
Achieved IPC Performance

(Still The Foundation For Extensibility)

Jochen Liedtke � Kevin Elphinstone y Sebastian Sch�onberg z Hermann H�artigz

Gernot Heisery Nayeem Islam� Trent Jaeger�

Abstract

6th Workshop on Hot Topics in Operating Systems (HotOS)
May 5-6, 1997, Chatham (Cape Code), Massachusetts

Extensibility can be based on cross-address-space com-

munication or on grafting application-speci�c modules

into the operating system. For comparing both ap-

proaches, we need to explore the best achievable perfor-

mance for both models. This paper reports the achieved

performance of cross-address-space communication for

the L4 �-kernel on Intel Pentium, Mips R4600 and

DEC Alpha. The direct costs range from 45 cycles (Al-

pha) to 121 cycles (Pentium). Since only 2.3% of the

L1 cache are required (Pentium), the average indirect

costs are not to be expected much higher.

1 Motivation: extensibility

"Extensibility" is a relatively new buzzword in OS re-
search. Nevertheless, the requirement for extensibility
is neither speci�c to operating systems nor new. Edi-
tors are extended by macros associating new functions
to keys, programming languages are extended by li-
braries, database systems are extended by application-
speci�c functions, word processing systems are ex-
tended by customized texts, et cetera, et cetera.

What makes extensibility an OS-speci�c topic?
Security and safety!
When extending an operating system by a new or

modi�ed service, we require that (a) the service can
be introduced only for selected clients and that (b) a
potential malfunction of the new service a�ects only
those clients that use it. In accordance to (a), di�fer-
ent clients can, of course, use di�erent services for the
same event. (a) is di�cult because the operating sys-
tem controls central resources; (b) is di�cult because

�IBM T. J. Watson Research Center, 30 SawMill River Road,
Hawthorne, NY 10532, USA, jochen@watson.ibm.com

ySchool of Computer Science, University of New SouthWales,
Sydney, 2052, Australia, kevine@cse.unsw.edu.au

zDepartment of Computer Science, Dresden Univer-

sity of Technology, Hans-Grundig-Str., Dresden, Germany,
sebastian.schoenberg@inf.tu-dresden.de

(i) these resources are critical with respect to the cor-
rect functioning of the entire system and (ii) services
need to be protected from each other making uncon-
trolled interference impossible.

The multiple-server approach

An obvious (and well-known) solution: use multiple
servers, protect them by classical operating system
mechanisms, i.e. address spaces, and make them freely
attachable to applications. Basically, that is the �-
kernel approach, pioneered by Amoeba, Mach and Cho-
rus, further developed by L4 [Liedtke 1995], Fluke
[Ford et al. 1996] and others.

This method is best-suited to incorporate general,
well-known software techniques for extensibility. Func-
tionally, it is most 
exible and most general.

However, good performance of the multiple-server
technique requires that the direct and indirect costs of
cross-address-space communication (including address-
space switching) are su�ciently low. Unfortunately,
years ago, IPC was considered to be expensive.

The grafting approach

A further solution is to graft additional modules into
the monolithic server (the operating system). Early
applications of this technique are widely used but in-
secure and/or of limited 
exibility: mounting new �le
systems, adding new device drivers et cetera.

New research projects, in particular Spin [Bershad
et al. 1995] and Vino [Seltzer et al. 1996] experiment
with compile-time and run-time (compiler-supported)
security for \grafted" kernel components. Spin [Ber-
shad et al. 1995] inserts type-checked modules into the
kernel; Vino [Seltzer et al. 1996] permits unsafe grafts
and controls them by sandboxing and transactions.

Necula and Lee [1996] developed a very interest-
ing method of controling grafts by mathmatical proofs.
However, currently this method is probably not (yet?)
applicable to non-toy grafts.



Which approach should be preferred?

There are two scienti�c criteria for comparing the
multiple-server against the grafting approach: func-
tionality and performance. Liedtke [1995] showed that
the �-kernel-based approach (multiple servers in multi-
ple address spaces communicate via IPC) is at least as

exible as to modify a monolithic server. This includes
policy extensibility since a real �-kernel is policy-free
and permits to implement all policies at user-level. It
is still not clear whether the reverse statement \mod-
ifying a monolithic server always gives the same 
exi-
bility" holds.

The second, and probably the more critical question,
is performance.

Therefore, it is important to �nd the really achiev-
able best performance of cross-address space commu-
nication. That is the topic of this paper. Section 2.1
reports the achieved best-case performance in the L4 �-
kernel on Intel Pentium, Mips R4600 and DEC Alpha
systems. Section 2.2 analyzes indirect costs for average
and worst cases.

Of course, this is only one side of the coin. Compa-
rably substantiated and comparably analyzed perfor-
mance results are also required for the grafting model.
Currently, the reported numbers are 6 to 80 times

worse for grafting than the L4-based results (see sec-
tion 3). However, there is no evidence how close
the reported numbers are to the principally achievable
performance.1

2 Achieved IPC performance

The L4 �-kernel is currently implemented for Intel 486
and Pentium [Liedtke 1996], Mips R4600 and DEC Al-
pha 21164 processors [Sch�onberg 1996]. Intel versions
of L4 are available since early 1996. In the meantime,
Linux was ported to run on top of the 486 and Pentium
L4 �-kernels [Hohmuth et al. 1996]. According Mips
and Alpha versions are forethcoming.

On the Pentium processor, a simple IPC transfers
up to 3 registers (plus sender id) from the sending
to the receiving thread. R4600 and Alpha permit up
to 8 registers. More complex communication can use
application-speci�c memory sharing or the ability of
IPC to copy longer messages between address spaces.

1Remember what happened in the IPC case: for years IPC
was reported to cost about 100 �s (independentof the processor),
then it improved to 5 �s, now 1 �s.

cache lines cycles

used required

Pentium 12 of 512 121 166 MHz: 0.73 �s

R4600 19 of 1024 86 100 MHz: 0.86 �s

Alpha 17 of 512 45 433 MHz: 0.10 �s

Table 1: Simple IPC performance.

2.1 Direct costs

Table 1 summarizes the direct costs (space and time)
for a simple cross-address-space IPC. Address-space
switch does not require a TLB 
ush in either system.
Alpha and Mips have tagged TLBs, for Pentium, a
segment-based technique is used to emulate a tagged
TLB. The Pentium requires 121 cycles for a simple
IPC, about 35 cycles more than Mips, 75 cycles more
than Alpha. Mips R4600 is a single-issue processor
while Pentium and Alpha are dual-issue machines (in
the absence of 
oating point operations). The addi-
tional costs for the Pentium processor are due to its
slow kernel-trap instruction.

These nevertheless small numbers show that IPC
can be regarded as a simple, basic operation. In a
way, it is similar to a complex microprogrammed in-
struction. This is corroborated by the small amount of
�rst-level cache consumed by IPC. Tables 2 and 3 give
a detailed breakdown of cycles and cache lines required.

2.2 Indirect costs

The simple IPC implementation is small enough to per-
mit an in-depth performance analysis of the indirect
costs. Currently, we have a detailed understanding
what happens in the Pentium implementation.

None of the three mentioned implementations

ushes the TLB on an address-space switch. So in-
direct TLB costs can only occur when the �-kernel
uses virtual memory. Note that the Pentium does not
support unmapped memory, i.e. operating system code
and data is also part of virtual memory. This needs 4
TLB entries (of 96 entries) per IPC. Two of the entries
are also used per incoming hardware interrupt, one is
associated with the currently running thread. So we
consider 3 of them to be always present. The fourth one
is associated with the destination thread and should
be present with a high probability if the destination
is frequently accessed and we have no TLB thrashing
situation. Since a TLB miss takes approximately 25
cycles, the average TLB-related indirect costs should
not exceed 5 cycles.

2



Pentium R4600 Alpha

instructions cycles instructions cycles instructions cycles

enter kernel mode (trap) 1 52 23 25 1 5

ipc code 43 23 47 50 60 38

segment register reload 4 16 { { { {

exit kernel mode (ret) 1 20 9 11 1 2

total 50 121 79 86 62 45

166 MHz: 0.73 �s 100 MHz: 0.86 �s 433 MHz: 0.10 �s

Table 2: Simple IPC, cycle costs.

Pentium R4600 Alpha

cache L1 cache cache L1 cache cache L1 cache

lines usage lines usage lines usage

kernel code (I-cache) 6 2.3% 14 2.7% 13 5.1%

global kernel data (D-cache) 2 0.8% 1 0.2% 0 0.0%

thread kernel data (D-cache) 2� 2 1.6% 2� 2 0.8% 2� 2 1.6%

total (I+D-cache) 12 2.3% 19 1.9% 17 3.3%

Table 3: Simple IPC, cache costs.

Costs related to cache misses might be higher. The
worst possible case involves second-level cache misses
and bus blocking due to write-back bursts. However,
this worst case is very unlikely: Write-back overhead
is usually hidden by write bu�ers, and the second-level
cache of at least 256 K should contain the 12 lines {
that is 0.15% of the L2 cache { used for IPC. For a
reasonable very bad case, we assume that per IPC

| the L1 cache contains no IPC-related data at all,
i.e., that maximum L1 misses occur,

+ no second-level cache misses occur, and

+ cache re�ll is never delayed due to pending write-
back operations.

Furthermore, we de�ne a bad case where half of the
IPCs perform very badly while the other half are best-
case. This is a reasonable worst-case approximation
for very short remote procedure calls. We assume that
the calling IPC is always very bad as described above.
However, the short remote procedure body will usually
not con
ict with the previously loaded 12 cache lines
so that the reply is a best-case IPC.

To get an impression about the in
uence of the var-
ious memory systems, we measured bad-case and very-

bad-case costs on a 90-MHz Thinkpad without an L2
cache, a 133-MHz Server with 256-K L2 cache and a

Pentium

Thinkpad 760C IBM PCS 320 IBM PC 750

clock rate 90 MHz 133 MHz 166 MHz

L2 cache { 256 K 256 K

ideal 121 1.34 �s 121 0.91 �s 121 0.73 �s

bad 204 2.27 �s 208 1.56 �s 195 1.18 �s

very bad 287 3.19 �s 295 2.22 �s 269 1.63 �s

Table 4: Cycles per IPC, ideal and bad cases.

166-MHz PC with also 256-K L2 cache. For the bad
cases, instruction cache and data cache were systemat-
ically 
ooded prior to each IPC so that no IPC-related
code and data were left in the L1 cache. The according

ooding overhead was subtracted from the total time.
For all measurements, the cpu-internal clock register
which is incremented per processor cycle was used. Ta-
ble 4 shows the resulting IPC costs for the ideal, bad
and very bad case. Surprisingly, even the Thinkpad
without L2 cache shows reasonable performance, 166
cycles overhead for the very bad case. The 166-MHz
machine shows a bad case overhead of 74 cycles. So
we conclude that in general, short IPC mostly takes
between 120 and 200 cycles.

A nice behaviour is that cache overhead decreases

3



when IPC is used frequently. As a rule of thumb, the
average cache-miss rate is expected to change by x

�

1

2

when the cache size changes by a factor of x. Applying
this rule to the 2.3% of cache consumption by IPC,
would predict an increase of the cache-miss rate by
a factor of 12

1000
. Assume that a system of programs

communicating via IPC has a cache-miss rate of 5%.
Then this rule would say that about 12

1000
�5% = 0:06%

are due to IPC. Although this is a rule of thumb and
thus wrong in many concrete cases, it gives us some
impressions about the order of non-magnitude.

Weird Ideas: There might be a problem that some
particular software has systematic con
icts with the
cache lines used by IPC. Since the IPC code is so small,
it could be replicated for various cache lines. The �-
kernel could then from time to time randomly switch
between them.

3 Comparison to grafting

costs per pagefault

L4 Pentium 133 MHz 4.5 �s 592 cycles

Spin Alpha 21064 133 MHz 29.0 �s 3,857 cycles

Table 5: Simple Pager, Spin Versus L4. Experiment:
A user program accesses an unmapped page. The page
fault is sent to a user-level pager which simply maps an
existing page (no paging). Costs include all hardware,
kernel and user-level operations required to resolve the
page fault.

overhead per graft invocation

L4 Pentium 133 MHz

2� IPC, including 2. . . 3 �s 240. . . 400 cycles

address-space switch

Vino Pentium 120 MHz

Read-ahead Graft 102 �s 12,240 cycles

Page-Eviction Graft 156 �s 18,720 cycles

Scheduling Graft 113 �s 13,560 cycles

Encryption Graft 251 �s 30,120 cycles

Table 6: Vino Grafts Versus L4 IPC. Vino-graft over-
head includes sandboxing, transactions and locking.
Result-checking and graft-functionality costs are not
included.

4 Conclusion

We have some substantiated ideas about the architec-
tural costs of IPC, i.e. the ideally achievable perfor-
mance. In practice, no more than 100 to 200 cycles
and 2.3% to 3.3% of the L1 cache are required. IPC is
an order of magnitude faster than the reported costs of
grafting kernels or servers. To decide whether grafting
is a relevant technique, we need similar optimization
e�orts and analysis for the grafting approach.

References
Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski,

M., Becker, D., Eggers, S., and Chambers, C. 1995. Extensi-
bility, safety and performance in the Spin operating system.
In 15th ACM Symposium on Operating System Principles
(SOSP), Copper Mountain Resort, CO, pp. 267{284.

Ford, B., Hibler, M., Lepreau, J., Tullman, P., Back, G., and
Clawson, S. 1996. Microkernels meet recursive virtual ma-

chines. In 2nd USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Seattle, WA, pp. 137{
152.

Hohmuth, M., Wolter, J., Baumgartl, R., and Borriss, M.
1996. Porting Linux to L4. http: //os.inf.tu-dresden.de/
L4/LinuxOnL4/ LiOnL4.html.

Liedtke, J. 1995. On �-kernel construction. In 15th ACM Sym-
posium on Operating System Principles (SOSP), Copper

Mountain Resort, CO, pp. 237{250.

Liedtke, J. 1996. L4 reference manual (486, Pentium, PPro). Ar-

beitspapiere der GMD No. 1021 (Sept.), GMD | German
National Research Center for Information Technology, Sankt
Augustin. also Research Report RC 20549, IBM T. J. Watson
Research Center, Yorktown Heights, NY, Sep 1996.

Necula, G. C. and Lee, P. 1996. Safe kernel extensions without
run-time checking. In 2nd USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA,

pp. 229{243.

Sch�onberg, S. 1996. The L4 microkernel on Alpha { design and

implementation. Cambridge University Technical Report 407.

Seltzer, M. I., Endo, Y., Small, C., and Smith, K. A. 1996. Deal-

ing with disaster: Surviving misbehaved kernel extensions. In
2nd USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, WA, pp. 213{228.

4


