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Abstract

In the past few years, MIMD parallel computers have become important not only

in the �eld of high performance scienti�c computing, but also as ordinary compute
servers. Applications that can not be parallelized by an appropriate compiler get

more and more parallelized by use of the threads programming model.
Especially for machines having large caches and/or non uniform memory access

special care has to be taken for an e�cient handling of applications with a huge
number of threads. Locality of data has to be taken into consideration as well as the
memory access behaviour of threads to assure high cache reusage.

This paper examines several techniques that are necessary for e�cient thread
management on userlevel. Algorithms and mechanisms for scheduling as well as for

synchronization are analysed for their suitability in userlevel thread libraries and
the importance of using locality information is pointed out. Measurements with a

prototype show the superiority of these concepts.
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1 Introduction

The steadily increasing need for more compute power in the past few years has led to
an introduction of parallel computers into several �elds. Not only scienti�c computing
has changed from dedicated high performance computers, like vector machines to general
purpose parallel MIMD machines, but also o�ces more and more use parallel systems
as compute servers. For the reason of good scalability most of these systems use large
processor caches to reduce bus contention, whereas in larger systems, especially in the �eld
of scienti�c computing, NUMA1-machines are a promising approach.

In a similar fashion as the hardware has changed over the years, software has to be
adopted to the new properties of this computers.

1.1 Problem

First attempts to parallelize applications using ordinary processes like those in UNIX were
not satisfying as synchronization mechanisms and context switches between processes were
to expensive to generate e�cient parallelized programs.

To reduce the costs, the concept of processes was broken up into two di�erent concepts.
For example the operating system MACH knows the concepts of a task modeling the
domain for a computation, and threads that can run in parallel in one task. As all threads
share one common address space, communication, synchronization, and context switches
are much more e�cient than in former systems.

Although the costs had been reduced by one order of magnitude, they were still to high
for �ne grained parallizations as each operation was performed by the operating system.
Therefore, instead of using these middle-weight kernelthreads, thread management has
been moved out to the userlevel. Userlevel threads are scheduled on top of kernelthreads
that act as virtual processors, completely by code residing on userlevel. Using di�erent
libraries for thread management, operations can be optimized for speci�c properties and
therefore o�er best performance.

First userlevel thread libraries used concepts known from the �eld of conventional oper-
ating systems like UNIX. But on parallel systems like NUMA architectures these concepts
are no longer applicable. Although in an increasing order communication gets implemented
in hardware, communication costs outweigh the actual computation costs. As the com-
munication costs can be in
uenced by thread placement, thread management must use
information about data locality and the a�nity of threads to processor caches for thread
placement and scheduling.

1.2 Contemporary work

The necessity to include locality information in scheduling has led to a lot of publications
over the last years. Most of these papers deal with the problem how to assign kernelthreads
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to processors or vice versa. Locality information is used as basis for decisions in static or
dynamic space-sharing or time-sharing systems.

Vaswani and Zahorjan stated that additional a�nity considerations had only neglectable
in
uence on the runtime of their test applications ([VZ91]). But this might be caused by
the fact that they used a spacesharing approach. Only if the number of processors assigned
to the applicationchanged, they used a�nity information for rescheduling.

In [Tuc93] and [TTG95], Tucker mentioned that a�nity scheduling can lead to im-
provements of a few percents on small UMA machines. Although the improvements are
small he concludes that its worth to include a�nity considerations because of an increasing
importance in �ne grained applications.

The importance of thread placement and locality considerations has been showed by
Markatos, e.g. in [Mar93] or [ML93] by measurements on di�erent architectures. He
concludes that new programming models will have to be used to e�ciently exploit modern
machines and locality information will have to be used for scheduling. Even in cases of an
imbalanced load, these locality scheduling can lead to better results ([ML91]).

Squillante and Lazowska used a queuing model to examine the in
uence of locality and
a�nity scheduling on the performance of parallel systems. Their results show that only
little information is necessary to improve performance ([SL89]).

1.3 Overview

In contrast to the papers mentioned above, our work concentrates on the special needs for
scheduling of userlevel threads. After a look on general purpose thread libraries and the
problems arising on moderen NUMA architectures we propose structures and algorithms
for memory conscious scheduling (MCS) to include locality information into the scheduling
process. Furthermore we investigate the in
uence of the scheduling order on the number of
cachemisses and show methods to reduce these cachemisses as well as necessary properties
for e�cient userlevel synchronization mechanisms.

We close with measurements that show the in
uence of di�erent strategies on the
runtime of several applications.

2 Userlevel Threads and NUMA Architectures

The structure of typical userlevel thread libraries was adopted from older conventional
operating systems. One of the most important goals of these systems was to balance load
between the processors available to maximize machine utilization.

Figure 1 shows the typical components and the corresponding operations of such li-
braries. Threads which are created by the library function create() get placed on a central
runqueue. If a processor needs a new thread it dequeues one of these runable threads. As
long as the runqueue contains runable threads no processor will run idle. When a thread
stops there are three possibilities:
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Figure 1: Structure of simple thread libraries

1. The thread yields the processor in favour of another runable thread and gets enqueued
on the runqueue again(yield()).

2. The thread blocks due to some synchronization (block()) and gets enqueued on a
central sleepqueue. When it is deblocked it will be dequeued from the sleepqueue
and inserted into the runqueue again (deblock()).

3. When threads exit with exit(), detached threads are deleted at once whereas non-
detached threads become zombies and get enqueued onto another central list.

This structures and strategies worked �ne for smaller machines with few processors and
UMA architecture. On larger machines however operating systems and userlevel libraries
using these structures experienced a severe loss in performance. For example Markatos in
[Mar93] shows that neglecting locality of data on current machines could lead to very low
e�ciency, especially on modern NUMA architectures.

To understand the reasons for the importance of including locality information into
considerations on structures and mechanisms in userlevel thread libraries, one has to look
on the attributes of NUMA architectures.

2.1 The Convex SPP { A Typical NUMA Architecture

Figure 2 shows the structure of the Convex SPP multiprocessor used for evaluating the
concepts in the following sections. The machine is built up of up to 16 so-called hyper-
nodes. Each of these hypernodes itself is a complete symmetric multiprocessor consisting
of 4 CPU-blocks. These CPU-blocks consist of 2 HP PA-RISC processors, each having 1
MBytes virtually addressed instruction- and data cache, up to 512 MBytes local memory,
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an interface to CPU-blocks of other hypernodes, the so-called CTI2, and access to a 5x5
crossbar switch. Across this switch each CPU-block has nonblocking access to the local
memory of other CPU-blocks on the same hypernode and the I/O-interface.
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Figure 2: The Convex SPP Multiprocessor

All hypernodes are connected by 4 CTI-rings with a bandwidth of about 600MBytes/s.
The resulting machine can be divided into several virtual machines, called subcomplexes.
Each processor can access the whole memory in its subcomplex, but the memory latency
depends on where the memory is actually located { either on the local hypernode or on
a remote one. To reduce average access latencies, not only processor caches have been
included, but also part of the local memory can be con�gured as network cache.

Figure 3 shows the various access paths and the resulting latencies on the Convex SPP.
As can be seen, there are strong di�erences from 10ns in case of a processor cachehit, over
500ns in case of a local memory access up to 2000ns in the remote case. Compared to the
processor's cycle time of about 10ns, it's obvious that the locality of data has a tremendous
in
uence on the e�ciency of computation.

In order to make e�cient use of the machine's computational power, programs must be
carefully designed to:

2
Convex Torodial Interface

5



2

2

3

1
finish
instruction

finish
instruction

finish
instruction

finish
instruction

1

2

3

10

500

2000

processor
cache hit

returns data

processor
cache miss

network
cache hit

access block

pagefault

data block

encache data in
requesting node

transmit

on remote node

transfer phys.
address

network
cache miss

remote
access

local memory
returns data

local memory

local
access

decode instruction

& generate address

Memory hierarchy

Processor cache

Node local memory

Remote node memory

Latency in ns

Figure 3: Memory Latencies on the Convex SPP

� reduce the average memory latency, i.e. try to access only local memory as far as
possible, and to

� reduce the number of cachemisses.

Thread libraries structured as shown in �gure 1 are not able to do this for several reasons:

� Accesses to central structures lead to frequent invalidation of processor and network
caches, forcing other processors to fetch data from memory, which for most processors
is located on remote hypernodes.

� Although the central runqueue guarantees perfect load balancing, there is no possi-
bility to bind threads to speci�c processor. As a result threads migrate frequently
and thereby loose their previous cache state. Each time they get rescheduled, they
produce a lot of cache misses again.
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� Moreover there are no means to locate threads near to their data. Therefore threads
are usually urged to access remote memory, increasing the average memory access
latency.

In this paper we propose two techniques that are essential for e�cient userlevel schedul-
ing and present a prototypical implementation of our ideas running on a CONVEX SPP
1000 multiprocessor.

3 Memory Conscious Scheduling

In contrast to UMA architectures on NUMA architectures like the Convex SPP there
are di�erent memory classes. Processors accessing memory experience latencies between
500ns for local memory and 2000ns for remote memory, although the whole mechanism for
fetching memory across the CTI has been implemented in hardware.

To reduce the in
uence of this high access latencies in contrast to the processor cycle
time of about 10ns on a SPP 1000, several caches have been introduced into the system.
In addition to processor data and instruction caches, parts of the local memory can be
con�gured as network cache to reduce the average latency when accessing remote memory.
But nevertheless there is a gap between the processor's cycle time and this access time.

Several concepts have been developed to reduce the in
uence of cachemisses on the
overall performance. On the one hand, there are special architectures like the HEP, MASE,
Horizon, or Tera([AAC+92]). These architectures can deal with more than one instruction
stream. If one instruction stream produces a cache miss, the processor can switch to
another stream without having to wait for the end of the memory access. In addition, the
Tera can have up to 8 outstanding memory operations, i.e. can start this memory accesses
in advance to fetch data into the processor's caches.

On the other hand modern general purpose processors know a similar concept named
prefetching and poststoring. Like the Tera processors, memory accesses can be started
delayed or in advance. Despite possible main memory accesses the processor can continue
as long as it doesn't really want to access the data.

Both, prefetching as well as poststoring depend on the compiler. It's the task of the com-
piler to generate code that exploits these capabilities. But even if the compiler supports
this concepts the Shared Memory programming model in connection with heavy weight
processes developed on UMA architectures couldn't e�ciently be adopted to NUMA ar-
chitectures. It's up to another programming model in connection with new scheduling
strategies to weaken and/or solve the problems introduced by these architectures.

3.1 Userlevel Thread Libraries on NUMA Architectures

Compared to parallelization with heavy weight processes or kernel threads, userlevel threads
o�er new means to exploit information about the locality of data in the process of schedul-
ing.
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With coarse grain parallelization there was often no possibility to decide where to
schedule a thread as it accessed memory almost everywhere in the system. As userlevel
threads could be created for very short parts of computation that access only few memory
regions the system has now the opportunity to place this threads near to their data and
thereby reduce the average memory latency.

On the other hand, as userlevel threads usually need only small state information like
tiny stacks and thread control blocks they are easily and cheaply migratable.The strategy
to move threads to their data is in contrast to the traditional concept of bringing data near
to processes by introducing several caches into the system.

Necessary for this migration is another property that e.g. on a Convex SPP cannot be
ful�lled by ordinary kernel threads. In contrast to kernel threads, userlevel threads can
usually be migrated to each node and each processor whereas kernelthreads are restricted
to one node.

3.2 Using locality information for thread placement

To take pro�t from knowledge about the locality of a thread's data the user of a thread
library, either programmer or compiler must have some possibility to assign threads to
speci�c processors or nodes.

Such assignments can have two potential advantages:

1. If threads �nd most of their data in local memory instead of remote memory, the
time for loading their working set will be reduced as each cachemiss will take less
time.

2. If di�erent threads will work with the same memory regions, it's bene�cial to place
them onto the same processor. As this increases the probability that a newly started
thread will �nd some of its working set already loaded into the processor's cache, the
average time of loading these working sets for this thread group will decline.

Necessary for this kind of placement is precise knowledge about the hardware structure,
i.e. the number of processors and nodes and about the memory allocation policy applied
by the operating system. For example on the Convex SPP a programmer can decide which
memory class should be used. Based on this decision he can �nd out about the di�erent
locations and either he or the compiler can assign threads to this locations. This placement
could either be done statically at compile time or dynamically on runtime.

3.2.1 Static placement at compile time

If the programmer or compiler know about the placement policy of the operating system
they can predict where memory of a special class will be located. Especially for statically
allocated memory, this will be possible. But also for dynamically allocated memory the
location can usually be calculated, at least if the location of the allocating thread is known.
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Based on this information the computation can be divided and distributed in a fashion that
threads access only local memory.

Particularly for automatic parallelization of loops that use huge statically allocated,
global data this kind of placement has proved to be very e�cient([Mar93]). In case of
manual parallelization the programmer has to calculate the memory locations by himself.
But this evaluation can be very complex if the programmer uses dynamically allocated
memory, and for memory classes like FAR SHARED memory on the Convex SPP, which
is spread over all hypernodes on a subcomplex. Therefore this strategy is not very use-
ful, especially as all considerations have to be repeated each time the hardware structure
changes.

3.2.2 Dynamic placement on runtime

With this strategy, locality calculations are done by the thread library instead of the
programmer or compiler. Similar to the static assignment, the locations must be known.
Either they can easily be calculated, based on the addresses of memory regions or the
operating system must o�er functions to translate addresses to locations. But still the
information about addresses has to be made available, e.g. by the programmer.

The library's decisions now depend on whether the memory regions are already allocated
when a thread is started or will be created later. If the memory regions are allocated in
advance, the library can calculate the best original placement and start the thread there.
This kind of assignment is particularly important for run-to-completion threads, because
the thread library will have no further chance to reassign the thread to another processor.

If the memory regions are not known before the thread starts, if for example the thread
will allocate this memory itself, it can only be started without locality considerations. But
if it afterwards gets knowledge about data locality it can inform the thread library. The
library can then decide whether it's worth to migrate the thread or not. Moreover this
strategy can be applied if the thread's access behaviour changes, i.e. it starts to access other
memory regions. As each migration imposes costs, e.g. in form of additional cachemisses,
this strategy is only advantageous for threads that run for a long time and access lots of
memory.

3.3 Prefetching of memory regions

As already mentioned, prefetching can be used to weaken the in
uence of memory latencies
on the computation. Again information about data locality that has to be o�ered to the
library is the basis for prefetching decisions. The library is then capable to prefetch memory
regions before it actually switches to the thread. Besides the memory regions o�cially used
by the thread, prefetching can also be applied to the thread's stack or its thread control
block.

On NUMA machines like the Convex SPP prefetching can not only a�ect the proces-
sor's caches but also other parts, as for example the network caches. It depends on the
cache coherency protocol whether prefetching into the network caches also a�ects processor
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caches. On the Convex SPP 1000 for example, prefetching into the network cache invali-
dates all copies of corresponding processor cache lines on all processors of the prefetching
processor's hypernode. Better than distinct concepts for prefetching into di�erent caches
are mechanisms that allow prefetching over the complete memory hierarchy as implemented
on the KSR1 of Kendall Square Research([Hau95]).

3.4 Binding threads together

Besides considering a thread's behaviour separately it's important to pay attention to
communication between threads. If this communication is not implemented by messages
but by shared memory, communicating threads should be located at least on the same
hypernode. Otherwise even small amounts of communication memory, e.g. only a few
bytes used for a mutex variable can cause a severe loss in performance.

This e�ect is due to the fact that the contents of communication memory continuously
change and therefore the corresponding cachelines are frequently invalidated. As it is
often not possible to reduce the number of invalidations without completely changing the
algorithm the only in
uence a thread library can have is to collocate communicating threads
near their communication memory. Thus, cachemisses are only to locale memory and the
average access latency is reduced.

Similar to the placement strategies of the previous section, this collocation can either be
implemented static or dynamic. With static binding, communicating threads are assigned
to the same node or processor. But this binding gets lost, if due to load balancing one of
the communicating processes is migrated to another location. This problem can be solved
by dynamic binding. In this case threads are not bound to a speci�c location but are tied
together, i.e. if one thread migrates, other threads will follow or the migrated thread will
return.

This migration can either be done automatically by the thread library or triggered by
the program that calls a library function and this functions will migrate the thread. As
it's nearly impossible to automatically estimate the costs of migrating some thread, the
second possibility will probably be the better solution.

Although the concept looks like ordinary coscheduling, algorithms of that area can
hardly be used. Coscheduling for example uses information about the communication be-
haviour based on measurements of the number of exchanged messages or TLB-entries3([SW95]).
All of this measurements are to expensive compared with the short lifetime of userlevel
threads, especially when considering a possibly huge number of threads.

Instead of using TLB information access patterns to the library's synchronization prim-
itives, e.g. mutex locks could be used to �nd out about communities between threads. It
is simple to let each mutex lock hold a reference to the last thread that accessed it. At the
next access, the library can decide whether one of these threads, either the old or the new
one should be migrated.

3
Translation Lookaside Bu�er
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3.5 Exploiting cache a�nity

When a thread is executed by a processor, data is fetched into the di�erent caches. So
if it is rescheduled it should be reassigned to its previous processor to take advantage of
probably remained cachelines.

On the other hand, if a thread migrated due to load balancing between di�erent pro-
cessors and its a�nity values for these processors are known, the thread library can decide
whether it should migrate it back to a former one. By binding threads to the processor
to which they have maximum a�nity, cache utilization is improved dramatically. But the
in
uence depends on other thread attributes, like the frequency a thread blocks or the
length of each scheduling period. The longer each scheduling period lasts the smaller this
in
uence is, as at most the cachemisses for loading the working set at the thread's start
can be saved by this technique. On the other hand this is a reason for its importance in
the �eld of userlevel thread programming, as these threads should usually support short
scheduling periods.

4 Realizing MCS in Thread Libraries

As the previous sections showed, for realizing memory conscious scheduling there is the
need to assign and bind threads to processors or nodes, or to tie them together. Two
common approaches exist to implement these functions.

4.1 Priority Based Mechanisms

Originally, memory conscious scheduling was used to improve the standard scheduling
mechanisms in ordinary operating systems. These systems mostly use central run- and
sleepqueues. Without any further attempts, threads get randomly assigned to the available
processors.

To implement MCS without having to rewrite wide areas of code the existing priority
mechanism can be used. Instead of each thread having a �xed priority that's usually
calculated based on its processor usage and the system load, now this priority also depends
on the processor. The higher a thread's priority on one processor is, the tighter it is bound
to this processor.

With this technique the user can specify very precise where his thread should be cal-
culated and how tight this binding should be. Figure 4 shows di�erent classes of binding
that would be possible on a Convex SPP with 32 processors on 4 nodes:

� Threads 1 and 2 have very high priority to one speci�c processor. It's nearly impossi-
ble for them to migrate to another processor or node. This is especially advantageous
if the user wants to tie two communicating threads together and assign them to one
node.

� Thread 3 has equal priority on each processor of one node. Therefore it can freely
migrate between processors on this node.

11



2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81

Thread 4Thread 1 Thread 2 Thread 3

Hypernode 1 Hypernode 2 Hypernode 3 Hypernode 4

Figure 4: Di�erent levels of binding

� Thread 4 has equal priority on all processors in is therefore not restricted in migration.

Tucker ([Tuc93]) used priorities to express a process's a�nity to a processor by dynam-
ically lifting the priority for the processor on which this process has been executed most
recently. The last process that has been executed by a processor experiences an additional
lifting. This leads to a simple binding of processes to processors and to an increase in the
e�ective time slice for each process.

Because of its simplicity this mechanism can be added to current schedulers, but there
are several reasons why it can't be used e�ciently with userlevel threads or on modern
NUMA architectures.

First, in these mechanism complex structures are necessary to �nd out about the thread
with the highest priority without having to search and recalculate the priority of each
available thread. Second, the usual implementation of having one central runqueue is
a bottleneck in a multiprocessor. In connection with the long timeslices of processes in
operating systems, these bottleneck had less in
uence. But in applications with light-
weight threads that block frequently central structures have to be avoided as the probability
for contention increases with the frequency of access.

4.2 Queuebased Mechanisms

To avoid the bottleneck of central structures, scheduling structures have to be distributed
over the whole system. Thread libraries are a good means to dynamically adopt to the
hardware structure of a machine. Figure 5 shows the distribution of queues according to the
structure of a Convex SPP with 32 processors and 4 nodes. Local queues for each processor
enable to bind threads to this speci�c location. This local queues o�er two advantages:

1. As priorities are no longer necessary, simple structures can be used. Each access to
the queue will therefore be fast compared to an access to the complex structures of
a central priorityqueue.
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2. Except for load balancing these structures are only accessed by the local processor,
so there is no contention and only accesses to local memory or the processor's caches.

SubcomplexCPU n

CPU n

CPU n

CPU n

CPU 2

CPU 2

CPU 2

CPU 2

CPU 1

CPU 1

CPU 1

CPU 1

Hypernode 1

Hypernode 2

Hypernode 3

Hypernode 4

Figure 5: Distributed scheduling structures

If a processor �nds its runqueue empty it will proceed with its node's runqueue, such
preferring threads bound to the node to threads in the global subcomplex runqueue that
have no binding.

These simple mechanism conserves assignment decisions based on locality information
as far as possible and thereby a thread's a�nity too. Each thread will be placed on the
local runqueue of the processor on which it was executed most recently, resulting in a
behaviour similar to that experienced by Tucker.

4.3 Local freelists

Similar to local runqueues other structures used in a userlevel thread library, e.g. scheduling
structures or memory regions used for synchronization can be managed distributed. For
example it may be useful to hold memory regions, e.g. for stacks in a local free list instead
of freeing them after use. This not only saves time but also preserves the information that
these structures are either allocated locally or at least have been used locally.
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One drawback of local freelist is the necessity to balance between di�erent list. Other-
wise it would be possible that one processors always allocates new structures whereas other
processors only collect unused structures. To avoid these situation usually a central pool
is introduced, where processors can request for new structures or can give back unused
structures. A common algorithm used for these central pools is:

� Each local freelist can hold up to M structures.

� If the number of structures in a local freelist exceeds this limit, M=2 structures are
transfered to the central pool.

� If a processor request a structure and the local freelist is empty, it fetches M=2
structures from the central pool.

With the parameter M it is possible to adopt the mechanism to di�erent situations from
having equally balanced freelist at the cost of frequent balancing or vice versa.

4.4 Delayed thread start

Applications based on the thread programming model usually employ a huge number of
threads. As these number normally exceeds the number of processors available, not all
threads will be running simultaneously. But moreover not all threads created by the
application must actually be started. As long as the computation doesn't depend on a
newly created thread it's enough to store the information that is necessary for the real
start. These technique has several advantages:

� In contrast to a completely instantiated thread the memory used to hold the param-
eters for the thread's start consist of only a few bytes.

� If the newly created thread will be assigned to another processor or will eventually
migrate to another processor, it is preferable to let this processor allocate the memory
for this thread as it's often not possible to create memory local to another processor.

� By distinguishing between startable and runable threads there is a clear distinction
between threads having few or none a�nity to a processor and threads having con-
siderable a�nity to a processor. This can signi�cantly simplify load balancing.

Another advantage is given in connection with local freelists. If the thread library
starts threads only if no other thread is runable, there is a high probability that another
thread has exited or is currently exiting. Now the new thread can at least reuse the exited
thread's structures and thereby adopt the a�nity of these structures to the processor's
caches. Certain thread packages even allow the new thread to use the structures of a
currently exiting thread. This technique is known as Continuation Passing and usually
assures lowest overhead and best cache reusage.
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5 A�nity Scheduling

While memory conscious scheduling deals with the question of where to schedule threads,
a�nity scheduling tries to give an answer to the question when to schedule a thread. The
goal of a�nity scheduling is to �nd out in which order threads have to be scheduled to
minimize the number of resulting cachemisses.

This section will present a few common methods used in this area as well as a novel
approach to estimate a thread's a�nity to the processor's caches and an approximation
for the number of cachemisses when a thread gets restarted.

5.1 In
uence of cache a�nity on the runtime

Each cachemiss caused by a memory access results in an unnecessary delay to an ap-
plication. As cachemisses take at least one order of magnitude more time than ordinary
processor cycles on modern architectures it is obvious that the application programmer has
to take care that his calculation causes as few cachemisses as possible. On the other side
the scheduling algorithm has the responsibility to schedule threads at the right locations
and in the right order.

Cachemisses can be divided into two di�erent classes. First there are cachemisses
necessary to load a thread's working set into the processor's cache. These working set
consists of memory used for thread management like the thread control block and the
memory used to hold the thread's data, like its stack or its data segments. The delay
to load this working set happens each time a thread is started or restarted after it has
been blocked. The shorter the thread will run after loading its working set, the higher
the in
uence of this delay to the overall performance will be. As userlevel threads should
support short scheduling periods the scheduler has to think of how it is possible to reduce
this reload transient.

While a thread is running, usually additional cachemisses occur. These cachemisses are
due to the invalidation of cachelines by other processors or to a change in memory access
behaviour of the running thread. These cachemisses can't be predicted by the scheduling
algorithm and therefore usually can't be avoided, although they can be used to �nd out
about the new working set.

In contrast to this transient cachemisses, the �rst category can be in
uenced by a
scheduling algorithm, especially for threads that block and continue frequently. If the
scheduler knows that most of the working set of a currently deblocked thread is still resident
in the processor cache it can prefer this thread by assigning it a higher priority. If it will be
started as early as possible, it will experience fewer cachemisses than other threads having
less cache a�nity.

5.2 A�nity measures

In contrast to the information gathered for memory conscious scheduling, a�nity infor-
mation can't be calculated or accessed directly. Although more and more architectures
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allow cachemiss measurements there is currently no possibility to get information about
the number of valid cachelines of an application's threads directly. Therefore one is re-
stricted to approximate this cache state. Two di�erent classes of a�nity measures can
usually be �gured out:

1. Static measures: The a�nity value and the resulting priority are calculated only
when a thread blocks or deblocks, but the calculated value will remain constant until
the thread will get restarted.

2. Dynamic, time dependent measures: Like static values, these values are calculated
when a thread blocks or deblocks. But moreover these values age, either by periodi-
cally changing the value or the value's interpretation. The second method is especially
interesting if the priority order in the runqueue remains constant over time, i.e. if for
some time t the relation Pi(t) < Pj(t) is true for two threads Ti and Tj, it will also
hold for all t+�t. In this case a thread's a�nity value has only be interpreted and
compared to the values of other threads in the runqueue when it gets inserted into
this queue.

5.2.1 Timebased a�nity models

The simplest models can be derived from timing information that is available on all archi-
tectures. These models don't need special hardware support and are therefore interesting
for older or cheaper machines that have no possibility to gather cachemiss information.

Virtual time: While a thread is blocked other threads running on its previous processor
will throw away parts of its cache state. The more other threads ran until the thread gets
rescheduled, the more cachelines will have disappeared. Particularly for applications with
equal threads, like those generated by automatic parallelized loops, the inverse number of
intervening threads can give a good approximation for the number of valid cachelines in
relation to other threads.

Each processor therefore gets a simple counter that is incremented on each scheduling
decision. Every time a thread releases its processor it adopts its processor's virtual time
and uses it as priority when it is placed on this processor's runqueue again. The higher
this value is, the fewer intervening threads have been served by its processor.

Virtual time is a typical dynamic a�nity model, as the interpretation of the a�nity
value changes over time but fortunately the priority order remains constant. As it requires
no specialized hardware and only minimal software overhead but results in astonishing
performance improvement, it's the �rst choice for machines with no or only time consuming
possibilities to count cachemisses.

Real time On architectures o�ering high resolution hardware clocks the scheduler can
use this time information instead of virtual time. But if the clocks aren't synchronized
across the whole machine there is no increase in information. The priority order derived

16



from this information will not di�er from that based on virtual time. Only if all processors
share the same global time, realtime o�ers higher potential as now threads of di�erent
processors can be compared. This can for example be necessary to �nd the thread with
lowest a�nity when load balancing is required.

Both methods, virtual time as well as real time are well suited for threads with equal
attributes. On the other hand both methods ignore any di�erences, e.g. in runtime or
access behaviour. In order to consider such di�erences real time can be used in a similar
fashion as in ordinary operating systems. In addition to the time a thread is started or
stopped, its runtime is evaluated. As threads that have run for a long time can be expected
to have nearly all of their working set loaded into the processor cache, these threads should
be preferred against others. But pure runtime is not enough, as it neglects that while the
thread has been stopped parts of its working set will have been displaced by other threads.
Therefore some aging strategy has to be introduced to take this time into consideration
when calculating the thread's priority.

Aging strategies are already used in operating systems, like the Silicon Graphics IRIX.
They assume a linear relation between a thread's runtime and its a�nity. Only it the
thread's runtime exceeds a minimum time, this a�nity value is used for scheduling. On
the other side, if the time a thread hasn't been running exceeds a certain limit, its binding
to a processor is released([BB95]).

Another simple method is to divide a thread's runtime by the time it has already been
blocked and use this value as its current priority, i.e. for a thread Ti, started at t = starti
and stopped at t = stopi, the priority at some time t evaluates to:

Pi(t) =
stopi � starti
t� stopi

(1)
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Figure 6: Hyperbolic aging of priority values
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Figure 6 shows the priority of two threads. Thread Ti ran 64 time units followed by
thread Tj which ran 16 time units. As the �gure already suggests, this kind of aging strategy
has a serious drawback. The two hyperbolas expressing the priorities can intersect. As the
point of intersection ts:

ts =
stopj(stopi � starti)� stopi(stopj � startj)

(stopi � startj)� (stopj � startj)
(2)

could be later than stopj the order induced by this priority value can change with time.
This e�ect can be avoided by another class of aging strategies. Here the scheduler uses

exponential aging like

Pi(t) =
stopi � starti
Ka(t�stopi)

(3)

With the two parameters K > 1 and a > 0 di�erent forms of aging can be implemented.
Using exponential aging it's enough to calculated once whether a thread has a higher
priority than another as this order couldn't change later on. Figure 7 shows the two
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Figure 7: Exponential aging

threads again with exponential aging (K = 2, and a = 0:25). As the �gure suggests the
order can e.g. be evaluated at the time thread Tj stops and this order will remain constant
for all time t:

Pi(t) < Pj(t) $
stopi � starti
Ka(t�stopi)

<
stopj � startj
Ka(t�stopj)

$
stopi � starti
Ka(�stopi)

<
stopj � startj
Ka(�stopj)

$
stopi � starti
Ka(stopj�stopi)

< stopj � startj

$ Pi(stopj) < Pj(stopj) (4)
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Therefore, a simple priority queue is still su�cient to implement this aging strategy.
When a thread has to be enqueued onto the runqueue and is compared with other threads
in the runqueue the priorities of all threads that are concerned have to be recalculated.
To improve performance a structure has to be used for the runqueue that needs as few
comparisons as possible.

5.2.2 Simple cachemiss based a�nity models

To get more information about cache usage modern architectures have been instrumented
with performance monitors to measure the number of cachemisses and the average cache-
miss latency. This can either be done by the processor or as with the Convex SPP 1000
by additional hardware.

Although the number of cachemisses is now available no information is accessible about
the number of cachelines a thread owns in its processor's cache. Still more or less complex
models have to be used to approximate this amount.

One idea is to use the number of cachemisses caused by a thread as measure for its
future behaviour, i.e. a thread that experienced only few cachemisses is expected to produce
few in its next scheduling period as most of its working set should still be resident in the
processor's caches. In addition to using only the cachemisses of the thread's last scheduling
period, the scheduler can also use some or all of the last runs to evaluate the thread's
priority.

Although these strategy seems to handle threads correct, it is useless on a heavily loaded
machine and for threads started for the �rst time, as it completely ignores the in
uence
of other threads and the runtime of the observed thread. For example new threads will
experience a huge number of cachemisses as they have to load their complete working set.
Now the scheduler will assign a very low priority to these threads. As a result all of the
working sets will be swapped out when the threads get rescheduled and a lot of cachemisses
will be produced again.

Therefore one might intend to use the opposite order, i.e. to expect that threads that
experienced a lot of cachemisses have loaded nearly all of their working set into the caches.
But now the decision to give a thread low priority due to few cachemisses neglects that this
might be the result of the fact that the thread has nearly all of its data in its processor's
caches.

Instead of using only the number of cachemisses of the last scheduling periods, the
scheduler can include a thread's history into its decisions. It can use the information
gathered in former scheduling periods, possibly applying some additional aging strategies.

5.3 Mathematically modeling cache a�nity

All models mentioned so far used intuitive assumptions how the number of cachemisses
counts for a thread's a�nity and should be converted into some priority. None of these
models considered the in
uence of the cachesize, the number of threads, their access be-
haviour, etc.

19



In 1987 Thiebaut and Stone published a mathematical model for caches that enables
to calculate the so-called Reload Transient, i.e. the time a rescheduled thread will have to
wait until its working set has been completed again([TS87]). They used this working set,
called a thread's footprint and calculated the reload transient assuming that cachemisses
are independent and uniformly distributed. Using traces they found good correspondence
between their restrictive model and the behaviour of real processes.

The drawback of using these investigation for scheduling, as has been suggested in
[SL89] is, that the scheduler has to know about the size of footprints in advance.

Based on these two considerations we developed another cache model that enables us
to get information about the valid number of cachemisses a thread owns in its processor's
cache at any moment.

5.3.1 Increase of a�nity while a thread is running

Our model has been tailored for the type of caches used in the Convex SPP 1000: virtually
indexed, direct mapped caches. If a running thread causes a cachemiss, two di�erent cases
can occur:

1. The fetched data replaces another thread's cacheline and therefore increases the num-
ber of valid cachelines for the current thread by one.

2. The fetched data replaces a cacheline of the currently running thread. Its cache
a�nity remains constant.

With the same assumptions as Thiebaut and Stone and knowledge about the cachesize
the cache state can easily be modeled by a Markov chain. Each number of valid cache lines
corresponds to one state in this Markov chain. Figure 8 shows this chain with its transition
probabilities. If a thread is in state C, the probability that one cachemisses increases the
cachestate to C + 1 is (N � C)=N and the probability that it remains constant is C=N .
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Figure 8: Increasing cachestate of a running thread
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Now this Markov chain can be represented by its transition matrix M :

M =

0
BBBBBBBBB@

0 1 0 0 � � � 0
0 1

N

N�1
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0 � � � 0
0 0 2

N

N�2
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� � � 0
...

. . .
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N�1
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1
N

0 � � � 0 1

1
CCCCCCCCCA

(5)

Each element mi;j is the probability that a cachemiss increases a thread's cachestate from
i to j cachelines. Raising the matrix to the n-th power gives the probability for an increase
from i to j after n cachemisses, where each element of Mn is of the form:

mn
i;j =

8>>><
>>>:

0 : j < i

(N�i)!(�1)j+i

(N�j)!(j�i)!Nn

j�iP
k=0

�
j�i

k

�
(k + i)n(�1)k : i � j � i+ n

0 : i+ n < j

(6)

We used this probabilities to evaluate the expected number of currently valid cachelines if
we started with a known number i and experienced n cachemisses:

En
i =

NX
j=0

jmn
i;j

=
(N � i)!(�1)i

Nn

i+nX
j=i

j
(�1)j

(N � j)!(j � i)!

j�iX
k=0

 
j � i

k

!
(k + i)n(�1)k

...

= N � (N � i)
�
N � 1

N

�n
(7)

5.3.2 Decrease of cache a�nity while a thread is waiting

A similar Markov chain can be used for the time a thread is waiting, either in the runqueue
or in some sleepqueue. Figure 9 shows this model. The waiting thread looses cachelines
every time the currently running thread replaces one of the waiting thread's cachelines
with an own one.
In the same fashion as with the increase of cache state, this decrease can be calculated.
The probability that a thread will have j remaining cachelines when it stopped with i
cachelines and n cachemisses occurred since it stopped, is given by :

mn
i;j =

8>>><
>>>:

0 : j < i� n�
i

j

� iP
k=j

�
i�j

k�j

� �
N�k

N

�n
(�1)k+j : i� n � j � i

0 : i < j

(8)
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Figure 9: Decreasing cachestate of a waiting thread

Based on this result the expected number of valid cachelines can be expressed by:

En
i = i

�
N � 1

N

�n
(9)

5.3.3 The reload transient

Similar to the methods used by Thiebaut and Stone both functions need to know how
many valid cachelines a thread owns. But these values can be approximated by successively
applying the two functions.

When a thread starts it is assumed to have no working set resident in its processor's
caches. Starting from an empty cache state it will �ll the caches until another thread gets
scheduled. Based on function 7 its expected current cache state can be calculated. From
now on in each moment its remaining cache state is given by function 9 with i set to the
previously calculated value.

If the thread will be rescheduled it will probably complete its working set again, starting
with the remainder of its last scheduling period. If we evaluated the footprint of thread i to
be Ei after its last run and ni(t) cachemisses occurred up to the time it gets rescheduled,
the number of cachemisses it will probably produce is of the form (using the constant
K = (N � 1)=N):

R(i; ni(t)) = logK
N � Ei

N �Kni(t)Ei

(10)

The simplest form to use this reload transient is to give the highest priority to the thread
with the lowest reload transient. This prefers threads that have most of their working set
resident in the caches and will therefore produce few cachemisses. Moreover, preferring
these threads, fewer cachelines of other threads will be replaced, i.e. other threads will get
less disturbed as if we choose a thread with a higher reload transient. The priority relation
between two thread therefore has the form:

Pi(t) > Pj(t)$ R(i; ni(t)) < R(j; nj(t)) (11)

Again this is a dynamic a�nity measure as the values change with time. Similar to the
exponential aging strategies it can be shown that the order induced by this condition
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remains constant. The reload transient must therefore be calculated only once, e.g. if the
thread gets placed on the runqueue. Important for the order in the runqueue is not the
real reload transient that will arise at the time of rescheduling the thread, but only its
relation to the current reload transients of all other threads in the runqueue.

5.4 Structures supporting a�nity scheduling

The data structures presented next serve as a re�nement of the coarse one shown in the
section for memory conscious scheduling. They are intended to supplement the distributed
structures to e�ciently support a�nity scheduling

In contrast to simple memory conscious scheduling for a�nity scheduling we need pri-
ority queues again to express the intended in
uence of a�nity on the scheduling order.
These runqueues must have certain properties:

� For minimizing the necessary work when a new thread gets enqueued, the number
of comparisons has to be minimized. This is crucial for dynamic a�nity models as
e.g. the reload transient.

� Finding and dequeuing the element with the highest or for load balancing lowest
priority must be as cheap as possible.

� Elements with the same priority should perhaps be scheduled in a known fashion like
FIFO or LIFO.

� Especially in systems with a changing number of virtual processors runqueues must
be dividable and mergable in a simple and e�cient way.

A number of structures and algorithms has been developed in recent years for imple-
menting e�cient priority queues. They can be coarsely divided into several classes:

List based structures: Although list based structures are ine�cient for implementing
large queues they can be useful for small queues. Brown showed that linear lists are
superior to all other structures up 5 elements([Bro77]). If the queue exceeds this limit
it can be divided into several sublists each of which responsible for another priority
range. These sublists are generally used in UNIX systems. For a�nity scheduling
these sorted linear lists have the advantage of low overhead when accessing theh
elements with highest or lowest priority.

Skiplists: While elements in sorted arrays can be found in O(logN) using binary search,
linear lists can't be used like that. To simulate this search method, skiplists can be
used. Although searching is faster in skiplists compared to ordinary lists, their struc-
ture is �xed. Each time an element is deleted, the whole list has to be restructured
resulting in high costs.
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Tree based structures: These structures allow access to all elements with average costs of
O(logN). To guarantee this value care has to be taken to balance the tree. Otherwise
the tree could degenerate to a sorted linear list. If trees are used as runqueues and
only the �rst or the last element dequeued, simple restructuring techniques can be
used to reduce the probability of degeneration.

Heapbased structures: In contrast to tree based structures, heap based structures cannot
degenerate. They guarantee access costs of O(logN). But only the element with the
highest priority can be accessed directly. The opposite one can only be found by
searching through the whole structure.

6 Synchronization mechanisms

Besides scheduling, lightweight synchronization mechanisms are a second important part
of userlevel thread libraries. Again, kernel mechanisms are to time consuming, as each
time the address space has to be changed, resulting in a loss of cachelines and TLB entries.

Despite the fact that synchronization mechanisms that are executed on userlevel are
more e�cient they usually have to communicate with the operating system in some form.
Otherwise the operating system's scheduler could preempt one of the virtual processors,
while the userlevel thread executed by this processor is inside a critical section and is
therefore holding a lock.

A second problems becomes additionally important on large NUMA architectures. Syn-
chronization algorithms as well as data structures used for themmust be optimized for these
architectures. Otherwise they could produce lots of cachemisses and signi�cant delays.

6.1 Waiting mechanisms

All synchronization mechanism have in common that in certain cases threads have to wait
on some condition. The implementation of this waiting is therefore important for all these
mechanisms. Usually there are two di�erent choices: either the thread spins actively until
the condition is satis�ed or it blocks. In practice, either these two or intermediate solutions
are used for di�erent reasons

6.1.1 Always Spin

This mechanism waits actively for some condition to be satis�ed. As it can immediately
continue after e.g. the lock has been released, it has the lowest latency of all possible
mechanisms. Moreover, as the thread stays active, most of its cache state should remain
unchanged. Nevertheless this mechanism has some drawbacks:

� Processor cycles are wasted.
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� If the virtual processor serving the thread that holds e.g. some lock has been pre-
empted by the system scheduler, all other threads waiting for this lock to be released
would block the remaining virtual processors.

� If more userlevel threads exist than virtual processors a deadlock can occur, if the
thread that holds the lock is not running, but all virtual processors are spinning.

� Depending on the architecture, the spinning can cause a high load on the system
bus, eventually slowing down all other processors.

6.1.2 Always Block

This strategy is the opposite of always spin. Each thread that has to wait immediately
blocks, i.e. it releases its processor and places itself on some sleepqueue. If the condition
becomes true, it will be dequeued from this sleepqueue and placed on the runqueue or
rescheduled at once. Although no processor cycles are wasted for spinning, two context
switches are necessary and there is a higher probability for a loss of cachelines.

If e.g. a lock gets released, either one of the waiting threads or all can be deblocked and
will concurrently try to acquire the lock. Even if only one thread is deblocked, it is not
sure that it will be able to acquire the lock as long as other threads are running in parallel.
In this case the thread will have to block again, resulting in additional context switches.
Despite the costs for context switches some thread libraries don't use sleepqueues at all,
but enqueue blocked threads immediately on the runqueue. With this technique, called
switch spinning threads will try to acquire a lock again and again.

Instead of blocking a thread a second time, one might try to reserve the lock for a
deblocked thread. But especially on system which could not guarantee that the thread will
be started at once, i.e. without preemption, no other thread would be able to access this
lock.

6.1.3 Spinblocking

Spinblocking combines the advantages of always spin and always block. If a thread has
to wait for a lock it �rst spins for a while. After this period, if the condition is still not
satis�ed it blocks. Usually the time a thread spins actively is chosen in the order of time
for a userlevel context switch.

If the time a thread will have to wait for the condition to become true is known in
advance, a re�ned algorithm can be used. If the waiting time exceeds a certain limit,
e.g. the time for a context switch, the thread will not spin but block immediately, saving
the processor cycles that otherwise would have been wasted. On the other side, if the
expected waiting time is lower than the limit the thread will spin, but at most for a certain
time. If the condition hasn't been satis�ed up to this moment it will block.

The expected time, that mostly depends on the purpose for which the synchronization
mechanism is used, could often be approximated by the history. For example, the time a
lock is held by threads is measured and used to calculate an average time. Using atomic
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instructions like test and set or load and clear a lock could then be implemented in
the following manner:

void acquire_lock(lock_t *lock)

{

int count;

while(! TestAndSet(lock->addr))

{

if(lock->MeanTime > Threshold)

block();

else

{

count = 0;

while((count < MaxSpins) && !TestAndSet(lock->addr))

count++;

if( count == MaxSpins)

block();

else

break;

}

}

lock->starttime = current_time();

return;

}

void release_lock(lock_t *lock)

{

lock->MeanTime = evaluate_meantime(lock->starttime, current_time());

*lock->addr = 1

}

6.2 Spinlocks for atomicity

All blocking mechanisms rely on the property that it is possible to check a condition
and enqueue onto a sleepqueue in one atomic step. If the architecture doesn't provide
instructions that are capable to do this, spinlocks have to be used. The drawback of
wasted processor cycles is less important, as usually this type of critical sections is very
short.

The implementation of spinlocks relies on atomic instructions like ldcws(load and clear
word short) of the HPPA-RISC family, ldstub(load and store unsigned byte) of SPARC
processors or the xchg(exchange) instruction of Intel processors. All of these instructions
have in common that they are able to read and modify a memory cell in an indivisible step.
If the datum resides in a cache or is fast accessible like on UMA architectures the exclusive
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access doesn't in
uence other processors. This is no longer true for NUMA architectures
like the Convex SPP for several reasons:

� All atomic accesses to the same datum have to be serialized by the hardware, i.e. if
a lot of processors compete for the lock, the only one that could release it might be
delayed too. This can arti�cially lengthen the critical section.

� All of these instructions really change the datum, whether they are able to set the
lock or not. As a result, all copies in the caches of other processors are invalidated
and therefore all other processors will experience cachemisses.

As the problems mentioned so far led to unacceptable performance penalties even on
architectures with a moderate number of processors, several improved techniques have been
developed in the last few years([ALL89], [And90], [KLMO91], [MCS90]).

6.2.1 Simple spinning

Only for completeness, the following lines show the algorithm to set and release locks with
simple spinning. This and all following algorithms rely on the following convention: locks
that are set have the value zero, locks that are released an arbitrary other value.

/* acquire lock */

while(fetch_and_clear(lock_position)==0);

/* critical section */

/* release lock */

*lock_position = 1;

6.2.2 Spin on read, snooping locks

This method uses a read instruction for spinning. Only if the lock is free, the thread
attempts to acquire it by an atomic instruction. On architectures with caches these read
operations work locally, without disturbing other processors. Moreover as there is usually
no need for a serialization of read operations, the release operation will not be delayed.

/* acquire lock */

while((*lock_position==0) || (fetch_and_clear(lock_position)==0));

/* critical section */

/* release lock */

*lock_position = 1;

Nevertheless, the method has drawbacks that makes it unacceptable for large machines.
When the processor owning the lock releases it, it will write into the shared memory cell.
All other processors will experience a cachemiss in their read-loop and will �nd the lock
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released. As a result all of them will try to acquire the lock with the same problems as
with simple spinning. Although only one will succeed and all other will return to their
read-loop, about O(n2) cachemisses will be caused by the atomic operations if n processors
compete for the lock.

6.2.3 Backo� spinning

The problem of snooping locks was produced by the implicit synchronization caused by
the cachemiss in the read-loop. Backo� spinning tries to reduce the probability for this
synchronization by introducing arti�cial delays between consecutive read operations.

/* acquire lock */

while(fetch_and_clear(lock_position) == 0)

{

while(1)

{

while(*lock_pos == 0);

delay(waiting_period());

if(*lock_pos != 0)

break;

}

}

/* critical section */

/* release lock */

*lock_position = 1;

The values used for the delay can either be calculated or chosen randomly. Practice
showed that exponentially growing delays are well suited to reduce the number of cache-
misses. To prevent very long delays, an additional upper limit can be introduced. Inves-
tigation, e.g. by Anderson([And90]) showed that exponential backo� spinning scales very
well even on large machines.

6.2.4 Ticket locks

Especially on NUMA architectures each cachemiss can lead to an access to remote memory.
One method that avoids unnecessary atomic operations and the cache invalidations caused
by these operations are ticket locks. The lock now consists of two memory cells. One
contains a ticket counter. Each thread that wants to acquire the lock draws a ticket by
atomically incrementing this counter (new ticket). Then it waits until the other memory
cell (served) reaches the same value. That's the sign that it has successfully acquired the
lock. To release the lock, the second memory cell is incremented:

/* acquire lock */

my_ticket = fetch_and_inc(new_ticket);
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while(*served != my_ticket);

/* critical section */

/* release lock */

(*served)++;

6.2.5 Queued locks

All methods mentioned so far used one shared memory cell for spinning. But with this re-
striction there is no possibility to reduce the number of cachemisses further. Increasing the
number of competing processors also at least linearly increases the number of cachemisses
for each synchronization operation.

One technique that uses di�erent memory cells for spinning is known as queued locks

([MCS90]). To implement this method the underlying architecture must provide more
complex atomic instructions:

� fetch and store(p,i): exchanges the value referred to by the pointer p by the
value of i and returns the old value.

� compare and store(p,c,i): compares c to the value referred to by the pointer p
and if both are equal, replaces the old value of the memory cell by i and returns
true. Otherwise the memory cell remains unchanged and the value false is returned.

Each attempt to acquire the lock is now represented by a separate structure I, built up
of a pointer to the next of these structures in a queue of attempts and a private variable
used for spinning. The lock itself is only a pointer (Lock ptr) to such structures.

As the acquire and release operations are more complex they have been covered in two
functions:

/* structure for locking attempts*/

struct

{

int wait;

struct node_t *next;

}node_t;

void acquire_lock(struct node_t *Lock_ptr, struct node_t *I)

{

node_t *old;

I->next = NULL;

old = fetch_and_store(Lock_ptr,I);

if(old != NULL) /* sleepqueue was not empty */

{

I->wait = 1;
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old->next = I; /* enqueue I on sleepqueue */

while(I->wait); /* wait until lock is released */

}

}

void release_lock(struct node_t *Lock_ptr, struct node_t *I)

{

if(I->next == NULL) /* there is no successor */

{

if(compare_and_store(Lock_ptr, I, NULL)) /* dequeue structure */

return;

else /* another thread is waiting for the lock */

while(I->next == NULL); /* wait until it is enqueued correctly */

}

I->next->wait = 0; /* release lock */

}

6.3 Datastructures for sleepqueues

Similar to runqueues in thread libraries sleepqueues have to be designed for low overhead,
a high degree of possible parallelism and locality.

6.3.1 Central sleepqueues

In general purpose operating systems central sleepqueues are used for blocked threads.
Each thread is characterized by a value that represents the synchronization mechanism
that caused the thread to block. Using this value threads waiting for this mechanism can
be found and deblocked. Figure 10 shows the structure of a system using one central
sleepqueue.

CPU n
CPU 2

exit() create()CPU 1

bl
oc

k(
)

unblock()

Figure 10: Using one central sleepqueue

Like listbased runqueues these sleepqueues are usually divided into several lists and
threads are hashed into one of these lists. This improves parallelism as well as it reduces
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contention. Although this approach can be implemented very e�ciently and with low
overhead, on large systems especially NUMA architectures this central structures become
bottlenecks again.

6.3.2 Local sleepqueues

To improve locality and parallelism sleepqueues could be distributed in a similar fashion
as runqueues. Each processor would get its private sleepqueue and would be able to access
it locally.

CPU n
CPU 2

unblock()

exit()

bl
oc

k(
)

create()

CPU 1
local runqueue

local sleepqueue

global runqueue

Figure 11: Using local sleepqueues for each processor

Although a structure like that shown in �gure 11 would be possible it has a severe
drawback. If threads on di�erent processors or nodes would use the same synchronization
mechanism, e.g. the same lock, the threads would be enqueued on di�erent sleepqueues.
If threads should be deblocked, a complex mechanism would have to be used to �nd the
a�ected sleepqueues. On the one hand this would be very time consuming especially on
large systems. On the other hand locality would be lost, as the deblocking processor would
have to look at each sleepqueue, even on remote nodes.

6.3.3 Sleepqueues bound to synchronization mechanisms

Searching for threads that should be deblocked can be avoided completely if the sleepqueue
for the mechanism is directly bound to it. Each mechanism has its own sleepqueue. This
o�ers some interesting opportunities. Besides a high degree of possible parallelism, on
machines like the Convex SPP with network caches, the mechanism with its sleepqueue
seems to migrate to the node on which it is used. If only processors of this node access
this mechanism it will have high locality. This is not possible with central runqueues, as
all processors access this sleepqueue and therefore the structure would steadily migrate.

Figure 12 shows a system using this sleepqueues bound to synchronization mechanisms.
Threads that get deblocked are usually enqueued onto the central runqueue or on the
local runqueues of the processors where the thread has been running before it blocked.
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Figure 12: Sleepqueues bound to synchronization mechanisms

Particularly on system with priority queues as runqueues, each enqueue operation can be
expensive. To reduce the overhead simple deblockedqueues can be used as shown in the
�gure for an intermediate store of deblocked threads. Each processor regularly scans its
own deblockedqueues, calculates the deblocked threads' priorities and enqueues them on
its local runqueue.

7 The Mthreads thread library

To evaluate our concepts we developed and implemented a userlevel thread library as part
of the ELiTE4 projects. This section will show the structure and results for some sample
applications showing the possible improvements by the di�erent mechanisms mentioned in
the previous sections.

7.1 The internal structure

The mthreads library was specially designed for large scale NUMA architectures like the
Convex SPP, which was used to evaluate our design.

The actual context switch mechanism is based on the Quickthreads package of David
Keppel ([Kep93]). This package has been ported for the Convex SPP by Uwe Reeder
([Red95]).

Figure 13 shows the structure of our thread library that has been built on top of the
quickthreads library. It's is obvious that the structure is similar to the hardware structure
of the Convex SPP. For each level in the hardware hierarchy we have corresponding software
structures that are connected on runtime. This enables us to dynamically adopt our thread
library to di�erent hardware structures, e.g. to a change in the number of processor or
nodes.

4
Erlangen Lightweight Thread Environment
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Figure 13: Structure of the MThreads thread library

7.1.1 Structures for thread management

Virtual processors: When the library is started it creates one kernel thread for each
processor. Each of this kernelthreads is represented by a vcpu t structure that holds
references to local run-, start- and deblockedqueues, local pools etc.

Node structures: Similar to the processor structures these structures have references
to a node local startqueue as well as to shared pools for stacks or memory blocks that can
be accessed by all processors of this node. Moreover they know all processors of the node
and their states.

The subcomplex structure The global subcomplex structure has information about
all nodes and all processors and manages the global startqueue for threads that haven't
been assign to special processors or nodes.

The runqueues: Each processor has its own runqueue. Because of the properties nec-
essary for a�nity scheduling like e�cient support of priorities and operations with low
overhead, we decided to use an ordinary binary tree. As it was known that dequeue op-
erations work only at the front and back of the runqueue we could implement a simple
balancing strategy and e�cient dequeue operations.
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The startqueues: Besides the usual thread states like blocked or runable, newly cre-
ated mthreads are STARTABLE and get enqueued on separate startqueues. When threads
are created, the programmer can assign them to one of the startqueues in the system, ei-
ther to a speci�c processor's startqueue, to a special node's startqueue, or to the global
startqueue. A processor looking for a new thread will traverse this hierarchy starting at
its local startqueue. This results in a hierarchy of bindings of threads to locations.

Freelists: For all important structures that are frequently allocated and deleted, pools
exist. These ensure optimal reusage of memory regions and furthermore simplify allocation
as they guarantee correct alignment, This is necessary as HPPA-Risc processors in part
need special alignment. For example memory cells used for locks have to be aligned on a
16 byte boundary.

As freelists are accessed in LIFO order, memory regions with the highest a�nity to the
di�erent levels of caches are used �rst. If local pools fall empty or exceed a certain limit,
elements are withdrawn from or deposited to the node's pools. Except the stackpool that
transfers only one stack to and from the shared pool, all other freelists transfer a certain
amount of elements at once to reduce contention at the central structure.

7.1.2 Synchronization

For synchronization the library o�ers mutex locks, semaphores, barriers and condition
variables. All these mechanisms are based on a special form of condition variables with
private sleepqueues. For blocking a two phase spinblocking algorithm is used. When a
thread should be blocked the expected time the thread will be blocked can be presented
to the block operation. Based on this information the algorithm decides whether to block
at once or to spin before it blocks the thread. Mutexlocks for example evaluate the time
the lock has been held and calculate the average time using a simple aging strategy.

To assure atomicity when enqueuing threads on the private sleepqueue spinlocks are
used. These spinlocking operations, which are the most frequently called operations have
been implemented in assembler. They have been realized as snooping locks, with exponen-
tial backo� and an upper limit for the delay between consecutive read operations.

7.1.3 Loadbalancing

If a processor has no runable thread on its own runqueue and doesn't �nd a startable thread
on one of the startqueues in the hierarchy of startqueues, it switches to a private idlethread.
These idlethread will perform the real load balancing. To avoid that { especially at the
end of an application { lots of processors try to balance load, only one processor per node
is allowed to do balancing simultaneously.

Load balancing works on two levels. In the �rst level it is tried to balance startable
threads by moving startable threads from the higher levels in the hierarchy, i.e. from
processor level down to the lower ones. If after this phase no startable thread is available
for the processor, it knows that there is no startable thread in the whole system. In this
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case it proceeds with the second phase, i.e. it tries to migrate a runable thread. The search
for a possible candidate is started at the local node. Therefore it looks at the threads with
lowest priority on all runqueues of the local node and searches for the thread that leads
to the highest improvement, by using information about the runtime of these threads, the
load of all processors and the expected migration penalty. If no thread could be found the
search continues on remote nodes. If no runable thread could be found at all, the virtual
processor blocks.

7.1.4 A�nity evaluation

For being able to test di�erent a�nity models, a�nity evaluation has been covered as an
own module with a small interface that is used by the scheduling mechanism:

aff thread stopped() is called whenever a thread blocks or terminates to stop its a�nity
measurement.

aff thread started() is called subsequently to start the measurement for the successor
thread.

aff greater() is used to �nd out which thread has the higher a�nity or priority. It is
called on each comparison while a thread gets enqueued on some runqueue.

The Convex SPP 1000 used for our measurements allows either counting processor ca-
chemisses or network cachemisses, but not both simultaneously. Moreover the measurement
is very expensive compared to the processor cycle time as the mechanisms for counting are
not part of the processor, but are implemented by additional hardware. Based on these
possibilities we implemented and tested the following a�nity models:

VTime: These model uses virtual time. Each time aff thread stopped gets called by
the scheduler a processor private counter is incremented and stored as priority in the
thread control block.

CMisses: This model assumes that a thread that produced a lot of cachemisses has
loaded most of its working set into its processor's caches and for that reason should
get high priority, i.e. the number of cachemisses of the last scheduling period is used
as priority.

CmSum: Instead of using only the cachemisses of the last scheduling period, this model
uses the sum of cachemisses of all the thread's scheduling periods as priority to
include the thread's history into the priority calculation.

Reload: This model assigns higher priorities to threads that are expected to cause few
cachemisses when restarted. Therefore the expected number of valid cachelines is
calculated each time a thread starts or stops and is translated into the reload transient
when the thread gets enqueued on the runqueue. Tables are used to simplify the
calculation of footprint and reload transient values.
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7.2 Results of di�erent sample applications

To measure the in
uence of memory conscious scheduling and di�erent a�nity models on
the runtime of application we parallelized numerical methods and additionally used several
synthetic workloads that had a more predictable behaviour than numerical applications.

7.2.1 Sample applications

Synthetic workload: In this application a huge number of threads is created. All
threads synchronize in couples resulting in a lot of context switches. Between two synchro-
nizations no calculations or memory accesses are done. Therefore throughput depends on
the e�ciency of the mutexlocks used for synchronization and whether data structures like
thread control blocks and stacks are resident in the processor cache.

Iterative numerical algorithm: The second application is an iterative algorithm used
to solve large linear equations like those created by partial di�erential equations. The
application uses the Jacobi algorithm and ran a few hundred iterations on a 2048x2048
matrix with 128 threads. As each thread accesses the same memory regions in each iteration
this test is a good candidate for improvements by memory conscious and a�nity scheduling.

7.2.2 In
uence of MCS on runtime

To �gure out the in
uence of MCS on the speedup that can be attained for the di�erent
applications we implemented a central version of our thread library that uses shared start-
and runqueues as well as central pools. This library was compared to that shown in �gure
13 with distributed structures.
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Figure 14: The iterative algorithm

Figure 14 shows the di�erences in runtime both of the central and of the distributed
approach with MCS for the iterative application. Both versions scale very well for one
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node, but if the number of processors exceeds this border the version with MCS is still
able to increase speedup whereas the central version's speedup drops to a value below that
of 8 processors. On the one hand this decrease in speedup is due to the bottleneck of the
central structures, but on the other hand it's caused by the growing communication costs.
If the computation crosses hypernode borders, calculations of iterative processes are no
longer e�ciently possible without locality considerations.
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Figure 15: Synchronization speed

Figure 15 shows the number of mutex locks 4096 threads were able to acquire per second
in our synthetic application. In the version without MCS this number decreases very fast
for several reasons:

� The central scheduling structures become a bottleneck.

� As there is no possibility to collocate communicating threads, two threads accessing
the same lock may be placed on di�erent hypernodes, leading to high costs for each
locking operation.

� Threads block and migrate frequently and thereby loose their complete cache state.

In constrast to the centralized version the version using MCS scales linearly with the num-
ber of processors up to 8 processors. Although the number of synchronizations decreases
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Moreover, using VTime we experienced an acceleration of about 25% for our �ne-
grained parallelization on one processor compared to the usual solution using one
process, despite the overhead caused by thread switches etc.

Reload: This model leads to the highest speedup, but has to deal with the high costs for
reading cachemiss counters on the Convex SPP and calculating the priority. There-
fore these costs could only be outweighted if communication gets expensive, i.e. the
computation crosses hypernode borders.

8 Summary and Conclusion

This paper showed that threads are not only an important means for manual parallelization,
but can also help to improve the performance of parallel applications.

Two di�erent approaches to improve userlevel thread scheduling have been �gured out.
Memory conscious scheduling uses locality information based on hints by the programmer
or compiler to distribute threads on the available processors in a fashion that reduces
communication costs and increases cache reusage. Moreover, the distributed structures
used for MCS help to reduce the probability for bottlenecks. The second approach, called
a�nity scheduling re�nes the methods of MCS. Threads are scheduled in an order that
leads to a better cache reusage by either applying simple intuitive methods or using a more
complex mathematical model.

As a second topic we examined strategies and structures for e�cient and scalable syn-
chronization, even on large NUMA architectures. Once more, distributed structures had
to be used to reduce contention and remote accesses that would otherwise cause a severe
loss in performance.

The results of the implementation with MCS compared to that without MCS show
the superiority of the distributed scheduling approach. Especially for frequently blocking
applications running on a real NUMA architecture, i.e. on a machine with more than one
node, distributed structures are crucial. Less contention is responsible for the investigated
improvements as well as more locality by considering the a�nity to caches. But the results
of the synthetic work load showed that the ideas are also applicable to smaller machines,
like those comparable to one node of a Convex SPP.

On the other hand, a�nity scheduling o�ers additional improvements. Although simple
models using cachemiss information couldn't satisfy, the more complex method using the
reload transient showed the potential of these considerations. Especially on upcoming
machines that are able to count cachemisses on the processor and can therefore e�ciently
evaluate these measures, these models will become more important. For machines that
have no hardware support to count cachemisses or for small machines, virtual time can be
used instead.

Our further research will concentrate on adopting our ideas to other, new architectures.
Moreover we will re�ne our models by using the properties of these machines, e.g. to cover
the in
uence of the di�erent memory classes into our models.
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