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Abstract

We present an operating system-level security model

for controlling �ne-grained programs, such as down-

loaded executable content, and compare this security

model's implementation to that of language-based

security models. Language-based security has well-

known limitations, such as the lack of complete me-

diation (e.g., for compiled programs or race condi-

tion attacks) and faulty self-protection (e�ective secu-

rity is unproven). Operating system-level models are

capable of complete mediation and self-protection,

but some researchers argue that operating system-

level security models are unlikely to supplant such

language-based models because they lack portability

and performance. In this paper, we detail an oper-

ating system-level security model built on the Lava

Nucleus, a minimal, fast �-kernel operating system.

We show how it can enforce security requirements

for �ne-grained programs and show that its perfor-

mance overhead (with the additional security) can

be virtually negligible when compared to language-

based models. Given the su�cient performance and

security, the portability issue should become moot

because other vendors will have to meet the higher

security and performance expectations of their cus-

tomers.

1 Introduction

We demonstrate how operating system protection can

be used to control �ne-grained programs 
exibly and

e�ciently. Operating systems use hardware-based

protection to isolate processes from one another.

However, the way that current operating systems

implement this protection has caused researchers to

deem them too slow and in
exible for controlling �ne-

grained programs. Fine-grained programs have dif-

ferent protection domains and may interact often in

the course of a computation. The e�ect of a large

number of protection domain crossings must be han-

dled securely (i.e., correctly with respect to the secu-

rity requirements) to prevent attacks and e�ciently

to minimize performance degradation. In this paper,

we show that a security model implemented on a fast

and 
exible IPC mechanism can enforce security re-

quirements that language-based systems cannot with

little performance impact.

Several operating systems use hardware-based

protection to prevent processes from inadvertently

and/or maliciously modifying one another. Each

process has an address space that de�nes a set of

memory segments and the process's access rights to

those segments. A process can only access memory

in its own address space. In addition, the operating

system has a security model that associates processes

with their access rights to system resources. Using

address spaces of suitable granularity and process ac-

cess rights to controlled resources, an operating sys-

tem can control a process's operations as desired.

However, operating system security models have

been deemed to lack the performance and 
exibility

necessary to control �ne-grained programs. While

some systems have been built that e�ciently con-

trol processes in dynamically-de�ned protection do-

mains [3, 8, 14], these systems have been applied

only to more traditional applications (e.g., PostScript

interpreters). In an application composed of �ne-

grained programs, programs with di�erent protection

domains interact often (perhaps as much as on each

method invocation). In a recent paper, Wallach et

al. [25] discard address space-based protection from

consideration for applications with �ne-grained pro-

grams by noting that IPC between two COM objects

on Windows NT takes 1000 times longer than a pro-

cedure call (230 �s to 0.2 �s). We claim that this

discrepancy can be virtually eliminated while gaining

security and maintaining 
exibility.

We have developed a prototype implementation of

a 
exible security model for controlling downloaded



content. This model is implemented on the Lava Nu-

cleus. The Lava Nucleus provides address spaces,

threads, fast IPC, 
exible paging, and IPC inter-

ception that enable e�cient and 
exible control of

processes. In this paper, we primarily concentrate on

the e�ectiveness of the Lava nucleus for implement-

ing a 
exible security model and its resultant per-

formance. We show that fast IPC and IPC intercep-

tion enable the implementation of dynamically autho-

rized IPC that can be performed in as little as 9.5 �s.

We believe further room for optimziation is possible,

given an ideal estimate for dynamically authorized

IPC is about 4 �s. Also, 
exible page mapping in the

Lava Nucleus enables objects of size greater than the

hardware page size to be shared among processes, so

coarse-grained sharing of memory between processes

is possible.

The structure of this paper is as follows. In Sec-

tion 2, we compare language-based and operating

system-based security models. In Section 3, we de-

scribe an operating system security model for down-

loaded executable content. In Section 4, we describe

the implementation of this model on the Lava Nu-

cleus. In Section 5, we examine the performance of

the prototype implementation and compare its per-

formance to language-based models for �ne-grained

programs of the sort discussed by Wallach et al. In

Section 6, we conclude and present future work.

2 Language vs. O/S Protection

The basic problem is to implement a security kernel

that e�ectively and e�ciently enforces the security

requirements of downloaded executable content. The

basic requirements of any security infrastructure are

that it can
1
(adapted from [2]):

� assign permissions dynamically to individual

content,

� mediate all controlled operations using such per-

missions (i.e., an operation that a process is not

unconditionally trusted to invoke),

� manage the evolution of permissions as content

is executed,

� protect itself from tampering

For a system that uses dynamically downloaded ex-

ecutable content, permissions must be assignable to

1There is an additional requirement that any \security ker-

nel" be simple enough that independent evaluators can assess

whether it will operate properly. While we will not prove such

a feature about our system here we do attempt to keep the

security model as simple as is feasible.

individual content. The security kernel must be able

to mediate all controlled operations. To enforce least

privilege on content permissions may be based on ap-

plication state and evolve as application state evolves.

The security kernel must be able to control this evolu-

tion within reasonable limits. Lastly, the kernel must

be able to protect itself from modi�cations that may

result in tampering with its behavior.

A question that has re-appeared recently is whether

language-based or operating system-based protection

is better suited for e�ectively and e�ciently control-

ling such �ne-grained programs. Or otherwise stated:

to what extent can operating system protection e�-

ciently provide e�ective security and to what extent

can language protection e�ectively provide e�cient

security? As described below, operating system pro-

tection has several advantages over language protec-

tion from a security perspective, but the cost of do-

main crossings make it questionable whether e�cient

operating system protection for �ne-grained processes

is possible. On the other hand, language protection

can be implemented e�ciently, but some key security

safeguards are weakened such that e�ective security

may be lost.

Traditionally, operating systems have enforced sys-

tem security requirements because hardware-based

protection provides signi�cant advantages in the key

areas of economy of mechanism, fail-safe defaults,

and complete mediation [23]. The operating system's

TCB can protect processes by restricting them to

their own address spaces which can be enforced by

a simple mechanism (at least compared to a com-

piler). Since only the program requested is placed in

the address space, other, independent programs are

not a�ected by its failure (assuming the operating

system adequately protects itself from such failures).

Also, since the operating system can intercept any in-

terprocess communication (IPC) between processes,

controlled operations by a program (including com-

piled ones) can be completely mediated by the oper-

ating system.

Language-based protection has gained favor in re-

cent years, however. We attribute this popularity

to three factors: (1) improvements in the develop-

ment of \safe" languages; (2) the perception that

programs will become increasingly �ne-grained, and

�ne-grained domains are prohibitively expensive to

enforce; and (3) lack of 
exibility in operating system

security models. \Type-safe" languages are strongly-

typed (i.e., all data is typed and casting is restricted

or prohibited) and do not permit direct addressing

of the system's memory (i.e., no pointers). There-

fore, all data is accessed according to its interface, so

complete mediation of controlled operations in pro-



grams written in such languages is possible. Other

\safe" languages, such as Safe-Tcl [4, 21], Penguin [7],

and Grail [24] depend on removal of operations that

would enable the language security infrastructure to

be circumvented. Also, with the increased popular-

ity of component-based system infrastructure, such

as Java Beans, and the ability to downloaded code

dynamically, are leading people to predict that pro-

grams with become more �ne-grained. Mediation of

IPC between processes has signi�cant performance

implications for operating systems because they may

need to perform expensive operations, such as han-

dling TLB misses, upon domain changes. Also, the

security models of current commercial operating sys-

tems, such as UNIX and DOS/Windows, lack the


exibility to dynamically assign permissions to user

processes or permit controlled sharing of memory

among processes.

Language-based protection has some signi�cant

weaknesses, however. First, the TCB of a system

depending on language protection is larger because

now we must trust the compilers and code veri�ers

as well as the \system" TCB objects provided by

the system. While compilers are much better un-

derstood than they once were, a minimal TCB is still

preferred. Second, since all programs run within a

single address space, fail-safety is not what it is in

operating systems. This means that a security 
aw

will result in the attacker gaining all privileges that

the virtual machine has. Given that single domain

operating systems based on language protection are

being built (e.g., Java OS), this means that compro-

mise of the virtual machine can result in signi�cant

losses. Third, it is not clear what the actual size and

number of components that can share a protection

domains will be. In Wallach et al., they measured

30,000 domain crossings per second. It is not explicit

in their paper, but we assume that many of these

domain crossings involved trusted classes whose use

have few security implications. Therefore, we believe

that many of these claimed domain crossings can be

avoided. Lastly, and most obviously, language-based

protection is language-speci�c and does not apply to

compiled code. Therefore, complete mediation de-

pends on a homogeneous system which we believe is

unlikely.

Also, language-based protection has its own per-

formance problems and the optimizations to improve

performance introduce subtle security 
aws. For ex-

ample, in the JDK 1.2 speci�cation [10], excess au-

thorizations (on every method invocation since there

may be many real domains within a single protection

domain) are prevented by using the call stack to de-

termine the current authorization context. However,

the current call stack may not represent the actual

context since classes that are no longer on the stack

may in
uence the execution. In addition, security

depends on the proper placement of calls to the au-

thorization object. For applications, this means that

code must be changed to control a previously uncon-

trolled object.

The question is whether operating system protec-

tion can be made 
exible enough and e�cient enough

for �ne-grained programs. We believe that the 
ex-

ibility question has been answered for a long time,

but the systems for which it was answered are no

longer in wide use. Several research operating sys-

tems were developed that used capabilities to attach


exible protection domains to processes in a secure

manner [16, 20, 28]. For example, Hydra [28] ob-

tained 
exibility by attaching capabilities to proce-

dures. SCAP [16] and PSOS [20] demonstrated that

a number of security properties could be enforced by

these systems. However, the applications of the time

had much simpler security requirements, so much less

secure systems were adopted as de facto standards.

We, therefore, believe that the key problem to us-

ing operating system protection for �ne-grained pro-

grams is performance. At IBM, we are developing

the Lava Nucleus which is a minimal, fast, and 
exi-

ble �-kernel. It provides the basic system constructs,

such as processes, address spaces, and threads, and

provides general mechanisms for using these primi-

tives, such as 
exible memory mapping primitives,

fast IPC, and IPC redirection. In this paper, we show

that a 
exible operating system protection model for

downloaded executable content can be designed and

that it can be implemented e�ciently using the Lava

Nucleus. From this, we measure the currently achiev-

able performance of operating system protection and

evaluate how this a�ects the overall system perfor-

mance. In the future, we expect that language-based

and operating system protection to be jointly used

(depending on the security requirements) with op-

erating system protection providing a simple, fail-

safe security mechanism that may completely mediate

controlled domains.

3 Security Model

An e�ective security model for downloaded exe-

cutable content requires signi�cant 
exibility in the

creation of principals, assignment of their permis-

sions, and management of their permissions through-

out the content's execution. We use Lampson's pro-

tection matrix [17] to help describe these require-

ments. It shows the relationships among subjects,



objects, and the operations that subjects can perform

on objects (permissions). Now consider the security

requirements for controlling downloaded executable

content described below.

� Subjects: There may be one subject per down-

loaded content, although some subjects may be

reused within a session.

� Objects: The objects may refer to logical ob-

jects that must be mapped to the individual

downloading principals system at runtime.

� Permissions: The set of permissions that a sub-

ject has at any time to objects may evolve as

system's content (subjects) executes.

In traditional systems, the set of subjects is gen-

erally mapped to the set of users and a set of well-

known services. This granularity is too coarse for

downloaded content. Each content may be associ-

ated with a di�erent principal that is an aggregate of

basic principals (e.g., downloading principal execut-

ing content from a provider within a speci�c instance

of an application). Also, in traditional systems, the

set of objects is well-known. This may not be the case

in downloaded content systems because the content

providers may have limited knowledge about the sys-

tems upon which their content is run. In addition, the

amount of policy speci�cation can be reduced if the

logical objects that are mapped to a speci�c princi-

pal's domain at runtime can be used. Lastly, enforce-

ment of least privilege on content is more important

than for traditional programs because these programs

are transient and from only partially trusted sources

(i.e., may have bugs). In traditional systems, permis-

sions are assigned to principals and must cover every

execution of that principal, or else some application

executions would fail. For content, the state of an

application may also be used to limit the permissions

to those necessary for the task at hand.

To solve these problems, we propose an security

model that provides basic security mechanisms and

policy representations to enable the control of down-

loaded executable content. The model is shown in

Figure 1. In this security model, a secure booting

mechanism loads a nucleus of an operating system.

The nucleus provides the basic functionality to cre-

ate and execute processes and enables them to in-

tercommunicate (via IPC). The nucleus initiates a

process load server that creates subsequent processes

and can dynamically load libraries and code compo-

nents into existing processes. The process load server

uses an authentication server to authenticate content

and determine the content principal. A derivation

Secure Boot Mechanism

Micro-kernel

Authorized IPC

Secure System

Process 
  Load
Server

Authentication
     Server

Process

Load

Monitor

Create

Process

IPC

Server
Object

Figure 1: Security Model Architecture

server derives the permissions for this content prin-

cipal. The process load server assigns a monitor to

enforce a process's permissions. Monitors intercept

and authorize all IPCs emanating from or directed

to the controlled process. Monitors maintain a rep-

resentation of the controlled processes access rights

and can both add to and revoke access rights from

the controlled process.

In the design of our security model, we make the

following assumptions. System administrators are

completely trusted to set system policy. A set of

certi�cation authorities are trusted to vouch for the

public keys of principals. A secure booting mech-

anism is trusted to initialize the operating system

properly. We assume the existence of such a mecha-

nism as proposed for the Taos operating system [27].

The kernel itself is trusted to create processes and

threads properly, separate process address spaces,

identify the source of IPC, and redirect the IPC of

controlled processes to monitors. The authentication

server is trusted to perform cryptographic operations

correctly. The process load server is trusted to setup

the processes and monitors properly, so the security

requirements as speci�ed can be enforced. Monitors

are trusted within a domain limited by the rights that

they can delegate to processes. Monitors may also

be trusted to read and not leak server data to other

processes. The system has limited trust in users, ap-

plications, and downloaded content.

The following three subsections describe how the

�rst three of the security requirements of the system

are enforced. The fourth security requirement's must

be enforced throughout each of these operations.



3.1 Process Loading

The process load server receives load requests for

objects and retrieves, validates, and loads the ob-

ject. Some objects may be executable and some may

not, but our discussion focuses on the loading of ex-

ecutable objects.

The process load server solves the following prob-

lems:

� retrieve requested executable content,

� uses the authentication server to verify the au-

thenticity of content and derive the content prin-

cipal,

� uses the derivation server to derive the content's

permissions,

� �nd the process in which to load the content,

� load the content into that process

Our e�ort here is concentrated on a mechanism

for loading executable content. We propose mech-

anisms and policy representations for authentication

and permission derivation elsewhere [12, 13]. These

mechanism enable permissions to be derived dynami-

cally for downloaded content given limited input from

multiple principals.

While IPC can be faster than 230 �s, it is still well

understood that procedure calls are faster. IPC in the

Lava Nucleus takes 4 times longer on a Pentium than

a procedure call than Wallach et al. [26] measure for

a PC. In addition, there are indirect costs that are a

result of the context switch, such as the handling TLB

and cache misses. While the Lava Nucleus is designed

to enable these costs to be reduced, the fewer context

switches the better.

To reduce these overheads, we want the ability

to link supporting content in the requesting process.

However, only links that ensure that both the request-

ing process and the downloaded content do not ob-

tain any unauthorized access rights can be permitted.

This is only possible if: (1) neither the downloaded

content nor the requesting process gain any permis-

sions as a result of the co-location; (2) the downloaded

content is permitted access to the requesting process's

data and vice versa; and (3) the downloaded content

can run properly with the rights of the requesting

process. For the �rst condition to hold, the permis-

sions of the joint process must be the intersection of

the permissions of the content loaded into it. Thus,

neither process can use a permission unless both had

it previously. Also, neither content may have data in

its address space that it must keep secret from the

other. In addition, the content and process must also

be able to e�ectively perform their jobs with the re-

sultant rights for the co-location to be feasible.

While these restrictions limit the content that can

be loaded into the requesting process, a variety of use-

ful content can still be downloaded and co-located.

Trusted libraries can be co-located with the request-

ing process in many instances. For example, many

Java classes in java.lang package (although not the

Java ClassLoader whose functionality we are super-

seding) can be loaded into a requesting process. For

example, the String class does not provide the user's

process any additional rights (although it may be

used to circumvent language-based security), so it can

be loaded into the requestor's address space. Also, we

think that all the classes in the java.io can be loaded

into a requesting process, because restricted access

to the �le server can be enforced by the monitor. Of

the 30,000 domain crossings per second measured by

Wallach et al., we expect that many of those do not

really require a change in domain for the requesting

process. Our experience with the FlexxGuard proto-

type system (a controlled Java interpreter) was that

restricting the permissions of the Java system classes

to that of the current applet being run still permitted

many useful applications to be implemented [1].

3.2 Permission Management

A process's monitor also manages the evolution of

its permissions throughout its execution. In general,

permission changes occur for two reasons: (1) an ap-

plication state change may warrant a change in the

controlled process's permissions and (2) one content

using another may result in a restriction of permis-

sions to prevent information leakage. In the �rst case,

a user may perform an operation that results in the

delegation of rights to downloaded content. For ex-

ample, the loading of a �le into an application may

result in the delegation of the permissions to read

and write the �le to content used in the application.

These permission changes must be limited to prevent

a process from obtaining an unauthorized right. Also,

the interaction of two untrusted content processes

may require that their permissions be intersected to

prevent the callee from performing unauthorized op-

erations on behalf of the caller.

Permission management requires:

� the ability to add rights to the current permis-

sions,

� the ability to revoke rights from the current per-

missions,



� a mapping of events to permission transforma-

tions,

� a limit to the rights that can be delegated to

content,

In this security model, a monitor can add a right to

a process's permissions if: (1) the delegating process

has the permission; (2) the delegating process is per-

mitted to delegate that permission to the delegatee;

and (3) the permission is within the maximal per-

missions for the process. Each monitor maintains

a mapping of its processes to its delegating princi-

pals and permissions (called assignment limits) that

that principal can delegate to this process. Any del-

egated right must be within the process's maximal

permissions (both the initial current permissions and

maximal permissions for a process are derived by the

derivation service). This limits the rights available to

a process in general.

Revocation of rights is more di�cult because ca-

pabilities can be copied. To prevent a process from

using a revoked capability, the monitor does not pass

capabilities to its controlled processes. Instead, a de-

scriptor is returned to the process which enables it

to refer to the capability. Revocation of the capa-

bility invalidates the descriptor, so capabilities can

be immediately revoked. Unlike Redell's capability

indirection [22], no special capabilities are seen by

the servers and the Java and UNIX APIs can be

supported transparently. To revoke capabilities for-

warded to other processes (actually their monitors),

the monitors must maintain a mapping of capabilities

to the processes/monitors that they were forwarded

to. Servers must maintain a similar mapping.

Mapping events to permission modi�cations is done

by transforms [13, 15]. Transforms map operations

to permission transformations. Three types of trans-

forms are de�ned that implement di�erent methods of

transformation (transformation by permission, trans-

formation by membership to an object group, and

transformation by combining permission sets). See

Jaeger et al. for more details [13].

3.3 Process Mediation

Complete process mediation requires that each IPC

be authorized by a monitor. We prefer that monitor-

ing be triggered automatically. Otherwise, it may be

possible to a programmer to forget to call the monitor

(and lose complete mediation). Therefore, there must

be a mechanism for redirecting IPCs to the monitor.

Then, the monitor must be able determine what per-

missions are to be authorized. These permissions are

authorized by the monitor, and if successful, the re-

quested is forwarded to the destination.

Process mediation requires that the following tasks

be accomplished:

� con�gure the system such that monitors can au-

thorize all controlled operations,

� describe the authorization semantics of opera-

tions well enough to enable their authorization,

� provide monitors with the process's current per-

missions to authorization

Each IPC must be intercepted for complete media-

tion. Therefore, it is necessary to place a monitor on

each IPC path. Typically, monitoring is associated

either with the server (which enforces access control

on its clients) or on the client (limits access of the

client). There are limitations to both approaches. In

client monitoring, monitors can, in theory, enforce

arbitrary security policy, but in practice they have

limited knowledge about the servers to which they

are controlling access. On the other hand, servers

are typically trusted to enforce security requirements

on clients, but they may not understand the security

requirements that the monitor is trying to enforce.

We choose a security model that enables both kinds

of control, but erlies more heavily on client-side mon-

itoring. Each process may have a monitor that can

enforce both its incoming and outgoing IPCs. There-

fore, a process that is both a client and a server in dif-

ferent interactions can have its operations to servers

authorized and can restrict the operations that it per-

form for its clients. We do emphasize the client-

side control of the monitor by enabling it to place

tighter restrictions on the operations it can perform

that server monitors may. An additional bene�t that

results from this model is that monitors themselves

can be restricted to di�erent domains because they

are di�erent processes. We overcome the problem

of server security requirements for processes, by en-

abling the servers to delegate permissions to content

and providing authorization semantics of server op-

erations to the monitors (see below and Section 4.3).

A result of this decision is that an IPC from one

controlled task to another requires an additional IPC

between the two monitors. However, Lava Nucleus

IPC and operation authorization should be fast (<

1.5 �s for small IPCs), so the bene�t can be gained

at low cost. It is unclear yet whether the cost is worth

the added security, however.

The authorization semantics of a server's interface

is de�ned by operation authorization objects (see Sec-

tion 4.3). These objects are used to transform oper-
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ations into the set of permissions that must be au-

thorized before the operation can be run. These are

useful for enforcing least privilege with good perfor-

mance (we have found the cost of processing these is

low).

The monitor obtains authorization operation from

the server de�nition (e.g., via an IDL extension).

When a server is loaded, its operation authorization

objects are stored in a place accessible to all mon-

itors. The semantics of these operations must be

well-understood. Therefore, monitors control client

operations (based on the current and maximal per-

missions) to any server that they are permitted to

access.

Our architecture for using monitors and servers to

control processes is shown in Figure 2. In this model,

a monitor is assigned to each controlled process.

When a process makes an IPC, its monitor intercepts

the IPC automatically via a kernel-provided mech-

anism. After the operation authorization semantics

have determined the operations that need to be au-

thorized, the monitor uses its process's permissions

to authorize the operation. The operation must be

within the content's current permissions and maximal

permissions to be authorized. Since the content's cur-

rent permissions may expand and the content's max-

imal permissions may be restricted, an operation at

a certain time may need to be checked against both.

4 Implementation

The security model is implemented upon the Lava

Nucleus. The Lava Nucleus provides minimal, gen-

eral, and e�cient functionality for building oper-

ating systems. It enables the creation of tasks

(i.e., processes) with potentially-overlapping address

spaces that may contain multiple threads of execu-

tion. An optimized IPC mechanism is provided for

intertask communication. The Lava Nucleus also pro-

vides a mechanism for IPC redirection which we use

to redirect controlled operations to our monitors.

The prototype implementation of this security

model is as follows. The Grub boot loader loads

the Lava Nucleus and the root Lava task. This task

bootstraps the memory system and provides some ba-

sic system functionality (e.g., page-fault handling and

task-id creation). This task initiates the process load

server and the core system services (e.g., a network

server to download components and the download-

ing principal's task). In general, these tasks may

also have a monitor assigned to them, but do not

at present. The downloading principal's task may re-

quest that a new executable task be downloaded by

asking the process load server to retrieve the task's

content. The process load server has the code authen-

ticated and derives its permissions and transforms.

Depending on the load option, the process load server

assigns a monitor task to control the new executable.

The monitor starts the new executable (or restarts

the requestor if loaded into the same address space).

Monitors perform both the permission management

and authorization services for their tasks using trans-

forms and permissions, respectively.

In this paper, we focus primarily on the implemen-

tation of the architecture's monitors. The monitors

store the current and maximal permissions of its con-

tent, implement its content's permission transforma-

tions, intercepts IPCs that are sent by or destined for

the its content, determines the authorization require-

ments of the operation encapsulated in the IPC, and

authorizes the operation using the content's permis-

sions. We �rst describe the monitor's permission rep-

resentation and how it enables 
exible and e�cient

authorization. Next, we detail the Lava Nucleus's

IPC redirection mechanism. Then, we outline how

an IPC is converted to the set of operations to be

authorized. Lastly, we detail the authorization mech-

anisms used by the monitor. The monitor uses two

mechanisms: a slow one for \binding" to an actual

object and a fast one for subsequent calls to the same

object.



4.1 Principals and Permissions

Each process in our implementation is associated with

a principal data structure. A principal contains ref-

erences to its complex identity, current and maximal

permissions, composition mode, and transforms. The

complex identity is the composition of principals used

to form this principal (e.g., the downloading princi-

pal, content provider, application, application role,

and session). Current and maximal permissions are

as described above. A composition mode de�nes how

the permissions of the caller transforms the permis-

sions of this content. For example, a trusted principal

may union the current permissions of the caller with

their own. However, content not trusted to leak per-

missions may maintain its current permissions and

intersect its maximal permissions. The composition

mode is designed to implement permission set trans-

forms (intersection or union of the permissions of two

or more principals) e�ciently, but other transforms

are implemented in a traditional manner because they

are not highly performance critical.

To implement both permanent and transient per-

mission set transforms, both the current and maxi-

mal permissions consist of static and lexical permis-

sions. Static permissions are the content permissions

that apply each time the content is called. Lexical

permissions modify the content's permissions based

on its current call context. Both enable permissions

of other principals to be unioned or intersected with

those of this principal (either permanently using the

static permissions or temporarily using the lexical

permissions). Given that a composition may result

in a union, intersection, or no change to the maximal

and current permissions either statically or lexically,

24 composition modes are used. Compositions are

always performed using the calling principal's static

permissions to prevent huge concurrency control over-

heads that would be likely if lexical permissions were

used.

The current permissions are divided into two cat-

egories: authorize and active capabilities (maximal

permissions are only authorize permissions). Capa-

bilities are software-managed objects stored by the

monitors that are unforgeable, revocable, strongly-

typed mappings from object identi�ers to operations.

As we will discuss below, bind operations establish a

capability for the content to perform a set of opera-

tions on an object. These operations are authorized

using authorize capabilities that may grant access to

more rights than are required for the operation. The

result of a bind operation is the generation of an ac-

tive capability that speci�es exactly the rights autho-

rized by the bind. Active capabilities enable fast au-

Server and 
Object Type

Object
Identifier

Access

32 bits

Rights

Symbolic
   Name

Count Entries R L C ...

Capability Structure (96 bits)

32 bits 32 bits 32 bits

Null Terminated String

32 bits

Figure 3: Capability format

thorization.

Both types of capabilities use the same represen-

tation (shown in Figure 3): a server, a type, an ob-

ject identi�er, and the capability's rights. The server

and type are captured in one 32-bit �eld. The server

refers to the Lava task identi�er for the server (12

bits is the Lava-speci�c limit). The remaining 20 bits

are used to indicate the object type. An object iden-

ti�er speci�es the name of the object (reference to a

string) or an object reference. References to names

are word aligned, so the least signi�cant bit is used

to di�erentiate between the name pointers and OIDs.

The capability's rights indicates the operations that

the capability grants. Again, a 32-bit �eld is used.

There are 3 status bits, so 29 operations can be

granted by default. One status bit signi�es that an

extended capability rights �eld is used. Using this

�eld, access to an arbitrary number of rights entries

(speci�ed by count and entries reference) is possible.

Each rights entry speci�es the operations it applies

to (the R �eld) and any limits on the use of these

operations (the L �eld with the current count in the

C �eld). Another status bit indicates whether the ca-

pability indicates a positive or negative access right.

The third status bit indicates whether the capabil-

ity is veri�ed or not. For example, a change in the

process's access rights may require a re-authorization

of a capability.

Authorize capabilities are unforgeable because

monitors will only accept them from process load

servers or other monitors (i.e., processes trusted to

provide them). They are revocable because the con-

trolled processes never have access to them. Active

capabilities derived from them can be revoked, as de-

scribed below. They are clearly strongly-typed since



they have a dedicated type �eld. However, the servers

must enforce this

Active capabilities are formed from the results of

the bind operations. For example, the OID is ob-

tained from the object server for fast direct access.

The capability's rights are set to those authorized

in the bind operation. In addition, active capabili-

ties may have an additional �eld that stores a unique

identi�er for the controlled process (called principal

identity). This �eld could include a cryptographically

secure number that the server can use to identify the

calling process in a distributed environment [9].

Active capabilities are unforgeable on a single ma-

chine because the monitor is trusted to send them

only to the proper server and the kernel is trusted

to implement this delivery. In a distributed envi-

ronment, the capabilities are unforgeable if a cryp-

tographically secure principal identity is sent via a

secure channel (i.e., that authenticates the sender).

Active capabilities are revocable because they are

never given to the controlled process. Instead, they

are stored in the monitor, and the only index of the

capability (e.g., a descriptor) in the active capabil-

ity table of the principal is returned to the controlled

process. We will see that fast IPC makes this indi-

rection tolerable. Revocation of active capabilities as

the result of a revocation of an authorize capability

is also possible. Basically, all active capabilities can

be marked unveri�ed, so they must be re-authorized

before they can be used. Therefore, the monitor must

be able to retrieve the original object name (e.g., by

caching it).

4.2 IPC Redirection

The Lava nucleus provides a general mechanism that

can be used for implementing security policies based

on IPC redirection. A monitor can be assigned to

multiple processes. Any IPC to a process that is ad-

ministered by another monitor is automatically redi-

rected to this process's monitorwhich can inspect and

handle the message. This can be used as a basis for

the implementation of mandatory access control poli-

cies or isolation of suspicious processes. For security

reasons, redirection must be enforced by the kernel.

A clan is a set of processes (denoted as circles)

headed by a monitor. q Inside the clan all messages

are transferred freely and the kernel guarantees mes-

sage integrity. But whenever a message tries to cross

a clan's borderline, regardless of whether it is outgo-

ing or incoming, it is redirected to the clan's monitor.

The monitor may inspect and/or modify the message.

Clans may be nested.

Figure 5 shows a monitor which is used to enforce
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the security policy. All server requests from the en-
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Figure 5: Security-Policy Monitor

capsulated tasks are inspected by the monitor (�lled

circle). The monitor drops any request which would

violate the security policy. In particular, it uses ac-

counting mechanisms to restrict denial-of-service at-

tacks. Note that all page-faults and mappings are also

handled by IPC. Therefore, the according resources

are also under the monitor's control.

Instead of enwalling suspicious subjects, monitors

can also be used to protect a system from suspicious

subjects outside the own clan. In �gure 6 the monitor
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Figure 6: Attack-Blocking Monitor

(�lled circle) inspects all messages coming from the

outside and drops messages that cannot be authenti-

cated or do not come from trusted partners. Further-

more, the monitor could encipher sensitive messages



automatically (i.e., implement secure channels for its

clan members).

4.3 Operations

Monitors need to be able to determine how to autho-

rize an operation intercepted in an IPC. Given that

new processes may be loaded with new interfaces, the

monitors need a standard mechanism for deriving au-

thorization requirements from interface information.

This mechanism must be able to determine whether

the operation is a bind or active operation, the type

of object to which the operation applies, and which

operands need to be authorized and the operations for

each. The latter is particularly complex for bind op-

erations because the real authorization requirements

for the operation are placed in an operand.

We de�ne a object for representing the authoriza-

tion semantics of an operation below.

� De�nition 1: An operation authorization de-

�nes the authorization information for an oper-

ation using the following �elds:

{ A Type: Flag that determines the mecha-

nism used to authorize the operation

{ Number of Operands: The number of

operands in the operation

{ Operand requirements vector: A vec-

tor of authorization requirements for each

operand consisting of the following �elds:

� O Type: Object type for the operation

� Ops operand: Index of the operand

that de�nes the operations to be au-

thorized

� Op vector: A vector of operations

to be authorized indexed by the ops

operand value above or the default

value

The actual operation authorization entry used is

retrieved from an operations table accessible to all

monitors. This table is updated by the process load

server (via add only, so no concurrency problems ex-

ist). The server and operation number are used to

retrieve the entry. The a type �eld indicates the op-

eration type (bind or active) and whether the zero

operands, the �rst operand only, or another autho-

rization is required. This enables fastest path code

to be used for authorization. The operands require-

ments vector lists the authorization requirements for

each operand. The o type speci�es the type of the

operand. The ops operand speci�es the operand that

determines the operations that are to be authorize. In

a �le open, the second argument determines whether

the open is for read, write, and/or append. The ops

operand may identify that either: (1) the operation

requested is to be authorized; (2) a new set of op-

erations are to be authorized; or (3) the operations

to be authorized are determined by the value of an

operand. For the third case, the op vector maps the

ops operand's value to the operations to be autho-

rized.

This mechanism should su�ce for many UNIX sys-

tem calls and method invocations. For example, in

�le open and socket connect system calls only one

operand needs to be authorized. In an object-oriented

system, the �rst operand refers to the only object be-

ing operated upon, so only the operations on that

object need to be checked. Other objects are passed

as OIDs and cannot be accessed unless one of their

methods is invoked (and authorized, if necessary).

4.4 Monitors

All IPCs (e.g., page faults, system calls, and RPCs)

from the controlled process are automatically redi-

rected to its monitor. The monitor uses its oper-

ation authorizations to determine the actual opera-

tions to be authorized on the operands. Operations

authorizations and principals are stored in two tables

shared by all monitors, so they can access any op-

eration's authorization semantics and authorize op-

erations against any principal (which is necessary if

a principal's permissions can be lexically modi�ed).

Authorization is done using authorize capabilities for

bind operations and active capabilities for operations

subsequent to a bind.

When a monitor intercepts an IPC, the monitor re-

trieves the operation authorization to determine the

operation's authorization type. Bind operations, such

as �le system open, require that the operation be au-

thorized using authorize capabilities. Any one of the

authorize capabilities for that object type may apply,

so multiple capabilities may need to be checked. On

the other hand, active operations, such as �le sys-

tem read, are authorized using the active capability

whose index is speci�ed in the operation. Upon a

response to a bind operation, an active capability is

created which is stored in the principal's active ca-

pabilities table. An index to this entry is returned

to the controlled process for subsequent use (i.e., a

descriptor/OID).

In either case, the operands must be copied into

the monitor's address space. Lava supports fast and

secure copying of data in IPCs, so such copying can be

done automatically [18]. On a 166Mhz Pentium with

a 256K L2 cache, up to 8 bytes can be sent in 0.95



�s. 128 and 512 byte messages can be transmitted in

as fast as 1.79 �s and 2.60 �s, respectively.

The redirected IPC is then forwarded to the desti-

nation where it may be intercepted by that process's

monitor. Currently, monitors only authorize out-

bound operations, but this monitor could restrict the

IPCs that can be forwarded from speci�c sources. For

example, if a process's IPCs result in an excessive

number of errors (speci�ed by a limit), then the mon-

itor may retract the principal's permissions (e.g., via

a transform executed upon an authorization failure).

Once an operation is executed, its results are re-

turned to the controlled process via an IPC (through

the monitors). The monitor also intercepts this IPC

and may authorize its return. For example, limits

on response \operations" can be speci�ed. As yet,

we have not exploited this functionality. Currently,

the monitor creates active capabilities from the re-

turn values of bind operations and returns the active

capability descriptor to the caller. For active oper-

ations, the return value is simply set in the return

value register.

To further improve performance monitors are im-

plemented using special Lava nucleus tasks, called

small-address-space tasks. These tasks do not require

a TLB 
ush upon a context switch, so TLB miss costs

on a context switch between two small-address-space

tasks are reduced (only one TLB miss for the IPC

path). We expect that all monitors will be imple-

mented as small-address-space tasks. However, the

current implementation of Lava would not support

using small-address-space tasks for many small con-

tent processes as well, because the number of such

tasks is limited to a cumulative address space size of

512 MB in this Lava version.

5 Performance Results

In this section, we measure the performance of the

security mechanism as implemented by the monitors.

We �rst make micro-benchmarks of the individual

steps in the monitoringmechanism. We then estimate

the ideal performance (ignoring e�ects of TLB and ca-

che misses) of authorized IPC from these benchmarks.

We estimate that an authorized IPC (one-way) using

active capabilities could be as fast as 4 �s (and typi-

cally less than 9 �s ideally). In our current implemen-

tation, our fastest one-way IPC is 9.5 �s (authorized

using active capabilities). If we have 30,000 average

authorized IPCs per second and 10% of these are bind

operations (which is a very conservative estimate),

then the ideal performance cost is about 20%. We

have measured the cost of 30,000 actual active IPCs

per second to be 30-40% (9.5 �s per IPC). These num-

bers are well below the 600% to 800% performance

cost for IPC alone for COM objects on Windows NT.

Since compiled code may be executed in the remain-

ing 60-70% of the time, the performance impact of

IPC interception relative to language-based models

may be negligible. In addition, we believe that the

number of IPCs can be reduced signi�cantly by ju-

dicious code placement (taking security requirements

into account) and precreation of active capabilities.

For our performance analysis, we have measured

the costs of monitoring operations on a 166 MHz Pen-

tium PC with 256K L2 cache. In our measured sce-

nario, we have two controlled tasks, and each has a

monitor that authorizes its IPC. The controlled tasks

ping-pong requests back and forth, and we measure

the time it takes for the authorized IPCs.

When a controlled process calls an operation the

following actions are taken to authorize and forward

the operation to its destination task.

1. Prepare the IPC to the destination with the op-

eration data.

2. Send an IPC to the destination that is redirected

to its monitor.

3. Determine the authorization requirements for

the requested operation.

4. Authorize these requirements for operation and

operands.

5. Source's monitor forwards IPC with the opera-

tion to the destination that is redirected to the

destination's monitor.

6. The destination monitor forwards the IPC to the

destination (no control on operation requests is

enforced yet).

7. Create active capability descriptor (optional, for

responses).

8. The destination receives the IPC.

Operations 1 and 8 are trivial and simply prepare

to send an IPC or receive the IPC. Operations 2, 5,

and 6 are all basically IPC operations (perhaps with

data copying). Operations 3, 4, and 7 implement our

authorization mechanism. The costs of all operations

except 3 and 4 are �xed for messages of the same

size. Therefore, we �rst list the performance costs

of the �xed operations. These values are shown in

Table 5. As shown, the �xed costs for monitoring in

this con�guration vary from 3.03 to 7.98 �s depending

on the amount of data to be copied.



Operation 8-byte IPC 12-byte IPC 128-byte IPC 512-byte IPC

1. Prepare IPC 0.12 0.12 0.12 0.12
2. source-monitor IPC 0.95 1.37 1.80 2.60
5. monitor-monitor IPC 0.95 1.37 1.80 2.60
6. monitor-dest IPC 0.95 1.37 1.80 2.60
8. Receive data 0.06 0.06 0.06 0.06

Fixed intercept cost 3.03 4.29 6.58 7.98

Table 1: Performance of �xed interception actions (all times in �s)

A response to an operation goes through the same
path, except that a new active capability descriptor

may be created for a bind operation (e.g., �le open).
We measured the cost of active capability descrip-
tor creation for a UNIX �le descriptor to be 0.69 �s.
Cost is kept low by pre-allocating (and reusing) the
memory for these descriptors. Of course, active capa-
bilities may be created at content load time to avoid

bind operations.

The cost of deriving the authorization requirements
is based on the costs of retrieving the operation au-

thorization, determining the operands to authorize,
and determining the operations to authorize upon the
operands. We compare the costs for evaluating the
operation authorizations for two operations: UNIX-

style �le open and �le write. The write operation is

an active operation in which only the �rst operand is
authorized for write permission. Therefore, an oper-
ation authorization's ops operand indicates that the
write operation is to be authorized and the a type in-
dicates that active capabilities are used to authorize

only the �rst operand (0.41 �s). The open opera-

tion is a bind operation in which the third operand
indicates the actual operations that need to be autho-
rized upon the �rst operand. Therefore, the operation

authorization's ops operand indicates that the third

operand's value determines the operations to autho-
rize (using the op vector) and the a type indicates
a bind operation in which only the �rst operand is
authorized (0.48 �s).

Both the Lava Nucleus and language-based secu-
rity systems must authorize bind operations (e.g., �le
open and socket connect). Language-based systems
do not authorize further use of the resultant descrip-
tors (i.e., access operations), so they cannot revoke
them. In Table 5, we show the costs of authorizing
using both authorization (for a bind operation) and
access capabilities (for an access operation). As will
be the case in language-based systems, the cost of
verifying operations using authorization capabilities
varies based on the size of the object name string
(e.g., �le path) and the number of authorization ca-
pabilities that are examined. In this example, the

Scenario bind �s access �s

1 cap-2 byte name 1.70 0.44
10 caps-2 byte name 12.84 0.44
50 caps-2 byte name 56.22 0.44

1 cap-21 byte name 3.50 0.44
10 caps-21 byte name 30.62 0.44
50 caps-21 byte name 138.84 0.44

Table 2: Performance of authorization

authorization capability veri�cation does not include

additional actions, such as checking inode informa-
tion. We would expect similar performance for au-
thorization in language-based system given that both

systems are optimized.

Authorization using active capabilities also in-

cludes the time for retrieving the active capability
from the descriptor (approximately 0.20 �s).

Table 5 summarizes the performance of the Lava

security model using address space protection. For
access operations, IPC costs range from about 4 to

9 �s depending on the amount of data to be copied.
Given 30,000 4 �s IPCs per second, a 12% overhead
on processing is incurred. This percentage can be

reduced by the percentage of IPCs that can be elim-
inated by linking content in the same address space.
Bind operations can incur a much greater cost (6 to

150+ �s). However, language-based implementations
also need to perform the same bind operations (ei-
ther at load time for a new class or access time for
system objects), so the operating system implemen-
tation should be faster. In general, since active capa-
bility creation is a reasonable cost operation, where
possible, it should be used to eliminate unnecessary
bind operations.

The actual performance of the entire IPC path
for an active operation using 8-byte IPCs is 9.5 �s
if the monitors and controlled processes are small-
address-space tasks and 14 �s if only the monitors
are small-address-space tasks. In the small-address-
space case, the additional costs are incurred by the 22
cache misses on data and an slightly higher IPC cost
for redirected IPC than the basic IPC benchmarked



Operation (data size) Fixed Costs Auth Reqs Auth Cap Create Total

Active (8 bytes) 3.03 0.41 0.44 0 3.88
Active (128 bytes) 6.58 0.41 0.44 0 7.43
Active (512 bytes) 7.98 0.41 0.44 0 8.83
Short Bind (8 bytes) 3.03 0.48 1.70 0.69 5.90
Medium Bind (128 bytes) 6.58 0.48 30.62 0.69 38.37
Long Bind (512 bytes) 7.98 0.48 138.84 0.69 147.99

Table 3: Performance for di�erent types of authorizations and data sizes (all times in �s)

above. In the large-address-space case, TLB misses
become a factor. Despite the performance degrada-
tion from ideal, the overall performance for 30,000
IPCs per second is about 30% for small-address-space
content processes and 40% for large-address-space
content processes.

Unfortunately, we do not yet have performance
numbers for handling large data transfers. However,
the use of shared memory between monitors and a

monitor and its controlled process can reduce the per-
formance impact (if security requirements allow its

use). For example, on a write operation, only the ref-
erence to the data and the data size need to be copied

to the monitor for integrity reasons. If the controlled

task modi�es the data, it has no e�ect on the secu-
rity of the operation as long as the operation does not
complete before the data is copied to the destination.
Therefore, only a single copy of the write data from
the destination's monitor to destination is really re-
quired. Therefore, 8-byte IPCs can be used on two of

the three IPCs in the authorized path. Also, Lava en-
ables 
exible memory mapping, so a bind operation
that enables a large amount of data transfer may pre-
pare shared memory for implementing such transfers
e�ciently.

Therefore, we believe that the performance of

an operating system-level mechanism for controlling
�ne-grained is comparable to that of a language-based
mechanism, particularly if references are typically
passed between processes rather than object data.
Since compiled code can execute signi�cantly faster
than JIT Java code, it is not unreasonable to estimate
that the compiled code can do more processing in the
remaining 60-70% of the time than the Java code can
do in 100% of the time. Given the additional se-
curity bene�ts of operating system and address space

protection (execute compiled code with complete me-
diation), these security models are worthy of strong
consideration.

6 Conclusions

We presented an operating system security model and
an analysis of its performance that shows that greater
security than that of language-based security mod-
els can be achieved with minimal additional overhead
for �ne-grained programs. This security model en-

ables complete mediation of all content using mon-
itors that automatically intercept IPCs from con-
trolled processes and can enforce security policy upon
them. The cost of this interception is perceived to be

high, but we have shown that using fast IPC and
an e�cient authorization mechanism we can perform
authorized interception with a reasonable overhead.
With little application data available at present, it
is hard to estimate the exact overheads, but using

micro-benchmarks, we predict an ideal overhead of
12% for 30,000 IPC/s and measure an overhead of
30-40%.

We are not the only researchers working in the area
of operating system-level security models for extensi-

ble systems. Researchers in the area of extensible
kernel architectures have embarked on the develop-
ment of 
exible security services [19, 11]. These sys-

tems currently focus on extending server functionality
to gain more 
exibility in control of client processes.
Also, other researchers are focusing on operating sys-

tem extensions to control downloaded executable con-
tent [5, 6]. These system describe how the operating
system can enable principals to restrict the rights of
their processes. We expect that these researchers will
all have to deal with the issues regarding control of

multiple �ne-grained extensions in the future.
We expect that much interesting research in the

future will examine the synergy between operating
system and language security models. If a lot of
data is to be shared between processes, it is yet to

be determined if the best trade-o� between security
and performance is language-based protection or 
ex-
ible memory mapping of shared data. Lava's 
exi-

ble memory mapping enables two processes to share
memory in a manner that is still revocable by their

monitors. However, language-based protection o�ers
safety (at a cost as well) for data structures within the



address space. We predict that the future direction

of system and application security will be strongly

in
uenced by the answers to such questions.
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