
Revisiting Log-Structured File Systems for
Low-Power Portable Storage

Frank Bellosa
University of Karlsruhe

bellosa@ira.uka.de

Andreas Weissel, Holger Scherl, Philipp Janda
University of Erlangen

{weissel,scherl,janda}@cs.fau.de
Abstract -- In this work we investigate the implica-
tions on the energy consumption of different popular
file systems and propose a novel, log-structured file
system aiming at minimized energy consumption by
avoiding expensive disk seeks and introduced laten-
cies due to rotational delays. We show that the energy
efficiency of file systems is heavily influenced by the
underlying data layout and file organization. Guide-
lines for a low power file system design are developed
and evaluated with measurements of the energy con-
sumption of a prototype implementation. As on-going
work we investigate different approaches to free space
management. We discuss design choices for the imple-
mentation of a family of free space managers and
their implications on energy consumption.

I. INTRODUCTION

Energy consumption is an important design issue for
modern mobile devices. On the hardware level, this issue
is addressed by introducing additional operating modes
with reduced power consumption, e.g. hard disks with
low-power idle and standby modes. However, research in
the area of energy-aware systems has not yet addressed
the organization and layout of file systems for hard disks.

The idea of log-structured file systems is to simulate an
indefinite storage space (the log) to which new or
updated data is simply appended. We investigate the
potential of this design to minimize disk seeks and rota-
tional latencies and, as a consequence, the energy con-
sumption induced by the file system layout on disk. We
present guidelines for the design of a low power file sys-
tem and evaluate the resulting energy savings with real
power measurements of a prototype implementation.

To realize the abstraction of an indefinite log, the avail-
able free space on the hard disk has to be managed to
reclaim space from old (deleted or changed) data and to
hide the physical layout of the hard disk. We discuss pos-
sible implementations of free space management and
their implications on the energy consumption. Two
approaches can be distinguished: in the copying
approach, a cleaner process is invoked as soon as the
length of the log exceeds a certain threshold, e.g. 90% of
the size of the partition. This cleaner compresses the log
by copying data from the head or the tail into holes

(obsoleted data) inside the log. In the threading
approach, the log is not necessarily stored contiguously
but threaded through the holes. If the free space becomes
too fragmented, a cleaner process has to compress the
log, similar to the copying approach.

Several design choices lead to a family of free space
managers which allow the selection of an appropriate
algorithm depending on the available energy, the amount
of free space which has to be generated and the overhead
during normal operation. As work-in-progress, we are
currently implementing different free space managers.

The rest of this paper is organized as follows. In the
next section, we discuss related work. Guidelines for
energy efficient file system design are presented in sec-
tion III, followed by a presentation of our prototype
implementation and its evaluation. In section VI, we dis-
cuss approaches to free space management.

II. RELATED WORK

The principles of log-structured file systems (LFS)
were presented in 1991 by Rosenblum et al. [3]. A new
technique for disk management is proposed that aims at
speeding up both disk writes and recovery times and a
prototype implementation for the Sprite operating system
is presented. Seltzer et al. [6] completely redesigned the
file system to integrate it into the 4.4BSD Unix operating
system. A performance comparison with the Berkely Fast
Filesystem (FFS) showed that log-structured and clus-
tered file systems each have regions of performance
dominance [7]. However, they attest log-structured file
systems improved performance for reading and writing
small files and for their creation and deletion. FFS
showed to be more effective when file sizes rise above
256 kilobytes. Czezatke et al. implemented a log-struc-
tured file system in Linux by adding a logging-layer
between an adapted version of the ext2 file system and
the block device [1]. Matthews et al. describe possibili-
ties to improve the performance of log-structured file
systems with adaptive methods for a wider range of
workloads [2]. Layout adaptation to match hardware
characteristics of storage devices through track-aligned
extents is performed by Schindler et al. [5]. By utilizing
disk-specific knowledge it is possible to increase I/O effi-
ciency by reducing head switches for medium to large

requests. Matching segments to track boundaries is sug-
gested to achieve a better performance both for cleaning
and writing in log-structured file systems. In [8], file sys-
tem alternatives for mobile storage and their implications
on the energy consumption of different storage media are
discussed. Different variants of the traditional UNIX file
system are compared with LFS by Rosenblum et al. [3].

III. GUIDELINES FOR ENERGY EFFICIENT FILE SYSTEM
DESIGN

In the following sections, we discuss requirements and
guidelines for the design of a file system for portable
storage optimized for low power consumption.

A. Sequential Arrangement of Meta Data and Data
Blocks

When writing or reading files from disk, two entities
have to be accessed: meta data and file contents. If meta
data and file data are stored at physically distinct disk
locations, it is necessary to issue two disk requests
accompanied by two seeks and two rotational latencies
when file data is accessed. Thus, meta data information
and file contents should be grouped together to avoid
switching between different locations on the disk. Unfor-
tunately, as opposed to a fixed positioning dynamic
arrangement of meta data structures introduces complexi-
ties and overheads for maintaining their locations on
disk. But a careful implementation is able to limit these
effects in order to gain the outlined benefits.

B. Free Space Management

Sequential arrangement of file contents and their meta
data can be achieved with the abstraction of an infinite
storage medium or log. In this case, new or updated files
are simply appended to the end of the log. However, data
which is no longer valid after updating or deletion
remains at its initial position, creating holes in the log. To
reuse the space occupied by obsoleted data, as described
above, the copying or threading method can be used. Free
space is generated by compressing the log or by thread-
ing the log through extents of old data.

C. Sequential Reading and Writing Behavior

If the file system is fragmented, file access perfor-
mance will suffer from an imperfect data layout resulting
in higher energy consumption. As a consequence, the
disk manager should be capable of automatically creating
unfragmented empty space on disk. With this process,
file data can be rearranged in a sequential manner. How-
ever, the task of free space management requires addi-
tional energy which has to be taken into consideration.

D. File System Reorganization

Small files that are frequently accessed in the same
sequence could also be arranged sequentially to save
energy. As described above, data reorganization is
already used to generate large extents of empty space.
This technique can be extended to match file organiza-
tion on disk to the access pattern of read operations. This
approach is most beneficial for workloads which access
many small files. Then additional energy savings are pos-
sible by avoiding disk seeks and rotational latency delays
between file accesses. An additional policy would be to
group files which are residing in the same directory.

E. Adaptive Energy Use

When attached to an external power supply the energy
consumption is mostly of no concern for mobile devices.
However, when running on battery power, every Joule is
precious. Therefore, we distinguish two operating modes:
battery and on-line mode. In battery mode, time- and
energy-consuming data reorganizations should be
avoided and postponed until the device is in on-line
mode. Depending on the remaining battery lifetime dif-
ferent cleaning strategies can be used to minimize the
additional energy consumption of reorganization while
still creating new space. For cleaning policies, we can
identify a trade-off between optimizing data and file lay-
out or the amount of free space created and minimizing
energy consumption.

F. Fast Crash Recovery

Mobile computers are often used until the battery
power is consumed completely leading to unclean shut-
downs. In this case or in the presence of software or hard-
ware failures, file systems can be left in an inconsistent
state. Therefore, consistency checks have to be per-
formed before accessing the data on the disk to ensure
data reliability. Log-structured file systems have the
advantage that a consistency check normally does not
need to scan over the entire disk as recent changes to the
file system can be found at the head or end of the log.

IV. IMPLEMENTATION

From these requirements, the design of a file system
based on the log-structured approach emerges. We imple-
mented our prototype file system scherlfs (a student the-
sis [4]) as a Linux kernel module.

A. File System Design

In scherlfs, inodes are not located at fixed disk loca-
tions but are stored dynamically in the log. Therefore, a
mechanism for translating an inode number to the corre-

sponding disk block is needed. This is done by a simple
map lookup operation. Similar to the approach used in
LFS, the map is indexed by the inode number and reveals
the corresponding logical disk block at this position.
Inode numbers which do not correspond to an existing
file are associated with a logical block number of zero.
The elements of the inode map are placed in a read-only
regular file, called the .ifile. It is made visible in the root
directory of the file system. This approach has several
advantages. First, it overcomes the limitation of storing
only a fixed amount of files in the file system since data
can be easily appended to it as for any other file. Second,
in most cases it can be treated as any other file minimiz-
ing the special purpose code in the file system. Finally, it
is possible to access the file system via the standard sys-
tem calls when cleaning policies are going to be imple-
mented in user space.

When creating a new inode the .ifile has to be searched
for a free entry. Without applied optimizations a linear
search has to be performed. In scherlfs, this task is
speeded up by the introduction of a free block bitmap
which is stored in the superblock. It marks blocks full of
inode entries by setting the corresponding bit in the bit-
map. At initialization time the bitmap is simply filled
with zeroes assuming that all blocks of the bitmap still
have free space for an inode entry. Then the entries are
updated by a lazy initialization scheme, thus eliminating
the need for maintaining the consistency of the bitmap
between file system mounts.

The integration of the inode map in the log eliminates
the need for a special checkpoint region. When check-
points are applied, changed .ifile blocks have to be saved
to disk and the new position of the .ifiles’ inode is simply
inserted into the superblock of the file system. This way,
the bootstrap problem of retrieving the position of the
.ifile by accessing the inode map in the .ifile is avoided.

B. The Case for a New Inode Design

The inode of a file has to store all information which is
needed to map file block numbers to logical block num-
bers. As data blocks are not necessarily adjacent to each
other most file systems provide a method to store the
connection between each file block number and the cor-
responding logical block number. This mapping goes
back to early versions of Unix from AT&T and is also
used in LFS [3]. In this scheme inodes store a number of
direct and indirect block pointers. However, indirection
can cause additional seeks and rotational latencies.
Therefore, we decided not to use this approach.

Whenever possible, dirty data blocks of a file are writ-
ten to disk in large extents. Extents are triples that
describe contiguous chunks of data by containing a start-

ing file block number, the corresponding logical block
number on disk and length information. By introducing
this data structure it is possible to describe even large
files with only few extents. This is implemented by sav-
ing the extents of a file in a doubly linked list which is
added to the in-memory representation of the inode. This
way, it is possible to save the file offset only implicitly.
An array representation of this list is added to the inode
block on disk. Fortunately, for most files only a few
extents have to be created. These extents fit easily into
the inode structure and can be held in memory together
with other inode data. Additional disk seeks are not
required in contrast to the traditional representation.
However, for highly fragmented files it is possible that a
disk inode propagates over a variable amount of contigu-
ous disk blocks. Although additional disk seeks are not
required in this situation, the compact representation of
the file contents will get lost. Therefore, extent structures
have to be carefully managed by the implementation.
When updating or creating new extents a more compact
representation can be achieved by joining adjacent
extents. The opposite case can also occur if extents have
to be split into two or three parts.

One major drawback of this scheme appears with
applications that issue many small write requests (most
Unix utilities issue write calls with a buffer size that
matches the system page size). In this case, inode blocks
followed by a small amount of data blocks are written out
frequently, causing an imperfect data layout on disk by
fragmenting the file.

To overcome this problem, scherlfs writes new inode
blocks over the disk location of the last written one. To
reduce the overhead of additional disk seeks, the inode
write operation is delayed a certain amount of time.
Deferred updates are already performed by the Linux
bdflush (version 2.4) or pdflush (2.6) demon. In scherlfs,
the determination of the block number of updated inodes
is delayed as long as possible, until the flush demon
writes out the inode. This way, reliability is not reduced
compared to the already existing Linux implementation.

V. EVALUATION

All experiments were performed on a 2.5” IBM Travel-
star 15GN hard disk (IC25N010ATDA04, now Hitachi).
We determined the energy consumption by measuring the
voltage drop at a precision resistor in the 5V power sup-
ply line of the hard disk. The voltage drop is acquired
using an A/D-converter with a resolution of 256 steps at a
rate of 10000 samples per second.

In the area of mobile devices, available memory for
caching of file data is limited. To simulate this setting on
a desktop PC with plenty of main memory we modified

the cache subsystem of Linux to minimize the use of the
disk caches: When searching the block buffer cache, the
Uptodate flag of the requested buffer block is always
cleared. Accesses to the page cache reset the
ClearPageUptodate flag if the requested page dif-
fers from the last requested one, thus reducing the page
cache to the size of one page. In addition to that the func-
tions block_read_full_page() and block_
prepare_write(), which are used by all tested file
systems, are modified to read in also up-to-date buffers.

A. Energy Consumption of Sequential Operations

The first comparative measurements examine the
energy consumption of sequential read and write opera-
tions across a range of different file sizes. A test program
transfers a volume of 50 MB, decomposed into the
appropriate number of files for the file size being tested.
In the case of small files directory lookup operations
dominate all other processing overhead. Therefore, the
files are divided into subdirectories, each containing no
more than 200 files. Six phases are tested:

• Create: The files are created by issuing one I/O oper-
ation.

• Read: All files are read in their creation order with
one I/O operation.

• Rand_read: All files are read in pseudo random
order with one I/O operation.

• Rewrite: All files are truncated and rewritten in their
creation order; their original sizes remain unchanged.

• Reread: The read phase above is executed again on
the file system after the rewrite phase.

• Rand_reread: The rand_read phase is executed
again on the file system after the rewrite phase.

Traces of file system accesses are recorded and
replayed without idle periods on the file systems reiserfs,
fat32, ext2, ext3 (mounted in default mode ordered) and
scherlfs. The energy consumption of the test runs is
shown in figure 1. Only the results for a file size of 4 KB
are shown, tests for other file sizes show the same trends.
Every test run is repeated at least five times; the figures
show the average energy consumption. For the majority
of tests the variance is negligible, otherwise it is shown in
the figures. While energy savings are mainly due to
increased performance (the time it takes to replay the
trace files on the different file systems mimic the energy
consumption shown in the figures), additional savings are
possible as the idle periods are increased and there are
more opportunities to switch to standby mode.

In the create phase reiserfs proves to be most energy
efficient in comparison to the traditional file system lay-
outs. Fat32 is very close to reiserfs but cannot be better
for any of the different I/O sizes. Ext2 is far behind the

other file systems. The design based on block groups
shows to be inefficient. The ext3 file system behaves
even worse because its recovering technique introduces
additional overheads. The log approach of scherlfs
proves to be optimal, reaching the highest energy savings
for all file sizes. Relative to reiserfs energy savings of
66% to 79.9% are achieved for the creation of small files.
Although the relative savings decrease with larger file
sizes energy efficiency is still increased by 37.4% for
1024 KB files. This becomes possible because all file
data and meta data can be written to the log in a sequen-
tial manner. Disk seeks are only necessary for directory
updates.

The file systems show only minor differences in their
sequential read performance. For small file sizes the
retrieval of file information from the directories influ-
ences the energy consumption significantly. For that rea-
son reiserfs has the smallest energy requirements. The
good performance for 4 KB files can be explained by the
tail packing of reiserfs. Small files are stored directly in
reiserfs’ search tree. Therefore, no additional seeks are
required when the file object is found in the tree.
Although scherlfs arranges all files sequentially in the log
and the read order of the files is not varied, the directory
lookups have a negative impact on energy consumption.

However, in the random read phase the file arrange-
ment of scherlfs shows to be energy efficient because file
meta data and file data is arranged sequentially on disk.
Fat32 stores meta information for the files together in the
directories and in its file allocation table, resulting energy
requirements similar to scherlfs. It has to be noticed that
this is due to the internal FAT cache of fat32. For larger
file sizes the file systems have only minor differences in
their energy consumption.

scherlfs reiserfs
fat32

ext2
ext3

 0
 50

 100
 150
 200
 250
 300

E
ne

rg
y

[J
]

Create

 0
 50

 100
 150
 200
 250
 300

E
ne

rg
y

[J
]

Rewrite

 0
 5

 10
 15
 20
 25

Read
 0
 5

 10
 15
 20
 25

Reread

 0
 50

 100
 150
 200
 250
 300
 350

Rand_read
 0

 50
 100
 150
 200
 250
 300
 350

Rand_reread

Figure 1: Energy Consumption of Sequential File
Operations (4K files)

During the rewrite phase, the log approach achieves the
highest savings of all file systems, at least for small files.
Ext2 and ext3 have both very high energy requirements
for all file sizes because of their frequent meta data
updates.

After the rewrite phase the two read tests are performed
again on the updated file systems (reread and
rand_reread). The energy consumption of the traditional
file systems increases a bit. This can be explained by the
truncate operation of the rewrite phase which forces the
file systems to reallocate the data blocks to the files in
contrast to simply overwriting them. The previous alloca-
tion scheme can be changed which possibly fragments
meta data and disk blocks of the files. In contrast, scher-
lfs appends all files and updated meta data to the log. The
same file layout is created only at another disk location.
As the files are not deleted but only truncated, updates of
directory information structures were not necessary.
Thus, only the data which corresponds to the file updates
is appended to the log. No directory data is saved in
between the files by the appends to the log. As a conse-
quence, in the reread phase the best achievable energy
efficiency is reached because the requested data could be
read from disk with the full transfer bandwidth of the
hard drive. This explains the resulting energy savings.

The measurements show that scherlfs offers energy
improvements especially for the creation of new files. Its
energy efficiency is often better or at least comparable to
that of other file systems in the read and write test phases.

B. Energy Consumption of Random Updates

The second comparative analysis examines the energy
consumption of different file systems when small random
I/O operations are issued to one large file. For this test, a
file of 100 MB is created. This experiment consists of
five phases:

• Read: All data is read in by issuing the appropriate
amount of I/O operations with a size of 8 KB.

• Rand read: 24 MB of data is read in at pseudo ran-
dom positions by issuing the appropriate number of
I/O operations with a size of 8 KB.

• Write: 24 MB of data is updated at pseudo random
positions by issuing the appropriate number of I/O
operations with a size of 8 KB.

• Reread: The read phase above is executed again on
the now updated file.

• Rand reread: The rand read phase above is executed
again on the now updated file.

Figure 2 shows the energy consumption of the tests for
the different file systems. As the target file is created on a
new, empty file system, it could be organized in an opti-
mized manner by each file system. Therefore, almost all

file systems show the same energy measurements during
the first sequential and random read phases. However,
fat32 consumes nearly 3J more than the other file sys-
tems in the read phase, due to the fact that a lookup in the
file allocation table has to be performed every time a new
block of the file is going to be loaded into memory. This
requires two additional disk seeks if the corresponding
FAT block has not already been loaded into the cache.
Although the Linux kernel was modified to limit disk
block caching it does not hinder file systems to explicitly
hold disk blocks in memory. This is the fact for fat32
which caches a certain amount of FAT blocks. As a con-
sequence, the additional seeks are only required when a
FAT lookup affects a block which is not loaded into the
cache at that time. As a consequence, the energy wastage
is limited in the read phase and not as apparent in the ran-
dom phase where uncached FAT lookups occur only with
a certain probability. In the write phase scherlfs is able to
perform with the lowest energy requirements because it
only has to append the updated file data to the log. Fat32
is unable to perform with comparable results because the
data has to be written to the updated locations which are
randomly scattered within the file in contrast to being
aligned in a sequential manner. This situation proves to
be even worse in the case of the ext2 file system which
organizes its data in different block groups. Therefore, its
update-in-place method spends even more time seeking
as it was the case for fat32. The two journaled file sys-
tems have to invest a significant amount of energy to per-
form their updates because of their integrated recovering
techniques. Although scherlfs shows to be highly energy
efficient for the initial read and write phases of this test
its data layout becomes inefficient when random updates
are performed. This can be seen in the reread and
rand_reread phases. The energy consumption signifi-
cantly increases after the file updates. This is due to the
fact that the file data gets fragmented due to the append
only behavior during the updates. File data is not aligned
sequentially but is distributed within the log.

 0

 5

 10

 15

 20

 25

 30

 35

En
er

gy
 [J

]

Read Rand_read Write Reread Rand_reread

scherlfs
reiserfs

fat32
ext2
ext3

Figure 2: Energy Consumption of Random Updates

C. Testing a Digital Camera Appliance

The next step was to examine the potential of our
approach to save energy when running a real world appli-
cation. Digital cameras record pictures and write them to
disk immediately. Thus, this workload is characterized by
mostly writing out mid sized files. With this test it was
possible to compare the energy consumption of file sys-
tems when writing out new files. As digital cameras are
embedded devices, we simulated their behavior on a PC.
This is done by a test program that reads in 156 photo
files (altogether 145.8 MB) from a digital camera with 3
megapixels. The average file size was 957 KB. Then all
files are written out to disk subsequently.

Figure 3 shows the results of the energy measurements
for the different file systems. They attest scherlfs an opti-
mized energy use. In comparison to the energy consumed
by reiserfs relative savings of 38% are possible with the
new file system design. Scherlfs is able to write out the
files with minimal overhead for updating meta data struc-
tures. Furthermore, nearly no disk seeks are required to
create the files. As the created files are quite large the
seeks which are required to update the directories are not
visible in the measurements. Ext2 and ext3 show the
highest energy consumption. This is caused by disk seeks
which result from many meta data updates. For example,
free block bitmaps, free inode bitmaps and the inode
structures themselves have to be read in and updated
quite often within the test. In conclusion, the experiment
shows that significant energy savings can be reached
when the overheads of traditional disk managers are
avoided.

VI. FREE SPACE MANAGEMENT

One important task for log-structured file systems is to
manage the free space of the storage medium and make
space occupied by old or deleted data inside the log avail-
able again.

There are two main approaches to free space manage-
ment in a log-structured file system and both have simi-
larities to common garbage collection techniques.

The first technique is to take valid data from the end of
the log and overwrite unused space in the middle of the
log. The log gets shorter and more compact and there is
more space available at the end of the storage area. This
is the copying approach.

The second technique is known as the threading
approach. It fills all the available storage up to the end of
the disk and then starts over from the beginning reusing
the parts of the log which are no longer in use. This way,
it creates a kind of interleaved log. This method involves
less or no copying, but unused areas have to be identified
and there may be fragmentation of frequently updated
data.

A combination of both techniques is also possible,
resulting in a hybrid approach.

As on-going work, we currently implement and evalu-
ate different approaches to free space management which
are discussed in the following sections.

A. Copying Approach

This method moves data from the end to the holes
(obsoleted or deleted data) in the log. This way, the log is
shortened and space is made available for future write
operations. Since possibly large portions of data have to
be moved around, this approach is not practical for incre-
mental file system cleaning. A pitfall is that extensive
copying may cause an inconsistent file system in case of
a crash if not taken care of. To reduce the latencies
caused by the cleaning process the copy operations could
be performed incrementally.

First a source region has to be chosen from which the
data will be moved into the log holes. Typically this will
be the end of the log where new data is written to, but it
may be beneficial in terms of lesser overhead due to
copying to change this location. As a result the amount of
valid data which will be moved is known. The second
step is to identify a destination region in the log where
enough space for the data is available, preferably an area
with lots of holes in the log. If the copying step should
also have a defragmentation effect, the full size of the
files which are only partially in the destination area have
to be taken into account. The same is true for files which
are partially in the source region. The defragmentation
step is optional and consists of reordering data in the des-
tination area and copying data which belongs to the files
in question to the appropriate places in the destination
area. For this process, the free space in the destination
area or the end of the log can be used as temporary stor-
age. The final step is to move all data which belongs to

 0

 10

 20

 30

 40

 50

 60

E
ne

rg
y

[J
]

scherlfs
reiserfs

fat32
ext2
ext3

Figure 3: Digital Camera Appliance

the source region into the target area preferably keeping
together data of individual files. In addition to that, the
new end of the log has to be marked.

The following questions or parameters influence the
decision of when and how the cleaner should be invoked:

• How much energy is available for cleaning?
• How much free space should be created?
• How much memory is available for temporary data

during cleaning?
To sum up, the copying approach has the advantage

that no overhead is incurred for writing since available
memory at the end of the log is always contiguous. How-
ever, the cleaning process itself can come with a signifi-
cant overhead both in energy and time. Therefore, the
copying approach should be used favorably for on-line
mode while no or at least few write operations are per-
formed. If it is used during battery-powered operation,
different policies for a copying cleaner are possible:

• Minimum number of copy operations.
In this case, large areas of file data can be split to fill
smaller holes in the log resulting in a higher frag-
mentation.

• Compacting cleaning.
A defragmentation step is involved which joins
matching extents of file data resulting in overhead
due to copying.

B. Threading Approach

In the threading approach the log grows until it reaches
the end of the disk and then starts over at the beginning,
threading through the holes in the previous log while
skipping all valid data. As a consequence, no explicit
cleaning is necessary which makes this strategy well-
suited for incremental use. The main drawback is that for
each write operation a suitable hole has to be found. Thus
the position and size of the unused space must be known
during writing in contrast to the copying approach where
this information is necessary only during the cleaning
process. Furthermore, this method can cause significant
fragmentation if there are only small holes left in the log.
An explicit defragmentation step similar to the copying
approach might become necessary. If there is still enough
contiguous space available, writing complete files instead
of only the updated parts could also prevent further frag-
mentation, especially if this would cause two or more
small unused areas to be merged.

In our current implementation the holes in the log are
managed using a pseudo file which considers the holes as
its data. To reduce the size of this meta information we
use extents (starting address and length of each hole). As
a consequence, every update to a file’s meta data also
triggers an update to the meta data of the pseudo file, and

few large holes in the log result in lower memory con-
sumption for the meta information of the pseudo file than
lots of small ones. Therefore, we try to minimize the
fragmentation of the file data as well as the fragmentation
of the holes by using a best-fit algorithm for finding suit-
able holes for new data. This involves sorting the holes
by their sizes. Our current implementation is based on
skip-lists for sorting.

C. Hybrid Approach

The main advantage of the threading approach is that
no explicit cleaning is necessary. However, every write
operation involves searching for a hole which is big
enough to hold the new data. Furthermore, keeping such
information in memory may be difficult. As proposed in
[3] for LFS, a hybrid approach solves this problem by
dividing the storage area into large chunks or segments.
The threading approach is used at the granularity of
these segments since it is easier to keep track of empty
extents, using e.g. a bitmask. Eventually, partially used
segments are cleaned up and merged using a copying
approach, making free segments available for the log.

VII. CONCLUSION

We have presented guidelines for energy-efficient file
system design. To prove our assumption we have imple-
mented a novel, log-structured file system based on the
idea of minimizing energy consumption by avoiding
expensive disk seeks and latencies due to rotational
delays. Energy measurements of several test scenarios
prove the energy efficiency of the proposed data organi-
zation and layout. We have discussed several approaches
to free space management and the implications of the
design options on energy consumption. Recommenda-
tions for an energy-aware free space management for dif-
ferent energy settings are given.

As future work, we investigate the feasibility of an on-
line adaptation of cleaning mechanisms or free space
managers to changing access behavior and availability of
energy. In addition to that, we experiment with low-
power file system designs for other, possibly not block-
oriented storage media.

VIII. ACKNOWLEDGEMENTS

The anonymous reviewers have helped us to improve
this paper with their useful feedback.

REFERENCES

[1] CZEZATKE, C., AND ERTL, M. A. Linlogfs - a log-struc-
tured filesystem for linux. In Freenix Track of Usenix
Annual Technical Conference (2000).

[2] MATTHEWS, J. N., ROSELLI, D., COSTELLO, A. M.,
WANG, R. Y., AND ANDERSON, T. E. Improving the per-
formance of log-structured file systems with adaptive
methods. In Proceedings of the sixteenth ACM symposium
on Operating systems principles (October 1997).

[3] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems 10, 1 (1992), 26–52.

[4] SCHERL, H. Design and implementation of an energy-
aware file system. Department of Computer Sciences 4,
student thesis SA-I4-2004-01, January 2004.

[5] SCHINDLER, J., GRIFFIN, J. L., LUMB, C. R., AND GANGER,
G. R. Track-aligned extents: Matching access patterns to
disk drive characteristics. In Proceedings of the First Con-
ference on File and Storage Technologies FAST’02
(2002).

[6] SELTZER, M. I., BOSTIC, K., MCKUSICK, M. K., AND
STAELIN, C. An implementation of a log-structured file
system for unix. In USENIX Winter (1993).

[7] SELTZER, M. I., SMITH, K. A., BALAKRISHNAN, H.,
CHANG, J., MCMAINS, S., AND PADMANABHAN, V. N. File
system logging versus clustering: a performance compar-
ison. In USENIX Winter (1995).

[8] ZHENG, F., GARG, N., SOBTI, S., ZHANG, C., JOSEPH,
R. E., KRISHNAMURTY, A., AND WANG, R. Y. Considering
the energy consumption of mobile storage alternatives. In
Proceedings of the 11th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems MASCOTS 2003 (Octo-
ber 2003).

	I. Introduction
	II. Related Work
	III. Guidelines for Energy Efficient File System Design
	A. Sequential Arrangement of Meta Data and Data Blocks
	B. Free Space Management
	C. Sequential Reading and Writing Behavior
	D. File System Reorganization
	E. Adaptive Energy Use
	F. Fast Crash Recovery

	IV. Implementation
	A. File System Design
	B. The Case for a New Inode Design

	V. Evaluation
	A. Energy Consumption of Sequential Operations
	Figure 1: Energy Consumption of Sequential File Operations (4K files)

	B. Energy Consumption of Random Updates
	Figure 2: Energy Consumption of Random Updates

	C. Testing a Digital Camera Appliance
	Figure 3: Digital Camera Appliance

	VI. Free Space Management
	A. Copying Approach
	B. Threading Approach
	C. Hybrid Approach

	VII. Conclusion
	VIII. Acknowledgements
	References
	Revisiting Log-Structured File Systems for Low-Power Portable Storage
	Frank Bellosa
	University of Karlsruhe
	bellosa@ira.uka.de
	Andreas Weissel, Holger Scherl, Philipp Janda
	University of Erlangen
	{weissel,scherl,janda}@cs.fau.de

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.283 790.866]
>> setpagedevice

