
A prerequisite of energy-aware scheduling is precise knowl-
edge of any activity inside the computer system. Embedded
hardware monitors (e.g., processor performance counters)
have proved to offer valuable information in the field of perfor-
mance analysis. The same approach can be applied to investi-
gate the energy usage patterns of individual threads. We use in-
formation about active hardware units (e.g., integer/floating-
point unit, cache/memory interface) gathered by event
counters to establish a thread-specific energy accounting. The
evaluation shows that the correlation of events and energy val-
ues provides the necessary information for energy-aware
scheduling policies.

Our approach to OS-directed power management adds the en-
ergy usage pattern to the runtime context of a thread. Depend-
ing on the field of application we present two scenarios that
benefit from applying energy usage patterns: Workstations
with passive cooling on the one hand and battery-powered mo-
bile systems on the other hand.
Energy-aware scheduling evaluates the energy usage of each
thread and throttles the system activity so that the scheduling
goal is achieved. In workstations we throttle the system if the
average energy use exceeds a predefined power-dissipation ca-
pacity. This makes a compact, noiseless and affordable system
design possible that meets sporadic yet high demands in com-
puting power. Nowadays, more and more mobile systems offer
the features of reducible clock speed and dynamic voltage
scaling. Energy-aware scheduling can employ these features to
yield a longer battery life by slowing down low-priority
threads while preserving a certain quality of service.

1 Introduction
OS-directed halting of the CPU for short periods of time can
smooth the energy consumption of a workstation to keep the
average power below the limit that is imposed by the thermal
conductivity of the device. This makes a compact and afford-
able design without noisy fans feasible that meets sporadic yet
high demands in computing power. Todays operating systems
stop the processor only in the idle thread. However, this policy
does not throttle the energy consumption in the case of high
load. Our approach enforces additional halt-cycles to defer the
use of energy and therefore to limit the average power in the
case of high load.

A genuine saving in energy is possible with processors that
offer the feature of tunable clock speed to reduce the power of
the processor. Some of today’s embedded processors
(AMD ELAN SC400 [1], StrongARM1100 [16], Hitachi

SuperSH [12]) already exhibit this feature. Scaling the core
supply voltage according to the clock frequency offers further
opportunities for an energy-efficient operation of a device [11,
13, 20, 24, 27]. Particularly the academic results concerning
variable voltage design have been applied to latest products
(Intel Pentium Mobile III [17], Transmeta Crusoe [26]).

A prerequisite for any kind of decisions made by the system
software is precise information about relevant events. Practi-
cally all information which is significant to CPU scheduling is
gathered on the basis of threads. If system software wants to
benefit from dynamic system throttling, dynamic speed setting
and dynamic voltage scaling, it has to know the energy-usage
patterns of individual threads. Without thread-specific energy
accounting, serious power management is not possible within
current operating systems, in which adjusting power-manage-
ment parameters is at best a black art.

This paper discusses the fine-grained and thread-specific on-
line analysis of energy-usage patterns that are fed back into the
scheduler to control the CPU clock speed. Because the
expected power savings are based on very subtle effects (bat-
tery discharge analysis, speed-voltage correlation, clock gat-
ing of unused processor components like the floating-point
unit or the bus interface) a trace-driven simulation is unfeasi-
ble. Therefore we favor an evaluation with real hardware. The
first results of an implementation are presented.

Section 2 describes the energy-related behavior of the hard-
ware and motivates a thread-specific energy accounting. The
Joule Watcherexploiting the information provided by event
counters is presented in Section 3. In Section 4 we propose
some on-line scheduling policies that throttle the CPU to
reduce the energy consumption, and we round up with a con-
clusion in Section 5.

2 Energy-Related Characteristics of
System Components

The typical components of computer systems that consume a
significant fraction of energy are the processor, the memory,
the display and the I/O system (e.g., graphics card, network
adapter, disks). In mobile systems the properties of batteries
have to be considered.
Beside the option of zoned backlighting [10] there is no way to
software-control energy savings of the display in an active sys-
tem. The energy consumption of the I/O system covered by
dynamic power-down management [6, 14, 18, 19] is out of the
scope of this paper. Here we focus on the CPU- and memory-
related aspects of power management.
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The battery, the processor and the memory remain as the
energy critical components under investigation.

2.1 Battery
The capacity of a battery is dominated by two factors: the load
power and the intermittence of discharge.

The charge capacity is the total amount of energy a battery can
deliver when discharged at a constant current, called a 1C dis-
charge rate, over a a defined period (normally 1 hour) [22]. The
discharge rate has a non-linear impact on the total amount of
power a battery can deliver. A typical lithium-ion battery has
the following characteristics [15]:

A high discharge rate (e.g., >4C) can lower the usable battery
capacity to 70%-80%. Additionally the usable battery capacity
can be shortened by an intermittent load. Duty cycles of 25%
can reduce the usable capacity by 40% compared to a continu-
ous load with the same average power [22].

Due to the influence of discharge rate and load intermittence
on the battery capacity, our energy accounting should consider
both effects. Furthermore the scheduler should throttle the sys-
tem activity in a way that establishes continuous load of a mod-
est level. Sporadic high loads should be avoided.

2.2 Processor
Several factors influence the energy consumption of a CPU:

• Each functional unit working on behalf of an instruction
needs a certain amount of energy, e.g., the instruction fetch/
decode unit, the pipeline stages of the ALU, the floating
point unit need a certain amount of energy to perform an
operation. Depending on the instruction mix the electrical
power usage of a CPU can vary. By considering the prop-
erties of a CPU, the compiler could generate code that is
optimized for minimal energy usage [25]. The energy ac-
counting should cope with a variable energy usage without
specific instrumentation or algorithmic knowledge of the
application.

• The CPU speed and a dynamically adapted supply voltage
change the energy performance [24, 27]. Neglecting the
impact of external effects on CPU performance (e.g., mem-
ory latencies, bus contention) the energy per operation re-
mains constant when reducing the frequency at a fixed volt-
age. However, the energy per operation is proportional to

, if frequency and voltage is changed by a factor within
the allowable limits of operation.
Therefore a reduced clock speed at a low supply voltage

should be targeted by advanced scheduling policies. The
energy accounting should be aware of electrical character-
istics of a CPU driven at different operation points.

2.3 Memory
The performance of a processor depends on the fast supply of
data and code. Consequently an improvement in cache effi-
ciency leads to an efficient use of all processor units and there-
fore to an improvement in energy efficiency. This benefit to
energy efficiency is reinforced because each main memory
access and each bus transaction needs energy that is consumed
by the drivers of the bus system and the memory itself [7, 21].
According to our measurements (see section 3) the data
exchange between processor and second level cache that is
placed outside the CPU core significantly contributes to the
energy consumption of the system.
In addition to cache- and memory-aware code optimizations
for saving energy, scheduling strategies can respect the cache
affinity of individual threads [4] and improve the cache reuse
of threads that use shared memory segments [3] in order to
avoid bus transactions and CPU stall cycles due to cache
misses. Consequently those memory-conscious scheduling
strategies alleviate the power consumption of a system as well.

2.4 Requirements for Energy Profiling
Energy profiling should provide all relevant information so
that an energy-aware scheduler can tune the timing, sequence
and speed of execution. Halting the CPU is the simplest form
of speed adjustment that only offers two speed levels.
Tuning the clock speed presumes an entity to which a specific
clock speed must be assigned and a policy to determine the
appropriate speed settings. Previous work in the field of
dynamic speed settings [13, 24, 27] focus on adjusting the
clock speed in intervals. This approach is motivated by dead-
line driven real-time strategies with a predefined workload. We
envision interactive devices running unknown and maybe
dynamically loaded software. Therefore our approach has to
support any threads even though their application specific
properties are not known in advance.

A first approach is the measurement and classification of appli-
cations and parts of applications according to energy-usage
patterns [5, 9]. On-line measurements employing a digital mul-
timeter [10] have to correlate data that was gathered by an
energy monitor with profiling data sampled by the target sys-
tem. Beside the additional hardware effort for the multimeter,
the software overhead for sampling (which has negative effects
on the cache performance in embedded systems with small
caches), and the overhead to correlate the data, an instruction-
accurate power analysis is nearly impossible due to the inertia
of the voltage regulator associated to the processor and the
inertia of the multimeter’s measurement unit.
A novel approach to on-line energy profiling should consider
the power related-effects of each instruction without signifi-
cant influence on the execution of the target system.

Discharge Rate Usable Battery Capacity
(Normalized to 1C Discharge Rate)

C/5 107%

C/2 104%

1C 100%

2C 94%

4C 86%
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3 Joule Watcher Energy Accounting
Our approach to on-line energy accounting uses counters
embedded in the target hardware to register events that imply
the consumption of a certain amount of energy. The number
and type of these events is stored and updated in the thread and
system context. This information allows us to easily estimate
energy consumption of individual threads and the whole sys-
tem. Because the counters register events without interfering
with the application, the only overhead is caused by saving and
restoring counter values in the context switching routine.
We will show that counter values strongly correlate to a spe-
cific energy consumption, so we have found a cheap and easy
methodology for power consumption monitoring.

3.1 Measurement Methodology
Our initial target environment is a simple Pentium II 350 PC
running a Linux 2.2.14 operating system (The next system
under observation will be an embedded PC using an AMD
ELAN processor [1] that offers variable clock speed). Context
switch routines and kernel data structures are modified to hold
the values of the two available performance-monitoring event
counters. These counters are realized in the P6 family as regis-
ters and can be configured to count one of several events. The
accumulated counter values can be accessed though the /proc-
file system.

Calibration software has to find the correlation of events and
energy values. Therefore synthetic micro-benchmarks trigger
events of a certain type and frequency for several seconds,
while a simple multimeter with integrated power monitor mea-
sures the electrical power of the whole system. Because of the
1 Watt resolution of our multimeter, we smooth the power
value by calculating the average of 5 consecutive readings of
the meter. A direct measurement of the processor’s and the
chip set’s current was not possible due to the complex power
supply of the target system.
Each point in the figures represents a particular power mea-
surement with the corresponding number of events. We tune
the parameters of the calibrations software to come close to a
certain number of events. But the precise number of events
vacillates between measurements. Therefore we get more a
cloud of reading points than multiple power measurements of
a certain deviation for predefined numbers of events.

3.2 Measurements
In the first measurement, a single micro-benchmark triggering
integer operations is running with variable sleep interval. Thus
a variant number of instructions per second is executed.
Figure 1 demonstrates the correlation of the number of micro
operations per second executed by the Pentium II CPU with the
energy per second consumed by the total system.

We see a nearly linear increase of energy with a rising number
of integer and control-flow operations which entail micro oper-
ations (UOPS). Our synthetic calibration software runs totally
in the registers and in the first level cache, without any main
memory or second-level cache references, and without any

TLB-misses. We conclude that we can assign an energy value
of Ws (Watt x Second) to each retired microopera-
tion.

A functional unit of the CPU responsible for additional energy
consumption is the floating-point unit. Because it is hard to
build a calibration software that exclusively triggers floating
point operations, we timely interleave two micro-benchmarks
I andF with variable sleep intervals. BenchmarkI issues inte-
ger operations whereas micro-benchmarkF prevailingly issues
floating point operations but also a few integer operations for
loops and blocking routines. The calibration software counts
the total number of operations and the number of floating point
operations while varying the ratio between the two event types.
Having already calculated the energy per integer micro opera-
tion, we can subtract the energy for the integer operations at
each measurement point from the total energy gathered from
the multimeter. Figure 2 shows the energy consumption of the
system running a certain amount of floating point operations.

We can see a linear correlation with a 1 Watt variation. The rea-
son is the coarse 1 Watt resolution of our multimeter Exploit-
ing this measurement, we get an energy value of Ws
per floating point operation.
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The next candidate for energy consumption is the second level
cache.

Similar to the floating-point calibration software we vary the
ratio between integer and memory access operations which
result in first level cache misses handled by the second level
cache.
The plot (see Figure 3) shows a linear correlation between the
number of second level cache address strobes (L2_ADS) and
the energy consumption. We get an energy value of

Ws per second level cache reference.

The last measurement deals with memory requests as a conse-
quence of cache misses. Our calibration environment mixes
load/store and integer operations. The load/store operations
may cause second level cache misses which trigger bus trans-
actions and memory chip activity.

Depending on the CPU’s ability to tolerate several outstanding
transactions the CPU stalls while waiting for data which is not
found in the cache. Looking at the relationship between energy
and memory references, we can see that each memory refer-
ence accounts approximately for an energy value of

Ws.

3.3 Discussion
Event counters have proved to provide detailed information
about the use of hardware units. Furthermore, the hardware
events can be mapped to energy amounts of fixed size. This
mapping has to be evaluated in an initial calibration procedure
for each type of system. But once we have energy values for
each event, the energy accounting is very precise without addi-
tional overhead. Because the counters were designed for per-
formance monitoring, they have no immediate relation to
energy consumption. Nevertheless do we get results within the
resolution of our external multimeter for both, synthetic and
real-world applications (e.g., ghostscript, gimp,...) by exploit-
ing the four types of events presented in this paper (microoper-
ation, floating-point operations, second-level address strobes
and memory transactions).

Todays architectures only offer a limited number of counters.
The Pentium P6 family used in our initial implementation
comprises two counters that can be mapped to a variety of
events. But we cannot monitor four events simultaneously.
Therefore we have to multiplex the counters while a thread is
running. To compare Joule Watcher with power measurements
for real-world applications we had to re-configure the counters
to register all necessary types of events while certain applica-
tion procedures were repeated.
The technique of sampling and multiplexing is accepted in the
field of performance monitoring [2] where a well-known appli-
cation is analyzed in several runs. Our goal is to monitor any
type of applications. This includes single run applications as
well as just-in-time compiled applications. Because we cannot
guarantee an exact energy measurement of those applications
we assess sampling as a critical technique when deployed in
the field of energy accounting.

It is evident that the energy per event is not constant if the
clock-speed varies. Therefore the calibration software has to
gauge various speed levels for each type of CPU event.

Performance-monitoring counters have become a common
tool in the field of performance profiling. With the upcoming
of energy accounting systems we expect that future hardware
generations will provide a rich set of event counters which are
fully dedicated to energy-related activities.

4 Energy-Aware Scheduling
To demonstrate the benefits of an event-triggered energy
accounting, we propose energy-aware scheduling strategies
that throttle the average power in workstations and that reduce
the energy consumption in mobile systems.

4.1 Throttling of Average System Power
Many users of workstations ask for high performance systems
at affordable costs. Additionally they favor compact package
designs and noiseless systems that do not disturb the working
environment. The latter requests can be satisfied with passive
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cooling. But low-power components that operate continuously
with passive cooling offer the desired performance at a high
price, that is normally justified only for mobile systems.

Typically the high computing power of personal workstations
is used at short bursts. This sporadic demand for high power
motivates our approach to power throttling. We employ afford-
able standard components that normally rely on active cooling
like fans. But we throttle the system activity if the average
energy use exceeds the predefined power-dissipation capacity
of the passive cooling.
TheJoule Watcherenergy accounting offers information about
the energy use with regard to individual threads as well as the
whole system. If the average system-energy approximates to
the threshold that guarantees a safe operation, a dedicated
throttling threadthat halts the CPU (e.g., by executing the hlt-
instruction) is activated. The throttling thread is enqueued in
the run-queues of the scheduler so that high priority and highly
interactive threads still can run, but low-priority threads con-
suming a lot of energy become throttled until the system has
cooled down. Special care has to be taken for the display server
(e.g., the X window system) that should be boosted to a priority
level above the throttling thread as long as a safe operation can
be guaranteed. By throttling system-local applications the dis-
play server will be throttled in its activity as well. However
remote applications can impose high load on the display server
so that the server has to be throttled as a last resort.

4.2 Reduction of Energy Consumption
The operating system has various options to improve the
energy efficiency of battery-powered mobile systems.

• If the operating system monitors a high number of cache
misses after restarting a thread (compulsory misses) it
should extend the time-slice of the thread to reduce the
number of restarts. Additionally, scheduling strategies can
respect the cache affinity of individual threads [4, 28] and
improve the cache reuse of threads that use shared memory
segments [3] in order to avoid bus transactions and CPU
stall cycles due to cache misses. In addition to the improve-
ment in performance all those memory-conscious schedul-
ing strategies alleviate the power consumption of a system.

• A high number of main memory references (e.g., bus trans-
actions related to main memory) and a low number of in-
structions indicates that the speed of execution is dominat-
ed by the main memory latency. Without noticeable perfor-
mance degradation the scheduler can improve the energy
efficiency by throttling the clock speed of the processor
working on behalf of a latency-bound application. By this
means the clock frequency is kept at such a low level that
applications run close to their optimal operation point.
Application measurements have demonstrated [21] that
this operation point is application dependant.

• Analogously to the policy of average-power throttling (see
Section 4.1) we can throttle threads equivalently to their
priority to save energy and to yield a longer battery life.
The lower the priority the lower is the speed. Once again

special care has to be taken concerning the display server
and other timing-sensitive threads. In the field of soft real-
time applications (e.g., movie or audio players) we have to
investigate energy-aware APIs, and admission and control
policies for power management under real-time constraints
(see subsection 4.3).

4.3 Energy-Aware API
There is a great demand for an API to empower applications to
affect their energy usage [8, 23] as soon as the energy usage
patterns contribute to the runtime context of a thread and as
soon as the power becomes a first-class operating system man-
aged resource. We envision two types of self-tuning applica-
tions:

• According to the amount of energy granted by the operat-
ing system the applications can tune their quality of ser-
vice, e.g., the resolution of images, the sampling rate of
voice or the frequency of updates is adapted so that the re-
quested system lifetime is achieved.
This scenario requires power admission and control poli-
cies in the operating system and an OS-interface that sup-
ports requests for energy.

• Many applications can tune their algorithmic behavior to-
wards a better energy efficiency, e.g., depending on the
characteristics of a device (energy costs for CPU instruc-
tions, memory access, cache size,...) the application can
find the best trade-off between main memory access and
data de-/compression in the cache. This scenario requires
an interface to feed the application with information of the
energy-related costs and the on-line measurements of the
applications induced system activities.

5 Conclusion
The more the operating system knows what is going on inside
the hardware the more it can adapt the execution of threads to
the needs of the user. With the upcoming of power-sensitive
devices, the operating system scheduler has to move from a
CPU-centric approach to activity control of all power related
components. Thread specific and event-driven energy account-
ing is an absolute prerequisite to reach this goal.

Our approach to event-driven energy accounting has proved to
offer thread-specific energy patterns without any overhead.
The current implementation can only use a small number of
counters that were intended originally for performance profil-
ing. If the operating system technology is ready to deal with a
variety of counters in all locations of the hardware it is just a
small step to embed new counters which are exclusively
devoted to energy accounting.

We expect thread-specific speed settings in combination with
event driven energy accounting to become an unrenounceable
element of future operating systems for power-sensitive
devices.
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