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1 Introduction

Interprocess (IPC) monitoring enables the examination of
any IPC between a source and a destination. IPC moni-
toring is useful for a variety of purposes, including debug-
ging, logging, and security. For example, a monitor may
collect communication state for the purpose of debugging
a program consisting of several independent tasks. Also, a
monitor can be used to filter communication data or con-
trol the communication rate for security purposes.

Transparent monitoring means that the source and des-
tination are not aware that they are being monitored. This
has two advantages: (1) the system can control the inser-
tion and removal of monitors without interacting with ei-
ther the source or destination and (2) the source and desti-
nation protocols do not need to take into account the pos-
sibility that they may be monitored. Traditional systems
make no attempt to support transparent monitoring. Us-
ing Mach-style ports [1], the source and destination hold
rights that must be revoked in order to insert a monitor,
so they must be notified before such a change can occur
safely. The Pebble microkernel enables transparent redi-
rection of source IPCs using its portals to implement cus-
tomized IPC, but the redirection is not transparent to the
destination because it sees that the message is from the
redirected task, not the original source [2].

Other IPC mechanisms, such as Clans & Chiefs [6]
and IPC Redirection [3], enable monitors to intercept and
forward IPCs while claiming to be the original source of
the IPC. Thus, the destination receives the IPC from the
source, not the monitor, so it need not know that an IPC
is being monitored. Unfortunately, such mechanisms are
not truly transparent because the kernel’s IPC semantics
are not preserved when a monitor intercepts an IPC. Mod-
ern microkernels implement a synchronous IPC semantics,
which means that the source is blocked until the destina-
tion is ready to receive the IPC or an error occurs (e.g.,
the destination task is killed or a timeout expires). When
destination commences receipt, the IPC is sent to the des-
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tination and the source unblocks. Unfortunately, if a mon-
itor is inserted on an IPC path, the source is unblocked
when the IPC is received by the monitor, not the destina-
tion. This may result in some anomalous behaviors, such
as: (1) the source assuming that IPCs have been delivered
to the destination before they really have; (2) the source
terminating IPCs due to timeout expiration even though
the destination is ready, but because the monitor was not
ready; and (3) the source never receiving IPC error mes-
sages, but assuming that delivery was reliable.

In this paper, we propose an IPC mechanism that re-
stores synchronous IPC semantics over transparent mon-
itors. The key feature of this mechanism is that system
monitors are considered as an extension of the kernel, so
the source and destination are treated as if the kernel is still
processing the IPC. However, there are a number of pos-
sible monitoring extensions that must be considered, and
these introduce a number of problems that must be solved
simultaneously. Our design enables layering of these ad-
ditional semantics upon system monitors as necessary.

The remainder of the paper is as follows. In Section 2,
we define the basic synchronous IPC semantics that must
be achieved and refine these semantics for relevant exten-
sions. In Section 3, we construct a synchronous IPC pro-
tocol that solves these problems by incrementally extend-
ing a basic IPC mechanism. In Section 4, we demonstrate
the use of the synchronous IPC mechanism on an example
which both redirects and controls the rate of IPCs securely.
In Section 5, we examine efficient implementations of the
synchronous IPC mechanism upon the L4 microkernel us-
ing the IPC redirection mechanism. In Section 6, we con-
clude the paper.

2 Synchronous IPC Semantics

We now define precise synchronous IPC semantics. In
general, synchronous IPC means that the source blocks
until the destination receives the IPC at which time the
source is unblocked. However, there are three further re-
quirements that complicate the definition of these seman-



tics: (1) the monitors may change the identity of the source
or destination; (2) monitors may wish to hide the timing
of the destination’s receipt of an IPC from the source; and
(3) the monitors themselves may be of different trust lev-
els. Additionally, a source may desire an unreliable IPC
(i.e., be unblocked with no guarantee of delivery). This is
easily handled by enabling the source to signal that syn-
chrony is not required, so we do not address it again until
the implementation (see Section 5).

2.1 Basic Synchronous IPC

Basic synchronous IPC has the following semantics:

� Reliability: The source blocks until the IPC is de-
livered to the destination or an error occurs.

� Error Handling: The source receives an error if the
IPC is not delivered to a destination. The destination
also receives an error if it is not able to properly re-
ceive an IPC.

� Timeout Expiration: An IPC is terminated if a des-
tination takes longer than a source-specified timeout
to commence receiving an IPC. Similarly, an IPC
is also terminated if a source takes longer than a
destination-specified timeout to commence sending
an IPC.

First, synchronous IPC is reliable, such that an IPC is
not complete until it is received by a destination. Thus,
the source is blocked until it is known that the IPC was
received by the destination. In current systems, the source
is unblocked when the IPC is received by the monitor, not
the destination, so communication is unreliable by default.

Second, synchronous IPC semantics mean that an error
is signalled if the IPC is not delivered to a destination. The
source is always signalled. The destination is signalled
if it is waiting for an IPC precisely from this source. It
must be possible to express a variety of error codes to the
source and/or destination. In current systems, once an IPC
is delivered to the monitor, the source will not receive a
delivery error message.

Third, both the source and destination may set time-
outs. These timeouts indicate the amount of time that the
source is willing to wait for the destination to commence
receipt of an IPC or for a source to commence sending an
IPC, respectively. Unfortunately, a monitor may disrupt
the interpretation of timeouts. For example, if a monitor
does not have a thread ready to receive an IPC being sent
with a zero timeout, then a timeout error may occur even
though the destination is ready to receive the IPC. Such an
error violates the transparency of the monitors because the
source and destination must recover from an error caused
by a monitor.

DestMonitor MonitorMonitor DestinationSource

Source DestinationSystem

Source
Monitor Monitor

Figure 1: Monitors may be inserted by the source, des-
tination, or system. Source and destination monitors are
adjacent to the those tasks are viewed as extensions of the
source and destination by the system.

2.2 Changing Source/Destination

In the Clans & Chiefs [6] and IPC redirection mecha-
nisms [3], it is possible, within some restrictions, for a
monitor to redirect an IPC to another destination or change
the identity of the source from which the destination re-
ceives the IPC. Regardless of these changes, synchronous
IPC is defined with respect to the original source. There-
fore, the original source will remain blocked until the IPC
is delivered to a destination or an error occurs.

2.3 Controlled Synchrony

By default, the synchronous IPC semantics specifies that
the source is unblocked when the IPC is delivered to the
destination. We identify two cases where this semantics
is unacceptable: (1) to prevent covert channel creation, a
monitor may not want to the source to be able to detect
the time it takes a destination to receive an IPC and (2)
a monitor may generate multiple IPCs from a single IPC
send, so it may want the source to be blocked until all the
IPCs are sent. In the first case, a trusted task, such as the
Naval Research Lab (NRL) Pump [4], is placed between
the source and destination. This task normalizes the delay
for the destination to receive an IPC, such that the variance
in delay is minimized. Also, any errors after the pump task
are caught by this task. Thus, the source gains no informa-
tion about the behavior of the destination, so no data can
be leaked from the destination to the source. Thus, it must
be possible for a monitor to be able to control when the
source is unblocked.

2.4 Untrusted Monitors

As shown in Figure 1, monitors may be loaded by the sys-
tem, the source, or the destination. Monitors loaded by
the source or destination may not be trusted by the sys-
tem, so it may not be possible to depend on these moni-
tors to implement synchronous IPC. For example, a desti-
nation monitor may leave a source blocked forever with-
out either delivering the IPC or returning an error. Since
we can assume that these monitors are under the control
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Figure 2: Basic Synchronous IPC Mechanism: The
source is blocked when it sends the IPC and unblocked
when the IPC is received by the destination. This identity
of the blocked source is maintained in the true source of
the IPC. The sender parameters indicate the inputs to the
IPC system, and the kernel parameters indicate the addi-
tional kernel inputs to the next task and any kernel actions.

of the source or destination, respectively, we can provide
synchronous IPC between the source and destination do-
mains. It is up to the source and destination monitors to
unblock the original source and ensure that the IPC is de-
livered properly, respectively.

3 Synchronous IPC Mechanism

The key assumption in the synchronous IPC mechanism
design is that the system monitors are assumed to be
trusted extensions of the kernel with respect to maintain-
ing IPC state. For any security-sensitive monitor, such
an assumption is quite reasonable because the security of
the system is dependent on the correctness of this monitor.
As described above, the source or destination may insert
a monitor that they trust, but a monitor must be trusted by
the source and destination to particpate in the synchronous
IPC mechanism.

3.1 The Basic Mechanism

The basic mechanism is shown in Figure 2. First, when
a source sends an IPC that is redirected to a monitor, the
source is blocked on the IPC’s destination. Next, the mon-
itor receives the IPC, does its processing, and forwards
the IPC to the destination. Since IPCs from this source
to this destination are redirected by the kernel to this mon-
itor, the monitor can send an IPC to this destination which
it claims to be from this source (IPC deceit [6]). In ad-
dition to the traditional IPC information (e.g., destination
and message), the true source field of an IPC is added; if
deceit is authorized, this field specifies the source of an
IPC. Finally, the IPC is received by the final destination.
At which time, the kernel unblocks the source and, for a
deceited IPC, the true source of the IPC.

3.2 Changing Sources

A monitor may claim that an IPC is from another task if
the monitor can deceit for that task as well. To do this,
the monitor specifies this other task as the true source of
the IPC. However, the kernel needs to know the original
source in order to unblock it when the IPC is delivered
to the destination. Therefore, the IPC information is ex-
tended by adding a field for the blocked source. The ba-
sic mechanism is extended in the following way: when
an IPC is received by the final destination, the kernel un-
blocks the source (i.e., the monitor or a source which can
send directly). If the IPC is deceited and a blocked source
is specified, then the kernel unblocks the blocked source.
If the IPC is deceited and no blocked source is specified,
then the kernel unblocks the true source.

3.3 Changing Destinations

In addition, a monitor may redirect an IPC to a completely
different destination. Since a thread can only send an IPC
to one destination at a time, it is not necessary to main-
tain the “blocked destination” for a blocked source. The
monitors must include the proper true/blocked sources in
order to ensure that the IPC appears to be from the correct
source and the actual blocked source is unblocked when
the IPC is delivered to the new destination.

3.4 Error Handling

This synchronous IPC mechanism must handle two types
of errors: (1) IPC errors between the monitors and tra-
ditional tasks and (2) the reporting of errors back to the
source. If a monitor sends an IPC in which the kernel de-
tects an error (e.g., destination is not a running task), then
the monitor is notified that there was an error in the at-
tempted send. The monitor may have an error handling
strategy, but typically, it will simply return the error to the
source. Since the source is blocked, the monitor must be
able to get the kernel to signal an error to the source. To
handle this, the monitor sends an error IPC to the blocked
source 1. The error code can be encoded in the IPC mes-
sage in a standardized format.

3.5 Interpreting Timeouts

When an IPC is sent, the source may set a timeout limit-
ing the duration for which it will wait for the destination
to commence receipt of the IPC, called a send timeout.
Some kernels, such as L4, also permit the use of untrusted
pagers, so for these systems a second timeout signifying

1We use the term blocked source to refer to the thread that is blocked
on the IPC regardless of whether it is specified as the true or blocked
source in the IPC.
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Figure 3: Controlled Unblocking: If a monitor wants to prevent the blocked source from being unblocked when the IPC
is delivered, it sets itself as the controlling monitor for the IPC. When the IPC is delivered to the destination, the kernel
generates an IPC to the controlling monitor rather than unblocking the blocked source. The sender parameters indicate the
inputs to the IPC system, and the kernel parameters indicate the additional kernel inputs to the next task and any kernel
actions.

a limit on the duration for delivering the IPC may be set,
called a delay timeout. Conversely, the destination may
set corresponding receive timeouts for the source. Since
the receive timeouts are the directly opposite, we only de-
scribe source timeouts here. Also, other timeouts, such as
real-time, may be set, but these are verified similarly to the
send timeout.

In general, any source IPC timeouts should be checked
against the ultimate destination, not the monitors. There-
fore, assuming monitor page faults are handled in a rea-
sonable amount of time, which should be a reasonable as-
sumption for trusted monitors, timeouts have the following
semantics. First, a source’s IPC is not delivered to a mon-
itor until the destination becomes ready to receive it. If a
send timeout error occurs, the source is notified of an er-
ror 2. The destination must remain ready to receive each
time the IPC is forwarded. Thus, the send timeout seman-
tics are preserved.

Second, delay timeouts are checked only when the mes-
sage is actually delivered to the destination. This again is
consistent with the original semantics. However, the delay
timeout specified by the source may be significantly larger
than the delay timeout desired by the monitor. Therefore,
the lesser of the two delay timeout values is used.

3.6 Controlling Synchrony

In order to control when the synchronous IPC is com-
pleted, a monitor must be able to control when the source
unblocks. The synchronous IPC mechanism is extended to
enable this control as shown in Figure 3. There are three
new steps in the synchronous IPC mechanism: (1) setting

2Timeouts may not be specified on IPC paths that could be used as
covert channels, so this mechanism does not create a covert channel.

the controlling monitor; (2) notifying the controlling mon-
itor; and (3) unblocking the blocked source.

First, when a monitor wishes to control when a blocked
source is unblocked, it assigns itself as the controlling
monitor of the IPC. It does this by adding an entry in the
IPC including itself as the controlling monitor when it for-
wards the IPC to the next monitor or destination. Only one
monitor can be the controlling monitor at a time. Since
all system monitors are trusted to perform the algorithm
correctly and the system monitors follow the source mon-
itors, then any system monitor can choose to become the
controlling monitor.

Second, when the IPC is delivered to the destination
or an error is signalled, the kernel generates an controller
notification IPC for the controlling monitor. A controller
notification IPC is indicated when the controller notifica-
tion bit is set in IPC status. The controlling monitor then
determines when to unblock the blocked source.

Third, the monitor unblocks the source by sending an
unblocking IPC to the source. An unblocking IPC is indi-
cated when the monitor sets the unblocking bit in an IPC
to the source.

A chain of controlling monitors is possible, so it may
be necessary for the monitor to signal a prior controlling
monitor rather than unblocking the blocked source. In this
case, the monitors can signal each other by sending con-
troller notification IPCs.

3.7 Untrusted Monitors

We assume a trust model in which only the source trusts its
monitors and only the destination trusts its monitors. Sys-
tem monitors are trusted by all. In this case, we define IPC
to be synchronous between the last source monitor (includ-
ing the source) and the first destination monitor (including



kernel-generated IPC

blocked source = Public Client

destination = Secret FS

source = Public Client

true source = Public Client

deceited = yes

controlling monitor = PCM

destination = Secret FS

source = Public Client

true source = Public Client

deceited = yes

controlling monitor = NRL Pump

destination = New Secret FS

source = Public Client

true source = Public Client

deceited = yes

controlling monitor = NRL Pump

destination = Secret FSSender

source = Public ClientKernel

control = yes control = yes control = yes

Secret FS

New Secret FS

Public

Monitor
Client’s

Public Client
NRL Pump Redirector

Sender

Kernel unblock the source

destination = Public Client

unblocking = yes

Kernel blocked source = Public Client

notification = yes

source = New Secret FSsource = NRL Pump

notification = yes

Figure 4: Monitoring Example: The NRL pump and redirector monitors are system monitors that control the synchrony
between the public client (and its monitor) and the secret file system and redirect the IPC to a new secret file system,
respectively. The sender parameters indicate the inputs to the IPC system, and the kernel parameters indicate the additional
kernel inputs to the next task and any kernel actions.

the destination) on the IPC path.
When a source sends an IPC, it trusts its monitors to de-

liver that IPC to the system monitors with the appropriate
values for the true source, blocked source, and controlling
monitor. The system monitors can change the true source
and controlling monitor as necessary and are trusted to un-
block the blocked source.

Timeouts are not checked until the last source monitor
forwards the IPC to the first system monitor. This prevents
the creation of a covert channel to a source-controlled task.
Timeouts are enforced as described in Section 3.5.

When the IPC is delivered to the first destination mon-
itor, this is treated the same as if the IPC was being de-
livered to the destination itself. Since the destination in-
stalled these monitors, this functionality could just as eas-
ily be part of the destination. Therefore, all actions taken
when the IPC is delivered to the destination are taken now:
(1) the delay timeouts are checked; (2) the controlling
monitor, if any, is notified; and (3) otherwise, the blocked
source, if any, or the true source is unblocked.

4 Example

Consider a system depicted in Figure 4 with two security
levels, public and secret, where a public client may be log-
ging information on a secret file system. The secret file
system must not leak any information to the public client
which is logging information in it, but the secret file sys-
tem is not trusted to prevent such a leak (e.g., it may con-
tain a Trojan horse). Although the secret file system cannot
send an IPC to the public client, it could leak information
through a covert channel. Therefore, a NRL pump-style
monitor (see Section 2.3) is installed between the public
client and the secret file system to normalize the timing

behavior of the secret file system. This monitor sets the
true source to the public client and sets itself to be the con-
trolling monitor. When the IPC is delivered to the secret
file system, the pump is notified and, eventually, unblocks
the source as described in Section 3.6.

Next, the secret file system is replaced by a new secret
file system task. Another monitor is added to redirect the
public client’s log IPCs to the new system task. Since the
new secret file system also may contain a Trojan horse,
the NRL pump is left on this IPC path. In this case, the
destination of the IPC is changed by the redirecting moni-
tor, but the true source and controlling monitor remain the
same. Thus, the NRL pump is notified when the IPC is
delivered to the new secret file system. The notification
message contains the identity of the blocked source, so the
correct source is unblocked.

Lastly, the client may add its own monitor in hopes of
detecting some information about the behavior of the se-
cret file system. This monitor sets itself to be the control-
ling monitor. When the IPC is sent from the public client,
it is immediately delivered to the public client’s monitor,
so no knowledge about the behavior of the secret file sys-
tem is obtained. The NRL pump sets itself to be the con-
trolling monitor, so it is notified when the IPC is delivered.
Therefore, it can control when the public client’s monitor
is notified about the IPC delivery.

5 Implementation Issues

We consider implementation of the synchronous IPC
mechanism presented above on the L4 microkernel [5] us-
ing the IPC redirection mechanism [3]. This implementa-
tion must enable representation and application of the IPC
state. The IPC state is divided into two types: (1) IPC op-



Option Action

0 unreliable send
1 error
2 notification
3 unblocking
4 deceit
5 deceit w/ blocking source
6 deceit w/ controlling monitor
7 options 5 and 6

Table 1: IPC Options for the complete synchronous IPC
mechanism

tions and (2) IPC parameters. There are eight meaningful
IPC options as shown in Table 1, so only three control bits
are needed to represent them. The current L4 microker-
nel implementation supports deceiting already (i.e., true
source), so only the blocked source and controlling moni-
tor parameters must be maintained additionally.

The IPC options in L4 are passed in the send descrip-
tor and received in the message dope. Currently, one bit
is devoted to such information in the send descriptor, so
two additional bits are necessary. The direct effect of this
is that the send message buffer must be 16 byte-aligned
(rather than 4 byte-aligned). The message dope already
has three control bits, so no new information is necessary.

There are three choices for maintaining the blocked
source and controlling monitor: (1) pass as IPC parame-
ters; (2) store using kernel system calls; and (3) encode
it via the monitors. In the first case, the additional IPC
parameters are included in the IPC system call, but only
where necessary. In the second case, system calls are used
to store the additional IPC parameters in kernel data struc-
tures. In the third case, monitors encode the IPC param-
eters using other parameters. For example, a monitor can
encode the fact that it is a controlling monitor by setting
itself to be the blocked source.

We prefer the first choice because it is simple and ef-
ficient in the normal case. The kernel already handles
the IPC state in parameters, so this choice adds little new
complexity to the kernel or monitors. Using the second
and third choices would require new system calls and data
structures for the kernel and/or monitors which we hope to
avoid. From a performance standpoint, the first option will
typically be no different than the current L4 IPC mecha-
nism. We expect that changes in the source will be rare,
and the current examples that use the controlling monitor
are not performance critical, and, in fact, purposely slow
performance.

6 Conclusions

Transparent monitoring enables the dynamic insertion of
monitoring functionality without requiring either the co-
operation or the awareness of either of the tasks being
monitored. Therefore, it is preferable to traditional overt
monitoring mechanisms. However, in order to implement
transparent monitoring, the kernel’s IPC semantics must
be preserved regardless of how many monitors exist and
what actions they may take. In this paper, we presented a
synchronous IPC mechanism that is preserves IPC seman-
tics over transparent monitors. This mechanism considers
system monitors to be an extension of the kernel, so the
source can be blocked until all the monitors have com-
pleted their actions and forwarded the IPC to the destina-
tion. Therefore, synchronous IPC is possible even given
a variety of monitor actions, such as redirecting IPCs to
a new source, changing the source of an IPC, and chang-
ing the communication rate. Also, this mechanism sup-
ports useful variations of synchronous IPC semantics, such
as requesting unreliable communication, delaying delivery
notification, and using untrusted monitors.
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