
Cooperative I/O—A Novel I/O Semantics for Energy-Aware Applications

Andreas Weissel, Björn Beutel, Frank Bellosa

University of Erlangen, Department of Computer Science
{weissel,bnbeutel,bellosa}@cs.fau.de
Abstract

In this paper we demonstrate the benefits of application involvement in operating system power management. We

present Coop-I/O, an approach to reduce the power consumption of devices while encompassing all levels of the sys-

tem—from the hardware and OS to a new interface for cooperative I/O that can be used by energy-aware applications.

We assume devices which can be set to low-power operation modes if they are not accessed and where switching be-

tween modes consumes additional energy, e.g. devices with rotating components or network devices consuming en-

ergy for the establishment and shutdown of network connections. In these cases frequent mode switches should be

avoided.

With Coop-I/O, applications can declare open, read and write operations as deferrable and even abortable by specify-

ing a time-out and a cancel flag. This information enables the operating system to delay and batch requests so that the

number of power mode switches is reduced and the device can be kept longer in a low-power mode. We have de-

ployed our concept to the IDE hard disk driver and Ext2 file system of Linux and to typical real-life programs so that

they make use of the new cooperative I/O functions. With energy savings of up to 50%, the experimental results dem-

onstrate the benefits of the concept. We will show that Coop-I/O even outperforms the “oracle” shutdown policy

which defines the lower bound in power consumption if the timing of requests can not be influenced.

1 Introduction

Mobile devices and embedded systems characterize one

major trend in computer system design. One common

aspect of new developments in this area is a limited

power supply and the need to economically handle the

energy resource. Energy-aware system design has there-

fore been widely recognized to be an important and ma-

jor challenge [19].

To enable dynamic power management, the control

and reduction of power consumption at run time, many

techniques and algorithms have been suggested. Rese-

arch in this area has focused mainly on the operating

system level. The OS tries to save a maximum amount

of energy by setting devices and components to low-

power modes if they are not accessed. Because a mode

switch itself consumes energy, this action will only pay

off if the time to the next request is long enough. An

introduction to low-power modes of devices is given in

section 2.

Our contribution to this research area is Coop-I/O—

an approach that integrates the application layer into

dynamic power management of devices. We introduce a

new operating system interface for cooperative I/O

which can be exploited by energy-aware applications.

File operations are equipped with two additional param-

eters—a time-out and a cancel flag. The operating sys-

tem tries to batch deferrable requests in order to create

long idle periods during which switching to a low-power

mode pays off.

An example of a deferrable and abortable write opera-

tion is the periodic auto-save function of a text editor. If

an auto-save has to be aborted because the disk is shut

down, the next auto-save can be performed non-cooper-

atively with up-to-date data. Deferrable, but not abort-

able read operations could fill the read buffer of an

audio- or video player. The time-out can be set to the

play time of this buffer. Other examples are background

processes like cron jobs, daemons or logging mecha-

nisms. A web browser could use a memory cache and

abortable reads and writes to access its disk cache. If the

disk is not running, data will be cached only in memory

and not on disk.

Our concept consists of three major parts, which will

be presented in detail in the next sections:

• We introduce new cooperative file operations that

have a time-out and a cancel flag as additional param-

eters (see section 3). If a file operation needs to access

a disk drive and that drive is shut down, the operation

will be suspended until either the disk drive has spun

up due to another I/O request or the time-out has

elapsed. When the time-out is reached and the file

operation cancel flag is set, the operation will be

aborted. In all other cases, it will be finally executed.

The new functions are compatible with the legacy

interface.

• The operating system caches disk blocks in block
buffers in main memory. Modified block buffers are

periodically written to disk by an update mechanism.

We present an update policy that is redesigned to save

energy (see section 4).

• The operating system will control the hard disk

modes; it will switch the disk drive to a low-power

mode when it assumes that the drive will not be

accessed for a certain time. This is controlled by a

simple algorithm called device-dependent time-out
(DDT) (see section 5).

Figure 1 presents the whole concept. Coop-I/O inte-

grates all levels—hardware, operating system (driver,

cache and file system) and the application layer—to re-

duce energy consumption.

We have implemented Coop-I/O in Linux. The exten-

sions to the IDE device driver, the buffer management

and the file system are presented in section 6. As we will

show, only little effort is needed to rewrite existing pro-

grams and energy-savings are possible even if many

unmodified applications are running. The results of our

experiments can be found in section 7. We will show

that even the “oracle” device shutdown policy, which

has complete knowledge about, but no influence on the

timing of future requests, can be surpassed by Coop-I/O.

Related work is presented in section 8.

2 Low-Power Modes of Devices

Modern peripheral devices make use of several opera-

tion modes that are associated with different levels of

power consumption. Operating systems may reduce the

power consumption of a device by switching between

the device’s operation modes.

The ATA standard, also known as IDE, defines four

operation modes for hard disks [1]: active, idle, standby
and sleep.

• Active mode: the hard disk is reading, writing, seek-

ing or spinning up/down.

• Idle mode: the disk is rotating and the interface is

active. The head is moved to a parking position.

• Standby mode: the hard disk spindle motor is off, but

the hard disk interface is still active.

• Sleep mode: both the hard disk spindle motor and the

interface are off. To reactivate, a reset command is

needed.

A device is “shut down” if it is put into standby or sleep

mode. A non-negligible amount of time and energy is

needed to enter and leave these modes. Therefore, enter-

ing standby or sleep mode will only pay off if the inter-

val to the next disk operation is long enough. The

minimum interval between two disk operations for

which switching pays off is called the break-even time.

It only depends on the characteristics of the hard disk

device. A time interval of idleness (an idle period) that

is longer than the break-even time is called a standby pe-
riod.

The break-even time of the IBM hard disk we used in

our tests is 8.7 s (see section 7.2). Note that this value is

device-specific. Lu et al. [15] report break-even times of

6.39 s for a Fuijitsu MHF 2043AT disk and 35.0 s for an

Hitachi DK23AA-60 drive.

3 Cooperative File Operations

Contemporary operating systems serve read requests

immediately and buffer write requests before storing the

data on disk according to a time-out policy. This can

cause a hard disk to spin up even if the disk was shut

down only a few seconds before. The application devel-

oper has no possible way to exert influence on this

device driver

file system

application

hardware

cooperative file operations

cooperative update

DDT

low-power modes

block buffer
cache

Figure 1: components of Coop-I/O

mechanism. With Coop-I/O, applications can soften this

strict timing to enable a flexible schedule of device re-

quests.

The classical device interface of operating systems

has been designed to hide aspects regarding hardware

management. The application programmer is not aware

of power-saving techniques inside the operating system.

With Coop-I/O we abandon this concept to some extent.

We enable the application programmer to support the

operating system’s efforts to save energy. The details

concerning the power management algorithm are still

hidden from the application layer.

The essential file operations in most operating sys-

tems are provided by the system calls open(),

read() and write(). The operations close()
and lseek() usually do not access the disk directly,

but operate on data in main memory. So we introduce

three cooperative variants: open_coop(),

read_coop() and write_coop(). The legacy

interface, open(), read() and write(), is mapped

to the cooperative functions with zero time-out and inac-

tive cancel flag.

The user-specified time-out value indicates when the

operation is initiated at the latest, not when the operation

has finished. As with the classical Unix file I/O interface

the user does not know when the operation will be com-

pleted.

3.1 Interactions between the disk cache
and cooperative operations

For efficiency reasons, modern operating systems do not

serve write requests to disk drives immediately. To re-

duce the number of slow disk operations, they keep cop-

ies of disk blocks (called block buffers) in a cache in

main memory. A write operation copies data into block

buffers which are marked as dirty to indicate that they

differ from the blocks on disk. The dirty buffer life span
determines the time when these buffers must be written

back to disk to prevent data loss in case of a crash. A

special update task periodically writes out dirty buffers

with an elapsed life span.

Cooperative read operations. If a cooperative read

references a disk block that is not cached in memory, the

operation will have to check if the corresponding hard

disk is in active or idle mode. If it is, the read request

can be served immediately. If not, the operation will

have to block itself until either the hard disk spins up

due to another request or until the time-out has elapsed.

If the time-out has elapsed and the cancel flag is set, the

operation will have to be aborted. Otherwise the drive

has to be activated.

Cooperative write operations. As we never modify

disk blocks directly (data is always written to the block

buffer cache) there seems to be no need for cooperative

writes. The update task defers write operations until

their dirty buffer life span has elapsed. We can easily

modify this mechanism to be cooperative and wait for

other device accesses (read operations); see section 4.2.

However, writing to a disk block can induce a read

operation if the block is not yet cached and must be read

before it can be modified. Thus a shut-down drive would

have to run up immediately. In this case, a cooperative

write operation will simply wait for the drive the same

way as the read_coop() operation does.

But the situation is more complicated: if the write

operation needs to read an uncached block after several

modifications of cached blocks and the whole operation

has to be cancelled (because the drive is in standby

mode, the time-out has elapsed and the operation is

declared abortable), we have to undo all previous modi-

fications of cached blocks to assure file system consis-

tency. All modifications issued by a write request can be

understood as one transaction that must be performed

completely (commit) or not at all (abort).

We decided to use the following approach which

avoids the implementation of an undo mechanism: the

early commit/abort strategy decides to commit or abort

as soon as the first modification to a block buffer is

going to take place.

Assume we want to modify a buffer and the drive is in

standby mode. We can distinguish three situations:

1. The drive is activated due to another request before

the time-out of our request is reached. We can commit

the whole operation.

2. The drive is still shut down when the time-out of our

request is reached. If there are no dirty buffers for the

drive, it can be concluded that our request is the only

one that wants to access the drive. Depending on the

cancel flag, we have to activate the drive or abort the

whole operation.

3. If there is another dirty buffer for the same drive (or

the buffer to be modified is already dirty), the drive

will run up in the near future anyway to write back

that buffer. So we can immediately modify our buffer

at almost no cost: When the dirty block buffer is up-

dated to disk, our buffer will be updated in the same

sweep, as described in section 4.2.

Therefore, a write to a block buffer should be delayed

only as long as the drive is in standby mode and there

are no dirty buffers for that drive. Since a write opera-

tion’s first buffer modification involves committing the

operation, a write can be committed even if the hard

disk is not running.

Due to the early commit/abort strategy it is conceiv-

able that an abortable write operation will not be aborted

after the time-out even if the disk is in standby mode.

This is the case when a read follows a committed write

to a cached block:

1. The disk is in standby mode and there exist dirty

block buffers for that device.

2. The write operation has to modify several disk

blocks.

3. According to the early commit/abort strategy the

write operation is committed after the modification of

the first block.

4. If a subsequent block is not cached, it has to be read

from the disk. This action will be deferred until the

time-out has elapsed.

5. As the complete operation is already committed, we

have to spin up the disk to read the block.

Fortunately, the energy waste in this case is not that big

because the hard disk would run up anyway in the near

future to save the dirty buffers.

Cooperative file open operations. Opening a file re-

sults in reading its meta data (inode block etc.). If the

file has to be created or to be truncated, open will cause

write operations. Therefore we decided to provide a co-

operative system call to open files. Read and write oper-

ations induced by open_coop() are mapped to their

corresponding cooperative counterparts.

3.2 Using the new system calls

Many applications can be modified to be cooperative so

that users will not notice changes in system behavior.

Examples are low-priority tasks like cron jobs, logging

mechanisms or applications with periodic I/O requests

like audio and video players and voice recorders.

Only little effort is needed to make use of the new

system calls. Because the cooperative reads and writes

may block for the specified delay time, I/O should be

decoupled from main processing. An additional thread

reads or writes data cooperatively and caches it for the

main thread. The main thread reads or writes data

from/to this buffer in the same way as it formerly oper-

ated on the file system. The additional thread thus hides

the cooperative operations from the original application.

Our experiments show that the amount of changes is

typically in the range of 100 to 150 lines of code.

Applications which write out temporary data and

update it periodically can declare their requests as defer-

rable and abortable. An example is the autosave func-

tion of a text editor. If a write request is cancelled, the

autosave thread can simply ignore it and issue another

cooperative write with a time-out equal to the autosave

period.

4 Cooperative update

In this section we will show how the caching mecha-

nism can be optimized with respect to power consump-

tion.

4.1 “Traditional” caching of disk blocks

The update process passes the modifications to the

cached disk blocks on to the hard disk. In Unix systems

an update takes place when one of the following condi-

tions is met:

• An explicit update command like sync() forces the

system to write back the buffers of a file system or a

file.

• The dirty buffer life span has elapsed. This is the most

frequent cause of writing back when there is little I/O

traffic. A dirty buffer whose life span has elapsed is

not written back immediately, but when it is found by

the update task.

• A certain percentage of block buffers is dirty. To

avoid I/O jams, some of them are written back. This is

the most frequent cause of dirty buffer updates when

there is heavy I/O traffic.

• The system needs main memory and writes back

some dirty buffers that it will reclaim as free memory

later.

This common policy is not optimized to save energy.

The update task has to access the disk each time it

wakes up to write back dirty buffers. If the time between

two updates is shorter than the break-even time, standby

periods will never be reached. In this case the disk can

not be set to standby mode to save energy.

4.2 Batching write requests

In active mode, energy consumption is higher than in

idle or standby mode. Furthermore, switching between

modes consumes a significant amount of energy. As a

consequence write requests should be batched to maxi-

mize the time the device can spend in low-power modes

and to reduce mode switches.

To make updates and thus disk requests less frequent,

we use a policy which updates each drive independently

of all others and is preferably executed when another

disk request is generated (drive-specific cooperative
update). It is composed of four strategies:

• Write back all buffers. We write back all dirty buffers

instead of only the oldest ones, so we have to update

at most once per dirty buffer life span (60 s in our

implementation).

An additional, possibly redundant write operation

will have only marginal costs if it is batched with

other requests.

• Update cooperatively. The operating system tries to

join other hard disk accesses (read requests) and write

back the dirty buffers possibly before the dirty buffer

life span has elapsed. This or the expiration of the full

life span will trigger the update process.

By attaching to a request that has to happen anyway,

we can update at very little cost.

• Update each drive separately. This will not compro-

mise file system consistency and it may increase the

update interval for a single drive even more. It may

also balance system I/O load since different drives

will probably be updated at different times. Besides,

this is a prerequisite for cooperative updates.

For each drive, we have to watch the age of the oldest

dirty buffer. If it has reached the dirty buffer life span,

we will write back all buffers for that drive.

• Update on shutdown. If the operating system has

decided to shut down a drive, it will first write back

all dirty buffers that contain blocks of that drive. This

minimizes the risk that the disk has to spin up again

soon solely because there are some old dirty buffers

that must be updated.

When an application reads some data from disk, it nor-

mally needs the data for further processing. Thus read

operations are batched only if the application permits it

by using read_coop().

5 An adaptive shutdown policy

Many power management policies for hard disks have

been suggested varying in complexity and usefulness

(see the related work discussed in section 8). If the tim-

ing of hard disk requests cannot be influenced, the imag-

inary “oracle” policy is the policy that reaches maxi-

mum energy savings. It shuts down the hard disk at the

beginning of every standby period and runs it up again

so that it is just ready at the end of that standby period.

To achieve this, the oracle policy needs information on

future hard disk requests. This policy can only be simu-

lated by analyzing request traces offline. The operating

system of course is not able to perfectly predict the fu-

ture and thus cannot achieve maximum reduction in en-

ergy consumption.

The spin-down policy is not central to our work

because our focus lies on cooperative I/O and cache

management. Thus we decided to choose a simple and

easy to implement, but effective and proven, algorithm.

Simple shutdown policies switch to a low-power mode

after a fixed or adaptively changed time-out. As is stated

in [15], the device-dependent time-out policy (DDT),

which uses the break-even time of a drive as its time-out

parameter, has good power-saving facilities, and its

algorithm is fast, simple and storage-efficient. It is

defined in the following way:

The hard disk driver has to keep track of tla. Further-

more, it should know tbe for the drives under its control.

6 Prototype Implementation in Linux

We have implemented the Coop-I/O concept in the

Linux kernel, version 2.4.10. The kernel modifications

can be divided into three parts:

• The VFS and the Ext2 file system have been modified

to support the drive-specific cooperative update pol-

icy of section 4. We have also introduced cooperative

system calls using the concept of section 3 (see sec-

tions 6.1 & 6.2).

• The block device code, which is the glue between a

particular block device driver and the file system, has

been augmented to enable cooperation between the

disk drivers’ power mode control, the file system’s

update mechanism and the cooperative file opera-

tions.

• The IDE driver has been enhanced by a power mode

control for hard disk drives, which includes the DDT

algorithm of section 5. See section 6.3 for a detailed

description.

Shut down the hard disk if

The variables have the following meanings:

t: the current time

tla:the time of the last hard disk access

tbe:the break-even time

tla tbe t≤+

Figure 2: the DDT policy

6.1 Cooperative file operations

A file operation may block whenever it is going to ac-

cess a disk or to make a clean block buffer dirty by mod-

ifying it. The blocking mechanism is implemented in the

new function wait_for_drive().

When blocked in wait_for_drive(), a task may

be awoken by one of four events:

• The timer has elapsed.
If the request should be cancelled on time-out,

wait_for_drive() will return -ETIME.

• The drive is serving another request.
The file operation can go on.

• The number of dirty buffers for the drive has become
non-zero.
If wait_for_drive() is also waiting for that

event, it will simply return without error. If not, it will

be ignored.

• A signal has arrived.
The blocked file operation should be aborted with -
EINTR, so wait_for_drive() returns with that

error code. The cooperative operation should not use

Linux’s implicit restart mechanism since the signal

could be sent to abort it.

The implementation of the cooperative file operations

(open_coop(), read_coop(), write_coop())

is straightforward: The functions that implement the

standard file operations have to be enhanced by the

time-out parameter and the cancel flag. When a

block is going to be read from disk, the function

wait_for_drive() has to be called. For a write op-

eration or an open operation that truncates an old file or

creates a new one a point has to be found where the op-

eration decides to commit or to abort. We chose to im-

plement the early commit/abort strategy as described in

section 3.1.

6.2 Drive specific cooperative update

We have implemented the drive-specific cooperative up-

date policy (see section 4.2). Since the file system does

not know about drives, we had to introduce a mapping

of device numbers to drives as part of the file system.

For each drive, the file system must also keep track of

the number of dirty buffers and of the time when the

oldest dirty buffer got dirty.

The update task in the original Linux wakes up every

5 s. The cooperative version of the update task also

wakes up when a drive is accessed and the file system

finds out that it is opportune to update that drive, as

explained in section 4.2. The need for a cooperative

update is checked every time a drive is read from or

written to. If there are any dirty buffers for the drive and

the drive’s oldest dirty buffer is older than half of the

dirty buffer life span, the update task will be woken up

and induced to update that drive.

6.3 Power mode control for IDE drives

Drive-specific information. For each hard disk, the

Linux IDE driver keeps a description that reflects the

properties and state of that device. We have augmented

the device structure with information needed by the

DDT algorithm (break-even time and time of the last ac-

cess) and a field indicating the current power mode.

The IDE power task. A power mode switch might

take a rather long time, since it may write all dirty buff-

ers back to that drive, or it may execute an IDE com-

mand that actually changes the drive’s mode and wait

for its completion. Instead of a mode switch function

that could block for a long time, we have introduced a

kernel thread called idepower which serves all IDE

drives.

The idepower thread normally sleeps and waits for

a semaphore that signals that a power mode change has

been requested. In this case it will wake up and emits a

power mode command to the hard disk. When changing

the power mode, the power task also informs the file

system when dirty buffers must be written back or coop-

erative file operations that are blocked must be awoken.

Some functions like disk operations change the power

mode implicitly by emitting other IDE commands, so

they must inform the power task.

There are two main reasons why a new power mode

might be requested:

• A hard disk request is sent to the device driver. This

implicitly changes the drive’s power mode to active.

• The DDT standby algorithm decides to shut down the

drive.

Some special IDE commands leave the disk drive in an

undefined power mode, so they request the power task to

check.

Going to standby. The DDT algorithm is implemented

as a timer-based function that is called once per second.

Since disk requests may be very frequent, this is more

efficient than using a dedicated timer for each drive that

has to be restarted when a disk request has been served.

The information that is needed by the DDT algorithm

(time of the last access) is updated with each disk

request.

7 Experiments and Results

7.1 Data acquisition

To validate the Coop-I/O concept a power measuring en-

vironment was needed. A comparatively inexpensive

four-channel analog-to-digital converter (ADC) has

been designed and built to act as the data acquisition

system. It measures the voltage drop at defined sense re-

sistors in the 5 V lines leading from the power supply to

the hard disk and interfaces to the standard parallel port

on the data acquisition system to output the digital val-

ues. The voltage drop is acquired with a resolution of

256 steps and at a rate of up to 20000 samples per sec-

ond. The maximum voltage drop that is correctly con-

verted is 50 mV.

The target computer was a standard personal com-

puter running Linux (kernel version 2.4.10). The system

was equipped with a 2,5” IBM Travelstar 15GN

(IC25N010ATDA04) hard disk [9] which was used as

the test drive.

7.2 Determining hard disk parameters

We measured the power consumption of different

mode switches of the IBM hard disk with our data

acquisition system. The Travelstar splits up the idle

mode into three submodes (performance, active and low
power) that have different power consumption and tim-

ing characteristics. Observing recent user request pat-

terns, an internal adaptive algorithm switches

autonomously between these modes [9].

Figure 3 shows the power consumption of the IBM hard

disk during an idle-standby-idle turnaround.

t = 1s: The disk receives a shutdown command. The

shaded region shows the hard disk switching from

low power idle to standby mode.

t = 1.8 s: After stopping the spindle motor, the disk has

reached standby mode, and power consumption

drops to about 0.25 W.

t = 3.8s: The drive receives a write command and starts

to spin up. The shaded region shows the hard disk

switching from standby mode to active mode. Start-

ing the spindle motor is quite expensive, energeti-

cally. After 1 s, the disk has spun up and may serve

read or write requests.

t = 4.8 s: In this test scenario only a single disk block

gets written. Then, the disk switches to low power
idle mode.

We determined the following characteristics for the IBM

Travelstar 15GN drive. Due to the undocumented inter-

nal adaptive algorithm of the firmware the time and en-

ergy values vary according to the recent access pattern.

The following values present the average of several

measurements:

time needed for a mode switch:

low-power idle to standby: tis = 0.85 s

standby to low-power idle: tsi = 1.03 s

energy required to switch between modes:

low-power idle to standby: Eis = 1.91 J

standby to low-power idle: Esi = 1.89 J

power consumption of the low-power modes:

low-power idle mode: Pi = 0.657 W

standby mode: Ps = 0.235 W

break-even time: tbe = 8.7 s

7.3 Testing a cooperative audio player

We examined to what extent Cooperative I/O is able to

save energy in a real-life situation. A typical application

for hand-held or portable computers is a player for audio

or video files. We have tested the system with a modified

version of AMP, an MPEG audio layer 3 player for

Linux, which makes use of the cooperative system calls.

Thus we gained insight into the procedure and amount

of modifications needed to make applications energy-

aware.

The modified AMP creates a thread that reads from

the hard disk and puts the data into a 512 kB buffer.

When the player thread needs some data it reads from

the buffer. The read thread and the player thread syn-

chronize by the use of semaphores. The buffer is divided

into two semi-buffers. When a semi-buffer is empty, the

reader refills it by the use of a cooperative system read

call while the player reads from the other semi-buffer.

We had to add only about 150 source lines to incorpo-

rate the changes.

Figure 3: idle-standby-idle turnaround

0 1 2 3 4 5
t [s]

0

1

2

3

4

5

P
[W

]

AMP was tested under the following four strategies:

• Cooperative:
Use the DDT standby algorithm together with the

new buffer cache and update mechanism. To read in

new data, use the read_coop() system call with a

delay that is equivalent to the playing time for one

semi-buffer.

• ECU (Energy-aware Caching & Update):

Use the DDT standby algorithm together with the

new buffer cache and update mechanism. Use the

standard read() system call instead of

read_coop() to read in new data.

• DDT only:
Use the DDT standby algorithm with the original
buffer cache and update mechanism.

• None:
Do not use any power-saving measures at all.

In addition to that we simulated the “uncooperative ora-
cle” policy. We collected traces of hard disk requests is-

sued by the original uncooperative AMP running on an

unmodified Linux. We calculated the minimum in total

energy consumption according to the following assump-

tions:

• The hard disk will be set to standby mode immedi-
ately after serving a request if the following idle

period is a standby period, i.e. if it is longer than the

break-even time.

• Otherwise the hard disk is not shut down. It switches

immediately to low power idle mode.

The values for “oracle” resemble the theoretical lower

bounds of power consumption that can be reached by

shutdown policies without influencing the timing of re-

quests (in contrast to Coop-I/O).

Each strategy has been tested by playing the follow-

ing two audio files. Delay is the time interval in which

one semi-buffer is played. The files have the same

length (9 minutes), but different compression levels.

We have also examined how well the power-saving

strategies work when an asynchronous second applica-

tion runs while playing an audio file. For that aim, the

test computer has concurrently executed a mail reader

that examined the input mailbox of a remote computer

via POP3 every minute. If there is any mail in it, the

mail will be stored in the local mailbox on the test hard

disk. Mail was sent in intervals of 15–60 seconds; the

timing was controlled by a pseudo-random generator.

For every test pass, the random generator was initialized

to the same value, so the timely sequence of read/write

operations was the same for each test with a tolerance of

about one second. Figure 4 shows the results (all tests

run for 534 seconds).

The cooperative strategy is surprisingly power-effi-

cient in these tests. This is not only caused by the coop-

eration of multiple processes because some tests have

only one process doing I/O. Instead, it can be explained

by the following behavior: When the drive is in standby

mode, a cooperative read is delayed until the data is

really needed, i.e., the semi-buffer to be read will soon

be played. When the delayed read operation is eventu-

ally performed, the other semi-buffer gets empty very

soon and is read in immediately because the hard disk

drive is still in idle or active mode. This effectively

batches two subsequent read operations. You can see

this behavior in figure 5.

Playing “Pastorale” together with the mail reader con-

sumes nearly the same energy, regardless which non-

cooperative strategy is used. Because the delay for this

audio file is only 16 s and there are several write

requests, no strategy will normally try to shut down the

hard disk in this test scenario. This is due to the short

intervals between requests which seldom exceed the

break-even time. Coop-I/O again groups requests

together, so that longer idle periods and thus standby
periods are achieved. As a consequence the drive can be

set to standby mode more often and the energy con-

sumption is reduced.

If we have a look at the times spend in active, idle and

standby mode, it can be seen that “Oracle” saves more

energy than “Cooperative” by keeping the drive in

standby mode all the time it is not accessed (table 1).

This is due to the DDT policy which always waits 8.7

seconds before setting the drive to standby mode. The

oracle policy will shut down the drive immediately if the

following idle period is longer than the break-even time.

audio file bit rate delay

Toccata 64 kb/s 32 s

Pastorale 128 kb/s 16 s

Figure 4: comparison of policies

21
0

J

22
7

J

28
6

J 31
2

J

18
4

J

20
1

J

25
7

J

25
7

J

26
5

J

27
0

J

38
1

J

38
9

J

26
9

J

31
3

J

38
8

J 43
0

J

37
3

J

38
3

J

37
5

J 41
0

J

Toccata Toccata & Mail Pastorale Pastorale & Mail
150

200

250

300

350

400

450

E [J]

Cooperative
Oracle
ECU
DDT only
None

.

Furthermore it can be seen that “Cooperative”

reduces the time spent in active mode by almost 60%.

There is almost no difference in energy consumption

between the strategies “DDT only” and “None” when

playing “Pastorale”. This behavior is caused by the

unlucky relation of the shutdown time-out and the hard

disk request pattern which sets the disk to standby

shortly before the disk is accessed. In that case, switch-

ing to standby mode is more expensive than staying in

idle mode.

Figure 6 shows how disk requests of two independent

tasks may interact. The “Toccata” task cooperatively

reads one semi-buffer in every period of 32 s (figure 6a);

the “Mail” task writes in intervals of 1 minute, provided

that mail has arrived (figure 6b). The write requests are

delayed by the cooperative update scheme (figure 6c).

With Coop-I/O most of the requests of the two applica-

tions can be grouped together. As a consequence, the

energy consumption of “Toccata & Mail” is only 17 J

higher than without the mail application. If the requests

were not coordinated, the hard disk’s energy consump-

tion would be about 60 J higher (figure 6d). This means

that Coop-I/O is a working energy-saving concept.

policy active idle standby

Cooperative 38 s 166 s 331 s

Oracle 89 s 0 s 456 s

Table 1: times spent in the different power modes when

playing “Pastorale”

a) Cooperative (210 J)

b) Energy-aware Caching & Update (265 J)

c) DDT only (269 J)

d) None (373 J)

Figure 5: the four energy saving strategies
(playing “Toccata”, without Mail)

0 100 200 300 400 500
t [s]

0

1

2

3

4

5
P

[W
]

0 100 200 300 400 500
t [s]

0

1

2

3

4

5

P
[W

]

0 100 200 300 400 500
t [s]

0

1

2

3

4

5

P
[W

]

0 100 200 300 400 500
t [s]

0

1

2

3

4

5

P
[W

]

a) Toccata cooperative (210 J)

b) Mail cooperative (164 J)

c) Toccata & Mail non-cooperative (270 J)

Figure 6: interaction of two independent tasks

d) Toccata & Mail cooperative (227 J)

0 100 200 300 400 500
t [s]

0

1

2

3

4

5

P
[W

]

0 100 200 300 400 500
t [s]

0

1

2

3

4

5

P
[W

]

0 100 200 300 400 500
t [s]

0

1

2

3

4

5

P
[W

]

0 100 200 300 400 500
t [s]

0

1

2

3

4

5

P
[W

]

7.4 Parameterized tests

To simulate a workload where multiple tasks periodi-

cally read or write data, we implemented two simple test

programs. The period and the idle time (the time to wait

at the beginning of a period until the read/write opera-

tion is started) can be configured. To simulate non-regu-

lar behavior, minimum and maximum values for the idle

time can be specified; the actual value is chosen by a

pseudo-random generator. Groups of five read/write pro-

cesses with varying period lengths and idle times were

used to generate non-regular hard disk request patterns.

We measured the energy consumption for a time win-

dow of 1000 seconds (figures 7 and 8).

Reads with varying period length. In the first test

series, we have varied the period length and idle times

for read operations. The average period lengths of the

six tests range from 25 to 150 seconds, the average idle

times lie between 7 and 120 seconds. Each test has been

executed in combination with the four power-saving

strategies. Figure 7 shows the measured consumptions.

Running with an average period length of 25 seconds,

the energy consumption is nearly equal for all strategies

(except “Oracle”). Here, the read requests are so fre-

quent that the drive has no chance to shut down. “ECU”

and “DDT only” consume even more power than

“None” by initiating disadvantageous shutdowns. The

longer the period length, the longer the power mode

control can hold the disk in standby mode for all strate-

gies but “None”. The cooperative strategy generates the

longest standby periods since following cooperative

reads are delayed.

“Cooperative” even outperforms the oracle policy for

average period lengths of 100 seconds and more. Table 2

shows the times spent in active, idle and standby mode

for an average period length of 150 seconds. The coop-

erative policy batches hard disk requests. Consequently

mode switches are less frequent and the time spent in

active mode is reduced by more than 70%, while the

time spent in low-power modes is increased. Thus

“Cooperative” saves more energy than the oracle policy.

Writes with varying period length. The energy-re-

lated characteristics of write operations are influenced

by the sequence of requests and the update policy of the

buffer management.

We have executed the same test series as in the previ-

ous section using write operations instead of read opera-

tions. Again, the tests have been run under all four

strategies. The traces for the oracle policy where col-

lected using the unmodified update mechanism. The

results are presented in figure 8.

The frequency of write operations seems to have little

effect on the energy consumption. For the strategies

“Cooperative” and “ECU” the consumption stays con-

stantly on a low level for all period lengths. This is

caused by the cooperative update policy that will write

back quite regularly in intervals of 60 seconds, if no

other disk request happens. The amount of data written

has almost no influence on the energy consumption. The

small difference between the cooperative and the

“ECU” strategy indicates that cooperative write opera-

tions have a marginal but at least consistently positive

benefit. The policies “DDT only” and “None” employ

the original Linux 2.4 update strategy. “ECU” consumes

significantly less energy than “DDT only” and “None”

because of the improved update policies (see section

4.2). This shows that the original Linux update strategy

does not match power-saving requirements.

Figure 7: reads with varying average period length

75
3

J

59
2

J

50
6

J

42
5

J

39
4

J

36
7

J

60
9

J

51
4

J

48
5

J

47
8

J

47
2

J

46
9

J

77
8

J

69
3

J

64
5

J

56
6

J

53
0

J

49
3

J

78
0

J

72
3

J

68
8

J

63
5

J

58
9

J

56
8

J

75
0

J

73
0

J

73
3

J

72
5

J

72
0

J

71
4

J

25 50 75 100 125 150
Average Period Length [s]

0

200

400

600

800

1000

E [J]

Cooperative
Oracle
ECU
DDT only
None

policy active idle standby

Cooperative 29 s 153 s 868 s

Oracle 107 s 132 s 811 s

Table 2: times spent in the different power modes for an

average period length of 150 seconds

Figure 8: writes with varying average period length

35
3

J

33
9

J

32
7

J

32
0

J

31
1

J

30
2

J

55
7

J

50
8

J

49
9

J

47
3

J

45
2

J

38
7

J

36
0

J

34
8

J

34
0

J

33
7

J

33
6

J

32
9

J

79
1

J

70
8

J

62
3

J

55
6

J

52
3

J

48
3

J

73
0

J

71
8

J

71
6

J

70
3

J

69
5

J

69
2

J

25 50 75 100 125 150
Average Period Length [s]

0

200

400

600

800

1000

E [J]

Cooperative
Oracle
ECU
DDT only
None

7.5 Varying the number of cooperative
processes

In the previous tests all programs were cooperative. But

in a real-life scenario non-cooperative legacy applica-

tions will mix with cooperative programs. Thus, we

have examined the behavior of a mixture of different

numbers of cooperative and non-cooperative processes.

Figure 9 presents the results of 6 read tests with a mix-

ture of 5 processes including 0 to 5 cooperative applica-

tions.

The energy consumption steadily declines with

increasing proportion of cooperative processes, but hav-

ing a single cooperative process suffices to save energy.

8 Related Work

We distinguish three levels on which energy saving

techniques can be applied: the hardware, the operating

system and the application layer. We will show how

power management is performed on each level and how

Coop-I/O and existing techniques can be incorporated

into an energy-aware system design.

Device-level power management. Attention has first

been drawn to the lowest level leading to many research

and industrial efforts at developing low-power hard-

ware. Modern-day devices and their components can be

shut down or put into low-power modes to save energy

when they are not in use. These improvements have

come along with OS-level support in the form of heuris-

tic hardware-centric shutdown policies which are trans-

parent to applications.

Three approaches to hard disk power management

can be distinguished: algorithms with a fixed or adaptive

time-out, policies that try to predict future requests by

observing the utilization of the device and policies based

on statistical models of requests. Several shutdown poli-

cies have been suggested [4],[7],[8],[10],[11],[14]. Lu et

al. [15] have compared and evaluated several algo-

rithms. Among commercial solutions to OS-level power

management are the Advanced Configuration and Power

Interface (ACPI) [3], Microsoft’s OnNow [16] and

ACPI4Linux [2].

Energy-aware operating system. As the next step

more sophisticated energy-related methods have been

introduced lifting energy to a first class operating sys-

tem resource by unifying resource management, intro-

ducing energy accounting and enabling control of en-

ergy consumption and battery lifetime. These

approaches have explicitly been designed to be not de-

pendent on application software to be rewritten.

Zeng et al. present ECOSystem [19], a modified

Linux, that unifies energy accounting over diverse hard-

ware components and enables fair allocation of avail-

able energy among applications. ECOSystem provides

system-wide energy management and can be configured

to hit a specified target battery lifetime. Energy account-

ing is realized by implementing the powerful concept of

resource containers which serve as the abstraction to

which energy expenditures are charged. As Zeng et al.

propose in their paper, future research should consider

the interaction between ECOSystem and the applica-

tions. We find it interesting to investigate the potential of

combining Coop-I/O and ECOSystem, being orthogonal

to each other, to come closer to the vision of incorporat-

ing energy management in all levels of system design.

Cooperation between the OS and applications.
While traditional power management schemes in

operating systems do not distinguish different sources of

requests, the power reduction technique introduced by

Lu et al. [12] uses information about concurrently run-

ning tasks as an accurate system-level model of request-

ers. This task-based power management records the

device and processor utilization of each process and

shuts down a device when the overall utilization is low.

Being somewhat orthogonal to each other it would be

interesting to combine Coop-I/O and task-based power

management.

Another approach by Lu et al. [13] is based on appli-

cation involvement in energy management. New system

calls are introduced which enable applications to inform

the operating system about future hard disk requests.

These system calls are similar to timers; they indicate in

which time intervals, how often (once, periodically) and

with which possible delay requests are issued. Thus

applications have to inform the operating system about

future requests before these requests are issued, nor-

mally at program start.

The cooperation policy of Coop-I/O enables pro-

cesses to pass the urgency (delay time) of each individ-

ual request without the need for the programmer to

Figure 9: varying number of cooperative processes

515 J 495 J 473 J 457 J
426 J 408 J

0 1 2 3 4 5
Number of Cooperative Processes

0

200

400

600

E
 [

J]

determine request patterns of the whole program run.

Figure 10a shows a scenario with four processes; num-

ber one issues several hard disk requests. While Lu’s

approach (Fig 10b) arranges the schedule of processes

to create a cooperative schedule of hard disk requests,

Coop-I/O (Fig 10c) schedules the hard disk requests

themselves without changing the process schedule.

Pouwelse et al. [18] demonstrate the benefits of

power-aware applications. Applications can inform the

OS about their processing demands, so the optimal pro-

cessor speed can be selected that minimizes power con-

sumption and still meets the application’s deadlines.

Application adaptation. Orthogonal to our approach is

energy-aware application adaptation presented by Flinn

et al. [6],[17]. Applications are rewritten so that they can

dynamically modify their behavior according to chang-

ing restrictions in energy consumption. An example of

adaptation is a movie player with different quality of

service modes (e.g. refresh rates or window sizes). To

guide such adaptation, the operating system monitors

energy supply and demand and informs applications

about restrictions in energy consumption via upcalls.

Energy-aware system design. All four approaches—

energy-aware hardware, operating system, application

adaptation and Coop-I/O—are complementary to each

other and can be used to form a comprehensive energy-

aware system de-sign, as shown in figure 11.

9 Conclusion

In this paper we have presented an energy-saving con-

cept for devices with low-power operation modes based

on a cooperative relationship between the operating sys-

tem and applications. While many efforts have been

made to incorporate energy-related aspects in the design

of operating systems and computer hardware, the inter-

face between the OS and applications has been retained

unchanged to make power management fully transpar-

ent to applications.

We have demonstrated that Coop-I/O, with its new

interface functions, enables a higher reduction in power

consumption than power management techniques which

operate solely on the OS level. Coop-I/O outperforms

the “oracle” policy which defines the theoretical lower

bound in power consumption if the timing of requests is

not influenced. These improvements come with the cost

of modifying existing applications. We have shown that

only little effort is needed to make use of the new func-

tionality. Coop-I/O is the first approach to power man-

agement which controls not only the timing but also the

execution of requests.

We plan to investigate the applicability of our concept

to the control of other system components, e.g. a wire-

less network adapter. Our modifications to the operating

system interface presented here concentrate on the basic

file I/O operations. We plan to investigate to what extent

other interface functions can be enhanced so that a

wider range of energy-aware applications is able to con-

tribute to OS power management. In our opinion the

research area of application involvement in operating

system power management facilities shows huge poten-

tial and should be further investigated.

Acknowledgments

The anonymous reviewers and our shepherd, Carla

Ellis, have helped us to improve this paper with their

useful feedback.

time

a)

b)

c)

Figure 10: different request batching policies

1 2 3 4 1 2 3 2 1 4 3 1

HD

tasks

time

1 2 3 41 2 3 2 1 4 31

HD

tasks

time

1 2 3 4 1 2 3 2 1 4 3 1

HD

tasks

HD busyHD idle

applications with

energy-aware operating system [19]

hardware with low-power modes

special system calls adaptation upcalls

energy-aware

(Coop-I/O, [13],

applications with

energy-aware

adaptationresource usage

Figure 11: comprehensive energy-aware system design

[18])

[6],[17]

References

[1] American National Standards Institute.

Information Technology – AT Attachment with

Packet Interface 5 (ATA/ATAPI-5). Published as

ANSI/INCITS 340-2000, Dec 2000

[2] M. Berger, S. Richter, ACPI4Linux.

http://phobos.fs.tum.de/acpi/index.html

[3] Compaq, Intel, Microsoft, Phoenix, Toshiba.

Advanced Configuration and Power Interface

Specification 2.0a, Mar 2002

[4] F. Douglis, P. Krishnan, B. Bershad. Adaptive

Disk Spin-down Policies for Mobile Computers.

In Proceedings of the Second USENIX Symposium
on Mobile and Location Independent Computing,

Apr 1995

[5] F. Douglis, P. Krishnan, B Marsh. Thwarting the

Power Hungry Disk. In Proceedings of the 1994
Winter USENIX Conference, Jan 1994

[6] J. Flinn, M. Satyanarayanan: Energy-aware

Adaptation for Mobile Applications, In

Proceedings of the 17th Symposium on Operating
Systems Principles SOSP’99, pp. 48–63, Dec 1999

[7] P. Greenawalt. Modeling Power Management for

Hard Disks. In Proceedings of the Symposium on
Modeling and Simulation of Computer and
Telecommunication Systems, Jan 1994

[8] D. Helmbold, D. Long, B. Sherrod. A Dynamic

Disk Spin-Down Technique for Mobile

Computing. In Proceedings of the 2nd ACM
International Conference on Mobile Computing
(MOBICOM96), pp. 130–142, Nov 1996

[9] IBM Corporation. Hard Disk Drive Specifications

for Travelstar 48GH, 30GN & 15GN, Rev. 2.0, Jan

2002

[10] P. Krishnan, P. Long, J. Vitter. Adaptive Disk Spin-

Down via Optimal Rent-to-Buy in Probabilistic

Environments. In Proceedings of the 12th
International Conference on Machine Learning.

pp. 332–330, July 1995

[11] Li-K; Kumpf-R; Horton-P; Anderson-T. A

Quantitative Analysis of Disk Drive Power

Management in Portable Computers. In

Proceedings of the USENIX Winter 1994
Conference, pp. 279–292, Jan 1994

[12] Y.-H. Lu, L.Benini, G. De Micheli. Operating

System Directed Power Reduction. In

Proceedings of the 2000 International Symposium
on Low Power Electronics and Design
ISLPED’00, pp. 37–42, July 2000

[13] Y.-H. Lu, L. Benini, G. De Micheli. Power-aware

Operating Systems for Interactive Systems, In

IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 10(2):119–134, Apr

2002

[14] Y.-H. Lu, G. De Micheli. Adaptive Hard Disk

Power Management on Personal Computers. In

Proceedings of the Ninth IEEE Great Lakes
Symposium, pp. 50–53, Mar 1999

[15] Y.-H. Lu, G. De Micheli: Comparing System-

Level Power Management Policies. In IEEE
Design & Test of Computers. Special Issue on
Dynamic Power Management of Electronic
Systems. pp. 10–18, Mar-Apr 2001

[16] Microsoft. OnNow Power Management

http://www.microsoft.com/hwdev/onnow/

[17] B. D. Noble, M. Satyanarayanan, D. Narayanan, J.

E. Tilton, J. Flinn, K. R. Walker. Agile

Application-aware Adaptation for Mobility. In

Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles SOSP’97, pp. 276–

287, Oct 1997

[18] J. Pouwelse, K. Langendoen, H. Spis. Dynamic

Voltage Scaling on a Low-power Microprocessor.

In Proceedings of the International Symposium on
Mobile Multimedia Systems & Applications
MMSA’2000, Nov 2000

[19] H. Zeng, X. Fan, C. Ellis, A. Lebeck, A. Vahdat:

ECOSystem: Managing Energy as a First Class

Operating System Resource, In Proceedings of the
International Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS), Oct 2002

	Cooperative I/O—A Novel I/O Semantics for Energy-Aware Applications
	Abstract
	1 Introduction
	2 Low-Power Modes of Devices
	3 Cooperative File Operations
	3.1 Interactions between the disk cache and cooperative operations
	3.2 Using the new system calls

	4 Cooperative update
	4.1 “Traditional” caching of disk blocks
	4.2 Batching write requests

	5 An adaptive shutdown policy
	6 Prototype Implementation in Linux
	6.1 Cooperative file operations
	6.2 Drive specific cooperative update
	6.3 Power mode control for IDE drives

	7 Experiments and Results
	7.1 Data acquisition
	7.2 Determining hard disk parameters
	7.3 Testing a cooperative audio player
	7.4 Parameterized tests
	7.5 Varying the number of cooperative processes

	8 Related Work
	9 Conclusion

	Acknowledgments
	References

