
A Component Model
for Distributed Embedded

Real-Time Systems

Uwe Rastofer
Frank Bellosa

September 1999 TR-I4-99-01

Department of
Computer Science

Operating Systems — IMMD IV

Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

Technical Report



This work was presented at the GCSE’99 Young Researchers Workshop which was
part of the First International Symposium on Generative and Component-Based Soft-
ware Engineering (GCSE’99).



3

1. Introduction
Currently popular component models like Microsoft's
COM [EdEd98] and Sun's Java Beans [Eng97] rely on a
more or less uniform execution platform. It is assumed that
on this platform a component can use nearly unlimited vir-
tual memory, that there are no other time constraints apart
from the user's patience, and that one component's resource
usage will not have any influence on other components. So
these component models are only concerned with function-
ality and do not explicitly address non-functional issues
like the usage of resources.

These assumptions do no longer hold in the field of distrib-
uted embedded real-time systems. There is a variety of dif-
ferent hardware architectures and operating systems on the
embedded market which creates a large number of diverse
execution platforms. Resources like processor time and
memory are scarce and one component can easily influence
others by consuming too many resources. Distribution
issues play an important role as well. Execution times are
much larger when a component on different node has to be
contacted.

So on the one hand, to produce a correctly working embed-
ded real-time system all properties of the execution envi-
ronment have to be taken into account and the components
have to be adapted to this environment. On the other hand,
the (base) functionality of these components is still inde-
pendent of a special execution environment. To overcome
platform-specific components we propose a component
model that separates the component's functionality from
platform-specific issues like concurrency, synchronization,
and distribution. Components are developed in a platform-
independent model and are later mapped to execution envi-
ronments that introduce platform-specific features.

2. The Platform-Independent Component
Model

In the platform-independent model components communi-
cate by sending uni-directional events. Events are typed and
they may contain data. An event can be received by a com-
ponent only through an input port that has a compatible

type. The reception of an event induces an activity in the
receiving component. Otherwise components are passive
and have no activity of their own. The induced activity exe-
cutes an event handler that is associated with this input port.
During the execution of the event handler new events can
be sent to the component's output ports. It is the responsi-
bility of the output port to distribute an event to all con-
nected input ports of other components. When the event
handler returns the activity that was injected into the com-
ponent also terminates, i.e. event handlers have run-to-com-
pletion semantics.

In principle, a component can receive any number of events
at the same time and therefore many event handlers may be
executed concurrently. When event handler access shared
data these accesses have to be synchronized. As shown in
[Rei98] synchronization can be separated from the algorith-
mic code by attaching special objects that encapsulate the
synchronization strategy. Each synchronization object can
either implement one basic synchronization strategy or can
be built from a set of basic synchronization objects. In our
model synchronization takes place when a component
receives an event on an input port. So each synchronized
component has to specify a synchronization strategy and a
mapping of its ports to that strategy.

An embedded application that was developed using our
component model consists of a directed graph of connected
components. Since all components are passive there is no
internal activity inside the application. Instead the applica-
tion is activated by external events that are created by the
environment, e.g. in response to a hardware interrupt or an
expiring timer. Each external input event generates a chain
of internal events when it is propagated through the graph
of components.

Ultimately these events will generate external output events
that are consumed by the environment. The application
developer can annotate such event chains with timing infor-
mation that is essential for the correct behavior of the
embedded system. Like in [Cor98] the timing information
shows end-to-end constraints for related input and output
events.

A Component Model
for Distributed Embedded Real-Time Systems

- Work in Progress -

Uwe Rastofer, Frank Bellosa

Department of Computer Science IV, University of Erlangen-Nürnberg,
Martensstraße 1, 91058 Erlangen, Germany

Uwe.Rastofer@informatik.uni-erlangen.de
Frank.Bellosa@informatik.uni-erlangen.de



4

3. Mapping to an execution environment
When an embedded application is mapped to its execution
environment the graph of connected components is first of
all partitioned into set of related components. Each set is
then mapped to a single node of the distributed execution
environment. All external input events of components in a
set must be generated in the form of tasks on the node that
the set is mapped to. In addition all events that are received
from other nodes must also create local tasks. Some of the
external events can only be generated or consumed on a
special node which creates location constraints for some
components.

After the location of a component is known the execution
times of its event handlers can be estimated or measured.
From the event handler's execution times the execution time
for a chain of events can be computed.

The next step is to assign tasks to chains of events.
Although it would be possible to create a new task for each
event handler activation this is highly inefficient and can be
avoided, e.g. when only one output event is generated by
this event handler. For these tasks a schedule has to be cre-
ated. This schedule must also take into account the syn-
chronization requirements of the components. Finally when
a schedule has been found, localized versions of the compo-
nents are generated. These localized versions contain the
event handlers, synchronization code, and code to imple-
ment the task schedule.

4. Summary
In distributed embedded real-time systems the execution
platform has a huge influence on non-functional properties
of components. Therefore we propose a component model
that separates the component's functionality from the plat-
form-specific issues concurrency, synchronization, and dis-
tribution. The resulting components can more easily be
adapted to the constraints of the execution environment.

References
Cor98 P. Cornwell: Reusable Component Engineering

For Hard Real-Time Systems. Ph.D. dissertation,
University of York, UK, 1998

EdEd98 G. Eddon, H. Eddon: Inside Distributed COM.
Microsoft Press, 1998.

Eng97 R. Englander: Developing Java Beans. O'Reilly,
Sebastopol, 1997.

Rei98 S. Reitzner: "Virtual Synchronization: Uncoupling
Synchronization Annotations from
Synchronization Code". In: Proceedings of the
ACM SAC'98, Symposium on Applied
Computing, New York, 1998


