The Cosy-Kernel as an Example for Efficient
Kernel Call Mechanisms on Transputers

Roger Butenuth
Department of Informatics, University of Karlsruhe, Germany
email: butenuthe@ira.uka.de

Abstract. Inthisarticle, designissuesfor scalable operating systems suited to support
efficient multiprogramming in large Transputer clusters are considered. Shortcom-
ings of some current operating system approaches for Transputer based systems con-
cerning efficiency, scalability, and multiprogramming support are discussed. After a
brief overview of the new operating system Cosy, the emphasisis laid on the design
of the kernel entry mechanism which plays akey role for efficiency and which has not
yet received the attention it deserves in the operating system literature. The kernel
entry layer is an appropriate place to isolate most of the hardware dependent parts of
akernel. Its design is discussed in the context of an implementation on Transputers.

1 Introduction

Most modern operating systems are build around a small kernel (often called microkernel),
with all higher services provided by servers, which are used by one or more clients [4], [9],
[12]. When client and server interact by sending messages only, this approach is well suited
for those parallel architectures where transparent communi cation between nodes exists. Split-
ting the operating system and the applications in small communicating processes enforces a
clear structure and introduces many chances to exploit parallelism, but the large amount of
communication operations strongly influences the performance of the whole system. Hence,
communication should be as efficient as possible. In inter—hode communication, linkspeed,
topology, and the efficiency of therouting software (or hardware) limit bandwidth and latency,
in intra-node communication, the speed of the memory interface limits the bandwidth, while
latency depends on theimplementation of the kernel. Using the built—in Transputer kernel and
scheduler a bandwidth of about 30 megabytes per second and a latency in the microsecond
range is achievable. Unfortunately, the Transputer provides only very primitive communica-
tion support. Communi cation can be enhanced by implementing akernel ontop of the Transpu-
ter built—in kernel, but this slows down al operations by the amount of time which is needed
for the kernel call mechanism. How to design and implement such a mechanism is analyzed
inthispaper using Cosy (concurrent operating system) asan examplefor ahighly parale sys-
tem designed for machines containing a thousand or more processors.

1.1 Survey of existing operating systems

One of thefirst available operating systems for Transputers was Helios from Perihelion soft-
ware, for ashort timeit was sold with the Atari Transputer workstation and ran on awiderange
of Transputer based systems like the machines from Parsytec. Helios — like Cosy — consists
of a set of servers but comes without an own kernel and relies on the built—in kernel of the

Transputer. Some of itsdeficiencies can beattributed to thisapproach: Processescan haveonly
oneof thetwo priorities provided by the Transputer, only low priority processesaretimesliced
with aconstant timeslicelength. Thelacking facility for giving appropriate prioritiesand time-
slice length to the server processes causes very bad response times, especialy on a highly
loaded machine. Another drawback of the missing kernel isthelacking process management.
One can create processes with the runp-instruction of the Transputer without informing the
kernel. As aconsequence, these processes must delete themselves, since no process manager
knowsof their existence. Anincompletely del eted application can leave one or more processes
behind, which runin memory that is owned by nobody, causing system crashesif the memory
manager allocates this piece of memory to a new application. Maybe this was one reason to
introduce the possibility to assign processors exclusively to an application, making crashes of
some processors harmless for other applications but decreasing machine utilization.

Parsytec, one of the major manufacturers of Transputer—based systems, has pushed itsoper-
ating system Parix to the market in the last year. It is the primary operating system for the
T9000 based machines, but is also available on the T8xx based machines. Asacloser ook to
Parix reveads, the term ‘operating system’ is a slight exaggeration, because it is more like a
runtime system, comparabl e to the Inmos toolsets. A ‘ processor manager’ divides the whole
machine—moreor lessstatically —in oneor more partitions, on whichit loadsthe applications.
Therefore Parix does not support multiple programs on one processor, so different applications
run in digoint partitions of the machine. As shown in [7], the achievable machine utilization
is severely limited with this sort of management, wasting a large fraction of computational
capacity. The advantage of the approach s, likein Helios, that the whol e operating system can
be designed without a software kernel on top of the Transputer kernel.

1.2 Requirementsfor a parallel operating system kernel

Asstated in [7], multiprogramming on single nodes is needed to get a good utilization of the
processors, afact which iswidely accepted on single processor computersfor years. To avoid
‘dangling’ processesin aways deall ocated memory, the kernel must have control over all pro-
cesses. Support for memory protection and virtual memory should be considered in the design
toallow easy migration to the T9000 or other processors. Besides routing of messagesthrough
the whole network, more comfortable communication primitives than those offered by the
T8xx should be part of the operating system. Multiple prioritiesand agood scheduling strategy
have a non negligible impact on response time, as can be learned from Helios and KBS [3].
Themost natural approach to realize all thisfeaturesarelocal kernels running on each proces-
sor and providing transparent communication for all other moduls of the operating system and
the applications aswell. The efficiency of the kernel affects the speed of the whole system, so
much attention hasto be paid to it.

Thestructure described so far dividesthe software of the systemin two parts. thekernel and
the processes. In the following, we focus on the connecting element, the kernel entry layer
which closes the gap between the view from the upper part to the kernel, which looks like a
collection of functions, and thekernel itself, where operationslike context switch and message
transfer aredone. Theimpact of thislayer on system design and efficiency isneglected by most
publications on kernel and operating system design.

In an environment handling external eventslike interrupts for information about incoming
messages or expiring timers, the kernel is entered not only by calling user processes but also
by event handlers, possibly enforcing the replacement of the current running process by
another one. Aswewill seein later paragraphs, thisisone of the main challengesin designing
akernel entry mechanism.

processes

| entry layer |
kernel

Fig. 1: General structure

Toget anoverview of possiblekernel callsandtheir influencetotheentry layer, ashort descrip-
tion of some features which one can find in the Cosy—kernel follows. Since communication
objectsand primitivesplay acentral rolein parallel systems, the Cosy-channelsaremorecom-
fortablethan the Transputer channels. Instead of fully synchronous operationsbetween exactly
two processes they allow access from more than one sender and one receiver process and four
types of send/receive operations: These are synchronous, asynchronous, trying, and interrupt-
ing. Asynchronous sending allows buffering of one or more messages in the channel, making
it possible to exploit parallelism between two or more processes without introducing buffer
processesontheuser level. Thesebuffer processes should be avoided, because they would shift
the burden from the operating system to the application programmer. Trying communication
operations are non-blocking send/receive operations. Either the communication partner has
reached his send/receive operation, in this case the messageistransferred and ‘true’ returned,
or the partner has not executed the matching operation, in this case ‘false’ is returned by the
kernel. Interrupting send/receive operations are closely related to signals. After putting the
message (or apointer to abuffer for receive) inthe channel, the process continuesin the normal
way. When communication takes place, the process is interrupted and executes a function
which was specified in the communication operation. Thismechanismissuperior to thesignal
mechanism in other operating systems like Unix and allows flexible reaction to exceptional
events.

The Cosy-kernel uses a multi—priority scheduler with variable time dices. Minimal/maxi-
mal priority and timeslice can be set on aper process basis. The priority changes automatically
at the end of atimeslice or after deblocking. The decrement at the end of atimeslice and the
increment after deblocking can also be modified at runtime. This approach has turned out to
beuseful in KBSto give I/O—bound processesimmediately the CPU and giveit to background
processes only when there is no other important work to do.

1.3 Facilities offered by the Transputer

The Transputer with its built—in ‘ nanokernel’ supports two priority levels, synchronous com-
munication, andtwotimers. Low priority processesare scheduled in around robin manner with
atimesliceof 2ms, high priority processesrun until they block (onachannel or timer) or termi-
nate. Thereisno support for sesmaphores, for morethan thetwo priority levels, or for timeslices
of variable length.

The Transputer perfectly matches Occam and the CSP programming model (communicat-
ing sequential processes, [8]), wherethe compiler hasmany possibilitiesto check correct usage
of communication primitives, which is essential, because the Transputer performs no check
at runtime and detects no errors. In other languages, like C and Fortran, which are nowadays

in widespread use on Transputers, the communication primitives are only supported at the
library level rather than at the language level. This deprives the compiler of the capability to
check for correct use. The processor does no checks at runtime, which resultsin the possibility
of very strange behavior when channels are not used appropriately, e. g. two processes send
to the same channel: The second process arriving at the channel determinesthe length and the
direction of communication. The processor detectsno error, when the second process executes
its out —instruction with the same channel word. The message of the given length is copied
to the buffer of the other sending process and it is deblocked.

1.4 Gap between offered and required facilities

After exposing the requirements of aparallel operating system and the offered facilities of the
Transputer one can analyze the differencein functionality that must be provided by the kernel.
Using a single Transputer channel alows no implementation of a server with more than one
client because more than one client sending to the request channel would cause the error
described above. M ultiplexing several channelsusingthe AL T-constructisnot feasible, either,
since the server must know al his clients in advance to receive requests on their respective
channels.

Other missing features of the Transputer are flexible message length, asynchronous or try-
ing communication primitivesand semaphores. Especially asynchronous operationsare useful
to overlap communication with computation and to increase CPU utilization. On all processor
types except the T9000 there is no support for transparent global communication, another
enhancement to the Transputer facilities that has to be offered by the kernel. Multicast and
combine operations, as used in many paralel agorithms, are other communication mecha-
nisms not supported by the hardware but provided by our operating system [6].

2 Structureof thekerne

An operating system kernel should be asindependent as possible of the processor types used.
Idedlly, only the parts for entering and leaving the kernel are processor dependent and must
be written in assembly language. It should be possible to write all other partsin ahigh level
language like C. The following features must be supported:

1. Preemption of arunning process to implement more than two priorities

2. Kernel entry as areaction to hardware events

3. Parameter passing from the calling process

4. Passing of return value(s) to the calling process

5. Delivery of signalsto processes
The first point, implementing preemption, is the most difficult. The Transputer has two con-
cepts of passing control to another process: Thefirst istimeslicing between low priority pro-
cesses and the second is interrupting a low priority process by a high priority process. Both
mechanisms are candidates for implementing more than the two given priorities.

All low priority processesobtain timeslices of 2 mslength, but are not immediately desche-
duled after the end of their timeslice. Instead, the processor waits for the next deschedulable
instruction: Unconditional jumps, the loop end instruction and al instructions which may
block (in, out, etc.). Thisresultsinadelay of 2ms+ 9, where § isthe time between the
end of the timeslice and the occurrence of the next descheduling point. The disadvantage of
thisstrategy isthe unpredictabletime §, the advantage isthe very fast context switch: Because
all registers are assumed to be ‘empty’ at a descheduling point, they don’t have to be saved.
Thisresultsin a hardware context switch time of lessthan 1 us.

The other preemption mechanism of the Transputer iscomparableto interruptsin other proces-
sors. A low priority process is interrupted whenever a high priority process becomes ready.
Thisisdone after the completion of the current instruction or, in the case of long instructions,
the instruction is interrupted and restarted later. The worst case delay for thisis 2.5 uson a
30Mhz T805 (75 cycles). Thestate of thelow priority processissaved in specia memory loca-
tions and registers. This saved state is dependent of the Transputer type:

T2xX: Seven 16-hit registers: W, I,A,B, C, S, E. They arelocated in the interna
RAM from address #3016 to #8023 and are accessible.

T4xX: Seven 32-hit registers: W, I,A,B, C, S, E. They arelocated in the interna
RAM from address #8000002C to #30000047 and are accessible.

T8xX: Seven 32-hit register (see T4xx), content of the floating point stack, state of
move2d instruction, rounding mode. Thedataon thefloating point stack ishidden
inthefpu and not accessiblefrom the high priority process. The state of amove2d
is not accessible, either.

T9000: The state relevant for ‘user processes (called P—processes) on the T9000 is the
same asthe state of the T8xx, the differenceisthe existence of instructionsto save
and restore this state.

Dueto the differences of the four processor models, different strategiesto implement preemp-
tion of processes are needed. On the T2xx, T4xx, and the T9000, the state of an interrupted
low priority process is accessible by high priority processes. The scheduler can simply
exchange the state of the low priority process with the state of the next running process. The
delay of thisapproachis1.7 uson a30MHz T414 (50 cycles) plusthe overhead of the kernel.
Thisisat most thetimefor two move—instructionswith seven transferred words each. Includ-
ing loading the parameters we obtain at least 1.9 us (58 cycles). To the resulting time of 1.7
us+ 1.9 us= 3.6 usthetimefor other instructions has to be added: Doing statistics, setting up
anew timer and some other overhead. All in al, atime smaller than 30 us should be possible.
The main drawback of this approach is: You cannot use it with the T8xx!

The T8xx has support for floating point instructions and has some specialized functionsfor
two—dimensional block transfer. Additionally, the T805 has debug instructions. The state of
the debug support is no problem: Two words and one flag have to be saved. Problems arise
caused by thefloating point stack of depth threeand the state of aninterruptedmove2dinit/
move2dxxx sequence. These are six words for the stack, at most five floating point flags
(three single/doubleflags, an error flag, and one flag for the rounding mode), and at most three
words for the move instruction. All in all, these are at most fourteen words. If these words
would be accessiblein theinternal RAM, there would be no problem. But Inmos has not docu-
mented away to savethemove-state, and hasexplicitly documented that thereisno possibility
to savethefloating point state becauseit ishidden in the fpul. With the next generation proces-
sor, the T9000, the situation changes. Inmos has documented away to save the entire state of
alow priority process.

There exist some approaches to use a high priority process which saves the state of alow
priority processonaT800 (agood overview isgivenin[5]), but they haveall somerestrictions,
e. g.theuseof move2dxxx isforbidden or one hasto set aflag before doing any floating point
operations. This restrictions imply compiler modifications and are often not acceptable. The
only way to avoid these problemsis to use the timeslicing mechanism of the Transputer.

1. Some people have stated that the T805 has undocumented instructions, which allow to save/restore this
state, these instructions are not available in other T8xx processors.

2.1 Kernel entry mechanism

Implementing morethan thegiventwo prioritiesisonly oneaspect of akernel designon Trans-
puters. Another closely related design decision that hasto be madeisto choose an appropriate
kernel call mechanism. ‘Traditional’ processors like the Motorola 680x0 offer specialized
trap-instructions for thispurpose, Inmoshasintroducedthe syscall-instructionwiththe
T9000 [11]. Instructions of that type usually provide a controlled way to change from user
mode to system mode, often including aswitch to adifferent stack. The Transputer (except the
T9000) does not distinguish between different operation modes, yet the two process priorities
offer similar possibilities. High priority processesare comparabl eto interrupt routineson other
processors. Theneeded transfer of control between low and high priority processescan bedone
by communication via a channel, supplying synchronization and passing of parameters, thus
thekernel call isdone by sending amessagetothe‘kernel call channel’. Thisdeblockstheker-
nel and transfersthe parameters of thecall. After executing the out —instruction, the user pro-
cessisstill runnable, and to avoid concurrent execution of the user process and the kernel one
has to introduce a second synchronization channel. This first, ssimple approach is shown in
fig. 2.

user process (es) kernel

Fig. 2: Kernel entry, smple solution

The approach shown gives the kernel full control which user process may run: The selected
process receives a message in its channel. For n processes there must be n+1 channels. One
reply channel per process and one kernel channel.

The solution given so far lacks the possibility of preemption and a mechanism to react to
external events (like an arriving message on alink). One or more special processes can handle
hardware events and send results to the kernel process. This happens totally asynchronously
to the user process and requires asecond channel (the hardware channel). The in-instruction
in the kernel entry has to be replaced by an a1t -construct, resulting in the structure shown
infig. 3. The solutionlooksniceand well structured but it hasafundamental drawback: It does
not work! Itisnot possibleto switch to adifferent user processin reaction to ahardware event.
What isthereason for this? The kernel and hardware process areimplemented as high priority
Transputer processes. Thus, ahardware eventimmediately preemptsthe user process, transfer-
ring control to the hardware process and then, by sending a message through the hardware
channel, to the kernel process. The kernel has no possibility to replace the active user process
with another user process, becauseapart of itsstateishidden in the unaccessible shadow regis-
ters. The only possible solution is to implement the kernel process as alow priority process,

user process (es) kernel hardware process

kernel-call hardware-call

i'nd—Q-—oit

Fig. 3: Kernel entry, with hardware processes

like the user processes. After deblocking the kernel by a message from the hardware process,
the currently running user processfinishesitstimeslice before control istransferred to the ker-
nel. Another advantage of thissolutionisthequitesmall processstatethat savesexecutiontime
and space.

Theinteresting part of the kernel entry isthe dotted areain fig. 3, where the context switch
from user processesto the kernel process and the preemption takes place. For further anaysis
of the mechanism, suppose two cases: (i) akernel call from the hardware process, (ii) akernel
call from auser process. Case (i) —ahardware event — beginswith the arrival of amessage on
the hardware channel and deblocksthe kernel process. Becauseitisahardware event, theright
path istaken. When the kernel processis executed by the processor, we know that the running
user process has been timesliced and that its workspace pointer is stored in the ready queue.
There is no other workspace pointer in that queue because the only other low priority process
— the kernel —isrunning. To avoid paralel execution of the user process and the kernel by
Transputer timeslicing, theworkspace pointer of the user processissavedinits processcontrol
block and the low priority queueisset to ‘empty queue’ by storing mint in the front pointer.
Thishasto bedonewithout using any deschedul ableinstructions, thereforethe i n—instruction
hasto be placed after the queue manipulation, because in isadeschedulableinstruction. Now
thereisno ambiguity about the state: Only onelow priority process—the kernel —isrunnable,
from now on thereisno need to avoid deschedul able instructions, which offersthe possibility
to write the kernel in an arbitrary high level language.

Case (ii) isakernel call from an user process. After passing the a1 t-instruction, the user
processisstill blocked at its ou t —instruction. Receiving the message deblocksit, butitissoon
blocked again waiting for the reply. Becauseit is not clear whether the user processisblocked

or ready when thekernel startsto run, thelow priority queue hasto beinspected. If the process
isready, that meansit has not reached the blocking in-instruction yet, itsworkspaceis saved
in the process control block and the low priority queue is cleared. Otherwise the workspace
pointer of the processis saved in the reply channel word. This channel word islocated in the
stack of the user process and its addressis saved in the process control block of the processin
both cases.

2.2 Data structures

Theimplementation as described above isbased on the following data structures: The process
control blocks (pcb’s) of the processes, the kernel call channel, hardware call and reply chan-
nels and some other variables.

The pcb holds the state of the process. When the process is running, one part of the state
isstoredin processor registers, the other part inthe pch. The state of aready or blocked process
hasto be saved completely in the pcb. If it isknown that not all state information isused after
rescheduling the process, only apart of the state needsto be stored. Thecomplete stateinforma-
tion for a T800 process is 56 Byte. Because the kernel is only entered at timeslicing points of
the user processit is known that the state of the integer and floating point stack does not need
to be saved. The only valid information after atimeslicing point isthe instruction pointer and
the workspace (stack) pointer, each with a size of one word, totalling 8 bytes. This smaller
amount of saved information hastwo advantages: It savesthe time and spacefor storing it (48
bytes per process). The latter is especialy interesting in environments with many processes.

Some more data has to be stored in order to manage kernel exit to an user process. Kernel
exit can beareturn from akernel call or scheduling aprocessthat has been preempted to allow
execution of another process. On return from akernel call there aretwo distinct cases: Answer
with an out -instruction only if the user process is blocked at its in-instruction or answer
witharunp- plusan out-instruction. Summarizing, we need athree valued flag per process
with the following values: ‘runp’ for a preempted process, and ‘out’ or ‘runp + out’ for apro-
cess returning from akernel call.

Torestart aprocess with the runp-instruction, the workspace pointer of that process must
beknown and thereforeit isstored inthe pch. It isnot necessary to savetheinstruction pointer,
becauseitissaved at position—1 in theworkspace. The address of the channel word of the pro-
cessmust also be stored inthe pcb. It isneeded by the out —instructionin answering thekernel
call. All inall, threewordsin the pcb are needed for the kernel entry mechanism. Toimplement
somefeaturesof thekernel, more spaceisneeded inthe pcb, but thisiscompletely independent
from the entry mechanism.

struct PCB
{
Word *workspace pointer;
enum { RUNP, OUT, OUT AND RUNP } return type;
Channel reply channel;
/* other kernel specific stuff */
} process control block;

Fig. 4. Process control block

In addition to the per process pcb’s and the two channels, thereis only one global variableleft
whichisnecessary for thekernel entry mechanism: A pointer to the pcb of the running process.
In applications, where no further process information (e.g. timing) is necessary, this makes a
context switch rather smple: It isonly one assignment instruction to set the pointer to another
process control block. On kernel exit, the new process is activated.

2.3 Kernd exit mechanism

Most parts of the kernel exit have been described in earlier paragraphs, what follows hereis
more or less asummary of the scattered information. During execution of akernel cal, there
isonly onelow priority process: thekernel itself. According to thethree valued flag in the pcb,
another low priority process—the user process—hasto bestarted. First, if necessary, theprocess
isrestarted with the runp-instruction. Thisinstruction needs only one parameter, the work-
space pointer of the process, which is stored in the pcb. Theinstruction pointer is fetched by
the processor from the workspace. When restarting a process from a kernel call, an out -
instruction synchronizesthekernel withtheprocessand givesthepossibility totransfer areturn
valuefrom the kernel call. The whole exit mechanism consists of only afew instructions and
is quite fast.

2.4 Creation of a new process

To give the kernel full control over all processes, creation and deletion of processes must be
done by thekernel. Thefirst stepisto allocate apch for the new process. Thiscan be donewith
dynamic memory allocation techniquesor just by searching an unused pcbin an array, depend-
ingonthekernel design. Inour Cosy—kernel, memory for all kernel objectsismanaged dynam-
icaly. The caller of the create process kernel call must provide the workspace pointer and the
instruction pointer for the new process. The kernel stores the workspace pointer in the pcb and
theinstruction pointer in the workspace, as expected by the Transputer. Finally, theflaginthe
pcbisset asif the process had been interrupted by the kernel. When the scheduler decides to
run this process, there is no difference from any other rescheduling of a process.

2.5 Idleprocess

Inamultitasking system asituation can arise, whereall processesarewaiting for someexternal
events, e. g. arrival of amessage or expiring of atimer. When thelast runnabl e process bl ocks,
there is no pcb referenced by the running pointer. The usual solution to solve this exceptional
situationisto introduce aprocessthat never blocksand often simply performsan endlessloop.
Thisidle process should be selected by the scheduler in the case of no other ready available
process.

Implementing this approach on Transputers has several drawbacks: First, the idle process
wastes memory bandwidth fetching the instructions performing the loop. One may raise the
objection, that it does not matter, because the processor has nothing to do, but thisiswrong.
Datatransfersthrough thelinksarestill possible and are slowed down by the reduced available
memory bandwidth. Second, the time to restart the kernel on an event is raised by this loop,
too. The Transputer timeslice of the idle process must be finished before the execution of the
kernel starts which causes aworst case delay of two milliseconds, an unacceptable time.

Some Transputer boards have LED’s to show memory accesses (the Parsytec boards used
by our research group have this nice feature). These LED’s can be used as a very low level
debugging aidto see, wether aprocessor isactiveor not. Anidle processcontinuously perform-
ing memory accesses inhibits this and makes the LED’s useless.

Conventional processorsoften haveaha 1 t —instruction to overcomethis problem. On Trans-
puters, thisis not necessary, since due to their built—in hardware kernel they have the ability
todo ‘nothing’ and wait for events. What we need isaway to exploit thisfacility and integrate
itinour kernel. A simple and efficient solution isto extend the three valued flag in the pcb to
afour valued flag. The fourth value represents answering neither with runp nor with out.
On kernel exit, with this combination, no other low priority processis started. Kernel calsare
not possible, because there is no low priority process which can call the kernel by sending a
message. There hasto be asmall change in the code that handles hardware events. It must be
tested, whether thereisalow priority processin the queue and the flag has to be set to *don’t
answer’ or ‘answer with runp’.

Theapproach described avoidsall of the drawbacks mentioned above. Thereisnolow prior-
ity process when the processor isidle and latency for an external event isminimal. Theidle
state of the software kernel is mapped onto the idle state of the hardware kernel, avoiding the
wasting of memory bandwidth. The unused memory interfacein theidle state causesthe LED
on front of the boards to stay dark, indicating an idle processor. A short look at the machine
immediately shows the state of all processors.

3 Detailsof the kernel entry: Some pitfalls

After the overall description we analyze the alt construct in the kernel entry in detail. The
kernel entry seemsto be straightforward, but under rare circumstancesit may fail. When two
messages arrive at the sametime, only oneisfetched from achannel. Which oneisdetermined
by the order of the disc-instructionsin the alt construct. The obvious solution isto give
hardware events a higher priority than kernel calls by user processes.

When a kernel call and a hardware event happen at the * same time’, the entry mechanism
fails. One may object it isimpossible for the processor to et two processes send a message at
the same time in the channels, because there is only one active process at one moment. This
istrue, but ‘almost the same time' is enough to cause the error. A user process does a kernel
call, the kernel —blocked on the a1 twt-instruction —is deblocked and begins to disable the
channels. At thismoment ahardware event occurs (e. g. amessage arriveson alink), preempt-
ing the low priority kernel process. The high priority hardware process puts a message in the
hardware channel and blocks. Now the low priority kernel continues. If it has not disabled the
hardware channel, the hardware branch is taken and the hardware message is processed. The
user processremainsblocked on sendingitskernel call message. After processing thehardware
message, control is given back to the user process, which getsitskernel call executed. Chaos
is created, when —in reaction to the hardware event —the running processis preempted by the
kernel. Inthiscaseanother processisrestarted by thekernel, but the message of the old process
remains in the channel. After restarting the new process, the kernel call from the old process
is executed. Additionally, suddenly there are three low priority processes instead the two the
kernel knows of.

Giving user kernel callsahigher priority than hardware calls seemsto fix the error, but by
doing this another error isintroduced. A process calling the kernel very often (with no more
than 2 ms between two kernel calls) prevents the kernel from handling hardware events,
becausethe user processisnever timesliced by the Transputer and thekernel cannotdoan in-
instruction to fetch a pending hardware message from the hardware channel.

Now the problemis: Both orderingsin the alt construct cause errorsin somesituations. The
second onewould work, if it were possibleto avoid the problem with processes calling the ker-
nel too often. The kernel must recognize the existence of pending hardware calls and execute
them between thekernel callsfromthe user processes. A closer look at fig. 3 may reveal aplace

tointegratethis. It must beintheleft half, because only thispart isexecuted in thecritical case.
Onecan not insert thetest betweenthe a1t construct and the in-instruction, sincethat causes
the same situation as changing the ordering in the alt construct. An insertion after the in-
instruction isbad either. The parameters of akernel call have just been fetched from the chan-
nel, and then it is recognized that the call should not be executed now. The two remaining
places are before restarting the user process or after the restarting, directly before the end of
the loop. Inserting the test before the loop has the same effect as doing it before the alt
construct, a solution that does not work.

After executing the kernel call and before the user process is restarted, all thingsarein a
stateallowingtotest for apending hardware event: Thestate of theuser processistotally stored
in its pch, achange of the running process during the hardware call causes no problem. What
we need now is atrying receive operation. ‘ Trying’ means areceive operation that fetches a
message from a channel if it exists and returns otherwise with aresult ‘there is no message’
instead of blocking and waiting for the next message. This can be done quite simply: First you
must have alook on the channel control word. The value MINT signals ‘ no message there’,
any other valuessignal ‘ sender with messagewaiting’ . Inthiscase, the messageisfetched with
the usua in-instruction from the channel and the sender is deblocked. Then we can go back
behind the alt construct and execute the hardware call.

4 Optimizations

After having a solution for the kernel entry problem, the question is, wether it is possible to
optimize the current version. The time for this version is about 25 us?. Of this 25 us 6 us are
necessary for calling alibrary function, doing aswitch statement in the kernel and calling the
kernel function itself. Only the remaining 19 us are needed by the entry mechanism. Can we
save sometime of the 19 us? The process control block of the running processis accessed sev-
eral times and all accesses are done through a global pointer. Copying this pointer to alocal
variableand using it saves2 us. The speedup of morethan 10% iscaused by thesimpler addres-
sing of local variables and the faster access to the on—chip memory.

Analysisof the code showed somefurther possible optimizations. Therelatively expensive
in- and out -instructions and the process queue manipulation. The counterpart for theout -
instruction in the user processisthe alt construct with the following in-instruction. This
deblocks the user process, requiring to inspect the ready queue. We can omit the in-instruc-
tion and copy the contents of the message directly from the user to thekernel buffer. Thework-
space pointer of the processis saved in the pch. After that the only thing to do is resetting the
channel word to MINT, so that the next user process can reuse the kernel channel. Another
microsecond is saved by this modification, the total time for an kernel call is now 22 us (16
us for the pure call).

While al modifications until now were donein the kernel part, the next one needs changes
in the user part, too. The user process can not execute any instructions after the out —instruc-
tion, until it isrestarted by the kernel. This permitsto omit the synchronizing message transfer
at the end of the call. After thislast optimization, the kernel call of an empty function can be
donein 20 us, with afraction of 14 usfor the entry mechanism. The resulting structure of the
kernel entry with all modifications and optimizations is shown in fig. 5.

2. All timesare measured on a30 MHz T805, code and datain external RAM, kernel stack ininternal RAM.

user process (es) kernel hardware process

' ' v

out »alt out

'

hardware call?

kernel-call hardware-call

pending hardware call? ™

n

runp

Fig. 5: Final version of the kernel entry

5 Summary

Inthis paper we have shown the necessity to enhancethe built—in hardwarekernel of the Trans-
puter with asoftware kernel on top of it. Careful design allows afast implementation with an
overhead of only 14 us, so it isfeasible to use a microkernel on Transputers in order to offer
moreflexibility to both operating system and application programs. Theisolation of hardware
specific partsin the kernel entry layer increases the independence of the processor type used
and allows easy migration to the T9000 or other processors. The implementation takes advan-
tageof special featuresavailableinthe Transputer, e. g. the ability to perform context switches
when most of the state has not to be saved, which speeds up the context switch and saves space
in the process control blocks.

References

(1]

(2]

(3]

[4]

(9]

6]

(7]

(8]

(9]

[10]
[11]

[12]

[13]

[14]

A. Bachem, et a, Programming, Porting and Performance Tests on a 1024—processor Transputerclus-
ter, Proceedings, Transputer Applications and Systems’ 93, Vol. 2, pp. 1068 — 1075.

R. Butenuth, The Cosr—Kernel Interface, Technical report, Sept. *93, Dep. of Informatics, University
of Karlsruhe.

R. Butenuth, KBS — An Operating System for a Small Computer, Diploma-Thesis, April '92, Dep. of
Informatics, University of Karlsruhe.

D. R. Cheriton, The V Kernel: a Software Base for Distributed Systems, IEEE Software, 1(2), pp. 19
-42.

M. H. Cheung, K.M. Shea, F. C. M. Lau, Preemptive Scheduling of Multi—Priority Processesin Trans-
puter, Proceedings, Transputer Applications and Systems’93, Vol. 2, pp. 877 —889.

G. Fox, Solving Problems on Concurrent Processors, Volume |, General Techniques and Regular Prob-
lems, Prentice Hall, 1988.

H.U. Heiss, Processor Management in Two-Dimensional Grid—Architectures, Internal report 20/92,
Dec. '92, Dep. of Informatics, University of Karlsruhe.

C. A. R. Hoare, Communicating Sequential Processes, Communications of the ACM, Vol. 21, No. 8§,
pp. 666 — 677.

M. Gien, Micro—kernel Architecture: Key to Modern Operating Systems Design, Chorus Systemes,
technica report CS/TR-89-37.3.

Inmos Limited, The T9000 Transputer Hardware Reference Manual, first edition, 1993.
Inmos Limited, The T9000 Instruction Set Manual, first edition, Inmos’93.

S. J. Mullender, et al, Amoeba: A Distributed Operating System for the 1990s, |EEE Computer, pp. 44
—53, May ' 90.

Perihelion, The Helios Parallel Operating System, Prentice Hall, 1991

M. Rozier, et al, Overview of the CHORUSDistributed Operating Systems, Chorus Systemes, technical
report CS/TR-90-25.1

