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Abstract -- In this work we investigate the implica-
tions on the energy consumption of different popular 
file systems and propose a novel, log-structured file 
system aiming at minimized energy consumption by 
avoiding expensive disk seeks and introduced laten-
cies due to rotational delays. We show that the energy 
efficiency of file systems is heavily influenced by the 
underlying data layout and file organization. Guide-
lines for a low power file system design are developed 
and evaluated with measurements of the energy con-
sumption of a prototype implementation. As on-going 
work we investigate different approaches to free space 
management. We discuss design choices for the imple-
mentation of a family of free space managers and 
their implications on energy consumption.

I.  INTRODUCTION

Energy consumption is an important design issue for 
modern mobile devices. On the hardware level, this issue 
is addressed by introducing additional operating modes 
with reduced power consumption, e.g. hard disks with 
low-power idle and standby modes. However, research in 
the area of energy-aware systems has not yet addressed 
the organization and layout of file systems for hard disks.

The idea of log-structured file systems is to simulate an 
indefinite storage space (the log) to which new or 
updated data is simply appended. We investigate the 
potential of this design to minimize disk seeks and rota-
tional latencies and, as a consequence, the energy con-
sumption induced by the file system layout on disk. We 
present guidelines for the design of a low power file sys-
tem and evaluate the resulting energy savings with real 
power measurements of a prototype implementation.

To realize the abstraction of an indefinite log, the avail-
able free space on the hard disk has to be managed to 
reclaim space from old (deleted or changed) data and to 
hide the physical layout of the hard disk. We discuss pos-
sible implementations of free space management and 
their implications on the energy consumption. Two 
approaches can be distinguished: in the copying 
approach, a cleaner process is invoked as soon as the 
length of the log exceeds a certain threshold, e.g. 90% of 
the size of the partition. This cleaner compresses the log 
by copying data from the head or the tail into holes 

(obsoleted data) inside the log. In the threading 
approach, the log is not necessarily stored contiguously 
but threaded through the holes. If the free space becomes 
too fragmented, a cleaner process has to compress the 
log, similar to the copying approach.

Several design choices lead to a family of free space 
managers which allow the selection of an appropriate 
algorithm depending on the available energy, the amount 
of free space which has to be generated and the overhead 
during normal operation. As work-in-progress, we are 
currently implementing different free space managers.

The rest of this paper is organized as follows. In the 
next section, we discuss related work. Guidelines for 
energy efficient file system design are presented in sec-
tion III, followed by a presentation of our prototype 
implementation and its evaluation. In section VI, we dis-
cuss approaches to free space management.

II.  RELATED WORK

The principles of log-structured file systems (LFS) 
were presented in 1991 by Rosenblum et al. [3]. A new 
technique for disk management is proposed that aims at 
speeding up both disk writes and recovery times and a 
prototype implementation for the Sprite operating system 
is presented. Seltzer et al. [6] completely redesigned the 
file system to integrate it into the 4.4BSD Unix operating 
system. A performance comparison with the Berkely Fast 
Filesystem (FFS) showed that log-structured and clus-
tered file systems each have regions of performance 
dominance [7]. However, they attest log-structured file 
systems improved performance for reading and writing 
small files and for their creation and deletion. FFS 
showed to be more effective when file sizes rise above 
256 kilobytes. Czezatke et al. implemented a log-struc-
tured file system in Linux by adding a logging-layer 
between an adapted version of the ext2 file system and 
the block device [1]. Matthews et al. describe possibili-
ties to improve the performance of log-structured file 
systems with adaptive methods for a wider range of 
workloads [2]. Layout adaptation to match hardware 
characteristics of storage devices through track-aligned 
extents is performed by Schindler et al. [5]. By utilizing 
disk-specific knowledge it is possible to increase I/O effi-
ciency by reducing head switches for medium to large 



requests. Matching segments to track boundaries is sug-
gested to achieve a better performance both for cleaning 
and writing in log-structured file systems. In [8], file sys-
tem alternatives for mobile storage and their implications 
on the energy consumption of different storage media are 
discussed. Different variants of the traditional UNIX file 
system are compared with LFS by Rosenblum et al. [3].

III.  GUIDELINES FOR ENERGY EFFICIENT FILE SYSTEM 
DESIGN

In the following sections, we discuss requirements and 
guidelines for the design of a file system for portable 
storage optimized for low power consumption.

A.  Sequential Arrangement of Meta Data and Data 
Blocks

When writing or reading files from disk, two entities 
have to be accessed: meta data and file contents. If meta 
data and file data are stored at physically distinct disk 
locations, it is necessary to issue two disk requests 
accompanied by two seeks and two rotational latencies 
when file data is accessed. Thus, meta data information 
and file contents should be grouped together to avoid 
switching between different locations on the disk. Unfor-
tunately, as opposed to a fixed positioning dynamic 
arrangement of meta data structures introduces complexi-
ties and overheads for maintaining their locations on 
disk. But a careful implementation is able to limit these 
effects in order to gain the outlined benefits.

B.  Free Space Management

Sequential arrangement of file contents and their meta 
data can be achieved with the abstraction of an infinite 
storage medium or log. In this case, new or updated files 
are simply appended to the end of the log. However, data 
which is no longer valid after updating or deletion 
remains at its initial position, creating holes in the log. To 
reuse the space occupied by obsoleted data, as described 
above, the copying or threading method can be used. Free 
space is generated by compressing the log or by thread-
ing the log through extents of old data.

C.  Sequential Reading and Writing Behavior

If the file system is fragmented, file access perfor-
mance will suffer from an imperfect data layout resulting 
in higher energy consumption. As a consequence, the 
disk manager should be capable of automatically creating 
unfragmented empty space on disk. With this process, 
file data can be rearranged in a sequential manner. How-
ever, the task of free space management requires addi-
tional energy which has to be taken into consideration.

D.  File System Reorganization

Small files that are frequently accessed in the same 
sequence could also be arranged sequentially to save 
energy. As described above, data reorganization is 
already used to generate large extents of empty space. 
This technique can be extended to match file organiza-
tion on disk to the access pattern of read operations. This 
approach is most beneficial for workloads which access 
many small files. Then additional energy savings are pos-
sible by avoiding disk seeks and rotational latency delays 
between file accesses. An additional policy would be to 
group files which are residing in the same directory.

E.  Adaptive Energy Use

When attached to an external power supply the energy 
consumption is mostly of no concern for mobile devices. 
However, when running on battery power, every Joule is 
precious. Therefore, we distinguish two operating modes: 
battery and on-line mode. In battery mode, time- and 
energy-consuming data reorganizations should be 
avoided and postponed until the device is in on-line 
mode. Depending on the remaining battery lifetime dif-
ferent cleaning strategies can be used to minimize the 
additional energy consumption of reorganization while 
still creating new space. For cleaning policies, we can 
identify a trade-off between optimizing data and file lay-
out or the amount of free space created and minimizing 
energy consumption.

F.  Fast Crash Recovery

Mobile computers are often used until the battery 
power is consumed completely leading to unclean shut-
downs. In this case or in the presence of software or hard-
ware failures, file systems can be left in an inconsistent 
state. Therefore, consistency checks have to be per-
formed before accessing the data on the disk to ensure 
data reliability. Log-structured file systems have the 
advantage that a consistency check normally does not 
need to scan over the entire disk as recent changes to the 
file system can be found at the head or end of the log.

IV.  IMPLEMENTATION

From these requirements, the design of a file system 
based on the log-structured approach emerges. We imple-
mented our prototype file system scherlfs (a student the-
sis [4]) as a Linux kernel module.

A.  File System Design

In scherlfs, inodes are not located at fixed disk loca-
tions but are stored dynamically in the log. Therefore, a 
mechanism for translating an inode number to the corre-



sponding disk block is needed. This is done by a simple 
map lookup operation. Similar to the approach used in 
LFS, the map is indexed by the inode number and reveals 
the corresponding logical disk block at this position. 
Inode numbers which do not correspond to an existing 
file are associated with a logical block number of zero. 
The elements of the inode map are placed in a read-only 
regular file, called the .ifile. It is made visible in the root 
directory of the file system. This approach has several 
advantages. First, it overcomes the limitation of storing 
only a fixed amount of files in the file system since data 
can be easily appended to it as for any other file. Second, 
in most cases it can be treated as any other file minimiz-
ing the special purpose code in the file system. Finally, it 
is possible to access the file system via the standard sys-
tem calls when cleaning policies are going to be imple-
mented in user space.

When creating a new inode the .ifile has to be searched 
for a free entry. Without applied optimizations a linear 
search has to be performed. In scherlfs, this task is 
speeded up by the introduction of a free block bitmap 
which is stored in the superblock. It marks blocks full of 
inode entries by setting the corresponding bit in the bit-
map. At initialization time the bitmap is simply filled 
with zeroes assuming that all blocks of the bitmap still 
have free space for an inode entry. Then the entries are 
updated by a lazy initialization scheme, thus eliminating 
the need for maintaining the consistency of the bitmap 
between file system mounts.

The integration of the inode map in the log eliminates 
the need for a special checkpoint region. When check-
points are applied, changed .ifile blocks have to be saved 
to disk and the new position of the .ifiles’ inode is simply 
inserted into the superblock of the file system. This way, 
the bootstrap problem of retrieving the position of the 
.ifile by accessing the inode map in the .ifile is avoided.

B.  The Case for a New Inode Design

The inode of a file has to store all information which is 
needed to map file block numbers to logical block num-
bers. As data blocks are not necessarily adjacent to each 
other most file systems provide a method to store the 
connection between each file block number and the cor-
responding logical block number. This mapping goes 
back to early versions of Unix from AT&T and is also 
used in LFS [3]. In this scheme inodes store a number of 
direct and indirect block pointers. However, indirection 
can cause additional seeks and rotational latencies. 
Therefore, we decided not to use this approach.

Whenever possible, dirty data blocks of a file are writ-
ten to disk in large extents. Extents are triples that 
describe contiguous chunks of data by containing a start-

ing file block number, the corresponding logical block 
number on disk and length information. By introducing 
this data structure it is possible to describe even large 
files with only few extents. This is implemented by sav-
ing the extents of a file in a doubly linked list which is 
added to the in-memory representation of the inode. This 
way, it is possible to save the file offset only implicitly. 
An array representation of this list is added to the inode 
block on disk. Fortunately, for most files only a few 
extents have to be created. These extents fit easily into 
the inode structure and can be held in memory together 
with other inode data. Additional disk seeks are not 
required in contrast to the traditional representation. 
However, for highly fragmented files it is possible that a 
disk inode propagates over a variable amount of contigu-
ous disk blocks. Although additional disk seeks are not 
required in this situation, the compact representation of 
the file contents will get lost. Therefore, extent structures 
have to be carefully managed by the implementation. 
When updating or creating new extents a more compact 
representation can be achieved by joining adjacent 
extents. The opposite case can also occur if extents have 
to be split into two or three parts.

One major drawback of this scheme appears with 
applications that issue many small write requests (most 
Unix utilities issue write calls with a buffer size that 
matches the system page size). In this case, inode blocks 
followed by a small amount of data blocks are written out 
frequently, causing an imperfect data layout on disk by 
fragmenting the file.

To overcome this problem, scherlfs writes new inode 
blocks over the disk location of the last written one. To 
reduce the overhead of additional disk seeks, the inode 
write operation is delayed a certain amount of time. 
Deferred updates are already performed by the Linux 
bdflush (version 2.4) or pdflush (2.6) demon. In scherlfs, 
the determination of the block number of updated inodes 
is delayed as long as possible, until the flush demon 
writes out the inode. This way, reliability is not reduced 
compared to the already existing Linux implementation.

V.  EVALUATION

All experiments were performed on a 2.5” IBM Travel-
star 15GN hard disk (IC25N010ATDA04, now Hitachi). 
We determined the energy consumption by measuring the 
voltage drop at a precision resistor in the 5V power sup-
ply line of the hard disk. The voltage drop is acquired 
using an A/D-converter with a resolution of 256 steps at a 
rate of 10000 samples per second.

In the area of mobile devices, available memory for 
caching of file data is limited. To simulate this setting on 
a desktop PC with plenty of main memory we modified 



the cache subsystem of Linux to minimize the use of the 
disk caches: When searching the block buffer cache, the 
Uptodate flag of the requested buffer block is always 
cleared. Accesses to the page cache reset the 
ClearPageUptodate flag if the requested page dif-
fers from the last requested one, thus reducing the page 
cache to the size of one page. In addition to that the func-
tions block_read_full_page() and block_ 
prepare_write(), which are used by all tested file 
systems, are modified to read in also up-to-date buffers.

A.  Energy Consumption of Sequential Operations

The first comparative measurements examine the 
energy consumption of sequential read and write opera-
tions across a range of different file sizes. A test program 
transfers a volume of 50 MB, decomposed into the 
appropriate number of files for the file size being tested. 
In the case of small files directory lookup operations 
dominate all other processing overhead. Therefore, the 
files are divided into subdirectories, each containing no 
more than 200 files. Six phases are tested:

• Create: The files are created by issuing one I/O oper-
ation.

• Read: All files are read in their creation order with 
one I/O operation.

• Rand_read: All files are read in pseudo random 
order with one I/O operation.

• Rewrite: All files are truncated and rewritten in their 
creation order; their original sizes remain unchanged.

• Reread: The read phase above is executed again on 
the file system after the rewrite phase.

• Rand_reread: The rand_read phase is executed 
again on the file system after the rewrite phase.

Traces of file system accesses are recorded and 
replayed without idle periods on the file systems reiserfs, 
fat32, ext2, ext3 (mounted in default mode ordered) and 
scherlfs. The energy consumption of the test runs is 
shown in figure 1. Only the results for a file size of 4 KB 
are shown, tests for other file sizes show the same trends. 
Every test run is repeated at least five times; the figures 
show the average energy consumption. For the majority 
of tests the variance is negligible, otherwise it is shown in 
the figures. While energy savings are mainly due to 
increased performance (the time it takes to replay the 
trace files on the different file systems mimic the energy 
consumption shown in the figures), additional savings are 
possible as the idle periods are increased and there are 
more opportunities to switch to standby mode.

In the create phase reiserfs proves to be most energy 
efficient in comparison to the traditional file system lay-
outs. Fat32 is very close to reiserfs but cannot be better 
for any of the different I/O sizes. Ext2 is far behind the 

other file systems. The design based on block groups 
shows to be inefficient. The ext3 file system behaves 
even worse because its recovering technique introduces 
additional overheads. The log approach of scherlfs 
proves to be optimal, reaching the highest energy savings 
for all file sizes. Relative to reiserfs energy savings of 
66% to 79.9% are achieved for the creation of small files. 
Although the relative savings decrease with larger file 
sizes energy efficiency is still increased by 37.4% for 
1024 KB files. This becomes possible because all file 
data and meta data can be written to the log in a sequen-
tial manner. Disk seeks are only necessary for directory 
updates.

The file systems show only minor differences in their 
sequential read performance. For small file sizes the 
retrieval of file information from the directories influ-
ences the energy consumption significantly. For that rea-
son reiserfs has the smallest energy requirements. The 
good performance for 4 KB files can be explained by the 
tail packing of reiserfs. Small files are stored directly in 
reiserfs’ search tree. Therefore, no additional seeks are 
required when the file object is found in the tree. 
Although scherlfs arranges all files sequentially in the log 
and the read order of the files is not varied, the directory 
lookups have a negative impact on energy consumption.

However, in the random read phase the file arrange-
ment of scherlfs shows to be energy efficient because file 
meta data and file data is arranged sequentially on disk. 
Fat32 stores meta information for the files together in the 
directories and in its file allocation table, resulting energy 
requirements similar to scherlfs. It has to be noticed that 
this is due to the internal FAT cache of fat32. For larger 
file sizes the file systems have only minor differences in 
their energy consumption.
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Figure 1: Energy Consumption of Sequential File 
Operations (4K files)



During the rewrite phase, the log approach achieves the 
highest savings of all file systems, at least for small files. 
Ext2 and ext3 have both very high energy requirements 
for all file sizes because of their frequent meta data 
updates.

After the rewrite phase the two read tests are performed 
again on the updated file systems (reread and 
rand_reread). The energy consumption of the traditional 
file systems increases a bit. This can be explained by the 
truncate operation of the rewrite phase which forces the 
file systems to reallocate the data blocks to the files in 
contrast to simply overwriting them. The previous alloca-
tion scheme can be changed which possibly fragments 
meta data and disk blocks of the files. In contrast, scher-
lfs appends all files and updated meta data to the log. The 
same file layout is created only at another disk location. 
As the files are not deleted but only truncated, updates of 
directory information structures were not necessary. 
Thus, only the data which corresponds to the file updates 
is appended to the log. No directory data is saved in 
between the files by the appends to the log. As a conse-
quence, in the reread phase the best achievable energy 
efficiency is reached because the requested data could be 
read from disk with the full transfer bandwidth of the 
hard drive. This explains the resulting energy savings.

The measurements show that scherlfs offers energy 
improvements especially for the creation of new files. Its 
energy efficiency is often better or at least comparable to 
that of other file systems in the read and write test phases.

B.  Energy Consumption of Random Updates

The second comparative analysis examines the energy 
consumption of different file systems when small random 
I/O operations are issued to one large file. For this test, a 
file of 100 MB is created. This experiment consists of 
five phases:

• Read: All data is read in by issuing the appropriate 
amount of I/O operations with a size of 8 KB.

• Rand read: 24 MB of data is read in at pseudo ran-
dom positions by issuing the appropriate number of 
I/O operations with a size of 8 KB.

• Write: 24 MB of data is updated at pseudo random 
positions by issuing the appropriate number of I/O 
operations with a size of 8 KB.

• Reread: The read phase above is executed again on 
the now updated file.

• Rand reread: The rand read phase above is executed 
again on the now updated file.

Figure 2 shows the energy consumption of the tests for 
the different file systems. As the target file is created on a 
new, empty file system, it could be organized in an opti-
mized manner by each file system. Therefore, almost all 

file systems show the same energy measurements during 
the first sequential and random read phases. However, 
fat32 consumes nearly 3J more than the other file sys-
tems in the read phase, due to the fact that a lookup in the 
file allocation table has to be performed every time a new 
block of the file is going to be loaded into memory. This 
requires two additional disk seeks if the corresponding 
FAT block has not already been loaded into the cache. 
Although the Linux kernel was modified to limit disk 
block caching it does not hinder file systems to explicitly 
hold disk blocks in memory. This is the fact for fat32 
which caches a certain amount of FAT blocks. As a con-
sequence, the additional seeks are only required when a 
FAT lookup affects a block which is not loaded into the 
cache at that time. As a consequence, the energy wastage 
is limited in the read phase and not as apparent in the ran-
dom phase where uncached FAT lookups occur only with 
a certain probability. In the write phase scherlfs is able to 
perform with the lowest energy requirements because it 
only has to append the updated file data to the log. Fat32 
is unable to perform with comparable results because the 
data has to be written to the updated locations which are 
randomly scattered within the file in contrast to being 
aligned in a sequential manner. This situation proves to 
be even worse in the case of the ext2 file system which 
organizes its data in different block groups. Therefore, its 
update-in-place method spends even more time seeking 
as it was the case for fat32. The two journaled file sys-
tems have to invest a significant amount of energy to per-
form their updates because of their integrated recovering 
techniques. Although scherlfs shows to be highly energy 
efficient for the initial read and write phases of this test 
its data layout becomes inefficient when random updates 
are performed. This can be seen in the reread and 
rand_reread phases. The energy consumption signifi-
cantly increases after the file updates. This is due to the 
fact that the file data gets fragmented due to the append 
only behavior during the updates. File data is not aligned 
sequentially but is distributed within the log.
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C.  Testing a Digital Camera Appliance

The next step was to examine the potential of our 
approach to save energy when running a real world appli-
cation. Digital cameras record pictures and write them to 
disk immediately. Thus, this workload is characterized by 
mostly writing out mid sized files. With this test it was 
possible to compare the energy consumption of file sys-
tems when writing out new files. As digital cameras are 
embedded devices, we simulated their behavior on a PC. 
This is done by a test program that reads in 156 photo 
files (altogether 145.8 MB) from a digital camera with 3 
megapixels. The average file size was 957 KB. Then all 
files are written out to disk subsequently.

Figure 3 shows the results of the energy measurements 
for the different file systems. They attest scherlfs an opti-
mized energy use. In comparison to the energy consumed 
by reiserfs relative savings of 38% are possible with the 
new file system design. Scherlfs is able to write out the 
files with minimal overhead for updating meta data struc-
tures. Furthermore, nearly no disk seeks are required to 
create the files. As the created files are quite large the 
seeks which are required to update the directories are not 
visible in the measurements. Ext2 and ext3 show the 
highest energy consumption. This is caused by disk seeks 
which result from many meta data updates. For example, 
free block bitmaps, free inode bitmaps and the inode 
structures themselves have to be read in and updated 
quite often within the test. In conclusion, the experiment 
shows that significant energy savings can be reached 
when the overheads of traditional disk managers are 
avoided.

VI.  FREE SPACE MANAGEMENT

One important task for log-structured file systems is to 
manage the free space of the storage medium and make 
space occupied by old or deleted data inside the log avail-
able again.

There are two main approaches to free space manage-
ment in a log-structured file system and both have simi-
larities to common garbage collection techniques.

The first technique is to take valid data from the end of 
the log and overwrite unused space in the middle of the 
log. The log gets shorter and more compact and there is 
more space available at the end of the storage area. This 
is the copying approach.

The second technique is known as the threading 
approach. It fills all the available storage up to the end of 
the disk and then starts over from the beginning reusing 
the parts of the log which are no longer in use. This way, 
it creates a kind of interleaved log. This method involves 
less or no copying, but unused areas have to be identified 
and there may be fragmentation of frequently updated 
data.

A combination of both techniques is also possible, 
resulting in a hybrid approach.

As on-going work, we currently implement and evalu-
ate different approaches to free space management which 
are discussed in the following sections.

A.  Copying Approach

This method moves data from the end to the holes 
(obsoleted or deleted data) in the log. This way, the log is 
shortened and space is made available for future write 
operations. Since possibly large portions of data have to 
be moved around, this approach is not practical for incre-
mental file system cleaning. A pitfall is that extensive 
copying may cause an inconsistent file system in case of 
a crash if not taken care of. To reduce the latencies 
caused by the cleaning process the copy operations could 
be performed incrementally.

First a source region has to be chosen from which the 
data will be moved into the log holes. Typically this will 
be the end of the log where new data is written to, but it 
may be beneficial in terms of lesser overhead due to 
copying to change this location. As a result the amount of 
valid data which will be moved is known. The second 
step is to identify a destination region in the log where 
enough space for the data is available, preferably an area 
with lots of holes in the log. If the copying step should 
also have a defragmentation effect, the full size of the 
files which are only partially in the destination area have 
to be taken into account. The same is true for files which 
are partially in the source region. The defragmentation 
step is optional and consists of reordering data in the des-
tination area and copying data which belongs to the files 
in question to the appropriate places in the destination 
area. For this process, the free space in the destination 
area or the end of the log can be used as temporary stor-
age. The final step is to move all data which belongs to 
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the source region into the target area preferably keeping 
together data of individual files. In addition to that, the 
new end of the log has to be marked.

The following questions or parameters influence the 
decision of when and how the cleaner should be invoked:

• How much energy is available for cleaning?
• How much free space should be created?
• How much memory is available for temporary data 

during cleaning?
To sum up, the copying approach has the advantage 

that no overhead is incurred for writing since available 
memory at the end of the log is always contiguous. How-
ever, the cleaning process itself can come with a signifi-
cant overhead both in energy and time. Therefore, the 
copying approach should be used favorably for on-line 
mode while no or at least few write operations are per-
formed. If it is used during battery-powered operation, 
different policies for a copying cleaner are possible:

• Minimum number of copy operations. 
In this case, large areas of file data can be split to fill 
smaller holes in the log resulting in a higher frag-
mentation.

• Compacting cleaning. 
A defragmentation step is involved which joins 
matching extents of file data resulting in overhead 
due to copying.

B.  Threading Approach

In the threading approach the log grows until it reaches 
the end of the disk and then starts over at the beginning, 
threading through the holes in the previous log while 
skipping all valid data. As a consequence, no explicit 
cleaning is necessary which makes this strategy well-
suited for incremental use. The main drawback is that for 
each write operation a suitable hole has to be found. Thus 
the position and size of the unused space must be known 
during writing in contrast to the copying approach where 
this information is necessary only during the cleaning 
process. Furthermore, this method can cause significant 
fragmentation if there are only small holes left in the log. 
An explicit defragmentation step similar to the copying 
approach might become necessary. If there is still enough 
contiguous space available, writing complete files instead 
of only the updated parts could also prevent further frag-
mentation, especially if this would cause two or more 
small unused areas to be merged.

In our current implementation the holes in the log are 
managed using a pseudo file which considers the holes as 
its data. To reduce the size of this meta information we 
use extents (starting address and length of each hole). As 
a consequence, every update to a file’s meta data also 
triggers an update to the meta data of the pseudo file, and 

few large holes in the log result in lower memory con-
sumption for the meta information of the pseudo file than 
lots of small ones. Therefore, we try to minimize the 
fragmentation of the file data as well as the fragmentation 
of the holes by using a best-fit algorithm for finding suit-
able holes for new data. This involves sorting the holes 
by their sizes. Our current implementation is based on 
skip-lists for sorting.

C.  Hybrid Approach

The main advantage of the threading approach is that 
no explicit cleaning is necessary. However, every write 
operation involves searching for a hole which is big 
enough to hold the new data. Furthermore, keeping such 
information in memory may be difficult. As proposed in 
[3] for LFS, a hybrid approach solves this problem by 
dividing the storage area into large chunks or segments. 
The threading approach is used at the granularity of 
these segments since it is easier to keep track of empty 
extents, using e.g. a bitmask. Eventually, partially used 
segments are cleaned up and merged using a copying 
approach, making free segments available for the log.

VII.  CONCLUSION

We have presented guidelines for energy-efficient file 
system design. To prove our assumption we have imple-
mented a novel, log-structured file system based on the 
idea of minimizing energy consumption by avoiding 
expensive disk seeks and latencies due to rotational 
delays. Energy measurements of several test scenarios 
prove the energy efficiency of the proposed data organi-
zation and layout. We have discussed several approaches 
to free space management and the implications of the 
design options on energy consumption. Recommenda-
tions for an energy-aware free space management for dif-
ferent energy settings are given.

As future work, we investigate the feasibility of an on-
line adaptation of cleaning mechanisms or free space 
managers to changing access behavior and availability of 
energy. In addition to that, we experiment with low-
power file system designs for other, possibly not block-
oriented storage media.
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