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Abstract

Policing of incoming packets can produce very high load
in worst-case situations on a receiving computer. In real-
time systems, resources must be allocated for such worst-
case situations if guarantees are given to processes. This
paper1 describes design and implementation of a policing
function on an off-the-shelf network adapter board contain-
ing a relatively slow microprocessor. Performance mea-
surements indicate that the host computer can be effectively
shielded from misbehaving inbound connections. The load
on the host CPU is confined to be proportional to the num-
ber of packets on admitted and conforming connections,
even in the presence of very large numbers of incoming
packets on not-admitted connections. As a side effect, zero-
copy implementation of protocols is supported.

1. Introduction

Increasingly, real-time and non real-time applications
share computer systems and networks. In such scenarios,
(hard or soft) guarantees must be given to the real-time ap-
plications. Some networks, e.g. ATM, support this scenario.
However, end systems usually do not adequately support
it, mainly due to a lack of support from current operating
systems. This paper addresses one particular problem that
arises in these mixed real-time and non real-time scenarios.

Let us assume a system effectively supporting reserva-
tion of resources for real-time applications while leaving
the remaining resources available to other, non real-time ap-
plications [8]. Then, resources must also be allocated for
demultiplexing incoming network traffic in order to decide
whether to accept a packet and forward it or to dump it (this
function is called policing). These resources must be al-
located for the worst case, i.e. the case when an offensive

1The work described in this paper was done by Uwe Dannowski at
Dresden University of Technology.

application sends arbitrary large numbers of packets to the
receiving station.

Some research operating systems employ early demul-
tiplexing techniques for this purpose thus leaving the pro-
tection of real-time applications to general resource sched-
ulers. But the resources that need to be dedicated to the
demultiplexing function are still high. Measurements with
a popular driver [7] on an 100 MHz Pentium system have
indicated that about 32 �s per packet of 512 bytes are con-
sumed. This implies that for a 1 MBit/s connection about
8 ms per second (i.e. 0.8 %) have to be dedicated to the pro-
cessing of these packets if the demultiplexing is to be in-
cluded in the driver. As such, policing a hostile connection
of 125 MBit/s in 512 byte packets will require the reserva-
tion of 100 % of CPU time.

On the other hand, most network adapters include some
processing power, usually small RISC processors. This sit-
uation made us investigate which type of processing power
is needed in adapter boards (with their significantly simpler
structure) to effectively shield host CPUs from offensive
traffic. As a first experiment, we took an existing board with
a 25 MHz RISC (i960), implemented policing and mea-
sured which type of traffic can be policed.

In this paper, we first describe the context of the exper-
iments, i.e. the Dresden Real-Time Operating System2 and
the FORE PCA-200E network adapter. Then we describe
the general design of the offloaded system. Next, we re-
port the results of our measurements and draw some con-
clusions.

2. Related Work

This section briefly introduces two loosely related
projects — the U-Net project [3] and the RIO Subsystem
[9].

2The DROPS project is supported by DFG (Deutsche Forschungsge-
meinschaft, SFB 358, Teilprojekt G2).



2.1. The U-Net Project

The U-Net architecture developed at Cornell University,
provides low-latency and high-bandwidth communication
over commodity networks for workstations and PCs. It
achieves this by virtualizing the network interface such that
every application can send and receive messages without
operating system intervention. With U-Net, the operating
system is no longer involved with the sending and receiv-
ing of messages. This allows communication protocols to
be implemented at user-level where they can be integrated
tightly with the application. In particular, the large buffer-
ing and copying costs found in typical in-kernel network-
ing stacks can be avoided, and feed-back to the application
about flow-control and packet loss is facilitated.

The key aspects of U-Net are:

� U-Net defines a virtual network interface for commod-
ity networking hardware and operating systems.

� The U-Net virtual network interface preserves the
traditional protection boundaries between processes.
Multiple applications can use U-Net at the same time
without interfering.

� U-Net uses commodity operating systems (Unix and
Windows NT) and commodity networks (Fast Ethernet
and ATM).

U-Net supports the Myrinet PCI and SBus interfaces, DEC-
Chip 21140 Fast Ethernet PCI interface, and the FORE Sys-
tems PCA-200/SBA-200 ATM interfaces. Supported oper-
ating systems include Linux, Windows NT, Sun OS 4.x, So-
laris 2.x, and BSDI.

U-Net/MM is an extension to the U-Net user-level net-
work architecture, allowing messages to be transferred di-
rectly to and from any part of an application’s address
space. This is achieved by integrating a translation look-
aside buffer into the network interface and coordinating its
operation with the operating system’s virtual memory sub-
system. This mechanism allows network buffer pages to be
pinned and unpinned dynamically.

2.2. The RIO Subsystem

The RIO subsystem, a project at Washington University,
enhances the Solaris kernel to enforce the QoS features of
the The ACE ORB (TAO) end system and provide end-to-
end QoS. This is achieved by using early demultiplexing
and schedule-driven protocol processing.

The Solaris default network I/O subsystem processes all
packets sequentially at the same priority, regardless of the
destination user thread. This can lead to priority inversion
easily, preventing high-priority connections to meet their

QoS requirements. To overcome this problem, RIO sup-
ports priority-based queueing — instead of enforcing strict
FIFO order, packets destined for high-priority applications
are delivered ahead of low-priority packets. Connections
are assigned a priority which is determined from the con-
nection characteristics given with TAO’s QoS specification.
Priorities map to RIO queues, which are served by an as-
sociated in-kernel thread with respective scheduling prior-
ity. Incoming packets are inspected by a packet classifier in
the network driver which decides whether processing takes
place in interrupt context (for low-delay connections) or the
packet is enqueued in the appropriate receive queue.

To summarize, the RIO subsystem tries to preserve
end-to-end priorities by separating resources and applying
priority-based protocol processing.

3. Environment

The experiments were done in the DROPS OS using a
FORE PCA-200E adapter board.

3.1. The Dresden Real-Time OS and L4ATM

The Dresden Real-Time Operating Systems Project [6]
is a research project aiming at the support of applications
with Quality of Service requirements.

Although much research has been done on network-
ing support for continuous-media applications, very few
projects tackle related operating system issues, such as
scheduling and file system support for bounded response
time. The DROPS project attempts to find design tech-
niques for the construction of distributed real-time operat-
ing systems whose every component guarantees a certain
level of service to applications.

Figure 1. DROPS architecture

A key component is L4Linux, the Linux server on top of
the L4 �-kernel; it serves standard Linux applications. In
addition, separate real-time components — designed from
scratch — provide deterministic service to real-time appli-
cations (Figure 1). At the moment, an ATM protocol com-
ponent, a real time file system, and a presentation compo-



nent are available. The real-time components of DROPS
are connected via the DROPS real-time streaming interface,
an interface designed for the transport of jitter constrained
streams.

L4ATM [2] is the ATM protocol component in DROPS.
In its current state, it offers a narrow subset of the ATM-on-
Linux API [1] — only PVCs are implemented. L4ATM runs
as a stand-alone L4 task, using the PCA-200E driver [4]
to access the hardware. Clients can use L4ATM through a
client library hiding the complexity of the IPC protocol. The
library provides the well-known BSD-style socket interface
as well as functions for a “zero-copy” data path between the
client and the ATM protocol server (get ncp page(),
ncp read(), ncp write()). A stub driver exists for
L4Linux presenting the L4ATM protocol component as an
ATM network device.

PCA−200E hardware

realtime
applications

ATM protocol
component

PCA−200E driver

applications
with non−realtime

L4Linux

Figure 2. L4ATM in DROPS

Two shared memory areas — one for transmit, the other
for receive — are established between each client and the
L4ATM protocol server. The physical addresses of the
mapped pages in the shared memory areas need to be known
and fixed over the lifetime of the mapping. In other words
this is pinned memory. The size of the shared memory areas
is determined by L4ATM from the QoS parameter set spec-
ified with a setsockopt() call after socket creation and
prior to connection establishment.

At connection setup time, a dedicated worker thread per
connection is created in L4ATM. This thread handles trans-
mit requests from the client and pushes received data to the
client. On transmit, this thread may block to enforce the
negotiated transmit rate (traffic shaping). If received data is
available, it is pushed to the client at the negotiated receive
rate.

A “pseudo interrupt thread” in L4ATM waits for mes-
sages from the driver’s interrupt thread and copies the re-
ceived protocol data unit (PDU) into the buffer of the re-
spective connection. If no free buffer space is available, the
received PDU is dropped. At that point the PDU was al-
ready transfered into main memory and processed by the

driver and by the ATM protocol. Since buffer sizes are de-
termined from QoS parameters, this indicates a non con-
forming traffic source. With the current implementation of
L4ATM and the PCA-200E device driver this path is very
CPU intensive, which is even worse in an overload situa-
tion.

In short, L4ATM manages exclusive receive buffers and
a dedicated worker thread per virtual channel (VC). The re-
ceive buffer size is determined from the QoS parameter set
of the connection.

3.2. FORE PCA-200E

The PCA-200E is the PCI based member of FORE’s
FORERunner 200E 155 Mbps ATM network adapter series.
Figure 3 shows a schematic diagram of the PCA-200E.
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Figure 3. PCA-200E Structure

All members of the 200E series share a common part
and a host-bus specific interface. The common part con-
sists of Intel’s i960-CA processor, 256 KB RAM local to
the i960, an ESP-ASIC (Enhanced SAR Processor) with
128 KB RAM, and PMC Sierra’s SUNI-155/Lite User Net-
work Interface (UNI). Either an UTP interface or a fiber-
optical interface is attached to the UNI. Host side interfaces
are available for SBus, EISA Bus, GIO Bus, PCI Bus, VME
bus and Micro Channel Bus.

During host driver initialization, the firmware executing
on the i960 is to be loaded into the i960’s local RAM.

4. General Design

4.1. Design Goals

The design goals can be summarized as follows:

� per virtual channel (VC) buffering
Current firmware as used in the Linux system provides
only two distinct receive buffer pools. Receive buffers
are allocated in a hardly predictable order forcing the
system to do copy/map operations. Per VC buffering
allows a zero copy receive path up to the application.
The effects of buffer overruns due to non conforming
connections would be limited to the single connection.



� data routing decisions in firmware
Having per VC buffering, it is possible to locate re-
ceive buffers either in host memory or in PCI attached
memory, depending on the further processing steps.

� drop unwanted cells earlier
Transferring knowledge of connection characteristics
(traffic parameters) to the firmware moves the point
where non conforming data can be discarded from the
device driver to the firmware. This saves valuable
PCI/host memory bandwidth and host CPU cycles.

� reduced and bounded host resource usage
By reducing and bounding the usage of the host’s re-
sources like memory bandwidth and CPU cycles, pre-
dictability can be improved.

� priorities
Real-time connections should have priority over non
real-time connections. That way, both connection
types can be used concurrently without much effort.

4.2. Interface

The adapter firmware maintains and operates transmit
and receive connections. Each receive connection has its
own buffer and queue of received PDUs.

Requests to initially configure the adapter, to open and
close connections are maintained in a command queue in
the adapter’s local RAM. The command queue is a list of
physical addresses of command descriptors. The firmware
polls the current entry of the command queue. Since the
queue is in the local RAM, no PCI transfers are required for
that. An entry can be written by the host driver in a single
PCI transfer.

Results are communicated to the host (the driver) by in-
serting one of the following events into a host-resident event
queue:

� transmit request completed

� control request completed

� PDU received

� receive queue full

� receive queue over threshold

Events can be silent or interruptive. Whenever an inter-
ruptive event is written to the event queue, an interrupt is
generated on the PCI bus. Furthermore, an interrupt is gen-
erated when a receive queue gets filled up (error condition
due to a non conforming connection) or the number of silent
events has reached a threshold value. As such, connections

with relaxed timing requirements (i.e. best-effort connec-
tions) can receive or transmit data without causing an inter-
rupt for each single PDU. Hence, silent events are the means
of reducing the interrupt frequency.

Buffer management is done by firmware. It manages the
list of received PDUs and exports it to the host driver. The
firmware reassembles received PDUs directly into per-VC
receive buffers. Due to hardware limitations, a PDU always
starts at an address that is a multiple of four. In the case
of insufficient space at the end of a buffer the PDU con-
tinues at the start of the buffer (wrap around). With this
buffer model, a PDU can happen to be split into two seg-
ments. Neither the API of L4ATM nor the ATM-on-Linux
API support scattered buffers. To overcome this, the start
of the buffer could be mapped behind the end of the buffer
— assuming the buffer is aligned to a page boundary and
a multiple of pages in size. This way a split PDU can be
accessed as a contiguous block of virtual memory.

In addition, a receive queue is maintained by the
firmware for each connection. The firmware writes infor-
mation about the received PDUs to the queue. The ded-
icated worker thread in L4ATM pulls entries from the re-
ceive queue, optionally applies traffic management algo-
rithms, pushes the PDU to the application, and adjusts the
tail pointer for the buffer and the receive queue afterwards.

Using this model, connections can be set up with dedi-
cated buffers. Connections which are non conforming sim-
ply run out of buffer space and the firmware discards further
PDUs without causing load on the host CPU.

4.3. Implementation Structure

The implementation essentially can be described by this
pseudo-code:

while (true)
f

transmit();
receive();
handle commands();

g

Execution time of each function is minimized and bound
to reduce overall latency and to avoid data loss due to FIFO
overflows. Whenever a function would block in a certain
operation, it saves its current state and returns to its caller.
The current state is stored in a set of descriptors. Per-VC re-
ceive descriptors hold the state of the receive function, per-
PDU transmit descriptors are used for the transmit function.
The system could be characterized as a very simple coop-
erative process manager. In the following we will therefore
refer to the functions as processes.

The implementation of the transmit process is straight
forward. Its only interesting property is the usage of the



four available hardware FIFOs. We use three FIFOS for
real-time connections and the one remaining FIFO for best-
effort connections. This has one drawback: even though the
rate of a FIFO’s token generator can be changed anytime,
the rate must not be changed when the FIFO holds transmit
data, since this would change the rate of the currently pro-
cessing PDU. However, as long as the number of concurrent
real-time connections does not exceed the number of high-
priority FIFOs, these FIFOs can be used exclusively by a
certain connection. Other scenarios with sharing of FIFOs
for several connections are discussed in [5].

The implementation of the receive process we describe
in somewhat more detail. Reception of data from the net-
work involves several stages: identify incoming cells, either
drop cells or apply AAL processing, transfer data into host
buffers, and notify the driver.

Incoming cells are put in one of the four receive FIFOs,
no matter if there is an open connection for that VPI/VCI
pair. If any of the four FIFOs contains more than a con-
figurable number of cells, a flag is set in a control register
(An interrupt could be requested too). For the sake of low
latency the cells should be pulled from the ESP’s receive
FIFO as soon as possible. Cells for which a connection is
registered are processed by the respective receive function
for reassembly. All other cells are dropped. The receive
function implements AAL processing and reassembly. Ob-
viously, the receive function is the best point to apply early
demultiplexing. Receive buffers for a VC are installed at
connection setup. Buffer space is provided by the protocol
implementation; the buffer size is determined from the QoS
parameter set. The receive function transfers the reassem-
bled data directly from the ESP’s receive FIFO into the per
VC buffers in host memory. This way a zero-copy receive
data path can be implemented.

A major point of interest is the identification of incoming
cells. First of all, a decision has to be made on whether to
discard the cell(s) or not. Only cells of open inbound con-
nections are important. All other cells should be removed
from the ESP’s receive FIFO as soon as possible.

The receive hardware provides four different receive FI-
FOs. When the use of all four FIFOs is not disabled, the
receive hardware selects the appropriate FIFO (0..3) by in-
specting the two least significant bits of the VCI field in the
cell header. Depending on the way the FIFOs are served,
cells with different VCI values could outstrip each other.
This is legitimate, as long as cells of the same VC are kept
in order. The same could also happen in an ATM switch
featuring per VC queuing.

The firmware must maintain information on all open
VCs. When the cell header is pulled from the receive cell
header FIFO, a connection descriptor — if a connection ex-
ists for this VPI/VCI pair — must be looked up. This oper-
ation should be fair in that it is equally expensive for all

open connections. Furthermore, the operation should be
very cheap when no associated connection can be found.
Implementation details are discussed in [5].

The result of the lookup operation is a pointer to an in-
ternal receive descriptor holding all information for the re-
assembly process. If incoming cells do not belong to an
open connection, the pointer is invalid and the cells are dis-
carded immediately.

5. Some Implementation Details

5.1. Header Coalescing

Transmission of a cell consists of two parts — updat-
ing the cell header register and transferring the cell payload.
Cell headers in an AAL5 PDU are common for all but the
last cell. Opposed to writing a cell header for each cell, us-
ing the header coalescing feature only two updates to the
cell header register are required. Hence, the number of ac-
cesses to the ESP can be reduced which frees CPU cycles
for other tasks. Figure 4 shows the ratio of required number
of accesses with and without this feature enabled.
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Figure 4. Effects of Header Coalescing

For a PDU size of 9180 bytes, header coalescing re-
duces the required number of accesses to the ESP to 92.3 %.
Hence, this feature reduces the transmit costs by nearly 8 %.
A similar mechanism exists for the receive path, too. An-
other important implication of header coalescing is, that
multiple consecutive cells can be transfered in one block.

5.2. Identification of Incoming Cells

During the receive process, a cell header is pulled from
the receive FIFO. Solely with the cell header available a de-
cision must be made on whether the cells belong to an open
connection or not. One can think of several approaches of
how to determine that:

tree-based search: Using this method, the whole range of
VPIs and VCIs can be covered. The tree contains



pointers to dynamically allocated connection descrip-
tors. The number of connections is limited by the
available memory for connection descriptors. The time
it takes to lookup a certain connection depends on the
number of connections. By the use of self optimizing
trees the seek time for “high-traffic” connections could
be minimized while incrementing the time for other
connections. But, this would induce a certain level of
unfairness. Furthermore, it would be necessary to in-
vestigate if inserting a node (opening a connection is
not a time-critical operation unlike the lookup on cell
arrival) could break the hard time limits for searching
the tree.

hash-based search with overflow buckets: A commonly
used approach would be to calculate a hash value from
VCI and VPI as an index into a hash table with over-
flow buckets. Although this method could reduce the
mean lookup time, it can result in heavily different
lookup times. The lookup costs for a non-present entry
can be enormous.

VPI/VCI as table index: By reducing the significant bits
in the VPI and VCI field to a total of, say 10, the
value gained from merging the significant bits is used
as an index into an array of descriptors. This reduces
the number of VPIs and VCIs the firmware can cope
with. The number of connections is limited by the ta-
ble size (which in turn is limited by the available mem-
ory). Using an array of pointers to dynamically allo-
cated connection descriptors, the table size (and thus
the VPI/VCI space) could be slightly enlarged while
incrementing the costs for a lookup operation by an
additional level of indirection.

With respect to the criteria listed in Section 4.3, the method
described last looks most suitable for the given problem.
It takes minimum and constant lookup time — no matter
whether an open connection exists or not — at the price of
a reduced VPI/VCI space.

5.3. Cell Discard and Packet Discard

Incoming cells are inserted into one of four receive FI-
FOs in the ESP, even if no connection has been opened for
those cells or a connection’s buffer is filled up. In both of
these situations the firmware should remove the cells from
the receive FIFO. Therefore, the firmware reads the cells
from the receive FIFO without further processing. Even in
a hand-optimized loop this takes at least twelve cycles per
cell.

A solution that significantly reduces the overhead asso-
ciated with discarding cells could be to adjust the memory
pointers of the ESP’s FIFO logic. That way, a short ad-
dress calculation and a single write access to an ESP register

would be enough to get rid of multiple cells. This method is
most efficient for large blocks of cells. But, even though the
pointers are accessible from the i960, no stable mechanism
was found by the time of writing. However, independent
of the method used for discarding, cells classified as to be
discarded produce no extra load on the host CPU.

One of the firmware’s jobs is to reduce the work for the
host CPU. Therefore, it implements a packet discard mech-
anism for AAL5 PDUs. Whenever a connection’s receive
buffer has insufficient free space for handling the current
PDU, the connection is marked as disabled and all future
cells except for the End-of-PDU cell are discarded. Af-
ter arrival of the last cell, the connection is enabled again.
Since the length of an AAL5 PDU is encoded in the last
cell, there is no way to determine at arrival of a PDU’s first
cell whether the entire PDU will fit into the available buffer
space. Hence, for connections with variable PDU sizes
this packet discarding scheme cannot completely avoid un-
necessary PCI-Bus usage, whereas with a committed fixed
PDU size the firmware can begin discarding of cells even at
the start of a PDU. Nevertheless, it unburdens the handling
of dropped packets from the host CPU in overload situa-
tions, which is a major advantage over the previous combi-
nation of the PCA-200E driver and L4ATM.

5.4. FIFO Selection Scheme

The transmit FIFO selection scheme described in Section
4.3 works fine for up to three concurrent real-time connec-
tions. Scenarios with more than three concurrent real-time
connections can be handled similarly as long as they can
be implemented by PDU interleaving (VBR connections).
For the remaining cases, two FIFOs should be associated
with the two connections with the highest rate, while a cell-
level scheduler multiplexes the remaining real-time connec-
tions onto the third high-priority FIFO. But, that cell-level
scheduling approach may be limited to quite low data rates
because of the PCA-200E’s architectural constraints. In
[10] a feasibility study of a software-based cell-level sched-
uler is presented: based on a Pentium Pro 200 MHz up to
1000 concurrent connections can be shaped simultaneously.
But, in contrast to the i960 on the PCA-200E, the CPU used
in this experiment is not responsible for actual data move-
ment. It runs algorithms for the scheduling of DMA trans-
fers and cell transmits. Using this reasoning and the esti-
mates from Section 6.2, software-based cell-level schedul-
ing at high rates is likely to fail on the PCA-200E hardware.



6. Performance

6.1. Memory Considerations

The PCA-200E board has 256 KB of fast SRAM in-
stalled for storing the firmware code and data. The first
KB is shadowed by the i960’s internal RAM. The mon960
debugger is of much help during debugging (breakpoints,
single stepping, etc.) — which takes about 20 KB for its
private data structures. So, there are about 234 KB avail-
able for the firmware. This space has to be shared for code
and data. 32 KB would be a very pessimistic estimate of
the code size, leaving 200 KB for data related to connection
management. Targeting at a minimum of 1024 connections,
this would result in nearly 200 bytes per-connection data
(including receive descriptors, buffer descriptors, transmit
descriptors, etc.) Taking into consideration that no data is
to be buffered in this SRAM, that seems plenty of space.

6.2. CPU Cycles

Estimates

The i960 CPU on the PCA-200E board is clocked at
25 MHz. A saturated full-duplex 155 Mbps link transfers
706414 cells/s. The PCA-200E hardware allows to transfer
cells as twelve 32-bit words in a burst operation (taking one
external cycle per word), leaving an average of 23 cycles
per cell for overall processing overhead. Even with the i960
being able to execute about two instructions per cycle, this
value seems insufficient. This underlines the importance of
the header coalescing feature that allows to avoid treating
each cell separately.

Call Costs

The modular design presented in Section 4.3 is strongly
supported by the i960 architecture. The combination of two
features, a sophisticated call-and-return mechanism saving
procedure-local registers and a saved register cache with
a maximum depth of sixteen, makes function calls very
cheap. In a typical program, procedure calls and returns
cause procedure depth to oscillate a few levels around a me-
dian call depth. Unless oscillation is larger than the number
of cache-able register sets, no cache flush is required. A call
or return instruction involves transfer of sixteen 32-bit reg-
isters which consumes only four clock cycles. By the use of
clever instruction scheduling, up to two instructions prior to
the call/return can be executed in parallel with the call or
return instruction.

6.3. Execution Timings

Table 1 lists execution times for certain tasks3. Due to
the lack of a timestamp counter in the i960, timings were
taken by generating an interrupt after a certain number of
iterations of the task. The host then calculated the dura-
tion between two successive interrupts by use of the Pen-
tium’s timestamp counter. From that the cycles for a sin-
gle iteration were derived. Obviously, the values gained re-
flect a minimum — the i960’s instruction cache combined
with its 16-word prefetch buffer eventually may have re-
duced execution time during measurements in a way that is
not achievable under normal conditions. On the other hand,
running the i960 with cache disabled would increase execu-
tion times far beyond the norm.

task cycles

test if cells are in the any of the receive FIFOs 5
parse empty TX FIFO queues 28
enqueue a TPD to a FIFO’s empty queue 21
enqueue a TPD to a FIFO’s queue 38
dequeue a TPD from a FIFO’s queue 34

Table 1. Execution Times

Related to the estimated 23 cycles per cell these values
underline the motivation of header coalescing. Header co-
alescing enables transfer of multiple cells in a block opera-
tion, grouping data transfer cycles together. That way “long
running” operations (taking more than 23 cycles) become
feasible.

6.4. Maximum Bandwidth

Though we were interested in latency and throughput, la-
tency was not measured due to lacking suitable ATM mea-
surement tools. The numbers presented in this section were
obtained either by the use of interrupts and the host’s times-
tamp counter or from a network management/monitoring
tool whose precision is more than questionable.

Figure 5 shows the maximum achievable transmit band-
width in relation to the PDU size. The dashed line shows
the values for a connection with reduced transmit rate. The
degradation on small PDU sizes relates to the processing
overhead in the firmware. The transmit FIFO drains off be-
fore the firmware is ready to refill the FIFO again. For a
connection at link speed the overhead becomes significant
for PDU sizes of less than 1024 octets. But, a connection
with approximately 100000 cells/s can achieve its requested
bandwidth even with a PDU size of three cells.

3TPD — internal transmit PDU descriptor



0

50000

100000

150000

200000

250000

300000

350000

400000

16 64 256 1024 4096 16384 65536

R
at

e 
in

 c
el

ls
/s

PDU size in octets

Figure 5. Maximum Transmit Rate

6.5. Concurrency

One of the problems addressed by DROPS is the isola-
tion of concurrent activities. Regarding ATM connections,
this means reducing mutual influences of concurrent con-
nections. In this section the behavior and effects of concur-
rent connections are investigated.

Concurrent Transmitters

With the ESP’s transmit FIFOs the firmware is able to shape
up to three concurrent outgoing real-time connections while
offering the remaining bandwidth for best-effort connec-
tions. Given that there is a feasible cell schedule4 for these
connections, no mutual influences should occur. The graphs
in Figure 6 show cell rates of four concurrent outgoing con-
nections and their sum: C2 with 24000 cells/s, C3 with
48000 cells/s, C1 whose rate is changed and the best-effort
connection C4.
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Figure 6. Concurrency of Outbound Connec-
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4It is left to L4ATM to determine if a cell schedule exists for a set of
real-time connections. This decision should be made during the admission
control phase at connection setup.

During the experiment, the rate of C1 was changed. The
rate of C2 and C3 remained stable as expected whereas the
rate of C4, the best-effort connection, adapted to the remain-
ing rate.

Concurrent Receivers

Two central ideas of this work are the isolation of inbound
connections and the protection of the host system from over-
load situations. Connections exceeding their negotiated rate
are to be policed by discarding their packets. The host’s
CPU utilization should not be influenced by those connec-
tions.

C

A

B

Figure 7. Measurement Setup

The setup depicted in Figure 7 was used for the measure-
ments: Three machines (A, B and C) ran DROPS with an
application to control the firmware. Additionally, an “idler”
ran on C to measure the available CPU time. Host A gen-
erated two AAL5 streams of 8192 byte PDUs, both with
a rate of 20 MBit/s. Host B generated an AAL5 stream
with varying PDU size and rate. The switch was configured
with three VCs leading to the port C was connected to. The
“idler” on C repeatedly measures the number of iterations in
a tiny loop in a certain number of CPU cycles. Taking the
value for an unloaded CPU as reference, this allows esti-
mation of remaining CPU time. Furthermore, the firmware
was configured to request an interrupt for every PDU that
was received successfully.
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Figure 8. Host CPU Utilization

As expected, without any open connection the host CPU



does not even notice the incoming data stream. Figure 8
shows utilization of the host’s CPU time for a connection at
link speed and for a 40 MBit/s connection, both with vary-
ing PDU size. Here, the interrupt handler on the host imme-
diately acknowledges the PDU by advancing the tail pointer
of both the receive buffer and the receive queue. Values
for smaller PDU sizes are not available because of massive
CRC errors, probably induced by the firmware’s overhead.
The influences of misbehaving inbound connections on the
host CPU are shown in Figure 9. Here, two connections of
20 MBit/s each and a third connection of 40 MBit/s were
opened. Host A sends on the two connections at their ne-
gotiated rate, whereas the rate of the other connection, the
“hazard”, originating at B is changed.
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Figure 9. Host CPU Utilization with “hazard”

Up to a rate of 2 MBit/s no significant load can be de-
tected. Starting with 5 MBit/s, an almost linear increase
in CPU utilization can be monitored, up to the point where
the actual rate exceeds the negotiated rate. Since the re-
ceive buffer is drained with a rate of max. 40 MBit/s, ad-
ditional PDUs are discarded by the firmware — the host
does not get an interrupt for that. Hence the CPU utiliza-
tion remains constant. When the rate of the connection ex-
ceeds 100 MBit/s, a remarkable decrease in CPU utiliza-
tion can be seen. This is obvious: all three data streams
are joined on C’s switch port, which gets saturated at about
(20 + 20 + 100) MBit/s. Due to cell discard strategies in the
switch, cells of the hazardous connection are dropped. This
leads to damaged PDUs, which in turn pose no load to the
C’s CPU.

7. Summary and Discussion of Performance
Results

This work has been done to study the feasibility of off-
loading policing functions to a slow dedicated CPU. We first
summarize the results given in section 6 and then discuss
their relevance.

7.1. Summary of Results

The obtained data indicate:

� Header coalescing is an important feature to avoid cell
level scheduling decisions for firmware.

� For packet sizes of above 1 KB transmitting data is
possible at full speed on a 25 MHz CPU (such as i960)
with specialized cell assembly support available.

� Within certain limitations that depend on the hardware
(mainly number of hardware FIFOs) concurrent writ-
ing is possible at full speed.

� Load on host CPU depends linearly on the actual band-
width of conforming connections. Thus the host CPU
can be effectively shielded from non conforming traf-
fic.

This indicates that a small, dedicated, and inexpensive net-
work CPU can very effectively be used to improve worst-
case behavior in the presence of non conforming network
connections.

7.2. Discussion of Results

The firmware supports traffic shaping on the transmit
path, differentiates between real-time and best-effort con-
nections, and allows implementation of zero-copy transmit
and receive paths. It uses a simple but powerful policing
mechanism to protect the host from misbehaving inbound
connections. As shown in Section 6, it provides effective
methods to minimize the work for the host CPU. Paired with
L4ATM this firmware offers resource-saving real-time com-
munication via ATM.

However, it may be (and has been) argued that Offload-
ing Policing solves a nonexistent problem, since servers
commonly handle very little incoming traffic while clients
handle very little traffic at all. Even if that might be correct
in general, the argument ignores requirements of real-time
systems. In real-time systems, resources need to be allo-
cated for the worst case, and worst-case requirements limit
the number of admissible applications. Hence, offloading
policing to a cheap CPU to confine the resources needed for
worst-case scenarios is a very economic solution.

Supporting arguments arise in the context of denial of
service attacks. Using Offloaded Policing, second class
packets from non admitted or non conforming offensive
sources can be prevented from overwhelming the process-
ing of admitted and conforming requests. Since denial of
service attacks cannot in general be attributed to certain net-
work sources (addresses), more practical work on more so-
phisticated policing techniques needs to be done to substan-
tiate that argument.



It may be (and has been) argued that tomorrow’s CPUs
will be powerful enough to do centralized policing and
that experiments with 100 MHz Pentium and 25 MHz i960
are completely irrelevant. While we have to admit that
155 Mbps ATM and the used CPUs are not exactly the lat-
est technology, we still claim the principal validity of our
results for several reasons:

� Faster CPUs will have to handle faster networks as
well.

� CPU speed essentially increases with respect to clock
rate and the execution of instructions within the chip.
A corresponding speedup of I/O and memory accesses
is generally not expected.

� Memory speed will remain a limiting factor that espe-
cially will make early dropping of packets very desir-
able.

7.3. Limitations

More work remains to be done, especially in two areas:

� From the current status of experiments it is not clear
yet which transmitting bandwidth can be guaranteed in
the presence of non conforming inbound connections
(worst case). In other words, it is not clear yet up to
which transmission load can be loaded to the dedicated
CPU concurrently with policing an offensive connec-
tion.

� There is no interface so far that allows the operating
system on the host CPU to tell the dedicated CPU what
to do with non conforming traffic other than dropping.
Hence, short term adjustment on temporary low load
situations is not possible.

Although the design was aligned to L4ATM’s requirements,
the general structure allows easy adaption to different host
systems. This covers changes to the buffer mechanism as
well as different strategies for host notification via inter-
rupts.

8. Conclusions

The emphasis of the work described in this paper has
been to provide empirical data of whether or not it makes
sense to include some general purpose computing power in
network interface cards to offload policing. The results we
have obtained using an off-the-shelf adapter card (FORE
PCA-200E) let us conclude that the inclusion of a small
fraction of a central CPU’s processing power on the net-
work interface card suffices to enable offloaded policing.
This can, at least for the coverage of worst-case scenarios,
relieve a large percentage of load off the main CPU.
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[8] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann,
M. Hohmuth, F. Mehnert, L. Reuther, S. Schönberg,
and J. Wolter. DROPS: OS support for distributed
multimedia applications. In Proceedings of the Eighth
ACM SIGOPS European Workshop, Sintra, Portugal,
September 1998.

[9] Fred Kuhns, Douglas C. Schmidt, and David L.
Levine. The Design and Performance of a Real-time
I/O Subsystem. In Fifth Real-time Technology and Ap-
plications Symposium, Vancouver, British Columbia,
Canada, June 1999.

[10] J. Schiller and P. Gunningberg. Feasibility of a
Software-based ATM cell-level scheduler with ad-
vanc ed shaping. In Broadband Communications ’98,
Stuttgart, Germany, April 1998.


