
Memory Conscious Scheduling
and Processor Allocation

on NUMA Architrchitectures

Frank Bellosa

June 1995 TR-I4-6-95

Institut für
Mathematische Maschinen

und Datenverarbeitung
der

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Lehrstuhl für Informatik IV
(Betriebssysteme)

Technical Report

0

1

§

Memory Conscious Scheduling and Processor Allocation
on NUMA Architectures

Frank Bellosa
University Erlangen-Nürnberg

Department of Computer Science IV
Martensstr. 1, 91058 Erlangen, Germany

email:bellosa@informatik.uni-erlangen.de
Phone: +49 9131 85 7275
Fax: +49 9131 85 8732

Abstract
Operating system abstractions do not always meet the needs of a language or applications de-

signer. A lack of efficiency and functionality in scheduling mechanisms can be filled by an ap-

plication-specific runtime environment providing mechanisms for dynamic processor allocation

and memory conscious scheduling. We believe that a synergistic approach that involves three

components, the operating system, a user-level runtime system and a dynamic processor server

can offer the best adaptivity to the needs of multiprogramming.

Especially on NUMA architectures data structures and policies of a scheduling architecture

have to reflect the various levels of the memory hierarchy in order to achieve high data locality.

While CPU utilization still determines scheduling decisions of contemporary schedulers, we

propose novel scheduling policies basing on cache miss rates. An interface between user-level

runtime system and application is essential to initiate a concurrent memory prefetching.The ap-

plication is informed about scheduling decisions of the runtime system and can trigger prefetch

operations. For the implementation of the runtime system we follow a two level approach: The

lower level consists of assembler code for fast thread initialization and context switching. The

upper level includes the user-level scheduler which provides load balancing and high cache re-

usage on top of kernel threads.

Because static processor sets, MACH cpu_servers and gang scheduling do not offer the required

flexibility and efficiency in processor allocation and scheduling, a new approach to these topics

had to be developed. The design of an adaptive dynamic processor server will be sketched. The

decisions of this processor server base on processor requests and on information about memory

locality of currently running applications. An interface between processor server and user-level

scheduler allows the exchange of information to establish a dynamic partitioning of the proces-

sors among multiple parallel applications to achieve an optimum between throughput and fair-

ness.

2

§ 1IntroductionIntroduction

1 Introduction

Cache-coherent multiprocessors withnonuniform memoryaccess (NUMA architectures) have
become quite attractive as compute servers for parallel applications in the field of scientific
computing. They combine scalability and the shared memory programming model, discharging
the applications designer from data distribution and coherency maintenance. But still load bal-
ancing and scheduling are of crucial importance.

The parallelism expressed using “UNIX-like” heavy-weight processes and shared memory seg-
ments is coarse-grained and too inefficient for general purpose parallel programming, because
all operations on processes like creation, deleting and context switch invoke complex kernel ac-
tivities as well as costs associated with cache and TLB misses due to address space changes.
Contemporary operating systems (like SUN’s Solaris or MACH) offer middle-weight kernel-
level threads decoupling address space and execution entities. Multiple kernel threads mapped
to multiple processors can speed up a parallel application. But the potential benefit is limited by
the kernel’s scheduling features, which cannot take into consideration the special needs of mul-
tiprogramming. Furthermore, kernel threads cannot offer a fine-grained programming model
because thread management implies expensive protected system calls.
By moving thread management and synchronization into user-level the cost of thread manage-
ment operations can be drastically reduced to one order of magnitude more than a procedure call
[1]. Some advantages of user-level threads are:

– All scheduling operations belonging to a single application are handled inside the same
address space. Cache and TLB misses can be reduced to a minimum.

– The scheduling algorithm and its interface can be designed with respect to the needs of a
specific application, thus offering the optimum in performance and functionality. For ex-
ample, preemptive- or priority-based scheduling of threads can be omitted, if this is not
necessary for a specific application, to achieve low thread management overhead.

– Control structures for processes and threads are statically allocated in most kernels. Only
the user-level offers the flexibility in adapting control and queue structures to the degree
of parallelism inherent to an application ranging from several up to thousands of threads.

In general, light-weight user-level threads, managed by a runtime library, are executed by kernel
threads, which again are mapped on the available physical processors by the kernel. Problems
with this two-level scheduling arise from interference of scheduling policies on different levels
of control without any coordination or communication.
On NUMA architectures with their discrepancy between computing and communication perfor-
mance, memory conscious scheduling is essential to minimize the total completion time of an
application by reducing inter-processor communication. One common representative of mem-
ory conscious scheduling is cache affinity scheduling proposed in [20]. The decisions of this
type of scheduling base on the CPU utilization and the information about the processor where
the most recent execution of a specific thread took place. Our approach to memory conscious
scheduling goes beyond the usage of information about timing and execution location by using
cache miss rates for each levels of the memory hierarchy.

In this paper we propose a non-preemptive user-level threads package with an application inter-
face to invoke - based on scheduling decisions of the runtime system - prefetch operations to
hide memory latencies. For keeping multiple applications near to their operating point along the
speedup curve, an adaptive processor server will be sketched, which performs space sharing of
a NUMA multiprocessor based on information about processor requests and cache misses.

3

The rest of the paper is organized as follows. We describe in section 2 the architecture of the
CONVEX SPP, a cache coherent NUMA multiprocessor, which is the architecture for our pro-
totype implementation. The design of a memory conscious runtime system with various strate-
gies will be sketched in section 3 as well as an adaptive processor server . Finally we conclude
in section 4.

2 Architecture of the CONVEX SPP

The Convex Exemplar Architecture [6] implemented in the Convex SPP Multiprocessor is a
representative of cache coherent NUMA architectures. A symmetric multiprocessor called hy-
pernode is the building block in the SPP architecture. Multiple hypernodes share a low-latency
interconnect responsible for memory-address based cache coherency. Each hypernode consists
of two to eight HPPA 7100 processors, each having 1 MB direct mapped instruction and data
cache with a cache line size of 32 bytes. The processors of a single hypernode can access up to
two GBytes of main memory over a non-blocking crossbar switch . The memory of remote hy-
pernodes can be accessed over the interconnect. To reduce network traffic, a part of the memory
is used as a network cache with a cache line size of 64 bytes. Load/store operations require var-
ious stages depending on the locality of the referenced memory region (see Figure 2.1).

Fig. 2.1.Stages when accessing various levels of the
memory hierarchy

Memory hierarchy Latency in clock cycles

Processor cache 1

Node local memory 50

Remote node memory 200

decode instruction
& generate address

processor
cache hit

finish
instruction

processor
cache miss

page
fault

network cache
hit

network cache
miss

local
access

remote
access

local memory
returns data

finish
instruction

local memory
returns data

finish
instruction

transmit physical
address

access block
on remote node

transmit
data block

encache data in
requesting node

finish
instruction

4

§ 3Erlangen Lightweight Thread Environment (ELiTE)Erlangen Lightweight Thread Environment (ELiTE)

There are non blocking prefetch operations to concurrently fetch data regions from a remote
node into the local network cache. These operations can be used to overlap computation and net-
work traffic in order to hide latency.

Performance relevant events can be recorded by a performance monitor attached to each CPU.
The performance and event monitor registers cache misses satisfied by the local or a remote hy-
pernode as well as the time, the processor waits for a cache miss to be served. For high resolu-
tion time stamps several timers with various resolutions are available. There is also a system-
wide clock with a precicion of 1µs.

The operating system is a MACH 3.0 microkernel with a HP/UX compatible Unix server on top.
The system call interface from Hewlett-Packard’s Unix and additionally, a system interface to
create and control kernel threads are provided.

3 Erlangen Lightweight Thread Environment (ELiTE)

Most thread schedulers attempt to optimize load balance while reducing the costs for thread
management including queue locking. This strategy is reasonable for bus-based shared memory
architectures with an uniform memory access. The most valuable resource of these architectures
is the computing power of the processor and the bandwidth of the bus system. Thus, scheduling
policies focus on a high processor utilization while reducing bus contention.
The focus of thread scheduling has to move when we look at scalable shared memory architec-
tures with non uniform memory access. Modern RISC-based processors are able to perform 1-
2 operations per clock cycle while simultaneously performing a load/store operation to the pro-
cessor cache. One can only take advantage of this immense computing power, if the processors
can be supplied with data in time. Consequently, low memory latency is the key to high proces-
sor utilization. The bandwidth of interconnection networks is not the bottleneck for today’s scal-
able parallel processors (e.g. the slotted ring interconnect of the Convex SPP has a bandwidth
of 2.8 GBytes/s) whereas the time critical latency to access different levels in the memory hier-
archy cannot be reduced in the next time because of technological reasons. Both switches and
affordable dynamic memory cause a latency of about hundred nanoseconds, while processor cy-
cles just need a few nanoseconds. The consequence of this discrepancy is that scheduling poli-
cies for NUMA architectures have to satisfy three essential design goals:

(1) Memory Conscious Scheduling:Threads are assigned to the processor, which is close to
the data accessed by the thread. This policy tries to reduce processor waiting time due to
cache misses. Fairness among threads of the same application is not necessary, as each
optimal used processor cycle within an application helps to increase throughput.

(2) Latency Hiding: Prefetch Operations cause an overlapping of computation and commu-
nication.

(3) Dynamic Processor Allocation: Due to decreasing spatial locality, communication over-
head and redundant work, the efficiency of a parallel application normally decreases as
the number of processors is increased. In a multiprogrammed environment the overall
throughput can be better compared to a single application environment, if all running ap-
plications run with a higher efficiency. This effect is called operating point effect [20]. The
operation point effect can be achieved by a dynamic processor server partitioning the pro-
cessors among multiple parallel applications.

Architecture

5

§ 3.1 Erlangen Lightweight Thread Environment (ELiTE)

As contemporary threads packages, developed for the use on shared memory multiprocessors
with a modest number of processors, have design goals, which are not applicable for scalable
NUMA multiprocessors with a high number of processors, novel scheduling architectures have
to be designed.

3.1 Architecture

We present a scheduling architecture, which is intended for the use in fine-grained numerical
applications or for the use by a compiler doing automatic parallelization.

The following architectural elements characterize the ELiTE architecture:

– Information about data locality of specific threads, provided by the event monitor unit
(EM) of the hardware (see figure 3.1. ④) are gathered by the runtime system① to influ-
ence scheduling on the base of priority queues. This is the key to memory conscious
scheduling as presented in detail in the next subsection (refer to section 3.2).

– An interface between application and runtime system (see figure 3.1. ②) is essential to in-
voke - based on scheduling decisions of the runtime system - prefetch operations to hide
memory latencies (refer to section 3.3).

PP P P

M M M M

EM EM EMEM

PP P P

M M M M

EM EM EMEM

PP P P

M M M M

EM EM EMEM Inter-

connect

Inter-

connect

MACH 3.0 Microkernel MACH 3.0 Microkernel MACH 3.0 Microkernel

UNIX Server

H
ar

dw
ar

e
K

er
ne

l
U

se
r-

Le
ve

l

Runtime System①

Information② Control③

Data-Locality Information

P
ro

ce
ss

or
 S

er
ve

r

Signal

S
ha

re
d

M
em

or
y

Process A

Process B

Process C

Advanced Kernel Interface⑦

Fig. 3.1.Scheduling architecture of the Erlangen Lightweight Thread Environment (ELiTE)

Application

⑤

⑥

④

④

6

§ 3.2Erlangen Lightweight Thread Environment (ELiTE)Erlangen Lightweight Thread Environment (ELiTE)

– The mechanism for the context switch (see figure 3.1. ③) has to be optimized, to keep the
costs for this operation to a minimum. Switches occur in the course of suspend operations
and after the polling phase when using two-phase locking (refer to section 3.4).

– To achieve fairness between multiple applications and to keep multiple applications close
to their efficient operating point an adaptive processor server performs space sharing of a
NUMA multiprocessor, based on information about processor requests and cache misses
(see figure 3.1. ⑤⑥) on different levels of the memory hierarchy (refer to section 3.5).

– An advanced kernel interface (see figure 3.1. ⑦) eases information exchange between ker-
nel and runtime system to keep the number of running kernel threads used as virtual pro-
cessors fixed and to prevent a loss of parallelism due to blocking system calls (refer to sec-
tion 3.6).

3.2 Memory conscious user-level scheduling

Algorithmic optimizations of the application and scheduling mechanisms for the management
of parallelism determine the overall throughput. The applications designer cannot be relieved
from algorithmic considerations concerning memory locality. But he can take advantage of a
scheduling, which makes a fine-grained architecture-independent programming style possible
by its efficient memory conscious thread management.

In [1] the performance impact of different thread management alternatives for shared memory
bus-based multiprocessors has been investigated. Advantages of per-processor ready queues
and per-processor free lists could be demonstrated:

– Enqueueing and dequeueing threads can occur in parallel, with each processor using a dif-
ferent queue. To prevent idling of a processor with an empty queue, each ready queue has
a separate lock, such that an idle processor can scan other queues for work, beginning with
its own.

– To minimize memory allocations from central pools, control blocks and stacks should be
stored in local free lists.

Both results should also apply to NUMA architectures. While the aim of locality in bus based
multiprocessors is to prevent bus contention when accessing central locks, the focus has to be
moved to reduction of the latency when referencing memory in NUMA machines.

To reduce the total completion time of an application and consequently the overall throughput,
the number of cache misses has to be minimized. To address this problem, research has been
done in the field of kernel level scheduling by modifying the Unix scheduler to perform a pro-
cessor affinity scheduling of heavyweight processes [20] . Furthermore load balancing tech-
niques for user-level threads have been evaluated where just those threads were allowed to mi-
grate to an idle processor, when probably having few data in the cache [15].

One aim of this paper is to initiate a discussion about novel approaches in scheduling policies
and data structures, reflecting the various levels in the memory hierarchy of NUMA architec-
tures.

Basis of every scheduling is a measure of the resource of interest. The resource utilization of the
CPU is measured by the consumed CPU cycles of a thread. Corresponding a measure of locality
is the number of cache hits of a thread in its history. Most of the existing NUMA machines, as

Memory conscious user-level scheduling

7

§ 3.2.1 Erlangen Lightweight Thread Environment (ELiTE)

Convex SPP or KSR1/2, provide data about cache misses. So we use dislocality as the basis of
our scheduling considerations.
Dislocality is the average number of cache misses per time unit during the last runs of a thread.

In the next sections, we discuss the pros and cons of three scheduling policies (Total Locality
Scheduling, Static Locality Scheduling and Dynamic Time-Locality Scheduling) which differ
in complexity and completeness.

3.2.1 Total Locality Scheduling

The inverse priority of a thread is the product of its dislocality and the time between its last run
and the moment of the enqueueing. The thread with the lowest inverse priority will be chosen
for execution. Threads are stored in apriority tree. The distance from a node to the leafs corre-
sponds to the disslocality.

The scheduling heuristic is based on the following assumptions:

– A thread which had a high data locality in its history, will run on with high data locality
after assigment to its previous processor.

– A thread with a high dislocality will have a lot of cache misses, even when it would be
reassigned to its previous processor.

Provided a non preemptive scheduling policy, a thread has to be enqueued during creation and
after unblocking. As thread specific data will be initialized during creation, the new created
thread should be enqueued with the highest priority (corresponding to the value 0 in the inverse
priority range) in the local priority queue of the creator. For a resumed thread, the new inverse
priority can be calculated as the product of dislocality and the time since the latest run. A thread
with high locality not being executed in recent processor cycles can have the same priority as a
thread with a poor locality, being executed most recently. Because the priority of threads with
different locality changes over time, a cyclic recalculation of the priority of all runnable threads
is necessary. Thresholds define, when a thread has to be enqueued in the processor local queue,
the node local queue, and the system wide queue. The thresholds depend on the memory size of
the levels in the hierarchy and the latency to access a specific level.

Processor Level Node Level System Level

Node local priority queue

Processor private priority queue

System wide priority queue

Fig. 3.2.Hierarchical priority tree to store thread control blocks according to their locality

8

§ 3.2.2Erlangen Lightweight Thread Environment (ELiTE)Erlangen Lightweight Thread Environment (ELiTE)

The Total Locality Strategy has some interesting advantages:

– Idle processors can look for new runnable threads in the local processor queue, then in the
local node queue and finally in the system pool. Threashing of threads between processors
will be avoided, because the time stamp and locality based queueing strategy with the re-
evaluation of runnable threads according to their locality achieves a throttled movement
of deblocked runnable threads from one queue level to the next as the waiting time in-
creases.

– Local queues do not have to be locked, because only the local processor has access. Ac-
cess to the node local or to the system queue can be reduced to a minimum by fetching
multiple runnable threads from these priority queues into the local queue.

To resume a thread, the state in the thread control block should be set to runnable, but the en-
queueing of this thread should be done by the processor recently executing this thread, because
enqueueing implies accessing a lot of thread specific data. An enqueueing stack local to the pro-
cessor within reach of all other processors has the advantage, that the stack has just to be locked
for the time of pushing and popping the address of the unblocked thread.
Several data structures for priority queues exist [11], where Fibonacci heaps and relaxed heaps
[7] just need O(log #threads) operations for the time critical ‘find_and_delete_minimum’-oper-
ation, necessary to identify and extract the processes with minimal dislocality from the priority
queue.

3.2.2 Static Locality Scheduling

Giving up the aging of enqueued threads and the total order within a local queue allows the use
of simple hash queues. Like in the Total Locality Scheduling we have a hierarchy of hash queues
according to the memory hierarchy. When unblocked threads will be enqueued, the thread con-
trol blocks (TCBs) get enqueued according to their dislocality in a hash queue. Again we have
to find thresholds and hash functions which match the size and the latency of the caches.

Processor Level Node Level System Level

Node local hash queue

Processor private hash queue

System wide hash queue

TCB TCB TCB

TCB TCB

TCB

TCB TCBTCB

TCBTCB

TCB

TCB TCB TCB

TCB

Fig. 3.3.Hierarchical hash queues without aging

Memory conscious user-level scheduling

9

§ 3.2.3 Erlangen Lightweight Thread Environment (ELiTE)

A simple hash function can be the linear mapping of the range between thresholds of two mem-
ory levels onto the hash buckets. A threshold can be a percentage of available cache-lines. If the
dislocality is greater than the threshold, we assume, that there is no more valid data in the cor-
responding cache. We currently evaluate thresholds corresponding to 20%-30% of the number
of cache lines.

Apart from serious trade-offs concerning aging and total queue order the Static Locality Sche-
duling has some advantages:

– Hashing needs just a fixed number of operations for enqueueing.

– The dequeueing needs a fixed number of operations, if we treat the linked lists in the hash
table as a FIFO or LIFO queue.

3.2.3 Dynamic Time-Locality Scheduling

For applications with a huge number of threads with the same access patterns, the number of
cache misses of an individual thread can be neglected and only the time since the last run of a
thread is of interest. Having only this variable, the advantage of hashing can be combined with
aging.

The threads are filled into hash buckets according to the time of their last run. As this time pro-
ceeds, the hash fields have to be shifted in the way, that the time stamps of the enqueued threads
match the hash field representing the corresponding time frame. If we use a hash field with 8
entries each with a pointer to a queue of TCBs, a shift operation can be done in 16 processor
cycles, because all entries fit into a single cache line.

Provided that the locality of all threads is nearly the same, Dynamic Time-Locality Scheduling
guarantees efficiency of the mechanism as well as time adaptivity by the mechanism of aging
by shifting.

Processor Level Node Level System Level

Node local hash queue

Processor private hash queue

System wide hash queue

TCB TCB TCB

TCB TCB

TCB

TCB TCBTCB

TCBTCB

TCB

TCB TCB TCB

TCB

shift

Fig. 3.4.Hierarchical hash queues with aging by shifting

10

§ 3.3Erlangen Lightweight Thread Environment (ELiTE)Erlangen Lightweight Thread Environment (ELiTE)

3.3 Scheduler Interface

Contemporary NUMA architectures like Convex SPP or KSR1/2 have non-blocking prefetch
operations in their instruction set to concurrently fetch data regions from a remote node into the
local network cache overlapping computation and network traffic and thus hiding latency. If
thread specific data can be stored in a single block, a pointer to this block and its length can be
stored in the thread control block. If there is an interface to the scheduler, a currently running
thread can ask the runtime system to prefetch the data of the thread, which will run in the near
future. This idea was motivated by implementations of adaptive numerical methods [19][3],
where thousands of threads, each corresponding to a point of an adaptive grid, resume the
threads representing the grid points in the neighborhood after calculating the local grid point be-
fore they suspend themselves. This numerical method, calledactive threads strategycan only
run with high efficiency on NUMA architectures, if all thread specific data is resident in the data
cache, before the context switch occurs.

3.4 Fast context switch and synchronization

A fast context switch free of race conditions is the basis of most synchronization mechanisms
inside a runtime system. Lim and Agarwal [14] have investigated waiting algorithms for syn-
chronization in large-scale multiprocessors. With increasing CPU numbers, the type of synchro-
nization has a significant influence on the performance of fine-grained parallel applications. The
proposed two-phased waiting algorithm combines the advantage of polling and signalling. After
a fixed polling interval a thread blocks. The polling threshold depends on the overhead of block-
ing. While this algorithms shows good results for mutual exclusion, blocking always performs
better for barrier synchronizations, because wait times at barriers are likely to be long. The re-
sults of [14] are of relevance for us, because the timing behavior of the investigated MIT Ale-
wife multiprocessors has great resemblance to RISC-based scalable architectures like Convex
SPP or KSR1/2. The proposed context reduction close to synchronization calls can be realized
by compiler pragmas to reduce the costs of a context switch when blocking.

Context switching is delicate for race conditions on multiprocessor systems, because one pro-
cessor could resume an enqueued thread while its stack is not yet completely frozen by the pro-
cessor of its last run. To implement a context switching two switching models have been dis-
cussed:

– Scheduler Threads: During a switch, control is returned to a scheduler thread local to
each processor. The scheduler thread enqueues a thread from the run queue and performs
an additional switch to it. Races cannot occur because the freezing of a thread is per-
formed on the stack of the scheduler. This simple and secure switch model however is
very time expensive, as two context switches per thread switch are necessary.

– Preswitch: After saving the state of the old thread, the stack will be a switched to the stack
of the new thread. Using this stack, the TCB of the old thread can be enqueued without
the danger of a race condition. This mechanism assumes, that the next thread is known
and existent, before the switch occurs and that the next thread already owns a stack, which
makes lazy stack allocation difficult.

Dynamic Processor Server

11

§ 3.5 Erlangen Lightweight Thread Environment (ELiTE)

As switching efficiency is essential for a fast runtime system, preswitching will be used in
ELiTE. Based on the QuickThreads package of the University of Washington [10] providing the
preswitch model for various processor architectures, we have ported the package to the HP PA-
RISC processors architecture [18]. On a CONVEX SPP using this type of processor, the follow-
ing times for a context switch can be reported:

The proportion for a context switch with thread control blocks in the three levels of the memory
hierarchy is 153/1122/1805 = 1/7/12. These are exactly the proportions, we expected calculating
with a memory latency of 1/50/200 cycles and 32/(64) Bytes (network-) cache lines. Most of
the time is spent for saving and restoring the callee-saves registers. The consequence is that
switching can only be optimized by reducing the number of registers, which have to be saved.
These are the callee-saves registers, regulated by the calling conventions (e.g. by the HP PA-
RISC calling conventions). As context saving and restoring for most contemporary RISC pro-
cessors (an exception is the SUN SPARC processor with its register windows) is a sequence of
machine instructions and no part of the instruction set, a change in the calling conventions could
make context switching much more efficient by increasing the caller-saves registers and reduc-
ing the callee-saves registers.

3.5 Dynamic Processor Server

Space sharing of a multiprocessor is beside gang scheduling [17] one mechanism to prevent a
decrease in performance due to cache data corruption because of context switches and preemp-
tion of kernel threads inside critical sections. The parallelism as well as the data locality inherent
to an application determins the optimal operating point, where an application can run with its
best efficiency. Running multiple applications on their operating point improves the overall
throughput compared to sequential runs of applications, which cannot use the whole machine
efficiently. This operating point changes over time due to swaying requests of applications and
because of multiprogramming. A processor server proposed in [4] suffers from its static alloca-
tion policy.
The dynamic processor server proposed in [5] divides the processors among multithreaded ap-
plications according to processor requests and processor usage, thus focusing on high processor
usage. But CPU usage is not the resource of interest concerning NUMA architectures. Our ap-
proach partitions the processors based on requests and cache misses.

A dynamic processor server can be implemented as a normal process exchanging data with the
runtime system of multiple applications via shared memory (e.g. SYS V shared memory seg-
ments or memory mapped files) and signalling to divide up the available processors.

– Each application is entitled to at least one kernel thread.

– If an application requests an additional processor, the processor is granted, if there are
more processors than kernel threads. Otherwise the dislocality (average number of cache
misses per processor in a given time unit) of all running applications is evaluated. If the

Operation Clock Cycles

Context Switch within Cache 153

Context Switch within Node 1122

Context Switch between Nodes 1805

12

§ 3.6Erlangen Lightweight Thread Environment (ELiTE)Erlangen Lightweight Thread Environment (ELiTE)

requesting application is not the one with the poorest locality, a processor is taken away
from the application with the poorest locality having more than two kernel threads. The
spatial locality of both application has to be taken into consideration to reduce the number
of used hypernodes for each application to a minimum. Taking away a processor means,
suspending a kernel thread, which cannot serve as virtual processor after suspension. As-
signing a processor to an application means, resuming a kernel thread bound to a proces-
sor.

Information about locality and processor requests have to be sent to the processor server in the
one direction. On the other way, the demand to suspend or to resume a kernel thread has to be
sent back to the application. Research has been done in efficient communication mechanisms to
address this problem [20]. It is the question of signalling or polling (see figure 3.1. ⑤⑥).

The high overhead associated with signal handling can only be justified, if there is an idle pro-
cessor waiting for new work. This is the case, if the server signals the runtime system to resume
a kernel thread.
Suspension is only allowed when a kernel thread reaches a safe suspension point. A suspension
point is safe, if all kernel thread specific data like local priority queues and wait channels has
been moved to node local or system global data structures. As a consequence, suspension should
only occur, if the application voluntarily makes a blocking call to the runtime system e.g. be-
cause of a locking operation. Inside the runtime system, the kernel thread can then poll for in-
formation and clean up all its data if its suspension is demanded. There is no loss in overall
throughput, because as long as a kernel thread dedicated for suspension runs useful work will
be done and no processor is idle.
Data concerning locality can be placed in the shared memory region of the runtime system and
the server without any costs. If a processor is requested, this data can be evaluated to decide
which kernel thread has to suspend or is allowed to resume.

3.6 Kernel Interface

User-level runtime systems use kernel threads as virtual processors, assuming an equivalence
of physical and virtual processor, which cannot be maintained because of events like I/O, page
faults, and blocking system calls. To keep up this equivalence, the user-level has to be notified
to react adequate to these events.
Scheduler Activations, proposed in [2], use kernel threads to upcall the runtime system. This
strategy suffers from the fact, that you need a free processor to run the kernel thread upcalling
the user-level. But in the case of a request for suspension of a virtual-processor, there is no free
processor. The consequence is an expensive context switch on kernel level causing TLB misses
and data cache corruption.
In [13] and [20] communication mechanisms between the kernel and a user-level thread library
are proposed to retort the performance losses when threads block in the kernel or are preempted
in critical sections. The kernel and the threads package communicate using shared memory
whenever possible to avoid the need for synchronization interaction. Softwareinterrupts signal
the thread package whenever a scheduling decision may be required. For example, polling of
shared memory in a safe suspension point is used to inform the runtime system to suspend a
thread, while signalling will be used to inform the runtime system, that a thread can be resumed
or a new kernel thread can be created. Signalling is used to prevent idling a processor while in-
formation exchange over shared memory is used whenever quick response to events is not so
important.

Summary and Conclusions

13

§ 4 Summary and Conclusions

A strategy offering fast response to blocking events is proposed in [12] and will be used in
ELiTE. The runtime system parks spare kernel threads in the kernel. In the case of a blocking
call, the kernel deblocks a parked thread to maintain a fixed number of running kernel threads.
When the blocking request is resolved, the kernel informs the runtime system about the de-
blocking via a shared page or shared memory segment. If this deblocked user-level thread is se-
lected for execution, the corresponding kernel thread initiate a system call to park in kernel
again and to release the blocked kernel thread. The system is in the same state as before the
blocking call.

4 Summary and Conclusions

The overhead associated with fine-grained threads goes beyond the cost of thread management,
because of memory transfers between the various levels of the memory hierarchy. As maximum
throughput is the goal of our efforts, we have presented the architecture of the Erlangen Light-
weight Thread Environment (ELiTE). The focus of this scheduling architecture lies on the re-
duction of cache misses and on the hiding of latencies while preserving fairness among multiple
applications running on a cache coherent NUMA multiprocessor.
Short time memory conscious scheduling has to be done by a runtime system. As contemporary
threads packages do not reflect the memory hierarchy of a NUMA multiprocessor in their data
structures and policies, we have studied three queueing systems with processor and node local
structures, offering a locality scheduling based on data about thread locality and timing, gath-
ered at runtime. The proposed strategies range from hierarchical hash queues with aging strat-
egies to a tree structure of priority queues. Preswitching has to be evaluated as an efficient
switching technique avoiding race conditions on multiprocessors.
Because scheduling decisions are known at the application level, data of the thread scheduled
to run after the next switch, can be fetched concurrently into the local cache. Triggering asyn-
chronous prefetch operations helps to overlap computation and communication and therefore to
hide memory latency.
All this efforts cannot be successful, if the kernel threads, used as virtual processors of the run-
time system, are scheduled by the kernel without knowledge of special scheduling needs of an
application. We have sketched a processor server dividing the available processors among mul-
tiple applications according to locality information and processor requests. Because only one
kernel thread runs on top of each processor using this policy, an advanced kernel interface for
an information exchange between runtime system and kernel prevents a loss in parallelism if
threads block inside the kernel.
The implications of memory locality in scheduling policies for NUMA architectures are in the
focus of our efforts; we currently investigate and implement novel approaches in data structures
and interaction among kernel, processor server and runtime system using the Convex SPP hard-
ware and softare.

5 Acknowledgments

We would like to thank Thomas Eirich, Matthias Gente, Franz Hauck, Fridolin Hofmann, Chris-
toph Koppe and Armin Rueth for many useful and insightful comments. We would also like to
thank the Convex operating system group for providing us with their Convex SPP software and
their background in OS development . The research project in cooperation with Convex Com-
puter Corp. is supported by the Bavarian Consortium for High Performance Scientific Compu-
ting (FORTWIHR).

14

§ 6ReferencesReferences

6 References

[1] T. Anderson; E. Lazowska; H. Levy: The Performance Implication of Thread Manage-
ment Alternatives for Shared-Memory Multiprocessors. In ACM Trans. on Computers,
38(12), Dec. 1989, pp. 1631-1644

[2] T. E. Anderson; et al.: Scheduler Activations: Effective Kernel Support for the User-Le-
vel Management of Parallelism. In ACM Transactions on Computer Systems, 10(1), Feb.
1992, pp. 53-79

[3] F. Bellosa: Parallele leichtgewichtige Prozesse zur Implementierung adaptiver numeri-
scher Verfahren, Universität Erlangen-Nürnberg, IMMD IV, no. TR-I4-2-94, Jan. 1994

[4] D. L. Black: Scheduling and Resource Management Techniques for Multiprocessors, Phd
Thesis, Carnegie-Mellon University, July 1990

[5] C. McCann; R. Vaswani; J. Zahorjan: A Dynamic Processor Allocation Policy for Multi-
programmed Shared-Memory Multiprocessors. In ACM Trans. on Comp. Sys., 11(2),
May 1993, pp. 146-178

[6] Convex: Exemplar Architecure, Convex Press, Nov. 1994

[7] J. Driscoll; H. Gabow; R. Shrairman; R. Tarjan: Relaxed heaps: An alternative to Fibo-
nacci heaps with applications to parallel computation, Communications of the ACM,
32:1343-1354, 1988

[10] D. Keppel: Tools and Techniques for Building Fast Portable Threads Packages, Universi-
ty of Washington, TR UWCSE 93-05-06, May 1993

[11] D. Knuth: The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-
Wesley, Mass. , 1973

[12] C. Koppe: Sleeping Threads: A Kernel Mechanism for Support of Efficient User Level
Threads, submitted to the 7th IASTED -ISMM International Conference: Parallel and
Distributed Computing and Systems (PDCS’95), Oct 95

[13] T. J. LeBlanc; et al.: First-Class User-Level Threads. In Operating Systems Review,
25(5), 1991, pp. 110-121

[14] B. Lim; A. Agarwal: Waiting Algorithms for Synchronizations in Large-Scale Multipro-
cessors. In ACM Transactions on Computer Systems, 11(1), Aug. 1993, pp. 253-297

[15] E. Markatos; T. LeBlanc: Locality-Based Scheduling for Shared-Memory Multiproces-
sors, Phd Thesis, Computer Science Department, Univ. Rochester, 1993

[17] J. K. Ousterhout: Scheduling Techniques for Concurrent Systems. In Third International
Conference on Distributed Computing Systems, 1982, pp. 22-30

[18] U. Reder: Implementierung eines effizienten Prozeßumschalters auf Benutzerebene, Stu-
dienarbeit am IMMD IV, University Erlangen, 3/1995

[19] Ulrich Rüde: On the multilevel adaptive iterative method, SIAM Journal on Scientific and
Statistical Computing, Vol. 15, 1994

[20] A. Tucker: Efficient Scheduling on Multiprogrammed Shared-Memory Multiprocessors,
Phd Thesis, Department of Computer Science, Stanford University, CS-TN-94-4, Dec.
1993

