
Experiences in building Cosy - an Operating System for Highly Parallel
Computers

R. Butenutha, W. Burkeb, C. De Roseb, S. Gillesb and R. Weberb

aGroup for Operating Systems and Distributed Systems, Department of Mathematics and
Computer Science, University of Paderborn, 33095 Paderborn, Germany,
butenuth@uni-paderborn.de

bOperating Systems Research Group, Computer Science Department, University of Karlsruhe,
76128 Karlsruhe, Germany,
{burke, derose, gilles, roweber}@informatik.uni-karlsruhe.de

COSY is a microkernel based operating system designed and optimized especially for paral-
lel computers. The resident kernel on each node provides the basic functional abstractions of
an operating system with low overhead, low latency and good scalability as demanded by the
users of a parallel computer. Based on these abstractions all other functionality is provided by
distributed services. As an example the management of parallel applications and a service for
distributed dynamic partitioning of the parallel machine are described. All services provide
good efficiency and scalability. MPI has also been implemented successfully on top of Cosy as
well as a number of highly parallel applications. Looking at the results of the Cosy project we
believe it is possible to provide the benefits of resident operating system services to a highly
parallel machine with good efficiency as well as good scalability.

1. Introduction
Even though distributed memory machines are the prevailing class for all highly parallel

machines built in the last years, there are still architectural differences in hardware and system
software. Older systems are designed and used as a large coprocessor to a ‘front-end-com-
puter’ (e.g. T3D, [11]), modern systems allow stand-alone operation (e.g. T3E, [12]). In con-
trast to the coprocessor solutions, stand-alone operation requires an operating system on the
parallel computer.

Evolving a parallel operating system from a conventional microkernel based operating sys-
tem (e.g. Mach, Windows-NT) seems to be a practible approach at first sight. But it is ques-
tionable if an operating system which was originally not designed with focus on parallel
computing applications can provide adequate functional abstractions while still meeting the
low latency, low overhead parallel application requirements. This causes many users to refuse
operating system support and to rely on parallel runtime systems at the cost of e.g. lacking
comfortable resource management facilities which can result in poor system and application
performance.

With the beginning of the COSY (Concurrent Operating System) project in 1992 we ven-
tured to build an operating system designed and optimized especially for parallel computers.
In its intention to provide adequate functional abstractions even at the kernel level COSY has

similarities to other projects like e.g. the PEACE Operating System [13]. Apart from this, COSY

has a strong focus on providing appropriate system services to ease the work of application
programmers and users of parallel computers. It offers autonomous operation, dynamic multi-
programming (time- and space-sharing) and dedicated communication primitives. Addition-
ally COSY provides support for automatic scheduling (partitioning and mapping) of parallel
programs. All that is achieved with good scalability, i.e. even hundreds of processors can be
supported efficiently. Currently, the kernel is implemented on two multicomputer platforms:
the PowerPC-based Parsytec-PowerXplorer and the Transputer-based Parsytec MC, SC and
GC family with up to 1024 computing nodes.

2. Kernel
The COSY kernel supports a small set of kernel objects that provide the abstractions needed

by servers (which implement all other functionality of COSY) and application programs. It is
the only part of the operating system that is guaranteed to be installed on every node of the
parallel computer. Interaction across node boundaries is achieved by remote invocation of the
kernel object methods, which makes all objects transparently accessible, local and remote.

The seven object types implemented by the COSY kernel (Figure 1) satisfy the basic
requirements for system services and management issues. As an anchor to the objects on each
node, there is the root object kernel with its predefined identification. The kernel can be used
to look up node-specific attributes like the system time or the idle process id, but it is also a
container object for memory segments and address spaces. A segment represents a chunk of
physical memory which can be made accessible in an arbitrary number of address spaces by
creating mappings into them.

Address spaces serve two purposes. First of all, they represent memory as it is seen by pro-
cesses. The separation of processes and address spaces facilitates a lightweight and efficient
process implementation, including the possibility of building process groups. Multiple pro-
cesses can be created in the same address space, sharing all their data. Consequently, address
spaces are also container objects.

Apart from processes, an address space may contain numlocks and channels. Numlocks are
generalized semaphores and can be used for process synchronization, e.g. to implement

address space

segment

mapping

numlockchannelprocess

1:n relation "contains"

kernel

Figure 1. COSY kernel objects. Figure 2. Architecture of COSY.

PA

PS PS

NS

DD

PA

logical

resources
physical

applications

MS NSPMNS

CS

PM

PS

LA

resources

kernel kernel
local

CS: command shell
LA: local application
PA: parallel application

PM: program manager
MS: mapping server
NS: name server

PS: processor server

global uniform kernel layer

local
kernel
local

DD: disk driver

atomic operations on shared data. Channels are the means of inter-process communication in
COSY. Unlike in programming environments like PVM or MPI ([1], [9]), messages are not sent
to processes, but to channels. This indirection allows to build dynamic client/server systems,
where servers can be replicated or replaced unnoticed by the clients, since the request channel
does not change. The fact that channels and numlocks are contained in an address space does
not impose any restrictions on their use. They can be accessed across address space as well as
node boundaries.

In COSY, channels provide send and receive operations in three kinds: synchronous, asyn-
chronous, and polling. Another mode, interrupting, is currently under development. Senders
and receivers select the kind of operation to be used by calling the appropriate communication
method. In client/server systems, clients can send requests synchronously as well as asynchro-
nously, while servers can receive them synchronously as well as polling or, in the future, by
interrupt upon arrival. The implementation of channels in the kernel requires only a few inter-
nal methods to be implemented for any kind of send or receive operation. Adding new flavors
of communication operations is therefore rather simple, and a new operation, e.g. an interrupt-
ing receive, can be used immediately with any complementary operation already imple-
mented.

The design of the kernel turned out to be very flexible when the original implementation
was ported from the Transputer-based Parsytec MC, SC, GC multicomputer family to the
PowerPC-based Parsytec PowerXplorer architecture [15]. Without changes to the kernel inter-
face, the MMU available on PowerPCs allows fine-grained control of the memory layout by
setting the base addresses of mappings. This feature enables applications to map shared mem-
ory segments to the same base address in all address spaces. Memory protection is also sup-
ported on PowerPCs, where the read-only property can be set for segments as well as for
mappings.

On a PowerPC 601 with 80 MHz, the latency for local communication is 19 μs, including
two context switches. For communication to a neighbor node on a Parsytec PowerXplorer, the
latency rises to 466 μs, due to the limited capabilities of this machine’s communication hard-
ware1. The corresponding values on a T805 Transputer-based System running with 33MHz,
are a latency of 119 μs for local communication and 195 μs for next neighbour communica-
tion.

3. Servers
A resident kernel, as described in the last section, serves as the base for dynamic multipro-

gramming on every node of the parallel machine. Many different programs, separated from
each other by protected environments, may be executed concurrently on the same node. This
enables applications to share a processor in time, which has been shown to be advantageous
for particular workloads [14]. Furthermore it permits the realization of some important classes
of message passing applications like task farming and client-server systems, which was a main
reason for incorporating dynamic process control in MPI-2 [10]. Besides these advantages, the
resident kernel allows the implementation of a wide range of system services needed by many
applications. This is accomplished by resident server processes existing independently from
and concurrently with user applications on the same node. In this way the benefits of client-
server computing can be used and the potential bottleneck of a single host computer, that pro-

1. The PowerXplorer uses a T805 Transputer (33 MHz) as communication Coprocessor.

vides the needed operating system functionality as a central management station to all the
nodes of the parallel machine, can be avoided.

Because the services are used in a highly parallel environment they must be scalable, too.
One way to support scalability is to provide a service by several server processes which are
distributed over the parallel machine (Figure 2). The server processes of a particular service
may be replicated on several nodes to increase performance. The level of replication is tunable
according to the specific requirements of the given parallel system.

The services, which are offered to the user in form of simple interface functions, provide
various kinds of operating system functionality. One service provides comfortable group com-
munication that can be used to multicast data to several channels or to collect data which is
combined to a single result (see [3]). Another service, implemented by a server process on
every node, is responsible for monitoring the processor and link utilization. The monitoring
information is used for a graphical monitoring tool as well as for the mapping server.

3.1 Program management
Creation and management of programs, i.e. processes and their environment (address

space, code, data, stack and heap), is the task of another service, the program management.
The management supports the joint creation of an arbitrary number of processes on any num-
ber of processors provided that the processes execute the same code. Distribution of the code,
and of arguments that are identical for all programs, is performed by the multicast channels
mentioned above. Using code sharing memory consumption and creation time is reduced for
programs executing the same code on the same processor. A comparison with measurements
performed in Parix [2] emphasizes the efficiency and the scalability of our solution (Figure 3)

The program management supports the dynamic creation of additional programs and of
processes in an already existing environment at run time. After program termination, pro-
cesses and their environment are removed automatically.

The parallelism in COSY applications has to be described explicitly. To make description
and configuration of parallel applications, consisting of any number of processes and chan-
nels, easier for the user a configuration scheme for parallel programs was developed. The com-
ponents needed for the execution of a parallel application are extracted from a configuration

time (s)

number of nodes

Figure 3. Time to load a program on a number of nodes in Cosy and Parix on Transputer.

0
1
2
3
4
5
6
7
8
9

10
11

16 64 128 256 512

Cosy

Parix

description. Every component of the parallel program is installed on the parallel machine and
removed after execution of the parallel application.

Mapping of parallel applications can be performed manually by the programmer or auto-
matically by a mapping server. The interaction structure of a parallel application, extracted
from the configuration description and described as weighted process interaction graph, is
passed to this server. The server maintains all graphs in a queue and maps them as soon as
enough resources are available. The mapping server may contain various mapping functions,
which can be switched at run time.

3.2 Processor management
A processor server is responsible for automatically and dynamically shaping and allocating

processor partitions of suitable size to the parallel applications, allowing a better utilization of
the resources than a static partitioning of the machine. This processor management service [7]
is implemented in a distributed way avoiding bottlenecks and resulting in better scalability
than centralized management schemes (e.g. the machine-manager in [6]).

One of the implemented distributed algorithms is based on the principle of leaking water.
From an origin point an amount of water leaks and flows in the directions where it does not
encounter any resistance. An important factor is that the leaking water exhibits cohesion,
which keeps the diameter of the resulting puddle as small as possible (Figure 4(a)). In the case
of a distributed processor allocation, the number of processors to be allocated is represented
by the amount of leaking water, the already allocated processors in the mesh by the resistance
areas and the final area formed by the allocated processors corresponds to the resulting puddle.

Figure 4(b) exemplifies the execution of a 4-processor request. After an origin point is
found (Figure 4(b1)) the possible flowing directions are determined and the remaining load is
distributed (Figure 4(b2,3)). This procedure is repeated recursively until all load is allocated.
Figure 4(b4) presents the processor mesh after the allocation operation. The essential feature
of this algorithm is its free-form allocation strategy, i.e. partitions are no longer restricted to
rectangles, but may have an arbitrary shape. This gives the managing component more flexi-
bility to find a partition of suitable size and results in less fragmentation (internal and exter-
nal). The size of the allocated partitions may also be changed during execution time, allowing
a parallel application to dynamically adapt its partition to the current processor demand.

?

?
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��
��

(3) (4)

?
4

?

?

3

(2)

?

?

(1)

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

11

Figure 4. Leak algorithm.

(a) (b)

Figure 5 presents the results obtained with the Leak partitioning algorithm in relation to the
managed workload. The different workloads are obtained with a gradual increase in the
requested mean partition size in a 8x8 mesh. It is possible to observe that the processor utiliza-
tion remains high with a constant external fragmentation, in spite of a significant increase in
the mean partition size. This shows the algorithm’s capacity to manage free areas among allo-
cated partitions (or to avoid the creation of such areas). This is achieved with the flexibility of
the free-form partitions what on the other hand may result in partitions with a larger diameter
than the regular ones (structure preserving [8]). The third curve (partition diameter) shows this
effect. The 17% mean increase can be considered acceptable for the overall improvements.

The obtained results with distributed management schemes showed that this approach per-
mits a greater parallelization of the management operations, resulting in a better relation
between the quality of the results and the time needed to solve the problem, allowing more
complex policies to be used in a problem that must be solved at run-time.

4. MPI
Though it is possible to write application programs in standard-C extended by COSY system

calls, a further step has been made by adapting MPICH [5] to COSY, a portable implementa-
tion of MPI. The COSY model of communication and the MPI counterpart are very different in
the way they handle and deliver messages and the kind of protocols they use. Especially the
nonblocking communication operations in MPI made it necessary to implement two special
COSY processes per node: a send- and a receive-device process which handle queues with
unexpected messages or pending communication requests. The MPI-application processes and
the send-/receive-devices can access the queues which are located in a shared memory seg-
ment through a locking protocol.

The additional overhead of this straightforward implementation of MPICH on top of COSY

compared to native COSY is a factor of 4 in message startup-time for nonlocal communication
on a Transputer system. The resulting throughput graph is shown in Figure 6. A significant
improvement is expected by using the interrupting receive operation in COSY (currently under
development) which will make the send-/receive-device processes unnecessary. Then non-

Figure 5. Behavior of a distributed manage-
ment scheme with different workloads.

message length [byte]

m
ax

. t
ra

ns
m

is
si

on
 r

at
e

[K
by

te
/s

]

0

100

200

300

400

500

600

700

800

900

1000

0 1024 2048 3072 4096

COSY

MPICH

Figure 6. Transmission rates, native Cosy vs.
MPICH on COSY on Transputer.

Cosy

native Cosy

MPICH on

0%

20%

40%

60%

80%

100%

5 9 13 17 21
Mean partition size

Processor utilization
External fragmentation

Partition diameter

blocking MPI-communication will be implemented by invoking an interrupt handling routine
on the arrival of an unexpected message or a pending receive request. Furthermore, with
respect to the single-sided communication primitives proposed by the MPI-2 standard draft,
we believe the interrupting receive operation to be of key importance for an efficient imple-
mentation of MPI-2 on top of COSY. Additional features of MPI-2 such as dynamic process
creation and deletion are already supported by the COSY program management service as
already mentioned in section 3.1. To further improve overall communication performance cer-
tain low-level communication protocols (e.g. sliding window protocol) are currently under
investigation.

5. Conclusions
From its start in 1992 COSY has been developed into a stable operating system. The porta-

bility has been shown by porting it to the PowerPC architecture without changing the pro-
gramming interface. Various applications that have been implemented on top of COSY, e.g. a
heat flow simulation and a molecular dynamics simulation [4] proved its efficiency and good
scalability. Developers and applications have shown to benefit from the functional abstractions
and services that COSY provides, e.g. multicast channels, trying and asynchronous communi-
cation primitives, dynamic process creation and payload monitoring. The COSY kernel and
system services have been shown to scale up to at least 1024 processing nodes. All in all we
believe that COSY has shown the benefits of an operating system specially designed for highly
parallel computers.

References

1. O. A. McBryan: “An Overview of Message Passing Environments”, Parallel Computing,
vol. 20, pp. 417-444, 1994.

2. A. Bachem, T. Meis, K. Nagel, M. Riemeyer, M. Wottawa: “Programming, Porting and
Performance Tests on a 1024-processor Transputercluster”, in R. Grebe (ed.), Trans-
puter Applications and Systems ’93, pp. 1068–1075, Aachen, 1993.

3. R. Butenuth, H.-U. Heiss: “Scalable Group Communication in Networks with Arbitrary
Topology”, 2. GI/ITG-Workshop “Development and Management of Distributed Appli-
cations”, Dortmund, 9.-10. October 1995 (in German).

4. R. Butenuth, H.-U. Heiss: “Highly Parallel Molecular Dynamics Simulation”, will
appear in High Performance Computing '97 (HPC), April 6-10, 1997, Atlanta, USA

5. W. Cropp, E. Lusk: “MPICH ADI Implementation Reference Manual”, Argonne
National Laboratory, August 23, 1995.

6. J. Gehring, F. Ramme: “Architecture-Independent Request-Scheduling with Tight Wait-
ing-Time Estimations”, Proceedings IEEE IPPS’96 Workshop on Job Scheduling Strate-
gies for Parallel Processing, Hawaii, pp 41-54.

7. H.-U Heiss: “Dynamic Partitioning of Large Scale Multicomputer Systems”, Proceed-
ings of the Conference on Massively Parallel Computing Systems (MPCS’94), Ischia, 2.-
6. Mai, 1994.

8. H.-U Heiss: “Processor Allocation in Parallel Machines” BI-Verlag Mannheim, Reihe
Informatik Band 98, 1994 (in German).

9. Message Passing Interface Forum: “MPI: A Message-Passing Interface Standard”, The
Message Passing Interface Forum, University of Tennessee, Knoxville, Tennessee, May
1994.

10. Message Passing Interface Forum: “MPI-2: Extensions to the Message-Passing Inter-
face”, The Message Passing Interface Forum, University of Tennessee, Knoxville, Ten-
nessee, May 1995.

11. W. Oed: “The Cray Research Massively Parallel Processor System CRAY T3D”, Techni-
cal Report, Cray Research, November 1993.

12. S. L. Scott: “Synchronization and Communication in the T3E Multiprocessor”, Operat-
ing Systems Review, vol. 30, no. 5, pp. 26-36, Cambridge, MA, December, 1996.

13. W. Schröder-Preikschat: “The Logical Design of Parallel Operating Systems”, Prentice
Hall, Englewood Cliffs, NJ, 1994.

14. S. Setia, M. S. Squillante, S. Tripathi: “Processor scheduling on multiprogrammed, dis-
tributed memory parallel systems”, Proceedings of ACM SIGMETRICS Conference, pp.
158-170, 1993.

15. R. Weber: “Porting COSY to PowerPC”, diploma thesis, University of Karlsruhe, Sep-
tember 1996 (in German).

