
 Proceedings of 11th ACM SIGOPS European Workshop, Leuven, Belgium, Sept. 2004
When Physical Is Not Real Enough
Frank Bellosa

University of Erlangen
Department of Computer Science 4 (Operating Systems)

bellosa@cs.fau.de
ABSTRACT
This position paper argues that policies for physical mem-
ory management and for memory power mode control
should be relocated to the system software of a programma-
ble memory management controller (MMC). Similarly to
the mapping of virtual to physical addresses done by an
MMU of a processor, this controller offers another level of
mapping from physical addresses to real addresses in a
multi-bank multi-technology (DRAM, MRAM, FLASH)
memory system. Furthermore, the programmable memory
controller is responsible for the allocation and migration of
memory according to power and performance demands.

Our approach dissociates the aspects of memory protec-
tion and sharing from the aspect of energy-aware manage-
ment of real memory. In this way, legacy operating systems
do not have to be extended to reduce memory power dissi-
pation, and power-aware memory is no longer limited to
CPUs with an MMU.

1. Introduction
Memory is becoming more and more a target for power
management. With systems providing multiple memory
technologies (e.g., DRAM, MRAM and FLASH) with
individual power levels, it is an appealing idea to
employ the optimal memory technology at the best
power level for each region of memory according to
reference patterns and power/performance demands.

According to precise energy estimation models for
DRAM memory, several OS policies have been
proposed that save energy by exploiting power states:
• Memory controller policies [1]:

By monitoring the time-gap between DRAM
accesses, the threshold for a transition to a low power
state can be determined. Because efficient hardware
for an on-line finding of the optimal threshold is not
available, the authors refrain from sophisticated poli-
cies and recommend to immediately transition to a
low power state.

• Page allocation [2, 3]:
In a multibank memory system, pages of a process
are aggregated in a minimal set of memory banks, to
keep as many banks as possible in a low-power state
while only a few banks are busy. To hide latency the
scheduler can give hints to wake up a set of banks
before they are used by a process. Special care has to
be taken for shared memory regions like dynami-
cally-loaded libraries. DLL aggregation is proposed
to avoid scattering effects. With reported energy
savings of 42-90% of total memory power for a
system with 16 RDRAM devices [2], energy-aware
page allocation is a viable approach for systems with
a limited number of memory banks and static refer-
ence patterns. However it cannot respond to changing
access characteristics or co-exist with demand
paging.

• Page migration [2]:
Page migration is used to dynamically aggregate the
working set of a process into a fewer number of
active memory modules and to overcome the scat-
tering effects of shared memory regions. By applying
page migration in a system with energy-aware page
allocation, an additional 20-40% of energy savings
could be reported [2]. Nonetheless page migration
has a number of flaws:

• The information about page references is counted
at the wrong location and with a poor accuracy.
Typical MMUs just register if a page has been
referenced at all, but not the number of references.
To support energy-aware page migration the
number of page references resulting from cache
misses and those resulting from DMA operations
is essential. However, this information is not
provided by contemporary architectures.

• Migration of shared pages requires a complex
analysis of the reverse mapping to find candidates
for migration. After copying the pages, multiple
page tables have to be updated. Both operations
are expensive in time and energy.

• Page migration has to be deeply integrated into the
operating system code. Consequently comprehen-
sive restructuring and implementation efforts are
required for each operating system to become
energy-aware. This is a major hurdle in the

 Proceedings of 11th ACM SIGOPS European Workshop, Leuven, Belgium, Sept. 2004
embedded market with its rich flavor of special-
ized operating systems.

• Page migration requires a memory management
unit, which is not available in many low-power
controllers.

 To overcome the drawbacks of contemporary
energy-aware memory-management policies, this posi-
tion paper describes the architecture and the benefits
that arise from relocating physical memory management
from the main operating system to the system software of
a dedicated memory management controller (MMC).

2. Memory Architecture
The memory management controller (MMC) is located
between the system bus and the main memory. A trans-
lation unit within the MMC maps physical addresses
(issued by the main CPU and the I/O devices) to memory
addresses of the associated memory modules (see
figure 1). The mapping is done on the granularity of
pages.

The MMC is responsible for the following tasks:

• Mapping from physical addresses to real addresses
• Counting of read- and write-references to real

memory pages
• Averaging the access gap for each memory bank
• Managing the power states of each individual

memory module
• Swapping memory pages between memory banks of

different energy- and access characteristics

• Efficient copying of memory pages on request of the
operating system running on the main CPU

• Efficient filling with zeroes
• Compressing/uncompressing of pages
We propose the following architecture for a first imple-
mentation of the MMC.

• The TLB within the MMC is responsible for the
address mapping and the counting of read and write
references (e.g., with 32 bit counters). Because the
latency of main memory is higher than the latency of
caches, performance of the MMC-TLB is not critical
in comparison to the performance of a TLB trans-
lating addresses for access to a physical cache.
Furthermore the reference counts are written back to
the map table in case of the eviction of an entry due
to a TLB miss or an MMC-TLB flush operation. We
recommend a hardware TLB walk through the map
table.

• The map table is a direct mapped table for the trans-
lation of physical pages to real pages. The size of the
physical address space is exactly the size of the real
address space. The page size should be small (e.g.,
1 KB) to allow fine grained page migration.

• The controller within the MCC does not require its
own MMU but it should contain hardware support for
energy efficient memory copying and for memory
compression/uncompression thereby resurrecting the
ideas of hardware compressed main memory [4].
With compression, the portion of the total memory-
device density needed for data retention is reduced
which offers – after compacting the memory in a
module – the opportunity for a partial array self
refresh (PASR) [5] to save energy.

• The MMC memory contains code and data of the
MMC controller. The controller boots an initial
version of its system software from FLASH.
However the main operating system has the option to
update the MMC system software to instantiate novel
interfaces and policies.

DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

MRAM MRAM MRAM MRAM

FLASH FLASH FLASH FLASH

System Bus

Memory Bus

Figure 1: System architecture for energy-aware
memory management

MMC

CPUCPU I/O

Physical Addresses

Real Addresses

TLB

real address #reads #writes
real address #reads #writes
real address #reads #writes

Map Table

MMC Memory
Code/Data

Controller

Figure 2: Memory Management Controller (MMC)

FLASH

 Proceedings of 11th ACM SIGOPS European Workshop, Leuven, Belgium, Sept. 2004
3. OS Architecture
The virtual memory management in a classical operating
system has to decide which virtual address is mapped to
a physical memory region and which physical pages
have to be stored and retrieved on/from a backing store.

Our approach to energy-aware memory management
is characterized by an additional level of indirection and
a clear separation of management policies. While the
core OS running on the main CPU is responsible for the
aspect of protection and sharing, the energy-aware
system software running on the MMC is accountable for
an energy-aware mapping of physical addresses to
addresses of memory cells in the available memory
banks. The mapping should respect the performance-
and energy-specific properties of each bank’s tech-
nology (e.g., DRAM, MRAM, FLASH). Additionally,
the MMC system software has to tune the power states
of each individual memory module according to power
and performance demands.

The memory management in the core OS is active
whenever a change in the mapping is required, due to
allocation, release, sharing and page-in requests. Peri-
odic activities are limited to low frequency page-out
operations to write back modified pages or to provide a
certain amount of free memory.

The MMC system software periodically analyzes the
reference patterns for each memory bank as well as for
each memory page. This information is suitable to deter-
mine the threshold for switching a memory bank to a
low-power state. Furthermore access characteristics of
individual pages are the basis of page migration and
aggregation decisions. Additionally unused pages are
candidates for compression.

The design space for the system software of the MMC
offers several options for an interface to the MMC:

1. The MMC is fully autonomous. The main OS is
completely unaware of the energy-aware MMC. The
MMC boots from its internal FLASH with default
policies and settings, discovers the available memory
and behaves like a single memory module from the
point of view of the main CPU and the I/O devices.

2. The MMC boots a default system. However there is
an interface (e.g., via memory mapped MMC memory
and configuration registers) between the main OS and
the MMC so that the main OS can download a
specific MMC system software and configuration
parameters. This approach supports MMC policies
which are adapted to the power and performance

demands of the system. After the MMC is brought up
by the main OS it acts on its own initiative.

3. Additionally to option 2.) there is a run-time interface
that permits the main OS to give hints and submit
requests to the MMC:
• When allocating memory, the memory manage-

ment of the main OS notifies the MMC of physical
pages building a contiguous virtual memory
region. This hint helps to map these physical pages
to real pages of the same module.

• After releasing a memory region, the memory
management of the main OS notifies the MMC of
unused physical pages. These unused pages do not
have to be copied in case of a page swap between
modules and can be mapped to memory areas that
do not require refreshing.

• DMA regions or data/code of time-critical applica-
tions should reside in modules with adequate
performance settings.

• Shared regions like DLLs should be aggregated in
a small number of modules.

• The main OS can request efficient copy or zero-
filling operations.

4. Benefits
The switching activity in a system has to be minimized
to improve energy efficiency. This can be done if all
hardware components are performing their job in the
optimal mode of operation with a minimal amount of
wasted cycles. Our proposal relieves the main CPU from
periodic memory reorganizations that interfere with the
normal execution of application and operating system
code. The job of energy-aware memory management is
done by an HW/OS co-design that does not have to make
many trade-offs. Our approach is optimized to a few
goals:
• Efficient determination of memory reference charac-

teristics
• Efficient mapping of pages to the appropriate loca-

tion and technology
• Efficient swapping of memory pages
• Efficient memory power-mode control
Additional to the gains in efficiency we see benefits in
the support of legacy systems. Extending the memory
management of legacy operating systems is an expensive
and error-prone venture. Deploying a MMC with default
system software, the legacy operating system is right
away part of an architecture supporting dynamic power
management. Finally, the use of an MMC paves the way
for systems originally designed with processors without
an MMU to become energy-aware.

 Proceedings of 11th ACM SIGOPS European Workshop, Leuven, Belgium, Sept. 2004
5. Conclusions
The more the memory management knows about the

reference patterns the better it can improve the place-
ment of data and code in real memory while considering
power and performance demands. The main CPU neither
offers the required fidelity of reference counting nor the
obligatory energy efficiency for fine-grained page-
swapping. By separating the energy-aware memory
management to a dedicated controller, the main CPU
can focus on the tasks it was designed for without addi-
tional periodic interruption. Although policy off-loading
to a dedicated controller could not keep up with the
main processor concerning performance in the past, we
believe that memory controllers with sophisticated
management policies will prove useful for energy-
centric memory management going far beyond the
results published in the related work.

References

[1] X. Fan, C. Ellis, and A. Lebeck, “Memory controller
policies for DRAM power management,” in Proceedings
of the International Symposium on Low-Power
Electronics and Design ISLPED’01, August 2001.

[2] H. Huang, P. Pillai, and K. G. Shin, “Design and
implementation of power-aware virtual memory,” in
Proceedings of the 2003 USENIX Annual Technical
Conference, June 2003.

[3] A. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware
page allocation,” in Proceedings of the Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems
ASPLOS’00, November 2000.

[4] B. Abali, M. Banikazemi, X. Shen, H. Franke, D. E.
Poff, and T. B. Smith, “Hardware compressed main
memory: Operating system support and performance
evaluation,” IEEE Transactions on Computers, vol. 50,
November 2001.

[5] Micron Technology, “Mobile SDRAM’s power-saving
features,” Tech. Note TN-48-10, 2002.

	When Physical Is Not Real Enough
	ABSTRACT
	1. Introduction
	2. Memory Architecture
	3. OS Architecture
	4. Benefits
	5. Conclusions

