., BARUA, R., AND STEWART, D. Heterogeneous Memory
Management for Embedded Systems. In Proceedings of the 2001 In-
ternational Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES’01), ACM, pp. 34-43.

ERrRANIAN, S. The perfmon?2 project. http://perfmon2.sourceforge.
net.

ERANIAN, S. What can performance counters do for memory subsys-
tem analysis? In Proceedings of the 2008 ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness (MSPC’08), ACM,
pp. 26-30.

GORDON-R0ss, A., AND VAHID, F. Frequent Loop Detection Using
Efficient Nonintrusive On-Chip Hardware. IEEE Trans. Comput. 54,
10 (2005), 1203-1215.

HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture: A
Quantitative Approach, fourth ed. Morgan Kaufmann, September 2006.

Leg, D., CuHoi, J., CHOE, H., NoH, S., MIN, S., aAND CHO, Y.
Implementation and Performance Evaluation of the LRFU Replacement
Policy. In in Proceeding of the 23th Euromicro Conference (1997), IEEE
Computer Society, pp. 106-111.

Lysecky, R., COTTERELL, S., AND VAHID, F. A Fast On-Chip Pro-
filer Memory Using a Pipelined Binary Tree. IEEE Trans. Very Large
Scale Integr. Syst. 12, 1 (2004), 120-122.

27


http://perfmon2.sourceforge.net
http://perfmon2.sourceforge.net

28 BIBLIOGRAPHY

[10] MARQUET, K., AND GRIMAUD, G. An Object Memory Management
Solution for Small Devices with Heterogeneous Memories. In Proceed-
ings of the 5th Workshop on Intelligent Solutions in Embedded Systems
(WISES’07) (2007), IEEE, pp. 227-237.

[11] MULLER, G. Emerging Non-Volatile Memory Technologies, 2003.
[12] NEIDER, R. OpenProcessor v1.

[13] PENDSE, R., AND BHAGAVATHULA, R. Performance of LRU Block
Replacement Algorithm with Pre-Fetching. In MWSCAS ’98: Proceed-
ings of the 1998 Midwest Symposium on Systems and Circuits, IEEE
Computer Society, pp. 86-89.

[14] X1LINX. Quad-Port Memories in Virtex Devices (XAPP228).



	Introduction
	Memory Hierarchy
	Heterogeneous Memory Management
	Approach

	Background and Related Work
	OpenProcessor Platform
	Related Work
	PMU Hardware
	Frequent Loop Detection
	ProMem


	Design
	Requirements
	Location
	Memory Profiling Unit
	Address Monitors
	Profilers
	Update Logic

	Implementation
	Address Monitors
	Reference Counter Block
	Read/Write Monitors

	Profiler
	TOP4/FLOP4
	TOP/FLOP Profiler

	Memory Profiling Unit and Update Logic

	Conclusions

