
Colorable Memory

Jochen Liedtke

IBM T. J. Watson Research Center

jochen@watson.ibm.com

November 10, 1996

Abstract

Intended for further publication.
Do not cite! Do not copy!

Recent research reported page coloring to inuence

system performance. Application-driven coloring tech-

niques are restricted on conventional memory systems

by two facts: (a) there are equally many page frames

per color and this number is static; (b) for recoloring

a page, it must be copied to a di�erent page frame.

This paper describes a scheme permitting to change the

color of any page frame dynamically. Thus the number

of frames per color can also be changed dynamically.

Furthermore, cache-clean pages can frequently be recol-

ored without copying. Cache ushing is never required.

The scheme is simple and a�ects solely main-memory

address decoding, not the cache system. For small

and medium-sized memories, no additional hardware is

needed. Very large mainmemories require to extend the

physical address bus what is probably too expensive.

1 Rationale

Due to their size, second-level caches cannot be ad-

dressed solely by the page-o�set bits of an address. The

additionally required bits are taken from the physical

page number part. These bits de�ne the color of a phys-

ical page. In a virtual memory system, the mentioned

(physical) color of any virtual page is determined by the

operating system's page allocation. Therefore, the op-

erating system has some control over the second-level

cache by coloring strategies.

Recent research reported page coloring to inuence

second-level cache miss rates and thus overall system

performance. Kessler and Hill [1992] investigated static

page coloring and dynamic bin hopping techniques to

avoid color conicts in the second-level cache. Bugnion

et al. [1996] got even better results on multiproces-

sors by compiler-directed page coloring. Bershad et al.

[1994] (see also [Romer et al. 1994]) improved cache per-

formance by monitoring cache misses and dynamically

recoloring pages. Liedtke et al. [1996] used coloring

techniques to partition the second-level cache for higher

predictability in mixed real-time and timesharing sys-

tems.

Here, we simply take the results mentioned above

as given and try to �nd a no-cost hardware mechanism

which overcomes the space restrictions of coloring and

avoids in some cases the copying or cache-ushing costs

of dynamic recoloring.

Space restrictions: The number of available page

frames per color is �xed for all colors. This restricts in

particular small memories. For example, in a 4 Mbyte

system with 4-K pages and a 128-K cache, coloring con-

ict must be expected as soon as 2 Mbyte of memory

are used (assuming a random equal distribution of re-

quested colors). Partitioning caches for better real-time

predictability puts this to an extreme. The technique

frequently permits only to use one or two pages of a

certain color while all further pages of the color have to

remain unused.

Time restrictions: Dynamic recoloring of a used

page requires to copy the complete page.

Presumably, the mentioned space restrictions are

much harder than the time restrictions.

2 Colorable Memory

The coloring-related space restrictions would diappear,

if all page frames in main memory were usable for arbi-

trary physical colors. If the color of a page frame could

also be changed dynamically without ushing the cache

or copying the page, the costs of dynamic recoloring

would disappear as well.

Assume a hardware memory of 2k pages, a page size

of 2p and 2c colors. The total size of hardware memory

is then 2k+p bytes. The second-level cache has a size of

n� 2c+p bytes, where n is its associativity.

Conventionally, an equally sized and contiguous part

of the physical address space is mapped 1:1 to this hard-

ware memory; physical memory basically is hardware

memory.

Instead, we introduce an address level below the

physical addresses, the hardware address space. Address

translation then maps virtual ! physical ! hardware.

The physical address space is divided into aligned boxes

of size 2c+p (see �gure 1). We use a physical address

physical

address
space

????????

hardware
memory

Figure 1: Colorable Physical Address Space.

space which is color-times (2c) larger than the real hard-

ware memory.

The central idea is that all physical pages of

a box are mapped to the same hardware page

frame (see �gure 2).

physical address: a

c

p

� �

? ?

hardware address: a p

Figure 2: Free Coloring.

The physical-to-hardware translation is very simple: the

c color bits of the physical address are ignored when the

memory hardware is accessed. Basically, compared to a

conventional memory system, \only some address lines

are rewired".

The e�ect is that all pages inside a box are aliases

of the same hardware page. By appropriate construc-

tion of the virtual-to-physical mapping, the operating

system can ensure that never more than one physical

page of a box is used simultaneously. Then the system

behaves like a conventional memory system, except that

the operating system can choose arbitrary values for the

c color bits of the physical addresses. The memory can

be recolored like in �gure 3 so that, for example, no page

frames are blocked unusable by cache partitioning.

The mentioned mechanism can be implemented

without changing the secondary cache architecture and

with standard memory chips. However, c-bits wider

second-level tags are required for accessing the same

amount of memory as in a conventional system. For

the same reason, main memory is limited to 2n�c bytes,

where n is the physical-address width. For example,

a PentiumPro with its 4-way set-associative 256-Kbyte

second-level cache (16 colors) needs 4 of its 36 phys-

ical address bits for the color so that up to 1 Gbyte

main memory can be supported. An Alpha with its 40

L2 Cache |0{ |1{ |2{ |3{ |4{ |5{ |6{ |7{

Main
Memory

000{ 011{ 022{ 033{ 045{ 055{ 066{ 077{

100{ 111{ 122{ 132{ 145{ 155{ 166{ 177{

200{ 211{ 222{ 232{ 244{ 255{ 266{ 277{

300{ 311{ 322{ 332{ 345{ 355{ 366{ 377{

400{ 411{ 422{ 432{ 445{ 455{ 466{ 477{

500{ 511{ 522{ 532{ 545{ 555{ 566{ 577{

600{ 611{ 622{ 632{ 645{ 655{ 666{ 677{

700{ 711{ 722{ 732{ 745{ 755{ 766{ 777{

Figure 3: Colorable Memory.

physical address bits, 8-K pages and a 2-way cache of

4 Mbyte (256 colors) would be restricted to 4 Gbyte of

main memory.

The mentioned scheme does neither a�ect the cache

logic nor the physical address bus. Therefore, it is trans-

parent for all multiprocessor cache-coherence protocols.

Coloration, the above described transformation of

physical to hardware addresses, substantially di�ers

from virtual to physical address translation. Coloration

occurs after the virtual address was translated into the

associated physical address. Coloration is not required

for each data access, only at cache miss, write back

or when accessing uncached memory regions. Since

the transformation can be implemented by appropriate

wiring the address lines, it needs no additional time.

3 Recoloring Costs

In general, recoloring a page makes the cache incon-

sistent. Flushing the cache prior to any recoloring is

clearly unacceptable. Instead, we need solutions which

in most cases impose no costs to the system and are

never more expensive than the conventional recoloring

by copying. Although a page-selective cache-ush op-

eration might solve the problem, we look for purely

software-based methods which do not need special cache

hardware. For reasons of simplicity, we �rst describe

solutions for write-through cache systems and extend

the methods later to the more complicated write-back

caches.

We di�erentiate between allocation recoloring and

on-the-y recoloring. The �rst operation occurs when

a hardware page frame is used with a new color for

a newly allocated page. Allocation recoloring has two

characteristic features: (a) the content of the old page

is discarded, perhaps after saving it to disk/network;

(b) the content of the new page is explicitly written to

memory, either by reading it from disk/network or by

copying a source page1 or by writing an initial pattern2

1 if the operating system uses copy-on-write techniques
2Usually, operating systems cannot tolerate unde�nedmemory

for security reasons. Initializing freshly allocated pages is there-

2

On-the-y recoloring occurs when a used paged gets a

new color without loosing its content.

3.1 Write-Through Caches

Memory writes are never delayed in a write-through ca-

che. Therefore it su�ces to ensure that stale data is

never read from the cache after recoloring. Fortunately,

allocation recoloring automatically invalidates all cache

entries related to the old page: since the new page has a

di�erent physical address and the TLB will never deliver

the old one, cache tags corresponding to the old physical

address will never match. If the page frame is re-used

again with the �rst color, initializing the page frame (or

reading it from disk) overwrites cache entries which be-

longed to the very �rst page and are not replaced in the

meantime. Concluding: allocation recoloring is for free.

On-the-y recoloring is as simple as allocation recol-

oring, if the new color was not used before for this hard-

ware page frame. As well, read-only pages can be recol-

ored for free, since they do not change their content and

\old" cache entries therefore always hold correct values.

A simple algorithm is therefore to copy only read/write-

mapped pages prior to recoloring from the old to the

new color so that all new-color-related cache entries are

updated. Since conventional memory requires always to

copy the page, this algorithm performs never worse but

sometimes better than in the conventional case.

A closer analysis shows that the above algorithm

can be improved. Potentially stale cache entries can

only exists if the new color was already used before and

the page was modi�ed in the meantime. We introduce a

�eld version per frame and per color, initially set to +1.

To keep the algorithm simple, we de�ne +1 + 1 = 0.

Furthermore, we assume that the processor and/or op-

erating system supports a modi�ed-bit per page:

recolor on-the-y:

if is modi�edframe

then versionframe;oldcolor INCR 1 ;

is modi�edframe := false

� ;

if versionframe;newcolor < versionframe;oldcolor

then map (dest, frame, new color) ;

map (source, frame, old color) ;

disable cache �lls (dest) ;

disable cache �lls (source) ;

copy page (source, dest)

� ;

versionframe;newcolor := versionframe;oldcolor .

We assume that cache �lls can be enabled/disabled on a

per page basis. Disabling cache �lls for source and desti-

nation (which is only relevant for write-allocate caches)

avoids unnecessary cache ooding. Depending on the

characteristics of the concrete memory system and op-

fore required.

erating system, enabling cache �lls might sometimes be

the better solution.

3.2 Write-Back Caches

Write-back caches contain dirty cache lines which can

be written back to memory arbitrarily delayed. We call

a page cache-clean if the cache contains no dirty lines

related to this page. Cache-clean pages can be handled

exactly in the same way as described for write-through

caches.

The basic task is to �nd out whether a page is cache-

clean and to make it cache-clean otherwise. Fortunately,

many cache-coherency protocols and DMA hardware

ensure that writing a page to disk or network makes

it cache-clean. As well reading a page into memory in-

validates all priorily corresponding entries. Therefore,

only discarding a modi�ed page (*) requires additional

overhead:

recolor allocate:

if old page must be swapped out

then write page to disk (frame, old color)

elif is modi�edframe fnot cache-cleang
then map (source, frame, old color) ;

disable cache write back (source) ;

initialize page (source) (*)

� ; fold page is cache-cleang
if new page must be swapped in

then read page from disk (old color) ;

is modi�edframe := false

fnew page is cache-cleang
else map (dest, frame, new color) ;

initialize page (dest)

is modi�edframe := true

fnot new page is cache-cleang
� .

The on-the-y recoloring algorithm of section 3.1 can be

modi�ed accordingly. Not cache-clean pages are made

cache-clean by the same technique. Slightly improved

and more complicated algorithms, in particular such

co-operating with on-the-y recoloring, are analyzed

in [Xxxxxxx 19xx].

Concluding: Write-back caches permit in many cases

as cheap recoloring as write-through caches. Sometimes

an additional page-copy operation is required to make a

page cache-clean. However, highly expensive operations

like a complete cash ush are never required.

4 Variants

4.1 Partially-Colorable Memory

To weaken main-memory restrictions, colorable mem-

ory can be used like an overow or victim cache: the

main part of the physical address space is mapped 1:1

to the hardware memory; only a smaller part of the

3

physcial

address
space

?

�
�

�
���

�
�

�
���

�
�

�
�

��

�
�

�
���

hardware
memory

Figure 4: Physical Address Space with Colorable Region.

hardware memory is used as colorable memory (see �g-

ure 4). Then the mentioned restrictions apply only to

the colorable region.

r: a b

c

d

� �

? ?

r
0: a0 b d

Figure 5: Physical Address ! Hardware Address.

The transformation should be applied only to a spe-

ci�c colorable region of the physical address space. The

region is identi�ed by the higher address bits a. It starts

at physical address 2c+pa and has a size of 2k+c+p. The

corresponding hardware memory begins at hardware ad-

dress 2pa0 and has a size of 2k+p.

A physical address r which is subject to this spe-

cial physical! hardware translation, consists of higher

value bits a, an k-bit �eld b which determines the actual

box, an c-bit color �eld which holds the physical color

and the o�set �eld d. The hardware address r
0 then is

formed by the unchanged o�set d, the box �eld b shifted

right by c bits, replacing a by a
0.

4.2 Multiple Page Sizes

Colorable memory cam also be used for multiple page

sizes. The basic mechanism is implemented per page

size: for each page size 2p�i, there is a dedicated region

of the physical address space with the appropriate color

�eld (c + i bits). All these regions can share the same

hardware memory area, e.g. like in �gure 6.

Assume that page sizes 2p; 2p�1 : : : should be sup-

ported and that 2k pages of size 2p should be freely

colorable. Then the size of region 0 is 2k+c+p. Region

i handles 2p�i-byte pages, has a region size of 2k+c+i+p

bytes and contains 2k+i boxes. (The box size remains

constant over all regions: 2c+i � 2p�i = 2c+p.) There-

fore, each region of the physical address space needs a

hardware memory area of 2k+i � 2p�i = 2k+p bytes.

If all physical regions share the same hardware mem-

ory area, we have 2k+p-bytes of mainmemory which can

physcial

address
space

2 boxes for

2
p�i-byte pages

z }| {

4 boxes for

2
p�i�1 -byte pages

z }| {

hardware
memory

| {z }

2�2p�i-bytes

�

�

�
�

�
�

�
�

�
�

�
���

Figure 6: Multiple Colorable Regions.

be occupied by arbitrarily colored pages of freely mixed

sizes 2p�i.

5 Conclusion

If page coloring and recoloring is relevant for operating

systems, it can be easily supported by no-cost hardware.

The scheme basically ignores color-related address bits

for main-memory access. Therefore, the basic scheme

can only be used for small and medium-sized systems

whose memory is at most 1=colors of the physical ad-

dress space. However combining conventional memory

regions and colorable regions weakens this restriction

signi�cantly.

References
Bershad, B. N., Lee, D., Romer, T., and Chen, B. 1994. Avoiding

conict misses dynamically in large direct-mapped caches. In

6th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
San Jose, CA, pp. 158{170.

Bugnion, E., Anderson, J. M., Mowry, T. C., Rosenblum, M., and

Lam, M. S. 1996. Compiler-directed page coloring for multi-

processors. In 7th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Cambridge, MA, pp. 244{255.

Kessler, R. and Hill, M. D. 1992. Page placement algorithms for

large real-indexed caches. ACM Transactions on Computer
Systems 10, 4 (Nov.), 11{22.

Liedtke, J., H�artig, H., and Hohmuth, M. 1996. Predictable caches

in real-time systems. SFB-Bericht 358{G2{1/96 (March), SFB

358 at TU Dresden, Dresden.

Romer, T. H., Lee, D. L., Bershad, B. N., and Chen, B. 1994.

Dynamic page mapping policies for cache conict resolution on

standard hardware. In 1st USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Monterey, CA,

pp. 255{266.

Xxxxxxx, X. 19xx. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx. In xxxx
xxxxxxx xxxxx xxxx xxxx xxxx xxxxx xxxxx xxx, xxxxxxxxxx,
pp. xx{xx.

4

