
Transparent Orthogonal Checkpointing Through
User-Level Pagers

Espen Skoglund, Christian Ceelen, and Jochen Liedtke

System Architecture Group
University of Karlsruhe

{skoglund,ceelen,liedtke}@ira.uka.de

Abstract. Orthogonal persistence opens up the possibility for a number
of applications. We present an approach for easily enabling transparent
orthogonal persistence, basically on top of a modern µ-kernel. Not only
are all data objects made persistent. Threads and tasks are also treated
as normal data objects, making the threads and tasks persistent be-
tween system restarts. As such, the system is fault surviving. Persistence
is achieved by the means of a transparent checkpoint server running in
user-level. The checkpoint server takes regular snapshots of all user-level
memory in the system, and also of the thread control blocks inside the
kernel. The execution of the checkpointing itself is completely transpar-
ent to the µ-kernel, and only a few recovery mechanisms need to be
implemented inside the kernel in order to support checkpointing. During
system recovery (after a crash or a controlled shutdown), the consistency
of threads is assured by the fact that all their user-level state (user mem-
ory) and kernel-level state (thread control blocks) will reside in stable
storage. All other kernel state in the system can be reconstructed ei-
ther upon initial recovery, or by standard page fault mechanisms during
runtime.

1 Introduction

Persistent object stores have a long history of active research in computer science.
Little research, however, has been targeted at providing orthogonal persistence,
and still fewer systems have actually been implemented.

Orthogonal persistence does make sense though, especially with the advent
of devices like PDAs. A day planner application would for instance always be
running on your machine. Since the application would be persistent, it would
transparently survive power failures or system crashes. There would be no need
for the application programmer to explicitly store the results of user modifi-
cations, effectively saving both development time and program size. Desktop
machines and larger servers would also be able to benefit from orthogonal per-
sistence. A long running compute-intensive application would not need to contain
complicated (and very likely error-prone) checkpointing code. Researchers could



concentrate on algorithm design, and leave the checkpointing to the operating
system.

In this paper, we present an approach for easily implementing transparent
orthogonal persistence on top of a modern µ-kernel. We hope to prove that im-
plementing orthogonal checkpointing is not inherently difficult, even in a system
that was not originally designed for that purpose. One important aspect of the
design is that the kernel does not need to collect any kernel data structures into
some externalized form (i.e., there is no need to perform the process known as
pickling).

Before describing the checkpointing design (Sects. 4, 5, and 6), we give a
brief overview of the µ-kernel used as a base for the implementation (Sect. 2)
and our general approach (Sect. 3). Section 7 lists related work, and finally
Sect. 8 concludes.

2 Implementation Basis: The L4 µ-Kernel

The L4 µ-kernel [10] is a lean second generation µ-kernel. The philosophy behind
the kernel is that only a minimal set of concepts is implemented within it. A
concept is permitted inside the kernel only if moving it outside the kernel would
prevent some system functionality to be implemented. In other words, the kernel
should not enforce any specific policy on the surrounding system. Following this
philosophy, the L4 µ-kernel implements two basic user-level abstractions: threads
and address spaces.1

2.1 Threads and IPC

A thread is an activity executing inside an address space. Several threads may
exist within a single address space, and the collection of threads within an ad-
dress space is often referred to as a task. Threads (and in particular threads
within different address spaces) communicate with each other using inter-process
communication (IPC).

The IPC primitive is one of the most fundamental µ-kernel mechanisms. Not
only is it the primary means of communication between threads, it is also used as
an abstraction for exceptions and interruptions. For instance, if a thread raises
a page fault exception, the exception is translated into an IPC message that is
sent to another thread which handles the page fault (see Fig. 1). If a hardware
interruption occurs, the interrupt is translated into an IPC message and sent to
a thread that handles the interruption. This latter example also illustrates an
important aspect of the µ-kernel design: device drivers need not be implemented
inside the kernel. They may be implemented as threads running in user-level.

1 A rationale for the choice of these basic abstractions and a detailed description of
the L4 µ-kernel is given in [10].



L4 µ-kernel

Faulting Thread Handler Thread

1

2

3

Fig. 1. Page fault IPC. When a page fault occurs in a user level thread; (1) a page
fault exception is raised and caught by the µ-kernel, (2) the kernel generates a page
fault IPC from the faulting thread to the handler thread, and (3) the handler thread
(possibly) maps a page frame to the faulting location.

2.2 Recursive Address Spaces

Recursive address spaces forms a concept that is relied heavily upon by the
checkpointing facility presented in this paper. With recursive address spaces,
a task may map parts of its address space to other tasks. These other tasks
may in turn map the mapped parts to other tasks, creating a tree of mappings.
Upon mapping to another task though, control of the mapped part will not
be relinquished. A mapper may at any time revoke its mappings, recursively
rendering the mappings in other tasks invalid.

Recursive address spaces enable memory managers to be stacked upon each
other. These memory managers are also referred to as pagers. This does not
necessarily imply that they swap memory to stable storage (though that may
often be the case), but that they handle page faults for threads in their sibling
tasks. The top-level pager in the system is backed by physical memory. That
is, its address space is mapped idempotently into physical memory. As such, it
controls all physical memory in the machine2 and has no need for pagers backing
it.

There has been much concern as to whether µ-kernels suffer a too large
performance degradation due to the added number of context switches imposed
on the system. It has been argued, however, that this is mostly an artifact of
poor kernel implementations, and can be alleviated by properly implemented
kernel mechanisms [10].

3 General Approach

This paper focuses on how to implement non-distributed per-machine check-
points. Cross-machine synchronization and synchronization between persistent
and non-persistent objects, threads, and tasks are not topics of this paper.

More precisely, this paper discusses how to implement checkpoints on top of a
microkernel, i.e., (a) through user-level servers and (b) relatively orthogonal (and
thus independent) to other (legacy) system services such as pagers, file systems,
2 Except for some memory which is dedicated to the µ-kernel, for example page tables.



network stacks, security servers, and so forth. Figure 2 gives an architectural
overview of the system, illustrating the µ-kernel, device drivers, the checkpoint
server, and the persistent pagers and applications serviced by the underlying
persistence run-time system.

L4 µ-kernel

Keyboard Driver Network Driver Screen Driver

Disk Driver Checkpoint Server

Pager Pager

Application Application Application

Kernel Level

User Level

Persistent Tasks

Transient Tasks

Fig. 2. Architectural overview

3.1 Transient and Explicitly-Persistent Objects

A real system always contains a mixture of transient (non-persistent) and per-
sistent objects. Extreme examples are device drivers that typically can not be
made persistent and file systems that are always persistent. So, a persistent ap-
plication might “use” both persistent and non-persistent objects. Nicely, in an
orthogonally persistent system, the applications’ address spaces, stacks, regis-
ters, and thread states themselves are all persistent objects. Nevertheless, many
orthogonally persistent applications will use or contact non-persistent objects
and/or servers, e.g., a clock/date service, a remote web site, a phone line, a
video camera, a gps receiver, and so on.

Connecting to non-persistent services and using non-persistent objects is a
problem that strongly depends on the application and on the nature of the non-
persistent servers and objects. A persistent system can only offer basic mech-
anisms to detect inconsistencies (i.e., the necessity of recovery) and to prevent
applications from using unrecovered objects or server connections once a system
restart happens or a non-persistent object or server crashes. The general system
mechanism for customized user-level recovery in such cases is to invalidate all
connections (including identifiers) to non-persistent objects once the persistent
system restarts (or the non-persistent objects crash or are partitioned from the
persistent system).

File systems are well-known members of the class of explicitly persistent
servers. Such servers implement explicitly persistent objects. If a persistent ap-
plication uses such servers it has either to deal with a similar synchronization
problem as for non-persistent objects, or the system has to synchronize its own
checkpoints and the checkpoints of all used explicitly-persistent servers, e.g.,



through a two-phase-commit protocol. The current paper does not discuss the
corresponding problems.

3.2 Implicitly-Persistent Objects

The focus of the current paper is implicitly persistent servers (and applica-
tions). That is, how do we make servers and applications orthogonally persistent
that originally do not include persistence, i.e., that do not include a check-
point/recover mechanisms. Implicit persistence should be implemented by a set
of system servers that transparently add orthogonal persistence to existing non-
persistent servers and applications.

For implicit persistence we need to implement transparent checkpointing.
Basically, we have to solve three problems:

Kernel Checkpointing. How can we checkpoint the microkernel in such a way that
all persistent threads, address spaces, and other kernel objects can be recovered?

Main-Memory Checkpointing. How can we checkpoint those main-memory page
frames that are used by persistent applications and implicitly persistent servers?

Backing-Store Checkpointing. How can we checkpoint backing store (disk) blocks
that are used by implicitly persistent servers? Or in other words, how can we
ensure that transactions made to stable storage by implicitly persistent servers
are synchronized with their checkpoints?

4 Kernel Checkpointing

4.1 The Checkpoint Server

The checkpoint server acts as a pager for thread control blocks (TCBs) in the
system. This permits it to save the kernel state of the various threads.

Giving control of the thread control blocks to the checkpointer is achieved by
not having the kernel own the physical page frames of the TCBs. Instead, when
the kernel needs more backing memory for TCBs (whether it be for a persistent
or a transient thread), it requests the checkpointer to map a page frame to the
kernel (see Fig. 3). The mapped page frame will be owned by the checkpointer,
and the checkpointer may at any time access the TCB or unmap it from the
kernel. Letting the checkpointer retain full control of the TCBs implies that the
checkpointer—just like device drivers—must be a trusted task.

At regular intervals, the checkpointer takes a consistent copy (a fixpoint) of
all needed system state (i.e., thread control blocks of persistent threads) and
writes it to stable storage. A consistent copy could be assured by establishing
some causal consistency protocol. Such a protocol, however, would require that
the checkpointer has knowledge of all communication between persistent threads.
This is not feasible though, since threads can communicate in ways which are



Code/Data TCB Area User Level Memory

Checkpointer:

Kernel:

A B C

A B C

Fig. 3. TCB paging. The checkpointer owns the pages residing in the TCB area of the
kernel. Arrows indicate mappings from the checkpointer’s address space into the TCB
area.

not known to the checkpointer, e.g., through IPC or shared memory. The check-
pointer therefore implements a simple scheme, taking a snapshot of the system
at a single point in time. Since the checkpointer is implemented as a regular
user-level task, it is subject to interruptions by the in-kernel scheduler, or by
hardware devices. This could cause other persistent tasks to be scheduled before
the checkpointer has written their TCBs to stable storage, rendering the fixpoint
in an inconsistent state. To cope with this problem, the checkpointer initially
makes all persistent thread control blocks copy-on-write (see Fig. 4). Once this is
accomplished, the checkpointer can lazily store their contents to stable storage.

Code/Data TCB Area User Level Memory

Checkpointer:

Kernel:

A B

A B

1
2

?

(a) The TCBs in the kernel area have been marked copy-on-write (dark grey). The
kernel then tries to, e.g., schedule thread B. This requires access to B’s TCB (1),
which in turn raises a page fault that is directed to the checkpointer (2).

Code/Data TCB Area User Level Memory

Checkpointer:

Kernel:

A B B

A B

3

4

(b) The checkpointer copies the accessed TCB to a new location (3), and maps
the copy of the TCB to the kernel with write permissions (4). The kernel may
now modify the TCB copy without disturbing the old contents.

Fig. 4. The TCB copy-on-write scheme



During the copy-on-write operation the checkpoint server will not be able to
service any page faults for the kernel. As such, the operation does not have to be
atomic since no persistent thread which has been marked as copy-on-write will
be able to continue until the whole operation has finished. Neither can the TCB
of a persistent thread be modified by other threads (e.g., through IPC) while
it is marked copy-on-write. Doing so would immediately cause the modifying
thread to raise a page fault in the TCB area of the persistent thread, and since
the page fault must be served by the checkpointer the modifying thread will also
be suspended until the copy-on-write operation has finished. It must be stressed
though, that all threads will be able to run while the TCB contents are being
written to stable storage. They will only be suspended during the small amount
of time it takes to perform the copy-on-write operation.

The checkpointer also contains data structures for keeping track of where the
pages in stable storage belong. These data structures must be kept persistent
so that the checkpointer can handle page faults correctly after a system restart.
Since the checkpointer task itself can not be made persistent (it has to be running
in order to take the atomic snapshot), the data structures are written to stable
storage as part of the fixpoint.

4.2 Checkpointing Kernel State

For a fixpoint to be consistent, no relevant kernel state other than that contained
in the TCBs must be required to be persistent. The design of the L4 kernel easily
lends itself to this property.

Ready Queues and Waiting Queues. Persistent applications running on top of
L4 can not—due to the nature of time sharing systems—determine how fast they
will progress through a sequence of machine instructions. In particular, they can
not determine how long it will take them to start executing the next IPC system
call. As such, they can make no assumptions about the ordering of in-kernel
ready queues and IPC waiting queues. The kernel can therefore upon recovery
reconstruct the queues in any order it prefers. It just needs to know in which
queues the thread should be residing, and this information is stored within the
TCB.

Page Tables and Mapping Database. Page tables are an integral part of the µ-
kernel data structures. The mapping database is closely related to the page ta-
bles. It includes data structures to keep track of sharing between address spaces.
Those data structures enable recursive address spaces to be implemented.

Page tables and the mapping database are not included in the data set that is
paged to stable storage during a checkpoint. Upon system restart, the mapping
database and page tables will therefore all be empty. Once a persistent task is
restarted a page fault will immediately be raised. The page fault is caught by the
µ-kernel which redirects it to the faulting task’s pager. The pager—whose page
tables are also empty—will in turn generate another page fault and subsequently
cause its own pager to be invoked. Eventually, the page fault will propagate



back to the checkpoint server who loads the saved memory contents from stable
storage and maps it to the faulting task. Figure 5 illustrates how the page fault
is propagated to the checkpointer task, and how the corresponding page frame
is mapped recursively into the faulting task.

Physical memory:

Checkpointer:

Task A’s pager:

Task A:

1
?

2
?

3

(a) Page faults are propagated
up to the checkpoint server
which requests the page frame
from stable storage.

4

5

6

(b) Once the page frame is
retrieved into memory, map-
pings are propagated down to
the faulting task.

Fig. 5. Cascading page faults. The circled numbers indicate the order in which steps are
taken. Arrows in Fig. (a) indicate page fault requests/data transfer requests. Arrows
in Fig. (b) indicate data transfers/mappings.

Remaining Kernel State. Other data structures than those mentioned above
(e.g., list of available dynamic kernel memory) have no relevance to the state of
the kernel as a whole. They are usually only visible in the corresponding kernel
functionality (e.g., kernel memory allocator) and are initialized when the kernel
is restarted.

4.3 TCB Recovery

Ideally, no threads should be inside the kernel during a fixpoint. However, in
reality threads may be blocked due to an ongoing IPC operation, or they may
be descheduled during a system call. Strictly speaking, due to the fact that only
one thread is allowed to run at a single point in time (the checkpointer), all
threads will be inside the kernel during a fixpoint. As such, all system calls must
either be restartable, or some other mechanism must exist to put the thread into
a consistent state during system recovery.



Fortunately, even though L4 was not designed with persistence in mind, all
but one system call in L4 can be safely restarted. When a TCB is recovered and
is found to be fixpointed in the middle of one of those system calls, the thread
is restarted in user level at that location where the system call was invoked so
that the same system call will be re-invoked.

Only the IPC system call can not unconditionally be restarted. An IPC
operation may consist of two phases, a send phase followed by a receive phase.
Separately, both phases are restartable, and, indeed, the IPC operation may
very well consist of only one of the phases. However, if a send phase has been
completed and a fixpoint is taken before the receive phase has been completed,
restarting the entire system call would repeat the send phase a second time after
restart although the checkpointed receiver has already received the first message.
To avoid this message duplication, IPCs are handled as two-phase operations
where the leading send phase is skipped on restart if it has been completed
at checkpoint time. The restarted IPC then directly enters its receive phase.
Uncompleted sends or single-phase IPCs are entirely restarted.

4.4 Kernel Upgrades

An implication of the fact that almost no kernel state is kept during a fixpoint, is
that the µ-kernel may easily be upgraded or modified between system restarts.
The essential invariant that must be kept between different kernel versions is
that the kernel stack layout of interrupted threads must look the same or that
the new kernel version knows the layout of the old version and adapts it to the
new layout.

5 Main-Memory Checkpointing

We already have a checkpoint server that acts as a pager for TCBs. This server
is easily extended to also act as a pager for all physical memory that is used by
implicitly persistent servers and applications. Therefore, the checkpoint server is
implemented as a pager located directly below the top level pager. Being almost
on top of the pager hierarchy, it automatically has access to all user-level memory
of its sibling tasks. In particular, it can unmap page frames temporarily from all
other tasks (including all other pagers), map page frames read-only, copy them
to buffers, write them to backing store, and remap them afterwards. Thus the
checkpoint pager can eagerly or lazily (copy-on-write) checkpoint main memory.

The checkpointing mechanism used is heavily influenced by the mechanisms
in EROS [14], KeyKOS [7], and L3 [9]. For each physical page frame, we have
allocated two disk blocks, an a-block and a b-block, and a status bit that spec-
ifies which of both blocks holds the currently valid checkpointed content of the
physical page frame.

At regular intervals, the checkpoint server takes a consistent copy of all
threads and address spaces, saving the according physical page frames. Dirty
page frames are saved into their a/b-blocks: If the according status bit specifies



that the a-block is currently valid the new content is saved into the b-block,
otherwise into the a-block. Then, the page frame’s status bit is toggled so that
the newly written block is marked valid. Non-dirty physical page frames are ig-
nored, i.e., their status bits remain unchanged. Once all modified page frames
have been written to disk, the location bit-array itself is atomically written (e.g.,
using Challis’ algorithm [1]), and the checkpoint is completed.

An optimization of the presented algorithm uses write logs to minimize seek
time (instead of overwriting the a/b-blocks directly) whenever the amount of
dirty page frames is low.

6 Backing-Store Checkpointing

Main-memory checkpointing is not sufficient. In addition, pagers, e.g., anon-
ymous-memory servers, have to be modified so that they support persistence, i.e.,
implement persistent data objects. Servers that are explicitly built to support
persistent objects we call explicitly persistent servers.

Many servers are not explicitly built to support persistence. Of course, it
would be very helpful to also have a general method that easily extends such
servers so that they automatically become implicitly persistent servers that syn-
chronize their checkpoints with the checkpoint server.

A method of generating implicitly persistent servers combined with the check-
point server is sufficient to establish orthogonal persistence. Explicitly persistent
servers then specialize and customize the system.

6.1 The Implicit-Persistence Problem of Backing Stores

The checkpoint server only takes care of paging thread control blocks and physi-
cally backed user-level memory to stable storage. Multiplexing the physical mem-
ory among user-level tasks, and swapping parts of virtual memory to stable stor-
age must be taken care of by other pagers. Since those pagers deal with stable
storage, writing page frames to disk must be synchronized with the checkpoint
server in order to avoid inconsistency. Consider, for example, a scenario in which
a checkpoint is made at time cn, and the next checkpoint is to be made at cn+1.
Now, the pager writes a page frame to disk at the time w1 in between the two
checkpoints (i.e., cn < w1 < cn+1). At a time, w2, in between the next two
checkpoints (i.e., cn+1 < w2 < cn+2), the pager then replaces the the on-disk
page frame with another page frame. If the machine crashes at a time in between
w2 and cn+2, the system will on recovery be rendered inconsistent because the
pager will believe that the on-disk page frame is the one that it wrote on time
w1. It has no idea that it changed the contents at time w2.

For implicit persistence, we need a method to make any pager (or server)
that uses the stable backing store persistent; without modifying or extending it.
This is achieved by the recoverable-disk driver.



6.2 The Recoverable-Disk Driver

The recoverable disk is a user-level server (driver) implementing a logical disk
that offers the operations checkpoint and recover besides normal read-block and
write-block. Disk writes remain fragile until they are committed by a subsequent
checkpoint operation. The recover operation sets the entire disk back to the
status of the last successful checkpoint operation, i.e. undos all writes after the
last completed checkpoint.

All implicitly persistent servers use the recoverable-disk driver instead of
the raw disk driver for reading and writing blocks. Furthermore, the check-
point server synchronizes its main-memory checkpoints with checkpoints in the
recoverable-disk driver. As a consequence, all pagers using both memory from
the checkpointer and disk blocks from the recoverable-disk become implicitly
persistent.

The recoverable-disk implementation uses methods similar to shadow pag-
ing [12] and to the algorithms used for main-memory checkpointing (see Sect. 5).
It offers n logical blocks; however, physically, it uses 2n blocks. Each logical block
k is mapped either to physical block ak or bk without overlaps.3 A bitmap Cur-
rentBlock specifies for each k whether the a-block or the b-block is currently
valid. For a 4 GB recoverable disk and 4 KB blocks, this bitmap requires 128
KB of memory.

A second bitmap of the same size, CurrentlyWritten, is used to determine
which logical blocks have been written in the current checkpoint interval: Assume
that a server/pager writes to logical block k, and ak is the currently associated
physical block. If CurrentlyWrittenk is not set, then bk becomes associated to k,
and the according CurrentlyWritten bit is set. The physical block is then written.
If CurrentlyWrittenk is already set when writing the block, the CurrentBlock and
CurrentlyWritten bitmaps stay as-is, and the block is simply overwritten.

When a checkpoint occurs, the CurrentBlock bitmap is atomically saved on
stable storage and all CurrentlyWritten bits are reset to zero.

Modifications of this algorithm permit multiple valid checkpoints. Further-
more, the number of totally required physical blocks can be reduced to n + m if
at maximum m blocks can be written between two checkpoints.

The recoverable-disk driver enables legacy pagers (or other servers accessing
disk) to be used in the persistent system without modification. If a pager for
efficiency reasons wants to bypass the recoverable-disk driver, it can of course
do so. Such pagers, however, should synchronize with the checkpoint server in
order to keep the system in a consistent state.

6.3 Device Drivers and File Systems

Device Drivers. As mentioned before, most device drivers can not be made per-
sistent. Care must therefore be taken to not include any state about other threads
in the system within the driver. For example, a network interface driver should

3 ak 6= bk for all k, and ak = ak′ ∨ bk = bk′ ⇒ k = k′.



not include any knowledge about open network connections since this knowledge
would be lost during a system reboot. In general, however, this restriction on
device drivers does not impose any problems. In the case of the network inter-
face driver for instance, the knowledge of open connections would reside in some
network protocol server—a server that would be included in the set of persistent
tasks.

File Systems. Having a fully transparent persistent system somewhat obviates
the need to support an explicitly persistent file system. There are some cases,
however, that point in the direction of having a file system: First of all, many
users are simply used to dealing with files and file hierarchies. There is no need to
upset users unnecessarily. Moreover, there might be a need to interchange data
with other systems. Files are a nice and clean way to handle interchangeability
on widely different platforms. Most important though, is that many applications
today rely on being backed by some sort of file system. Portability of applications
is therefore a key issue.

Since tasks are fully persistent, a UNIX-like file system can easily be imple-
mented as a collection of servers (as in L3 [9] or EROS [14]). In short, a directory
or a file is nothing more than a persistent object. As such, a persistent server is
used to represent each directory and each file. When another task in the system
accesses a file, the requests will be directed to the corresponding file server (or
directory server).

Of course, a file system server may also be implemented as a traditional file
system explicitly accessing stable storage. If this is the case, they will have to
use the recoverable-disk driver.

7 Related Work

The concept of transparent orthogonal persistence is not new. In fact, system-
wide persistence was an integral part of L4’s predecessor—the L3 µ-kernel [9].
With L4, however, persistence is not an integral part of the kernel. It is an add-on
feature that the user may choose to ignore.

Other µ-kernels integrating persistence into the kernel include EROS [14]
and its predecessor KeyKOS [7]. With EROS, taking a snapshot of the system
also includes performing a consistency check of critical kernel data structures.
This catches possible kernel implementation bugs, and prohibits these bugs to
stabilize in the system. A checkpoint in L4, on the other hand, does not include
any critical kernel data structures. Doing such a consistency check is therefore
unnecessary.

In contrast with L3 and EROS, Fluke [15] is a µ-kernel offering transparent
checkpointing at user-level. This is achieved by having the kernel export user-
visible, partly pickled, kernel objects. The checkpointer pickles the remaining
parts of the objects and saves them to stable storage together with the memory-
images of the tasks.



Most transparently persistent operating systems are based upon µ-kernels.
An exception to this rule is Grasshopper [2]. Grasshopper hopes to achieve per-
sistence through the use of some specially designed kernel abstractions. Based
on the experiences learned from Grasshopper, the designers have later created
a µ-kernel based operating system, Charm [3], aiming at supporting persistent
applications. With Charm, no particular persistence model is enforced upon the
applications. The kernel instead provides the application system with mecha-
nisms to construct their own persistence policy. In short, all in-kernel meta-data
(such as page tables) are exposed to the application, and the application is itself
responsible for making this data persistent.

Several other facilities for user-level checkpointing have been implemented [4,
8, 11, 13]. Typically, the fork() UNIX system call is used to periodically create
a snapshot of the task’s image, allowing the application to continue execution
while the image is being written to stable storage. Such systems, however, can
not manage to restore much of the operating system state upon recovery. Neither
can they assure that their interaction with the surrounding system will leave the
checkpoint in a consistent state. As such, these checkpointing facilities are only
usable within a certain type of scientific applications.

8 Conclusions

We have seen that user-level transparent orthogonal checkpointing can readily
be implemented in the context of a second-generation L4 µ-kernel. The check-
pointing facility relies for the most part on existing kernel abstractions. Only
a minimal set of additions to the µ-kernel is needed. The key for implementing
persistence on top of the µ-kernel is its concept of recursive address spaces that
enables implementation of all main-memory management by user-level servers.

Consequently, orthogonal persistence can be implemented almost entirely
through user-level pagers and drivers, particularly through a checkpoint server
and a recoverable disk driver. Both are user-level servers and do not depend
on the OS personality that runs on top of the µ-kernel. The resulting support
of orthogonal persistence is thus widely transparent to and independent from
application and OS.

The transparent checkpointing design presented here is currently in the pro-
cess of being implemented. The system will be used in conjunction with L4Lin-
ux [6] as well as with the multi-server SawMill system [5] on top of L4.

References

1. Michael F. Challis. Database consistency and integrity in a multi-user environment.
In Proceedings of the 1st International Conference on Data and Knowledge Bases,
pages 245–270, Haifa, Israel, August 2–3 1978. Academic Press.

2. Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, Anders Lindström,
John Rosenberg, and Francis Vaughan. Grasshopper: an orthogonally persistent
operating system. Computing Systems, 7(3):289–312, Summer 1994.



3. Alan Dearle and David Hulse. Operating system support for persistent systems:
past, present and future. Software – Practice and Experience, Special Issue on
Persistent Object Systems, 30(4):295–324, 2000.

4. Elmootazbellah N. Elnohazy, David B. Johnson, and Willy Zwaenepoel. The per-
formance of consistent checkpointing. In Proceedings of the 11th Symposium on
Reliable Distributed Systems, Houston, TX, October 5–7 1992.

5. Alain Gefflaut et al. Building efficient and robust multiserver systems: the SawMill
approach. In Proceedings of the ACM SIGOPS European Workshop 2000, Kolding,
Denmark, September17–20 2000.

6. Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastiann Scönberg, and
Jean Wolter. The performance of µ-kernel bases systems. In Proceeding of the 16th
ACM Symposium on Operating System Principles (SOSP), Saint-Malo, France,
October 5–8 1997.

7. Charles R. Landau. The checkpoint mechanism in KeyKOS. In Proceedings of the
2nd International Workshop on Persistent Object Systmes (POS2), Paris, France,
September 24–25 1992.

8. Juan León, Allan L. Fisher, and Peter Steenkist. Fail-safe PVM: a portable package
for distributed programming with transparent recovery. Technical Report CMU-
CS-93-124, Carnegie Mellon University, February 1993.

9. Jochen Liedtke. A persistent system in real use: experiences of the first 13 years. In
Proceedings of the 3rd International Workshop on Object-Orientation in Operatins
Systems (IWOOOS ’93), Asheville, NC, December 9–10 1993.

10. Jochen Liedtke. On µ-kernel construction. In Proceedings of the 15th ACM Sympo-
sium on Operating System Principles (SOSP ’95), Copper Mountain Resort, CO,
December 3–6 1995.

11. Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint
and migration of UNIX processes in the Condor distributed processing system.
Technical Report #1346, University of Wisconsin-Madison, April 1997.

12. Raymond A. Lorie. Physical integrity in a large segmented database. ACM Trans-
actions on Database Systems (TODS), 2(1):91–104, September 1977.

13. James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: transparent
checkpointing under UNIX. In Proceeding of the USENIX 1995 Technical Confer-
ence, New Orleans, LA, January 16–20 1995.

14. Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast ca-
pability system. In Proceedings of the 17th ACM Symposium on Operating System
Pronciples (SOSP ’99), Kiawah Island Resort, SC, December 12–15 1999.

15. Patrick Tullmann, Jay Lepreau, Bryan Ford, and Mike Hibler. User-level check-
pointing through exportable kernel state. In Proceedings of the 5th International
Workshop on Object-Orientation in Operating System (IWOOOS ’96), Seattle,
WA, October 27–28 1996.


	Introduction
	Implementation Basis: The L4 µ-Kernel
	Threads and IPC
	Recursive Address Spaces

	General Approach
	Transient and Explicitly-Persistent Objects
	Implicitly-Persistent Objects

	Kernel Checkpointing
	The Checkpoint Server
	Checkpointing Kernel State
	TCB Recovery
	Kernel Upgrades

	Main-Memory Checkpointing
	Backing-Store Checkpointing
	The Implicit-Persistence Problem of Backing Stores
	The Recoverable-Disk Driver
	Device Drivers and File Systems

	Related Work
	Conclusions
	References

