Application Characterization for
Wireless Network Power Management

Andreas Weissel, Matthias Faerber and Frank Bellosa

University of Erlangen, Department of Computer Science 4
{weissel, faerber,bellosa}@cs.fau.de

Abstract. The popular IEEE 802.11 standard defines a power saving mode that
keeps the network interface in a low power sleep state and periodically powers it
up to synchronize with the base station. The length of the sleep interval, the so
called beacon period, affects two dimensions, namely application performance
and energy consumption. The main disadvantage of this power saving policy lies
in its static nature: a short beacon period wastes energy due to frequent activations
of the interface while a long beacon period can cause diminished application re-
sponsiveness and performance. While the first aspect, reduction of power con-
sumption, has been studied extensively, the implications on application perfor-
mance have received only little attention. We argue that the tolerable reduction of
performance or quality depends on the application and the user. As an example,
a beacon period of only 100ms slows down RPC-based operations like NFS dra-
matically, while the user will probably not recognize the additional delay when
using a web browser. If at all, known power management algorithms guarantee a
system wide limit on performance degradation without differentiating between
different application profiles.

This work presents an approach to identify on-line the currently running applica-
tion class by a mapping of network traffic characteristics to a predefined set of
application profiles. We propose a power saving policy which dynamically
adapts to the detected application profile, thus identifying the application- and
user-specific power/performance trade-off. An implementation of the character-
ization algorithm is presented and evaluated running several typical applications
for mobile devices.

1 Introduction

We present an approach to on-line characterization of applications based solely on in-
formation obtained from the network link layer. This information is used to realize dy-
namic power management for mobile communication which aims at maximizing power
savings without degrading application dependent, user-perceived performance and
quality.

1.1 Motivation

For wireless networking, the IEEE 802.11 standard defines two operating modes: the
continuously-aware mode CAM, which leaves the interface fully powered, and the pow-
er saving mode PSP, which keeps the network interface in a low power sleep mode and
periodically activates it to synchronize with the base station. These periodic synchroni-

zations are called beacons, the length of the sleep interval is the so called beacon period
with a default value of 100ms. Some network interfaces support additional power sav-
ing modes, e.g. PSPCAM or PSP-adaptive which automatically switch between the two
modes depending on the network traffic. While this mechanism is defined for managed
as well as ad-hoc networks, for reasons of simplicity, we concentrate our discussion on
a configuration with one base station, the access point, communicating with at least one
client.

The beacon period affects two dimensions, namely performance by generating net-
work delays and energy savings. While this policy dramatically reduces the time the
network interface has to be fully powered, receiving data is only possible after synchro-
nizing with the base station. Incoming traffic is buffered at the access point and sig-
nalled in the “traffic indication map” (TIM) sent at each beacon. If data is waiting, the
client activates the network interface and polls the data from the access point. After the
transmission, the sleep cycle is established again. If data is buffered at the access point,
the client is not aware of the incoming data for at most one whole beacon period. Thus,
additional network delays are introduced and user-perceived application performance
or quality can be affected.

The amount of performance or quality degradation depends not only on the beacon
period, but also on the type of application, the send/receive characteristics and the user
sensitiveness and tolerance. This aspect is often neglected by power management algo-
rithms. Typically, only a system wide performance level is guaranteed without differ-
entiating between different application profiles. As performance or latency is a subjec-
tive measure, the leverage of these factors differs from application to application and
from user to user. For interactive processes, small delays are usually tolerated depend-
ing on the application and the sensitivity of the user. Performance degradation should
be completely avoided for jobs that the user wants to finish as fast as possible, e.g. a
download operation. Streaming applications like a radio or video player have to provide
a certain quality of service which can not be achieved if the additional network delays
caused by power management exceed the playtime of the buffered data. We argue that
the tolerable reduction of performance or quality depends on the application and the us-
er, and therefore has to be considered by operating system power management policies.

1.2 Contributions of this Work

An approach to on-line characterization of networked applications is presented. Several
parameters derived from send/receive statistics are mapped to a predefined set of appli-
cation profiles. The necessary data is already available in the kernel network stack and
the computational overhead to determine the parameters is low. If a profile is identified
with enough certainty, an application-specific power management setting is triggered.

We examine the characteristics of typical networked applications for mobile devic-
es and identify their power/performance trade-offs. Alternative approaches to charac-
terize applications are outlined and discussed.

The application profiles are characterized by several different parameters regarding
network traffic, e.g. the proportion of data received to data sent, the average length of
idle or active periods, the deviation of these values etc. A secure shell (SSH) session,
e.g., can be identified by rather small packets together with short active and long passive

periods while an audio stream can be recognized by periodic transmissions, i.e. a small
deviation from the average length of periods of inactivity. Information on packet timing
gets coarser with longer beacon intervals due to the increasing delays in receiving pack-
ets. For the range of beacon intervals considered in this work (up to 500ms), the chosen
parameters are quite robust and show only little variation over different delays.

The target parameters for the set of profiles are identified using numerous traces
from application runs with different power management settings. The characterization
is evaluated with another set of recorded traces and with extensive on-line tests includ-
ing power management. We show that applications running in isolation are identified
correctly. If the user works with two programs that generate network traffic simulta-
neously, the algorithm does either detect no profile at all or identifies both correctly, but
switches frequently between the two.

The application dependent power management decision is configurable from user
space and can be extended with more sophisticated power management algorithms.

We present related work in the following section. Our approach to application char-
acterization is outlined in section 3. Section 4 describes the implementation in detail;
followed by an evaluation of the characterization algorithm in section 5.

2 Related Work

2.1 Application Characterization
The operating system can be identified by analyzing the network traffic originating
from it [11]. The IP implementation slightly differs from operating system to operating
system, depending on RFC interpretation. The TCP SYN packets provide enough infor-
mation to accurately determine the system.

To gather more information about the system and available services on the network,
the packet payload can be analyzed. With tools like ngrep, a regular expression based
analysis of network traffic is possible.

A straightforward and simple approach to identify applications is to use the port
number and the protocol (TCP, UDP) from the headers of network packets. Unfortu-
nately, ports can easily be mapped to or tunnelled through other ports. Firewalls often
restrict connections to only a few open ports, e.g. port 80 for HTTP and 22 for SSH. To
enable networked applications based on other ports to run, tunnelling of connections
has become a common technique. A proxy (caching) server outside of the firewall
serves not only HTTP requests, but also Multimedia streams. Identification using this
method is also problematic with applications that use dynamically assigned ports, such
as FTP and RPC. For all these cases, the proposed technique can complement the simple
method of mapping port numbers to applications.

A more sophisticated method is to look at the contents of the packets. By reassem-
bling the packets and by recognizing certain patterns the application can be identified
from the contents of the data stream. This classification can be made without relying on
the port numbers. Projects like “17-filter” [10] classify packets based on patterns in
layer 7 (application layer) at the cost of high processor utilization. The overhead of
packet introspection can negatively affect power consumption.

2.2 Power Management for Wireless Networking

Stemm et al. [12] and Feeney at al. [6] investigate the energy consumption of wireless
network interfaces and different network protocols in detail. Power management poli-
cies can be classified into three categories.

2.2.1 Static Protocols

Static protocols use one fixed, system wide beacon period, time-out value or inactivity
threshold to trigger transitions from active to low power modes with reduced perfor-
mance. The IEEE 802.11 power management algorithm is a typical representative of
this class. Static protocols are often implemented in hardware because they are simple
and do not require much storage space or computational effort.

2.2.2 Adaptive Protocols

Dynamic link-layer protocols adapt the beacon period or time-out threshold to the cur-
rent usage characteristics of the device. These algorithms are often called history based
as they draw upon the observed device utilization of the past.

Krashinsky and Balakrishnan present the Bounded Slowdown (BSD) protocol [8].
This power management protocol minimizes energy consumption while guaranteeing
that the round trip time (RTT) does not increase by more than a predefined factor p over
the RTT without power management. The factor controls the maximum percentage
slowdown, defining the trade-off between energy savings and latency. If at time ¢, the
network interface has not received a response to a request sent at time #(, the interface
can switch to sleep mode for a duration of up to p(#; — #y); i.e., the RTT, which is at least
1y — to, will not be increased by more than the factor p. Thus, the beacon period is dy-
namically adapted to the length of the inactivity period. When data is transmitted, the
wireless interface is set to continuously-aware mode. As this approach requires only in-
formation available at the link layer, it can be implemented in hardware.

Chandra examined the energy characteristics of streams of different multimedia
formats, namely Microsoft Media, Real and Quicktime, received by a wireless network
interface and under varying network conditions [3]. A simple history based policy is
presented which predicts the length of the next idle phase according to the average of
the last idle phases. As Microsoft Media exhibits regular transmission intervals, high
energy savings can be achieved using this policy.

Chandra and Vahdat [4] propose energy aware traffic shaping for multimedia
streams in order to create predictable transmission intervals. Varying the transmission
periods reveals a trade-off between frequent mode transitions and added delays in the
multimedia stream reception. Traffic shaping can be performed in the origin server, in
the network infrastructure or in the access point itself. Regular packet arrival times en-
able client side mechanisms to effectively utilize the low power sleep state of the wire-
less interface.

The approach of Chandra and Vahdat addresses the trade-off between energy sav-
ings and performance, but is limited to streaming applications. As traffic shaping is per-
formed at the server, user-specific preferences can not be taken into account. Applica-

tion-specific server side traffic shaping and client side power management should add
to each other nicely.

Several proposals for energy efficient transport layer protocols can be found in the
literature. Bertozzi et al. show that the TCP buffering mechanism can be exploited to
increase energy efficiency of the transport layer with minimum performances over-
heads [2].

2.2.3 Application-specific Protocols

These protocols require the support of applications to enable operating system power
management. To achieve this, applications typically have to use a certain API to inform
the operating system about their intended use of the network interface.

Anand et al. [1] propose STPM: self-tuning wireless network power management.
STPM considers the time and energy costs of changing power modes. Applications can
provide hints to the operating system about the time and volume of data transmission
over the network interface. STPM dynamically adapts its power management policy.

Kravets and Krishnan propose a power management algorithm which shuts down
the wireless interface after a certain period of inactivity and reactivates it periodically
[9]. Variations of the algorithm with fixed and variable sleep periods are evaluated. Pre-
dictive algorithms are proposed to determine the length of the sleep periods. An appli-
cation level interface to the power management protocol allows applications to control
the policies used for determining sleep durations. Predictive algorithms can be used to
adjust the power management parameters (inactivity time-out and sleep duration) using
application-specific strategies. An implementation of a simple adaptive algorithm is
presented which responds to communication activity by reducing the sleep duration to
250ms and to idle periods by doubling the sleep duration up to 5 minutes.

Energy aware adaptation as presented by Flinn [7] is another approach to applica-
tion dependent power management. By dynamically modifying their behavior, applica-
tions can reduce system power consumption, e.g. to achieve a specific battery lifetime.
The operating system monitors the battery status, selects the correct power/quality-of-
service trade-off and informs the currently running applications, guiding their adapta-
tion.

While application-specific power management strategies address the power/perfor-
mance trade-off, applications are required to be rewritten to support the operating sys-
tem in its efforts to save energy. Our approach circumvents this drawback by providing
the necessary information separate from the applications and, at the same time, allowing
not only application-, but also user-specific power management policies.

3 Application Characterization

We examined the network characteristics of several typical applications for mobile sys-
tems (laptops and hand-helds):

¢ Mozilla (web browser)
e Secure Shell (SSH) session
¢ Network File System (NFS) operations

e FTP download

* Netradio: low bandwidth Real audio stream
e MP3 audio stream

* high bandwidth Real video stream

These applications can roughly be divided into three groups: interactive, foreground ap-
plications (web browser and SSH), non-interactive applications where execution time
is key (network file system, download) and streaming applications.

With interactive applications, the user is sensitive to reduced application respon-
siveness. Small additional network delays may be tolerated or probably not even recog-
nized. Thus, power management with small beacon intervals would be an option for
these applications. Figure 1 shows the energy consumption of a five minute run of
Mozilla under different power management settings. Power management increases the
round trip time of network packets by an average of (beacon period / 2). The sensitivity
to application responsiveness can not be measured directly; it depends on the individual
user.

I i 1 i 1 i 1
[#- ¢ Mozilla energy consumption
5} \i +- -+ average additional dela —
= 300F g y 1300 2
S g
3 A=
= z
.S . e ©
& 200F - T 400 T
g 3 L 3
2 ‘ 3
+° <
g X : =%
S g L)
Z 100 .o e H100 &
s FERRERY @ @ 'Y g
5 3
O Lt i ‘.‘ 1 N 1 " 1 " 1 L 0
CAM 100 200 300 400 500

power management setting (beacon interval)

Figure 1: energy consumption of Mozilla and average packet delays
under different power management settings

As Anand et al. [1] demonstrate, power management can dramatically increase the
execution time and, as a consequence, the energy consumption of NFS. The same ap-
plies to a download or copy operation over the network. It is important to identify these
applications and switch off power management to avoid wasting energy. Figure 2
shows the runtime of a simple find operation on a directory mounted via NFS. Without
power management, the job finished after a few seconds and consumed approximately
4]. For a beacon period of 100ms, the runtime increases to over 250 seconds and the
energy consumption to 67J. For all network services based on RPC, as well as copy or
download operations, power management should be disabled.

250 T T T T T T T T —=1000

— ¢ ¢ NES energy consumption R -1
=2 -+ NF ti LT
= gof Lt NES runtime 1500
=3 Ed
=))
= A 2
2 150 e 4600 S
Q 4 Q
g e =
2 Q
S 100f K3 400 £
o] - [
°>5 ‘ Rt a
g S50 <200
= :
) |

0 ; . 1 L 1 L 1 L 1 L

0 200 400 600 800 10(90

power management setting (beacon interval)

Figure 2: energy consumption and performance degradation of NFS

Streaming applications buffer a certain amount of data to reduce the impact of net-
work delays or varying bandwidth. As a consequence, they are insensitive to small de-
lays introduced by power management algorithms. In case of high delays, the quality of
the presentation, e.g. the number of frames per second, is reduced, pauses are intro-
duced or frames are skipped. In our experiments, a beacon interval of 500ms can be
used without influencing a 200kbit video stream.

In order to achieve energy savings, not only the power consumption but also the
runtime of the task has to be considered. The beacon mechanism reduces the average
power consumption but introduces additional delays when receiving packets. This leads
to an increased runtime for certain types of networked applications, e.g. RPC-based and
copy or download operations. The resulting higher energy consumption can outweigh
the savings due to the reduced average power. In contrast to this, for many interactive
and streaming applications, the runtime is mainly determined by the user think time or
other factors. In these cases, reduced power consumption will lead to reduced energy
consumption because the runtime is not or only marginally influenced by the power
management algorithm.

To sum up, the performance or, more generally, the quality-of-service degradation
a user is willing to tolerate depends on the currently running application and the user
expectations. Therefore, we propose a power management policy which incorporates
user preferences into its decisions. Different application profiles are identified on-line
and the user-defined, application-specific power management setting is chosen.

3.1 Application Profiles

In order to be able to distinguish different application profiles during runtime, we ex-
amined several different parameters identifying the network characteristics in a single
user system. At the link layer, information about the number of packets and the size of

CAM continuously-aware mode (no energy savings)
100 IEEE 802.11 power management mode
The beacon interval was set to the following values:
500 100ms, 200ms, 300ms, 400ms and 500ms

Table 1: power management settings for parameter training

parameter very small small medium large very large
(< 250) (250-800) | (800—1300) | (> 1300)

size of received Browser,

packets [byte] SSH Stream, Stream | Download

NFS

size of sent (0-50) (50-100) (100-200) (> 200)

packets [byte] NFS

ratio of the last (<12) (12-20) (20-25) (>25)

two values SSH Stream Download

ratio of inactive to (<0.2) (0.2-2) (2-6) (>6)

active periods Download NFS SSH Browser

standard devia- (0-2) (2-30) (> 30)

tion of the length Stream Browser

of inactive periods

Table 2: characterization of different profiles

the packets sent or received is available. Using these values, we constructed the follow-
ing parameters:

1. average size of packets received (= number of packets received / bytes received)
2. average size of packets sent

3. average length of inactive periods (time intervals with no transmissions)

4.
5
6

average length of active periods (time intervals with transmissions)

. traffic volume received
. traffic volume sent

We collected traces for every application under six different power management set-
tings (see table 1) and computed the parameters presented above, together with the av-
erages and standard deviations. In addition to that, we experimented with several ratios
and combinations of the values. We decided to drop several parameters that showed
high deviations or low correlation to the corresponding applications. The final, reduced
set consists of the following parameters:

1.
2.
3.

average size of packets received
average size of packets sent
ratio of average length of inactive to length of active periods

. ratio of average size of packets received to size of packets sent
. ratio of traffic volume received to traffic volume sent

(@) NV, B S

. standard deviation of the average size of packets received
7. standard deviation of the average length of inactive periods

Table 2 shows the highest correlations of parameters to application profiles. The num-
bers in brackets depict the range of parameter values. With some parameters, all profiles
can be distinguished while others, e.g. the size of sent packets, can only be used to con-
firm classifications.

4 Implementation

The implementation of the algorithm for the Linux operating system consists of two
parts, the collector module located inside the kernel and the characterization module in
user space.

4.1 Collector Module

The kernel part of the system is responsible for retrieving data from the network inter-
face card. The Linux kernel already maintains a data structure that contains statistical
data about the traffic for each network interface. Thus, no additional overhead is im-
posed on the system to obtain the necessary information. The collector module period-
ically (100ms) retrieves the number of bytes and packets that have been received and
transmitted during the last time slot from the kernel structure and passes the statistics to
user space via the /proc interface.

4.2 Characterization Module

The user space part of the characterization algorithm performs a mapping of the net-
work statistics to application profiles. To perform the identification the module main-
tains tables containing the target values for all parameters and all applications. Period-
ically, these parameters are extracted from the network traffic statistics and compared
to the parameters of the training runs. For every parameter, the application with the min-
imum difference between the current and the target values is chosen as a candidate.
From the set of candidates, an application is only selected if it has the majority, i.e. if at
least four of the seven candidates indicate the same. If no majority is reached, the deci-
sion is considered uncertain and the algorithm stops, i.e. the last identification is re-
tained.

We measured the overhead of mode transitions of a Cisco Aironet wireless adapter
(table 3). It can be seen that changing the beacon interval and the operating mode is
equally expensive. In order to avoid frequent mode transitions which would prevent the
interface from achieving any energy savings, we introduce a minimum time span ty,,j
between two mode transitions. In our experiments, this time span was set to 10 seconds.

4.3 Profile Management

The corresponding power management settings for the different application profiles are
read from a configuration file or can be specified as command line parameters when

mode transition time energy

PSP to CAM 320ms 280m]J
CAM to PSP 317ms 283m]
change beacon interval 333ms 300mJ

Table 3: overhead of mode transitions

running the characterization module. This way, varying preferences or preferences of
different users can be taken into account by, e.g., switching to another set of power man-
agement settings when a new user logs into the system. A user who wants to change the
currently active settings just needs to invoke the characterization module with the new
set of parameters as command line attributes. It is possible to activate and deactivate the
characterization module and use another power management algorithm instead, e.g.
PSPCAM.

4.4 Future Work

We plan to integrate additional information available on the network and transport layer
into our decision rule. Examples are the port number of a network connection, the pro-
tocol used (TCP or UDP) and the user id of the receiving or sending process. This in-
formation can support a decision based purely on link layer statistics. With the port
number, some applications can be identified immediately. However, if the original port
is mapped to port 80 due to firewall restrictions, this information is not available. The
user id enables a distinction of user-specific application profiles or different power
management policies for different users.

Statistical data stored in the task structure of the receiving or sending process, e.g.
the runtime or priority, could be used to distinguish between interactive and non-inter-
active, background processes, similar to the approach taken in typical schedulers.

We would also like to investigate a combination of application-specific server side
traffic shaping, like the approach presented by Chandra and Vahdat [4], with applica-
tion-specific power management on the client side.

5 Evaluation

5.1 Data Acquisition

For power measurements we used the Cisco Aironet wireless adapter [5], connected to
a notebook via a PC Card extender card from Sycard Technology. The extender card
allows to isolate the power buses, so we attached a 4-terminal precision resistor of
50mOhm to the 5V supply line. The voltage drop at the sense resistor was measured
with an A/D-converter with up to 40000 samples per second and a resolution of 256
steps. The maximum voltage drop that is correctly converted is SOmV.

Figure 3 shows the power consumption of different power management settings of
the Cisco Aironet card.

<‘
1000 .
750}
500F - .

250t

avg. power consumption [mW]

0 " 1 L 1 L 1 " 1 L
CAM 100 200 300 400 500
power management setting (beacon interval)

Figure 3: average power consumption of different
power management settings

5.2 Off-line Application Characterization
We determined parameters for the following application profiles:
* Web browser/text
¢ Web browser/images
* NFS operations (kernel compile run, find)
¢ SSH (terminal session)
e FTP download
* Low-bandwidth stream (< 64kbit, audio, Realplayer and MP3)
* High-bandwidth stream (video)

The two web browser profiles are treated as one application, as well as the different
types of streams.

In order to evaluate the characterization algorithm, we recorded several traces of ap-
plication runs with two different users. Figure 4 shows the percentage of time the algo-
rithm identifies the correct application, reaches no decision (keeping the correct deci-
sion) and performs a wrong classification. The last value is determined counting iden-
tifications of other profiles and the time that follows until the correct application is
identified again.

“Mozilla 1” is a browser session viewing web pages with many pictures, in
“Mozilla 2” mainly text is viewed. SSH with X-forwarding shows a high error rate; in
this case, an additional application profile should be created. During the “Mozilla 2”
run, SSH was detected several times. As both are interactive applications they could
also be combined to one profile. When combining Mozilla and SSH to one profile
(which could be called “Interactive”), the percentage of time this profile is correctly
classified is almost 100%. The two NFS sessions represent different file system opera-
tions (£ind & grep and chmod). Different streaming applications and download op-
erations are identified correctly.

100%

80%

60%

rate

40%

20%

0%

I correct decisions [no decision, keeping correct classification

Figure 4: off-line application characterization

5.3 On-line Application Characterization

In order to be of practical use, our system has to characterize running applications cor-
rectly. We performed several on-line tests with a mix of networked applications and re-
corded the decisions of the characterization module and the power consumption of the
system. Figure 5 shows an 8 minute run of four different programs: Mozilla, an SSH
session, £ind on a NFS-mounted directory and Netradio (low-bandwidth Real audio
stream). Approximately every 2 minutes the user performing the test switched to anoth-
er application. The characterization module changes the power management setting ac-
cording to the identified application. For Mozilla, we chose a beacon period of 200ms,
for SSH 100ms and for Netradio 500ms. When running NFS, we activated the contin-
uously-aware mode (CAM). The figure shows the power consumption during the test
run together with the detected applications. Mozilla (time stamp 0-1365) is identified
except for a short period between 74 and 88s. The following two application profiles
are recognized correctly (SSH: 136-255s and NFS: 255-394s). At timestamp 394 s the
user activates the Real audio stream; however Mozilla is detected. The characterization
module needs 11 seconds to correctly identify Netradio. This profile is kept until the end
of the test.

In order to evaluate the system, we recorded the decisions of the characterization
module during several test runs of over 70 minutes. For these tests, we used two differ-
ent power management settings: CAM mode for NFS and download/copy operations
and PSP mode with a beacon period of 100ms for other application profiles.

If the user switches to a different application, the algorithm needs some time to rec-
ognize this change. We determined the length of these recognition delays and the time

SSH Mozilla

Mozilla l Mozilla SSH NFS l Netradio
v

-~ ~— ~— ~~ ~

— T I T | T T T T T

=

=)

g

a

S

Z

=)

Q

o

g

2

Q

=7 1 |

2N 100 ,00s 200 ," 7300 400 + v 500
L7 \ P N time [s] / AN ’ \

, / s 14 N ‘ N
e \ V N / N i AY

v, N N 4
" Mozilla N ,° SSH . , NES >_ 7 Netradio |

* (200ms beacons) * “ (100ms beacons) * * (CAM) * “(500ms beacons) *
1

|
|
|
|

|
|
|
!
1

50 52.5 55 160 162.5 165 280 282.5 285 450 452.5 455
time [s]

Figure 5: power consumption during a run of four different applications

intervals during which wrong decisions are taken, i.e. during which the running appli-
cation is not correctly detected. In these cases, the user either experiences delays (if the
power management setting is more aggressive than it should be) or energy is wasted (if
the power management setting could be more aggressive). We determined an error rate
of 6.5% over all test runs, composed of 4.5% wrong classifications and 2% recognition
delays.

5.4 Running Applications in Parallel

In order to evaluate our characterization algorithm when a mixture of application pro-
files is observed, we performed tests where two applications run in parallel. The first
scenario is a run of Netradio and Mozilla, the user browsing the web while listening to
radio. In this case, both applications are recognized, but the algorithm switches fre-
quently between the two (almost every 10 seconds). A solution would be to choose the
application profile for which the user is more sensitive to network delays (the applica-
tion with the smaller beacon interval or with power management disabled).

Our second test is a SSH session with Netradio running in the background. This
time, the characterization algorithm does not reach a decision for the whole test run. If
no profile is detected for a certain period of time, the algorithm could disable power
management, switch to the card’s own power management mechanism (PSPCAM) or
activate a user-specified default setting.

5.5 Comparison with PSPCAM

In order to compare the energy savings achieved by our characterization approach to the
card’s own adaptive power management algorithm, PSPCAM, we recorded the power
consumption of test runs with several applications under different power management
settings. During periods of network activity, PSPCAM stays in CAM mode. After a
short period of inactivity (approx. 2 seconds) the card transitions to PSP mode. This
transition comes, in contrast to “manual” (de)activation, with almost no overhead (en-
ergy and time). Table 4 shows the energy consumption of 5 minute test runs. It can be
seen that for all applications which are robust to the beacon mechanism, that are all ex-
cept NFS, more energy can be saved in PSP than in PSPCAM mode. As a consequence,
a power management algorithm which distinguishes different profiles can achieve high-
er energy savings than an energy aware link-layer protocol. When running e.g. Netra-
dio, PSPCAM would unnecessarily deactivate power management during data trans-
fers, although the audio stream works equally well when the beacon mechanism is ac-
tive.

Hode app- NFS SSH Netradio Mozilla
CAM 250.0 214.6] 215.4] 213.0J
PSPCAM 225.9] 97.6J 169.3 72.4]
PSP (100ms) 62.9] 21.4] 7597 65.5]

Table 4: energy consumption over 5 minutes

6 Conclusion

We argue that power management for mobile communication has to take the applica-
tion- and user-specific power/performance trade-off into account. This work presents
an approach to on-line characterization of applications, enabling application-specific
power management. A small set of parameters based on network traffic is mapped to
predefined application profiles. We present an implementation with low computational
overhead and evaluate it under several typical applications for mobile devices. Higher
energy savings can be achieved when exploiting the tolerable performance degradation
of different profiles than using the card’s own power management mechanism.

This approach does not require source code modifications to programs. The user
can specify individual power management settings for all application profiles. Thus, not
only application- but also user-specific power management can be realized, addressing
the power/performance trade-off of the individual user.

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(10]

(11]
[12]

ANAND, M., NIGHTINGALE, E. B., AND FLINN, J. Self-tuning wireless net-
work power management. In Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking (MOBICOM ’03)
(September 2003).

BERTOZZI, D., RAGHUNATHAN, A., BENINI, L., AND SRIVATHS, R. Trans-
port protocol optimization for energy efficient wireless embedded sys-
tems. In Proceedings of the Design, Automation and Test Conference in
Europe (DATE ’03) (March 2003).

CHANDRA, S. Wireless network interface energy consumption implica-
tions of popular streaming formats. In Proc. Multimedia Computing and
Networking (MMCN’02) (January 2002).

CHANDRA, S., AND VAHDAT, A. Application-specific network manage-
ment for energy-aware streaming of popular multimedia format. In Pro-
ceedings of the 2002 USENIX Annual Technical Conference (June 2002).
CIscO SYSTEMS, INC. Cisco Aironet 350 Series Client Adapters, June
2003.

FEENEY, L., AND NILSSON, M. Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment. In Pro-
ceedings of IEEE Infocom (April 2001).

FLINN, J., AND SATYANARAYANAN, M. Energy-aware adaptation for
mobile applications. In Proceedings of the 17th Symposium on Operating
System Principles SOSP’99 (December 1999).

KRASHINSKY, R., AND BALAKRISHNAN, H. Minimizing energy for wire-
less web access with bounded slowdown. In Proceedings of the Eighth
Annual ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM 2002) (September 2002).

KRAVETS, R., AND KRISHNAN, P. Application-driven power management
for mobile communication. ACM/URSI/Baltzer Wireless Networks
(WINET) special issue of Best Papers from MobiCom’98 (1998).
LEVANDOSK]I, J., SOMMER, E., AND STRAIT, M. Application layer packet
classifier for Linux.

SPITZNER, L. Passive fingerprinting. In SecurityFocus (2000).

STEMM, M., AND KATZ, R. H. Measuring and reducing energy consump-
tion of network interfaces in hand-held devices. IEEE Transactions on
Communications E80-B, 8 (1997), 1125-31.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

