
4

References

[Ande 89] T. Anderson, E. Lazowska, H. Levy, “The Performance Implication of Thread
Management Alternatives for Shared-Memory Multiprocessors”, ACM Trans. on
Comp. Vol. 38 No. 12, Dec. 1989

[Ande 92] T. Anderson, B. Bershad, E. Lazowska, H. Levy, “Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism”, ACM
Trans. on Comp. Sys. Vol. 10 No. 1, Feb. 1992

[Ghos 93] K. Ghosh, “Experimentation with Configurable, Lightweight Threads on a KSR
Multiprocessor”, Georgia Institue of Technology: Technical report GIT-CC-93/
37

[LeBl 89] T. LeBlanc, “Memory management for large-scale numa multiprocessors”,
Department of Computer Science: Technical report*311

[Rüde92] Ulrich Rüde, “On the multilevel adaptive iterativ Method”, SIAM journal on
scientific and statistical computing, Vol. 15, 1994

How to implement fast threads?

3

§ 2 How to implement fast threads?

In the beginning, all threads corresponding to a grid point have the state “suspended”. A set of
start points is calculated. These points are those with the highest local error (in the example
these points are the grid points at both inlets of the faucet). In the next step all threads in the start
set become active. An active thread calculates it’s local error. If this error is greater than a given
threshold, the corresponding grid point is calculated. Because this could change the local error
of all threads responsible for points in the neighborhood, those threads have to be activated. Af-
ter this activation, the thread suspends himself. The algorithm terminates, if all threads have the
state “suspended”.
The adaptive method is easy to implement with a threads library. The runtime system will dis-
tribute the threads to the processors available in the system. But there is the hard problem of a
bad data locality leading to huge time penalties for the processors in a NUMA architecture. To
avoid this, prefetch and poststore operations have to be mixed with computation statements in
the code to overlap computation and data transfer to local caches. For this optimal mix of com-
putation and data management you have to provide

• a high memory locality of data by storing thread control information (Thread Con-
trol Block TCB) and thread related data together in the same memory area

• a scheduler interface to be able to prefetch data, which will be necessary in the near
future in the processor cache, and to poststore data, which might be used by other
processors in the near future.

Like the application programer in the example above, a compiler doing automatic parallelizati-
on can use the fast threads package to produce fine granular code which will be managed by the
runtime system.

2 How to implement fast threads?

The specification and implementation of a fast threads package for NUMA architectures could
be the core of a successful cooperation between the CONVEX Corporation, the chair of oper-
ating systems and the bavarian consortium for high performance computing (FORTWIHR). The
CONVEX SPP would be the appropriate hardware to realize this project.

2

§ 1Why using fast user level threads?Why using fast user level threads?

1 Why using fast user level threads?

To demonstrate the advantage of the threads programming model, we discuss possible imple-
mentation techniques for adaptive numerical methods on unstructured grids. Using a message
passing approach you have the problem of grid partitioning, data distribution and load balanc-
ing. Switching to the shared memory model with parallel processes and shared memory seg-
ments, you have still the partitioning and load assignment problem. One approach to solve these
problems is the use of a fast threads package with a smart user level interface which enables a
concise programing style. To demonstrate this style we user an example in the area of fluid me-
chanics:
Cold and hot fluid streams through a faucet. We are interested in the temperature at the outlet of
the faucet depending on diffusion and convection.

After a discretisation of the problem area we assign each grid point to a thread. All threads per-
form a kind of code like the one below.

func working_thread(myself, threshold)

while (1)

prefetch read_only Next-TCB

prefetch read_only TCBs of Next-TCB’s Neigbors

if (error(myself) > threshold)

prefetch exclusive TCBs of Neigbors

localpoint = calculatepoint(neighborpoints)

activate(neighbors)
poststore Neighbors

end if

suspend(myself)
end while

cold hot cold hot cold hot

No
Diffusion

Diffusion
+

Convection

Diffusion
+

minimal
Convection

c
o
l
d

h
o
t

1

Techniques for Building a Fast Threads
Package on NUMA Architectures

Frank Bellosa

email: bellosa@informatik.uni-erlangen.de

University Erlangen-Nürnberg
Chair of Operating Systems

Abstract

Operating system abstractions do not always reach high enough for direct use
by a language or applications designer. The gap is filled by application-specific run-
time environments. Typical arguments for their use include complete user-level
control over threads scheduling and possibilities regarding the customization of
threads synchronization or communications constructs. Especially on NUMA archi-
tectures an interface between scheduler and application is essential to overlap com-
putation and memory transfer.

We think about a nonpreemptive user-space threads package with an application in-
terface. The application should be able to get information about scheduling deci-
sions of the runtime system to invoke prefetch operations. Furthermore efficient ma-
chine dependent code for creating, running and stopping threads has to be provided
by the runtime system. By separating the notion of execution (starting and stopping
threads) from threads allocation and scheduling, changing scheduling policies can
be as simple as using different function pointers and can be done efficiently at run-
time. Thus details of the threads package are not fixed, but can instead be tuned to
the needs of the application. To implement this package we want to follow a two
level approach: The lower level consists of assembler code for fast thread initializa-
tion and context switching. The upper level is a toolbox for building application spe-
cific schedulers and synchronization operations. The kernel threads provided by the
operating system represent the “virtual processors” of the runtime system. This kind
of threads package can only work efficiently, if we use gang-scheduled kernel
threads in a multiuser environment or individual-scheduled kernel threads in an en-
vironment with just one running application on each processor set.

A fast threads package on NUMA architectures is the prerequisite for an easy im-
plementation of adaptive numerical methods on unstructured grids. A first approach
for an implementation is given in the next section.
Last but not least, a fast threads package can be the support library for a compiler
doing automatic parallelization.

Techniques for Building a Fast Threads
Package on NUMA Architectures

Frank Bellosa

February 1994 TR-I4-6-94

Institut für
Mathematische Maschinen

und Datenverarbeitung
der

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Lehrstuhl für Informatik IV
(Betriebssysteme)

Technical Report

