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Abstract
Para-virtualization ties a guest operating system and a
hypervisor together, which restricts the system architec-
ture; e.g., when Linux uses the Xen API, Linux is un-
able to run on alternative hypervisors such as VMware,
Linux itself, or a security kernel such as EROS. Further-
more, the lock-in obstructs evolution of its own para-
virtualization interface — virtual machines provide the
vital ability to run obsoleted operating systems along-
side new operating systems, but para-virtualization of-
ten lacks this feature, requiring all concurrent instances
to be the hypervisor’s supported version. Even general
purpose operating systems have weaker restrictions for
their applications. This lock-in discards the modularity
of virtualization; modularity is an intrinsic feature of tra-
ditional virtualization, helping to add layered enhance-
ments to operating systems, especially when enhanced
by people outside the operating system’s development
community (e.g., Linux server consolidation provided by
VMware).

Virtualization and its modularity solve many sys-
tems problems; combined with the performance of para-
virtualization it becomes even more compelling. We
show how to achieve both together. We offer a set of de-
sign principles, which we call soft layering, that govern
the modifications made to the operating system. Addi-
tionally, our approach is highly automated, thus reduc-
ing the implementation and maintenance burden of para-
virtualization, which is especially useful for enabling ob-
soleted operating systems. We demonstrate soft layer-
ing on x86 and Itanium: we can load a single Linux
binary on a variety of hypervisors (and thus substitute
virtual machine environments and their enhancements),
while achieving essentially the same performance as
para-virtualization with less effort.

1 Introduction
Although many hypervisor implementers strive to build
high-performance virtual machine (VM) environments,
the constraints for supporting commodity operating sys-
tems are enormous and force costly optimizations (e.g.,
VMware’s runtime binary translation). Many have pro-
posed to modify the operating system (OS) for co-
design with the hypervisor, i.e., para-virtualization [35],
to improve performance and correctness; the possibili-
ties seem unlimited, but the cost has been the emergence
of many para-virtualization projects with incompatible
and unreconcilable architectures, yet overlapping main-
tenance efforts for modifications to the guest OSes, and
customer lock-in. By using specialized interfaces rather
than the neutral machine interface, para-virtualization
discards the modularity of traditional virtual machines.
Modularity via the neutral machine interface is a key in-
gredient of virtualization’s benefits. It enables a guest OS
to run on hypervisors with substantially different archi-
tectures, such as Xen [2] vs. Linux-as-hypervisor [10,19]
vs. hardware-accelerated para-virtualization — most
para-virtualization interfaces hard code assumptions that
prevent adaptation to these different scenarios. Modu-
larity permits runtime hypervisor upgrades (via check-
pointing or migration [6, 31] of the guest OS); in con-
trast, XenoLinux 2.6.9 is tied to Xen 2.0.2, and is un-
able to even run on the newer Xen 3 series – high-level
source code modifications lock-in a particular hypervi-
sor, obstructing the vital capability of VMs to run ob-
soleted OSes alongside modern OSes. Modularity per-
mits OS enhancements written outside the OS’s kernel
community to be added in layers [6], remaining inde-
pendent of fast-paced changes of kernel internals, even
if those features are unwelcome by the kernel developers
themselves (as most are); in contrast, the Linux kernel
team can veto the ideas of the Xen team in the current
merge of XenoLinux into the mainstream Linux source.
Modularity supports proliferation of hypervisors; prolif-
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eration is unavoidable if the proliferation of operating
systems is an indicator, whether for licensing reasons
(proprietary [34] vs. open source [2]), or products from
competing vendors (e.g., VMware, Microsoft, and Paral-
lels), or products that focus on different feature sets (e.g.,
desktop [32] vs. server [2, 34, 35]). Modularity addition-
ally supports stackable enhancements via recursive vir-
tual machine construction [8, 13, 17].

We show how to add modularity to para-virtualization,
achieving high performance and many of the features
of traditional virtualization. Our solution relies on con-
straining para-virtualization’s modifications according to
several principles, which we call soft layering. As orig-
inally proposed for layered network protocols [7], soft
layering embraces co-design of neighboring software
layers, but with some conditions:

1. it must be possible to degrade to a neutral interface,
by ignoring the co-design enhancements (thus per-
mitting execution on raw hardware and hypervisors
that lack support for the soft layering);

2. the interface must flexibly adapt to the algo-
rithms that competitors may provide (thus sup-
porting arbitrary hypervisor interfaces without pre-
arrangement).

Additionally, we use tools to apply the soft layer to a
guest kernel (with substantial automation) to easily sup-
port obsoleted kernels.

1.1 Strict layering
A traditional virtual machine enforces strict layering, in
the manner of Djikstra’s “THE” [9], with the hypervi-
sor (lower) layer hiding resource multiplexing from the
guest OS (upper) layer; the upper layer then focuses on
its problems rather than those of the lower layers. This
information hiding provides modularity: it permits the
upper layer to use simpler abstractions (in regards to the
information hidden in the lower layer) via its pre-existing
use of the platform interface; and to remain independent
of the lower-level’s implementation, which permits sub-
stitution of a new lower layer without disturbing the up-
per layer. The virtual machine must provide the strict
layering because its guest operating systems are oblivi-
ous to any resource multiplexing handled by the lower
layers; an OS was written to perform the resource mul-
tiplexing, but not to participate in collaborative resource
multiplexing with other OSes.

Design by layering involves choosing appropriate ab-
stractions and cut points for the layer interfaces. Layer-
ing’s abstractions provide benefits, but as explained by
Parnas, the abstractions easily introduce inefficiencies
due to the lack of transparency into the lower layers [26];

for example, the upper layer may have the impression
that a resource is infinite, when the opposite is the case;
or the upper layer may have an algorithm that maps well
to a feature of the machine but which is hidden by the
abstractions of the lower layer. Virtual machines have a
problem with transparency, particularly since the guest
OSes try to use the mechanisms of the hardware, but
must instead use abstractions that result from the hyper-
visor multiplexing the hardware mechanisms. Many vir-
tualization projects have addressed this issue by increas-
ing the transparency between the guest OS and the virtual
machine, by modifying the guest OS to interact with the
internals of the layers below. These modifications intro-
duce a dependency between the guest OS and its lower
layer, often ruining the modularity of virtualization: the
guest OS may no longer execute on raw hardware, within
other virtual machine environments, or permit VM recur-
sion (a layer to be inserted between the guest OS and the
virtual machine below it).

1.2 Soft layering
It is the power of the platform’s primitive interface [12]
that enables the rich solutions of traditional virtualiza-
tion, and its neutrality that enables uncoordinated devel-
opment [6], and we focus on this interface in our solu-
tion. The solution is simple: mostly honor strict layering,
but move the hypervisor’s virtualization routines into the
protection domain of the guest kernel, thus enabling low-
cost virtualization (see Figure 1). This is similar to the
technique used by VMware, but we additionally prepare
the guest kernel to help achieve the performance of para-
virtualization.

The soft describes the scope and type of modifications
that we apply to the source code of the guest OS: the
modifications remain close to the original structure of
the guest OS (i.e., the guest kernel’s use of the privi-
leged instructions and its internal design philosophies),
it uses the neutral platform interface as the default in-
terface (i.e., the OS will execute directly on raw hard-
ware while the enhancements require activation), and the
OS includes annotations that help the hypervisor opti-
mize performance. Soft layering forbids changes to the
guest OS that would interfere with correct execution on
the neutral platform interface, it discourages hypervisor-
specific changes, and it discourages changes that sub-
stantially penalize the performance of the neutral plat-
form interface.

The decision to activate a specialized hypervisor inter-
face happens at runtime when the hypervisor and guest
kernel are joined together. The guest OS adds to its bi-
nary a description of its soft layer, and the hypervisor
inspects the descriptor to determine whether they agree
on the soft layer. If not, the hypervisor can abort load-
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Figure 1: Comparison of virtualization strategies (left to right): (a) native execution — no virtual machine; (b) traditional virtual-
ization — hypervisor uses neutral interface; (c) para-virtualization — hypervisor presents a changed API; (d) pre-virtualization —
the in-place VMM maps the neutral interface to a para-virtualizing hypervisor API (thin lines indicate an interface without privilege
change).

ing, or activate a subset of the enhancements (to ignore
extensions unequally implemented, or rendered unneces-
sary when using VM hardware acceleration [1, 20–22]).

For performance we must increase transparency to
the hypervisor’s internal abstractions without violating
the second criterion of soft layering – that the inter-
face must flexibly adapt to the algorithms provided by
competitors (e.g., Linux as a hypervisor with Intel’s VT,
or Xen). We take advantage of how operating systems
use the platform interface in a fairly predictable and
consistent manner, and map this behavior to the hyper-
visor’s efficient primitives, by permitting execution of
mapping algorithms directly within the guest kernel’s
protection domain. This achieves the same effect as para-
virtualization — the guest kernel operates with increased
transparency — but the approach to increasing trans-
parency differs. Some of para-virtualization’s structural
changes fall outside the scope of the platform interface,
thus requiring a different solution, such as a convention
or an idealized device interface that all agree upon. Yet
some of co-design’s traditional structural changes, such
as high-performance network and disk drivers, are un-
necessary in our approach, since they can be handled by
mapping the device register accesses of standard device
drivers to efficient hypervisor abstractions.

In this paper we describe our soft layering approach,
which we call pre-virtualization. We present reference
implementations for several hypervisors on two architec-
tures, and show that they offer modularity while sustain-
ing the performance of para-virtualization.

2 Architecture
Many projects have improved the transparency of vir-
tual machine layering via co-design of the hypervisor
and OS, and have introduced specialized interfaces [2,

4, 10, 11, 18, 19, 24, 35] to solve their problems. These
interfaces not only created strong dependencies between
the guest kernel and hypervisor of each project, but often
duplicated effort between projects due to incompatible
specializations that implemented similar concepts.

Besides performance, para-virtualization addresses
correctness, particularly for timing [2,35], and occasion-
ally for direct hardware access [14, 23]. Timing and di-
rect hardware access fall outside the scope of virtual-
ization [28], and their solutions require increased trans-
parency to the lower layers to either obtain visibility into
the resource multiplexing (timing), or to bypass the re-
source multiplexing (direct hardware access).

The interface specializations of para-virtualization fall
into three categories for which we offer soft-layer alter-
natives:

Instruction-level modifications can extend the under-
lying architecture (e.g., Denali [35] introduced an idle
with timeout instruction), or more importantly, replace
privileged instructions with optimized code that avoids
expensive trapping due to their execution at user level.
Some architectures, especially x86, do not satisfy the re-
quirements of virtualization [28, 30], and rely on sub-
stitution of calls to the hypervisor (hypercalls) for the
virtualization-sensitive instructions, which leads to a
hypervisor-specific solution. Instruction-level modifica-
tions generally apply at the interface between the virtual
machine and the guest kernel, without extending their
reach too far into the guest kernel’s code.

Structural modifications add efficient mappings be-
tween high-level abstractions in the guest kernel and hy-
pervisor interfaces. These are very common for adding
efficient networking and disk support. Also they are
used to map guest address spaces to hypervisor address
spaces, guest threads to hypervisor threads, and to pro-
vide for efficient memory copying between the guest ker-
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nel and its applications. Many projects adjust the virtual
address space of the guest kernel to permit coexistence of
a hypervisor, guest kernel, and guest application within a
single address space. These modifications are very intru-
sive to the guest kernel, and require specific knowledge
of the guest kernel’s internal abstractions.

Behavioral modifications change the algorithms of the
guest OS, or introduce parameters to the algorithms,
which improve performance when running in the virtu-
alization environment. These modifications focus on the
guest kernel, and do not rely on specialized interfaces in
the hypervisor, and thus work on raw hardware too. Ex-
amples are: avoiding an address space switch when en-
tering the idle loop [32], reducing the timer frequency
(and thus the frequency of house keeping work), and
isolating virtualization-sensitive memory objects (e.g.,
x86’s descriptor table) on dedicated pages that the hyper-
visor can write protect without the performance penalty
of false sharing.

Our soft layering approach addresses para-
virtualization’s instruction-level and structural en-
hancements with different solutions. We needn’t address
para-virtualization’s behavioral modifications, since
they are a natural form of soft layering: they avoid
interference with OS and hypervisor neutrality, and
may achieve self activation (e.g., the kernel detects that
certain operations require far more cycles to execute, and
thus it changes behavior to match the more expensive
operations [36]).

2.1 Instruction level
The performance of virtual machines relies on using
bare-metal execution for the innocuous instructions,
reserving expensive emulation for the virtualization-
sensitive instructions [28]. The emulation traditionally
is activated upon traps on the virtualization-sensitive in-
structions, which is an expensive approach on today’s
super-pipelined processors. Para-virtualization boosts
performance by eliminating the traps (and potentially
only on the most frequently executed instructions [24]).
Yet if the modifications substitute hypercalls for each in-
struction, the savings may be small, since hypercalls are
usually expensive. Thus para-virtualization hypervisors
such as Xen map the low-level instruction sequences into
higher abstractions, via source code modifications, to re-
duce the number of hypercalls.

To satisfy the criterion of soft layering that the guest
OS should execute directly on raw hardware, we leave
the virtualization-sensitive instructions in their original
locations. Instead, we pad each virtualization-sensitive
instruction with a sequence of no-op instructions1, and

1Instructions with an architecturally defined relationship to their
succeeding instruction must be preceded by their no-op padding, e.g.,

annotate their locations, to permit a hypervisor to rewrite
the virtualization-sensitive instructions at runtime. The
rewriting process decodes the original instructions to
determine intent and the locations of the instructions’
parameters, and writes higher-performance alternatives
over the scratch space provided by the no-op padding.

To map the low-level operations of individual instruc-
tions to the higher-level abstractions of the hypervisor,
we collocate a mapping module within the address space
of the guest kernel. The mapping module provides a
virtual CPU and device models. The rewritten instruc-
tions directly access the mapping module via function
calls or memory references; the mapping module defers
interaction with the hypervisor until necessary by batch-
ing state changes, thus imitating the behavior of para-
virtualization. We term the mapping module the in-place
VMM. The mapping module is specific to the hypervisor,
and neutral to the guest OS since its exported interface
is that of the raw hardware platform. Thus a hypervisor
need implement only a single mapping module for use
by any conformant guest kernel. Additionally, since the
binding to the mapping module takes place at runtime,
the guest kernel can execute on a variety of hypervisors,
and a running guest kernel can migrate between hypervi-
sors (all of which are especially useful across hypervisor
upgrades).

Furthermore, for the easy use of soft layering, we ap-
ply the instruction-level changes automatically at the as-
sembler stage [11]. Thus we avoid many manual changes
to the guest OS’s source code, which reduces the man-
power cost of para-virtualization’s high performance.
This automatic step permits us to package most of the
soft layer as a conceptual module independent of the
guest kernel — they are combined at compile time. This
source code modularity is particularly useful for the fast-
paced development of open source kernels, where people
focus on editing the latest edition of a kernel while aban-
doning older kernels to intermediate states of develop-
ment, and while the users grab any edition for production
use. By automating, one can re-apply the latest version
of the soft layer interface (e.g., to an obsoleted source
base).

A variety of memory objects are also virtualization-
sensitive, such as memory-mapped device registers and
x86’s page tables. We apply the soft-layering technique
to the instructions that access these memory objects (e.g.,
writes and reads to page table entries). To distinguish be-
tween memory types, our automated tool uses data-type
analysis in the guest kernel’s source code; if the guest
kernel lacks unique data types for the memory objects,
then we manually apply the instruction no-op padding
and annotations via C language macros or compiler prim-

x86’s sti instruction.
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itives [3].

2.2 Structural
Many of para-virtualization’s structural enhancements
are ineligible for instruction-level substitution, and also
ineligible for automated application, and thus require
intimate knowledge of the guest kernel to apply the
changes correctly. For these reasons, it is best to favor
instruction-level solutions (which alone solve many of
the performance problems) over structural changes.

Some structural changes permanently alter the design
of the kernel, such as changes in the guest kernel’s ad-
dress space layout, which apply even when executing on
raw hardware. Other changes replace subsystems of the
guest kernel, and are suitable for function-call overload-
ing in the soft layer (i.e., rewriting the guest kernel to
invoke an optimized function within the mapping mod-
ule). Another class of changes adds functionality to the
guest kernel where it did not exist before, such as mem-
ory ballooning [34] (which enables cooperative resource
multiplexing with the hypervisor). The soft layer can add
function-call overload points, or can rely on runtime in-
stallable kernel modules.

The structural modifications require conventions and
standards for the important overload points, and docu-
mentation of the side effects, to provide a commons that
independent hypervisor and kernel developers may use.
The danger is divergence since there is no well-defined
interface for guidance, in contrast to the instruction-level
soft layering.

The principal structural change of virtual machines
concerns the collision of privileges and address spaces
in the VM environment; most kernels use hardware to
combine kernel and user privileges in a single address
space to avoid an expensive address-space switch when
transitioning between the privileges. The hypervisor re-
quires a third privilege level. The hardware limits the
number of concurrent privileges; many processor archi-
tectures provide only two privileges, and those that pro-
vide more may find the guest kernel using the additional
privileges too. Even if the hardware provides additional
privilege levels, the hypervisor may prohibit their use,
such as when using Linux as a hypervisor. We virtual-
ize a privilege level by providing it a dedicated address
space, which can be performed transparently to the guest
kernel; but for performance reasons, it requires overload-
ing all places where the guest kernel accesses user mem-
ory at addresses in the user portion of the virtual address
space. In all cases, the hypervisor and in-place VMM re-
quire a dedicated area in all virtual address spaces; thus
soft layering must provide a convention for allocating
such a hole.

2.3 The in-place VMM
Besides providing performance, the in-place VMM in-
cludes comprehensive virtualization code for mapping
the instruction-level and device-level activity of the guest
kernel into the high-level abstractions of the hypervisor
(e.g., mapping disk activity into POSIX file operations
for Linux-on-Linux). This is especially useful for repur-
posing general-purpose kernels as hypervisors (such as
Linux on Linux, or Linux on the L4 microkernel). The
in-place VMM not only controls access to hypercalls, it
also captures the upcalls from the hypervisor to the guest
kernel (for fault and interrupt emulation).

The hypervisor links together the guest OS and the in-
place VMM at load time, by rewriting the virtualization-
sensitive instructions to invoke the appropriate emulation
code. We replace the original, indivisible instructions
of the guest kernel with emulation sequences of many
instructions; the in-place VMM must respect the indi-
visibility of the original instructions in regards to faults
and interrupts; the guest kernel should never have expo-
sure to the in-place VMM state in an interrupt frame. To
avoid reentrance, we structure the in-place VMM as an
event processor: the guest kernel requests a service, and
the in-place VMM reactivates the guest kernel only af-
ter completing the service (or it may roll back to handle
a mid-flight interruption). The guest kernel is unaware
of the emulation code’s activity, just as in normal thread
switching a thread is unaware of its preemption. If the
guest kernel has dependencies on real time, then we as-
sume that the kernel authors already over provisioned to
handle the nondeterminism of real hardware and appli-
cation workloads.

The guest kernel may execute several of the
virtualization-sensitive instructions frequently, e.g.,
Linux often toggles interrupt delivery. The performance
of the in-place VMM depends on its algorithms and how
it chooses between instruction expansion and hypercalls;
for the frequent instructions we want to avoid both. For
example, when running Linux on Linux, toggling inter-
rupts via POSIX signal masking would add hypercall
overheads; likewise, using Xen’s interrupt toggle would
involve too many instructions. Instead we rely on an al-
gorithm: we use a virtual CPU within the in-place VMM
that models the interrupt status, and we replace the in-
terrupt toggling instructions with one or two memory
instructions that update the virtual CPU’s status flags;
the emulation overhead is thus eliminated. Since the in-
place VMM captures the hypervisor’s upcalls, it becomes
aware of pending interrupts even when the guest kernel
has interrupts disabled, in which case it queues the pend-
ing interrupt for later delivery when the guest kernel re-
activates its interrupts via the virtual CPU.

The in-place VMM supports extension via loadable
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guest-kernel modules; the modules dynamically link
against both the guest kernel and the in-place VMM.
We added a soft-layer structural hook to the guest OS
for helping resolve module symbols against the in-place
VMM. A memory-ballooning module could be imple-
mented in this manner for example.

2.4 Device emulation
Soft layering is unique for virtualizing real, standard de-
vices with high performance; all other virtualization ap-
proaches depend on special device drivers for perfor-
mance, which inherently tie the guest OS to a particular
hypervisor. We follow the neutral platform API to pro-
vide the modularity of strict layering.

Device drivers issue frequent device register accesses,
notorious for massive performance bottlenecks when
emulated via traps [32]. Instead we use the instruction-
level soft layering approach: we annotate and pad with
no-ops the instructions that access the device registers,
and then rewrite these instructions in the soft layer to in-
voke the in-place VMM. The in-place VMM models the
device, and batches state changes to minimize interaction
with the hypervisor.

Networking throughput is particularly sensitive to
batching: if the batching adds too much delay to
transmitted packets, then throughput deteriorates; if
the in-place VMM transmits the packets prematurely,
then throughput deteriorates due to hypercall overhead.
The batching problem plagues the specialized device
drivers of other approaches too, since many kernels
hide the high-level batching information from their de-
vice drivers. The speeds of gigabit networking require
more comprehensive batching than for 100Mbit net-
working [32]. In past work with Linux, we used a call-
back executed immediately after the networking subsys-
tem, which provided good performance [23]; for driver
emulation we infer this information from the low-level
activity of the guest kernel, and initiate packet transmis-
sion when the guest kernel returns from interrupt, or re-
turns to user, which are both points in time when the ker-
nel is switching between subsystems and has thus com-
pleted packet processing.

3 Implementation
We implemented a reference pre-virtualization environ-
ment according to the soft layering principles described
in the prior sections, for x86 and Itanium. We describe
the automation, the in-place VMM, and a pre-virtualized
network device model, all as used on x86. We describe
implementations for two x86 hypervisors that have very
different APIs, the L4 microkernel and the Xen hypervi-

sor, to demonstrate the versatility of virtualizing at the
neutral platform API. We briefly describe our Itanium
implementation, which supports three hypervisors, also
with very different APIs: Xen/ia64 [29], vNUMA [5],
and Linux. For the guest kernel, we used several versions
of Linux 2.6 and 2.4 for x86, and Linux 2.6 on Itanium.

3.1 Guest preparation
Soft layering involves modifications to the guest kernel,
although we apply most in an automated manner at the
compilation stage. The modifications fall under three
categories: sensitive instructions, sensitive memory in-
structions, and structural.

Sensitive instructions: To add soft layering for
virtualization-sensitive instructions to a kernel, we parse
and transform the assembler code (whether compiler
generated or hand written). We wrote an assembler
parser and transformer using ANTLR [27]; it builds an
abstract syntax tree (AST), walks and transforms the tree,
and then emits new assembler code.

The most basic transformation adds no-op padding
around the virtualization-sensitive instructions, while
recording within an ELF section the start and end ad-
dresses of the instruction and its no-op window. The
no-op instructions stretch basic blocks, but since at this
stage basic block boundaries are symbolic, the stretch-
ing is transparent. x86 has a special case where the ker-
nel sometimes restarts an in-kernel system call by decre-
menting the return address by two bytes; this can be
handled by careful emulation. Itanium Linux also has a
situation that manually calculates an instruction pointer,
which we fixed by modifying the assumptions of the
Linux code.

More sophisticated annotations are possible, such as
recording register data flow based on the basic block in-
formation integrated into the AST.

Sensitive memory instructions: An automated solu-
tion for pre-virtualizing the memory instructions must
disambiguate the sensitive from the innocuous. We have
been implementing a data-type analysis engine to de-
termine the sensitive memory operations based on data
type. For example, Linux accesses a page table entry
(PTE) via a pte t * data type. Our implementation
uses a gcc-compatible parser written in ANTLR [27],
and redefines the assignment operator based on data type
(similar to C++ operator overloading). It is incomplete,
and so we currently apply the soft layer manually by
modifying the appropriate abstractions in Linux. Our
modifications (1) force the operation to use an easily
decodable memory instruction, and (2) add the no-op
padding around the instruction.
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We integrate the following memory operations within
the soft layer: page table and page directory accesses,
device register accesses (for the devices that we pre-
virtualize), and DMA translations. The DMA transla-
tions support pass-through device access [14, 23] from
within a VM; in the normal case, the DMA operations
are no-ops.

Structural: Our primary structural modification allo-
cates a hole within the virtual address space of Linux
for the in-place VMM and hypervisor. The hole’s size
is currently a compile-time constant. If the hole is very
large, e.g., for running Linux on Linux, then we relink
the Linux kernel to a lower address to provide sufficient
room for the hole. This is the only structural modifica-
tion necessary for running on the Xen hypervisor.

To support the L4 microkernel with decent perfor-
mance, we additionally added several function-call over-
loads. In the normal case these overloads use the default
Linux implementation; when running on the L4 micro-
kernel, we overload the function calls to invoke replace-
ment functions within the in-place VMM. These over-
loads permit us to control how Linux accesses user mem-
ory from the kernel’s address space, and permit us to ef-
ficiently map Linux threads to L4 threads.

3.2 Runtime environment
We divide the in-place VMM into two parts: a front-end
that emulates the platform interface, and a back-end that
interfaces with the hypervisor. The rewritten sensitive
instructions of the guest kernel interact with the front-
end, and their side effects propagate to the back-end, and
eventually to the hypervisor. Upcalls from the hypervisor
(e.g., interrupt notifications) interact with the back-end,
and propagate to the front-end.

Indivisible instructions: The in-place VMM pre-
serves the boundary between itself and the guest kernel
for correct emulation of the indivisible instructions of
the guest kernel. It handles three interrupt conditions:
(1) when the guest kernel enables interrupts and they are
pending, (2) interrupts arrive during instruction emula-
tion, and (3) interrupts arrive during un-interruptible hy-
percalls and must be detected after hypercall completion.

For case 1, before entering the front-end we allocate a
redirection frame on the stack for jumping to an interrupt
handler when exiting the in-place VMM, which is used
only if an interrupt is pending. Upon entry of the inter-
rupt handler the register-file and stack contain the guest
kernel’s boundary state. This is particularly useful for
x86’s iret instruction (return from interrupt), because
it cleanly emulates the hardware behavior when transi-

tioning from kernel to user: interrupts are delivered as if
they interrupted the user context, not the kernel context.

Case 2 is important for iret and idle emulation, since
these both involve race conditions in checking for al-
ready pending interrupts. For iret, we roll-back and
restart the front-end, so that it follows the route for case
1. For idle we roll forward, to abort the idle hypercall,
and then deliver the interrupt using the redirection frame.

Case 3 requires manual inspection of pending inter-
rupts. If an interrupt is pending, we alter the in-place
VMM’s boundary return address to enter an interrupt dis-
patcher, then unwind the function call stack to restore the
guest kernel’s boundary state, and then enter the interrupt
dispatch emulation.

Instruction rewriting: When loading the guest kernel,
the in-place VMM parses the ELF headers of the guest
kernel to locate the soft layer annotations. Via the anno-
tations, the in-place VMM locates the sensitive instruc-
tions, decodes the instructions to determine their inten-
tions and register use, and then generates optimized re-
placement code. The replacement code either invokes the
in-place VMM via a function call, or updates the virtual
CPU via a memory operation.

Minimizing the instruction expansion is crucial for the
frequently executed instructions. For x86, the critical
instructions are those that manipulate segment registers
and toggle interrupt delivery. The segment register op-
erations are simple to inline within the guest kernel’s in-
struction stream, by emitting code that directly accesses
the virtual CPU of the in-place VMM. For toggling inter-
rupts, we use the same strategy, which causes us to de-
viate from the hardware interrupt delivery behavior; the
hardware automatically delivers pending interrupts, but
its emulation would cause unjustifiable code expansion
(we have found that the common case has no pending in-
terrupts). Instead we use a heuristic to deliver pending
interrupts at a later time:2 when the kernel enters the idle
loop, transitions to user mode, returns from interrupt, or
completes a long-running hypercall. Our heuristic may
increase interrupt latency, but running within a VM en-
vironment already increases the latency due to arbitrary
preemption of the VM.

Xen/x86 hypervisor back-end: The x86 Xen API re-
sembles the hardware API, even using the hardware
iret instruction to transition from kernel to user. Still,
the in-place VMM intercepts all Xen API interactions
to enforce the integrity of the virtualization. Interrupts,
exceptions, and x86 traps are delivered to the in-place

2We detect special cases, such as sti;nop;cli (which enables
interrupts for a single cycle), and rewrite them for synchronous deliv-
ery.
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VMM, which updates the virtual CPU state machine and
then transitions to the guest kernel’s handler. The in-
place VMM intercepts transitions to user-mode, updates
the virtual CPU, and then completes the transition. We
optimistically assume a system call for each kernel en-
try, and thus avoid virtualization overhead on the system
call path, permitting direct activation of the guest ker-
nel’s system call handler.

Xen’s API for constructing page mappings uses the
guest OS’s page tables as the actual x86 hardware page
tables. The in-place VMM virtualizes these hardware
page tables for the guest OS, and thus intercepts accesses
to the page tables. This is the most complicated aspect of
the API, because Xen prohibits writable mappings to the
page tables; the in-place VMM tracks the guest’s page
usage, and transparently write-protects mappings to page
tables. Xen 3 changed this part of the API from Xen 2,
yet our in-place VMM permits our Linux binaries to ex-
ecute on both Xen 2 and Xen 3.

L4 microkernel back-end: The L4 API is a set of
portable microkernel abstractions, and is thus high-level.
The API is very different from Xen’s x86-specific API,
yet soft layering supports both by mapping the neutral
platform API to the hypervisor API, and we use the same
x86 front-end for both.

For performance reasons, we map an address-space
switch of the guest OS to an address-space switch in L4.
The in-place VMM associates one L4 address space with
each guest address space (shadow page tables). The in-
place VMM can update the shadow page tables optimisti-
cally or lazily, since they have TLB semantics.

L4 lacks asynchronous event delivery; it requires a
rendezvous of two threads via IPC; we map hardware in-
terrupts and timer events onto IPC. Within the in-place
VMM, we instantiate an additional L4 thread that re-
ceives asynchronous event notifications and either di-
rectly manipulates the state of the L4 VM thread or up-
dates the virtual CPU model (e.g., register a pending in-
terrupt when interrupts are disabled).

As described in Section 3.1, we added several struc-
tural hooks to the guest OS, to accommodate virtualiza-
tion inefficiencies in the L4 API.

Network device emulation: We implemented a de-
vice model for the DP83820 gigabit network card. The
DP83820 device interface supports packet batching in
producer-consumer rings, and packets are guaranteed to
be pinned in memory for the DMA operation, supporting
zero-copy sending in a VM environment. A drawback of
this device is lack of support in older operating systems
such as Linux 2.2.

We split the DP83820 model into a front-end and a
back-end. The front-end models the device registers,

applies heuristics to determine when to transmit pack-
ets, and manages the DP83820 producer-consumer rings.
The back-end sends and receives packets via the net-
working API of the hypervisor.

We implemented a back-end for the L4 environment.
The back-end forms the network client in the L4 device
driver reuse environment [23].

3.3 Itanium
We implemented multiple in-place VMMs for Itanium:
for Xen, for vNUMA, and for Linux as a hypervisor.

The RISC nature of the Itanium architecture compli-
cates the construction of a transparent in-place VMM
compared to an architecture such as x86. It is not pos-
sible to load or store to memory without first loading
the address into a register. Nor is it possible to simply
save and restore registers on the stack, since the stack
pointer may be invalid in low-level code. This makes it
both necessary and difficult to find temporary registers
for the in-place VMM. For sensitive instructions with a
destination-register operand, the destination register can
be considered scratch until the final result is generated.
However, many instructions do not have a destination-
register operand. It would also be preferable to have
more than one scratch register available, to avoid costly
saving and restoring of further needed registers.

Our solution virtualizes a subset of the machine reg-
isters that the compiler rarely uses, specifically r4-r7
and b2. We replace all references to these registers with
memory-based emulation code and save and restore them
when transitioning in and out of the pre-virtualized code.

Instruction rewriting replaces an indivisible instruc-
tion with an instruction sequence; interruptions of the se-
quence may clobber the scratch register state. We avoid
this problem by a convention: the emulation block uses
one of the scratch registers to indicate a roll-back point in
case of preemption. The last instruction of the sequence
clears the roll-back register.

Xen/IA64 and vNUMA are both designed so that
the hypervisor can be hidden in a small architecturally-
reserved portion of the address space. This is not the case
for Linux, which assumes that the whole address space
is available. Thus, to run Linux-on-Linux it is necessary
to modify one of the kernels to avoid address-space con-
flicts with the other. In our case we relocate the guest
so that it lies wholly within the user address space of
the host, which requires a number of non-trivial source
changes. This precludes using the same pre-virtualized
Linux kernel both as a host and a guest.
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4 Evaluation
We assessed the performance and engineering costs of
our implementation, and compare to high-performance
para-virtualization projects that use the same hypervi-
sors. We also compare the performance of our pre-
virtualized binaries running on raw hardware to the per-
formance of native binaries running on raw hardware.

On x86, the hypervisors are the L4Ka::Pistachio mi-
crokernel and the Xen 2.0.2 hypervisor. The para-
virtualized OSes are L4Ka::Linux 2.6.9, XenoLinux
2.6.9, and XenoLinux 2.4.28.

On Itanium, the hypervisors are Xen/ia64, vNUMA,
and Linux 2.6.14. The para-virtualized OS is XenoLinux
2.6.12.

4.1 Performance
We perform a comparative performance analysis, us-
ing the guest OS running natively on raw hardware as
the baseline. The comparative performance analysis re-
quires similar configurations across benchmarks. Since
the baseline ran a single OS on the hardware, with direct
device access, we used a similar configuration for the hy-
pervisor environments: A single guest OS ran on the hy-
pervisor, and had direct device access. The exception is
the evaluation of our network device model; it virtualizes
the network device, and thus had indirect access.

The benchmark setups used identical configurations as
much as possible, to ensure that any performance differ-
ences were the result of the techniques of virtualization.
We compiled Linux with minimal feature sets, and con-
figured the x86 systems to use a 100Hz timer, and the
XT-PIC (our APIC model is incomplete). Additionally,
on x86 we used the slow legacy int system call invo-
cation, as required by some virtualization environments.
On Itanium, there was no problem using the epc fast
system call mechanism, which is the default when using
a recent kernel and C library.

The x86 test machine was a 2.8GHz Pentium 4, con-
strained to 256MB of RAM, and ran Debian 3.1 from the
local SATA disk. The Itanium test machine was a 1.5Ghz
Itanium 2, constrained to 768MB of RAM, running a re-
cent snapshot of Debian ‘sid’ from the local SCSI disk.

Most performance numbers are reported with an ap-
proximate 95% confidence interval, calculated using Stu-
dent’s t distribution with 9 degrees of freedom (i.e., 10
independent benchmark runs).

4.1.1 Linux kernel build

We used a Linux kernel build as a macro benchmark. It
executed many processes, exercising fork(), exec(),

the normal page fault handling code, and thus stress-
ing the memory subsystem; and accessed many files
and used pipes, thus stressing the system call interface.
When running on Linux 2.6.9 on x86, the benchmark
created around 4050 new processes, generated around
24k address space switches (of which 19.4k were process
switches), 4.56M system calls, 3.3M page faults, and be-
tween 3.6k and 5.2k device interrupts.

Each kernel build started from a freshly unpacked
archive of the source code, to normalize the buffer cache.
The build used a predefined Linux kernel configuration.

Table 1 shows the results for both Linux 2.6 and 2.4.
The baseline for comparison is native Linux running on
raw hardware (native, raw). Also of interest is compar-
ing pre-virtualized Linux (Xen in-place VMM) to para-
virtualized Linux (XenoLinux), and comparing a pre-
virtualized binary on raw hardware (NOPS, raw) to the
native Linux binary running on raw hardware.

The performance degradation for the Xen in-place
VMM is due to more page-table hypercalls. We have
not yet determined the reason for the increased number
of hypercalls. The performance degradation of the L4
in-place VMM is due to fewer structural modifications
compared to L4Ka::Linux.

On raw hardware, performance differences between
the annotated and padded binaries were statistically in-
significant.

4.1.2 Netperf

We used the Netperf send and receive network bench-
marks to stress the I/O subsystems. Our benchmark
transferred a gigabyte of data at standard Ethernet packet
size, with 256kB socket buffers. These are I/O-intensive
benchmarks, producing around 82k device interrupts
while sending, and 93k device interrupts while receiv-
ing — an order of magnitude more device interrupts than
during the Linux kernel build. There were two orders of
magnitude fewer system calls than for the kernel build:
around 33k for send, and 92k for receive. The client ma-
chine was a 1.4GHz Pentium 4, configured for 256MB
of RAM, and ran Debian 3.1 from the local disk. Each
machine used an Intel 82540 gigabit network card, con-
nected via a gigabit network switch.

Table 2 shows the send performance and Table 3 the
receive performance for Netperf. In general, the perfor-
mance of the pre-virtualized setups matched that of the
para-virtualized setups. Our L4 system provides event
counters which allow us to monitor kernel events such as
interrupts, protection domain crossings, and traps caused
by guest OSes. Using those we found the event-counter
signature of the para-virtualized Linux on L4 to be nearly
identical to that of the pre-virtualized Linux on L4.
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Time CPU O/H
System [s] util [%]
Linux 2.6.9 x86
native, raw 209.2 98.4%
NOPs, raw 209.5 98.5% 0.15%
XenoLinux 218.8 97.8% 4.61%
Xen in-place VMM 220.6 98.8% 5.48%
L4Ka::Linux 235.9 97.9% 12.8%
L4 in-place VMM 239.6 98.7% 14.6%
Linux 2.4.28 x86
native, raw 206.4 98.9%
NOPs, raw 206.6 98.9% 0.11%
XenoLinux 215.6 98.6% 4.45%
Xen in-place VMM 219.5 98.9% 6.38%
Linux 2.6.12 Itanium
native, raw 434.7 99.6%
NOPs, raw 435.4 99.5% 0.16%
XenoLinux 452.1 99.5% 4.00%
Xen in-place VMM 448.7 99.5% 3.22%
vNUMA in-place VMM 449.1 99.4% 3.31%
Linux 2.6.14 Itanium
native, raw 435.1 99.5%
Linux in-place VMM 635.0 98.4% 45.94%

Table 1: Linux kernel build benchmark. The “O/H” column is
the performance penalty relative to the native baseline for the
respective kernel version. Data for x86 have a 95% confidence
interval of no more than ± 0.43%.

4.1.3 Network device model

We also used Netperf to evaluate the virtualized
DP83820 network device model. A virtualized driver,
by definition, has indirect access to the hardware. The
actual hardware was an Intel 82540, driven by a device
driver reuse environment [23] based on the L4 micro-
kernel. In this configuration, the Netperf VM sent net-
work requests to a second VM that had direct access to
the network hardware. The second VM used the Linux
e1000 gigabit driver to control the hardware, and com-
municated via L4 IPC with the Netperf VM, to convert
the DP83820 device requests into requests for the Intel
82540.

In the baseline case, the Netperf VM used the orig-
inal, para-virtualized device driver reuse environment:
L4Ka::Linux with virtualized network access via a cus-
tom Linux network driver. To evaluate our DP83820 net-
work device model, we ran Netperf in a VM using a pre-
virtualized Linux 2.6.

Table 4 shows the Netperf send and receive results.
Performance is similar, although the pre-virtualized de-
vice model required slightly less CPU resource, confirm-
ing that it is possible to match the performance of a cus-
tomized virtual driver, by rewriting fine-grained device
register accesses into function calls to emulation code.

Xput CPU cyc/B
System [Mb/s] util
Linux 2.6.9 x86
native, raw 867.5 27.1% 6.68
NOPs, raw 867.7 27.3% 6.73
XenoLinux 867.6 33.8% 8.32
Xen in-place VMM 866.7 34.0% 8.37
L4Ka::Linux 775.7 34.5% 9.50
L4 in-place VMM 866.5 30.2% 7.45
Linux 2.4.28 x86
native, raw 779.4 39.3% 10.76
NOPs, raw 779.4 39.4% 10.81
XenoLinux 778.8 44.1% 12.10
Xen in-place VMM 779.0 44.4% 12.17

Table 2: Netperf send performance of various systems. The
column “cyc/B” represents the number of non-idle cycles nec-
essary to transfer a byte of data, and is a single figure of merit
to help compare between cases of different throughput. Data
have a 95% confidence interval of no more than ± 0.25%.

The number of device register accesses during Netperf
receive was 551k (around 48k/s), and during Netperf
send was 1.2M (around 116k/s).

4.1.4 LMbench2

Table 5 summarizes the results from several of the LM-
bench2 micro benchmarks (updated from the original lm-
bench [25]), for x86 and Itanium.

As in the kernel-build benchmark, the higher over-
heads for fork(), exec(), and for starting /bin/sh
on x86 seem to be due to an excessive number of hyper-
calls for page table maintenance.

On Itanium, our pre-virtualized Linux has a clear ad-
vantage over the manually para-virtualized XenoLinux.
The reason is that Itanium XenoLinux is not completely
para-virtualized; only certain sensitive or performance
critical paths have been modified (a technique referred
to as optimized para-virtualization [24]). The remain-
ing privileged instructions fault and are emulated by the
hypervisor, which is expensive (as can be seen from the
pure virtualization results shown in the same table). In
contrast, pre-virtualization can replace all of the sensi-
tive instructions in the guest kernel.

4.2 Code expansion
Pre-virtualization potentially introduces code expansion
everywhere it emulates a sensitive instruction, which can
degrade performance. The cost of the emulation code for
an instruction i on a benchmark b is Ci(b) = Fi(b)Ei

where Fi(b) is the invocation count for the instruction,
and Ei is the code expansion factor (including instruction
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Xput CPU cyc/B
System [Mb/s] util
Linux 2.6.9 x86
native, raw 780.4 33.8% 9.24
NOPs, raw 780.2 33.5% 9.17
XenoLinux 780.7 41.3% 11.29
Xen in-place VMM 780.0 42.5% 11.65
L4Ka::Linux 780.1 35.7% 9.77
L4 in-place VMM 779.8 37.3% 10.22
Linux 2.4.28 x86
native, raw 772.1 33.5% 9.26
NOPs, raw 771.7 33.7% 9.33
XenoLinux 771.8 41.8% 11.58
Xen in-place VMM 771.3 41.2% 11.41

Table 3: Netperf receive performance of various systems.
Throughput numbers have a 95% confidence interval of
± 0.12%, while the remaining have a 95% confidence interval
of no more than ± 1.09%.

Xput CPU cyc/B
System [Mb/s] util
Send
L4Ka::Linux 772.4 51.4% 14.21
L4 in-place VMM 771.4 49.1% 13.59
Receive
L4Ka::Linux 707.5 60.3% 18.21
L4 in-place VMM 707.1 59.8% 18.06

Table 4: Netperf send and receive performance of device driver
reuse systems.

scheduling and latency). We informally evaluate this cost
for the Netperf receive benchmark.

Although the Linux kernel has many sensitive instruc-
tions that we emulate (see Table 6), the Netperf bench-
mark executes only several of them frequently, as listed
in Table 7. We describe these critical instructions.

The pushf and popf instructions read and write the
x86 flags register. Their primary use in the OS is to tog-
gle interrupt delivery, and rarely to manipulate the other
flag bits; OS code compiled with gcc invokes these in-
structions via inlined assembler, which discards the ap-
plication flag bits, and thus we ignore these bits. It is suf-
ficient to replace these instructions with a single push or
pop instruction that directly accesses the virtual CPU,
and to rely on heuristics for delivering pending inter-
rupts.

The cli and sti instructions disable and enable in-
terrupts. We replace them with a single bit clear or set
instruction each, relying on heuristics to deliver pending
interrupts.

The instructions for reading and writing segment reg-
isters translate into one or two instructions for manipu-

null null open sig sig
type call I/O stat close inst hndl fork exec sh

Linux 2.6.9 on x86
raw 0.46 0.53 1.34 2.03 0.89 2.93 77 310 5910
NOP 0.46 0.52 1.40 2.03 0.91 3.19 83 324 5938
Xeno 0.45 0.52 1.29 1.83 0.89 0.97 182 545 6711
pre 0.44 0.50 1.37 1.82 0.89 1.70 243 700 7235

Linux 2.6.12 on Itanium
raw 0.04 0.27 1.10 1.99 0.33 1.69 56 316 1451
pure 0.96 6.32 10.69 20.43 7.34 19.26 513 2084 7790
Xeno 0.50 2.91 4.14 7.71 2.89 2.36 164 578 2360
pre 0.04 0.42 1.43 2.60 0.50 2.23 152 566 2231

Table 5: Partial LMbench2 results (of benchmarks exposing
virtualization overheads) in microseconds, smaller is better.
Raw is native Linux on raw hardware, NOP is pre-virtualized
Linux on raw hardware, Xeno is XenoLinux, and pre is pre-
virtualized Linux on Xen. For Itanium, we also show a min-
imally modified Linux on Xen, which models pure virtualiza-
tion (pure). The 95% confidence interval is at worst ± 1.59%.

Annotation type Linux 2.6.9 Linux 2.4.28
instructions 5181 3035
PDE writes 17 20
PDE reads 36 26
PTE writes 33 30
PTE reads 20 18
PTE bit ops 5 3
DP83820 103 111

Table 6: The categories of annotations, and the number of an-
notations (including automatic and manual), for x86. PDE
refers to page directory entries, and PTE refers to page table
entries.

lating the virtual CPU.
The remaining instructions, iret, hlt, and out, ex-

pand significantly, but are also the least frequently exe-
cuted.

The iret instruction returns from interrupt. Its emu-
lation code checks for pending interrupts, updates virtual
CPU state, updates the iret stack frame, and checks for
pending device activity. If it must deliver a pending inter-
rupt or handle device activity, then it potentially branches
to considerable emulation code. In the common case, its
expansion factor is fairly small, as seen in the LMbench2
results for the null call.

The idle loop uses hlt to transfer the processor into a
low power state. While this operation is not performance
critical outside a VM environment, it can penalize a VM
system via wasted cycles which ought to be used to run
other VMs. Its emulation code checks for pending inter-
rupts, and puts the VM to sleep via a hypercall if neces-
sary.

The out instruction writes to device ports, and thus
has code expansion for the device emulation. If the port
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Count per
Instruction Count interrupt

cli 6772992 73.9
pushf 6715828 73.3
popf 5290060 57.7
sti 1572769 17.2

write segment 739040 8.0
read segment 735252 8.0

port out 278737 3.0
iret 184760 2.0
hlt 91528 1.0

Table 7: Execution profile of the most popular sensitive instruc-
tions during the Netperf receive benchmark. Each column lists
the number of invocations, where the count column is for the
entire benchmark.

number is an immediate value, as for the XT-PIC, then
the rewritten code directly calls the target device model.
Otherwise the emulation code executes a table lookup
on the port number. The out instruction costs over 1k
cycles on a Pentium 4, masking the performance costs of
the emulation code in many cases.

Our optimizations minimize code expansion for the
critical instructions. In several cases, we substitute faster
instructions for the privileged instructions (e.g., replac-
ing sti and cli with bit-set and bit-clear instructions).

4.3 Engineering effort
The first in-place VMM supported x86 and the L4 mi-
crokernel, and provided some basic device models (e.g.,
the XT-PIC). The x86 front-end, L4 back-end, device
models, and initial assembler parser were developed over
three person months. The Xen in-place VMM became
functional with a further one-half person month of effort.
Optimizations and heuristics involved further effort.

Table 8 shows the source code distribution for the in-
dividual x86 in-place VMMs and shared code for each
platform. The DP83820 network device model is 1055
source lines of code, compared to 958 SLOC for the
custom virtual network driver. They are very similar
in structure since the DP83820 uses producer-consumer
rings; they primarily differ in their interfaces to the guest
OS.

In comparison to our past experience applying para-
virtualization to Linux 2.2, 2.4, and 2.6 for the L4 mi-
crokernel, we observe that the effort of pre-virtualization
is far less, and more rewarding. The Linux code was
often obfuscated (e.g., behind untyped macros) and un-
documented, in contrast to the well-defined and docu-
mented x86 architecture against which we wrote the in-
place VMM. The pre-virtualization approach has the dis-
advantage that it must emulate the platform devices; oc-

Type Headers Source
Common 686 746
Device 745 1621
x86 front-end 840 4464
L4 back-end 640 3730
Xen back-end 679 2753

Table 8: The distribution of code for the x86 in-place VMMs,
expressed as source lines of code, counted by SLOCcount.

Type Linux 2.6.9 Linux 2.4.28
Device and page table 52 60
Kernel relink 18 21
Build system 21 16
DMA translation hooks 53 26
L4 performance hooks 103 19
Loadable kernel module 10 n/a
Total 257 142

Table 9: The number of lines of manual annotations, functional
modifications, and performance hooks added to the Linux ker-
nels.

casionally they are complicated state machines.
After completion of the initial infrastructure, devel-

oped while using Linux 2.6.9, we pre-virtualized Linux
2.4 in a few hours, so that a single binary could boot on
both the x86 Xen and L4 in-place VMMs.

In both Linux 2.6 and 2.4 we applied manual annota-
tions, relinked the kernel, added DMA translation sup-
port for direct device access, and added L4 performance
hooks, as described in Table 9, totaling 257 lines for
Linux 2.6.9 and 142 lines for Linux 2.4.28. The required
lines of modifications without support for pass-through
devices and L4-specific optimizations are 91 and 97 re-
spectively.

In contrast, in Xen [2], the authors report that they
modified and added 1441 sources lines to Linux and
4620 source lines to Windows XP. In L4Linux [18], the
authors report that they modified and added 6500 source
lines to Linux 2.0. Our para-virtualized Linux 2.6 port
to L4, with a focus on small changes, still required about
3000 modified lines of code [23].

5 Related work
Co-design of a hypervisor and an OS has existed since
the dawn of VMs [8, 15]. Several microkernel projects
have used it with high-level changes to the guest ker-
nels [16, 18]. Recent hypervisor projects have called it
para-virtualization [2, 24, 35].

Some VM projects have added strict virtualization
to architectures without such support. Eiraku and
Shinjo [11] offer a mode that prefixes every sensitive x86
instruction with a trapping instruction. vBlades [24] and
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Denali [35] substitute alternative, trappable instructions
for the sensitive instructions.

All major processor vendors announced virtualization
extensions to their processor lines: Intel’s Virtualization
Technology (VT) for x86 and Itanium [21, 22], AMD’s
Pacifica [1], and IBM’s LPAR for PowerPC [20]. Soft
layering permits sophisticated state machines to execute
within the domain of the guest OS, especially for devices
(which are unaddressed by the extensions). The hard-
ware extensions can transform general purpose OSes into
full-featured hypervisors, creating even more demand for
the modularity of soft layering.

Customization of software for alternative interfaces
is a widely used technique, e.g. PowerPC Linux uses a
function vector that encapsulates and abstracts the ma-
chine interface. The manually introduced indirection al-
lows running the same kernel binary on bare hardware
and on IBM’s commercial hypervisor.

User-Mode Linux (UMLinux) uses para-
virtualization, but packages the virtualization code
into a ROM, and modifies the Linux kernel to invoke
entry points within the ROM in place of the sensitive
instructions [19]. Thus UMLinux can substitute differ-
ent ROM implementations for the same Linux binary.
Additionally, UMLinux changes several of Linux’s
device drivers to invoke ROM entry points, rather than
to write to device registers; thus each device register
access has the cost of a function call, rather than the cost
of a virtualization trap.

VMware’s recent proposal [33] for a virtual machine
interface (VMI) shares many of our goals. The first ver-
sion used a ROM invoked by function calls as in the UM-
Linux project, but explicitly designed to be installed at
load time with emulation code specific to the hypervisor
(including direct execution on hardware). After the first
VMI version became public, we started contributing to
its design, and VMware has evolved it into an implemen-
tation of soft layering, with no-op instruction padding,
along with function entry points in the ROM. VMI de-
viates from the base instruction set more than our ref-
erence implementation. It provides additional semantic
information with some of the instructions. It lacks a de-
vice solution. VMI is aimed at manual application to the
kernel source code.

Binary rewriting and native execution of OS code are
usually imperfect and use trapping on sensitive or tagged
operations. Sugerman et al. [32] report that more than
77 percent of the overall execution for NIC processing
is attributed to VMware’s virtualization layer. The typi-
cal solution are para-virtualized drivers in the guest OS
which communicate directly with the hypervisor, avoid-
ing the trap overhead. However, those drivers are tied to
a particular guest and hypervisor, and as such abandon
the platform API and increase engineering cost.

6 Discussion
The relationship between guest OSes and hypervisors
has many similarities to the relationship between ap-
plications and general purpose OSes. General purpose
OSes have rich environments of applications created by
independent developers, glued together by strong in-
terfaces and conventions, and people expect a certain
amount of longevity for their applications; the applica-
tions should continue to function (in concert) in spite of
OS upgrades. The goal of soft layering is to also pro-
vide a fertile environment that promotes collaborative
and uncoordinated development, and with longevity: an
old guest kernel should function on the latest version of
a hypervisor.

General-purpose OSes have a history of providing
standardized and abstracted interfaces to their applica-
tions. Some will propose the same for para-virtualization
— a standard high-level interface used by all hypervi-
sors and guest OSes — but this approach is deficient
principally because abstractions lock-in architectural de-
cisions [12, 26], while in contrast, the neutral platform
interface is expressive and powerful, permitting a vari-
ety of hypervisor architectures. Soft layering provides
the architectural freedom we desire for hypervisor con-
struction, even transparently supporting the hardware ac-
celeration for virtualization of the latest processor gen-
erations (para-virtualization’s abstractions interfere with
transparent access to the new hardware features). Soft
layering supports additional abstractions via two mech-
anisms: (1) function call overloading, and (2) passing
high-level semantic information to the platform instruc-
tions (in otherwise unused registers) for use by the in-
place VMM (e.g., a PTE’s virtual address), and ignored
by the hardware; both would require standardization, but
satisfy the soft-layer criterion that the hypervisor can ig-
nore the extra information.

The soft layer follows the neutral platform interface
that it replaces to maximize the chances that indepen-
dent parties can successfully use the soft layer. Yet the
soft layer still requires agreement on an interface: how to
locate and identify the instruction-level changes, the size
of the no-op windows that pad virtualization-sensitive in-
structions, the format of the annotations, and the seman-
tics of the function overloading for structural changes.
A soft layer forces the standard to focus more on infor-
mation, rather than system architecture, thus facilitating
standardization since it is unnecessary to enshrine propri-
etary hypervisor enhancements within the standard (e.g.,
dependence on x86’s segments for an additional privilege
level). Additionally, the soft layer can degrade in case of
interface mismatch; in worst case, a hypervisor can rely
on privileged-instruction trapping to locate the sensitive
instructions, and to then rewrite the instructions using the
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integrated no-op padding, while ignoring other elements
of the soft layer.

7 Conclusion and future work
We presented the soft layering approach to hypervisor-
OS co-design, which provides the modularity of
traditional virtualization, while achieving nearly the
same performance as established para-virtualization ap-
proaches. Soft layering offers a set of design princi-
ples to guide the modifications to an OS, with a goal
to support efficient execution on a variety of hypervi-
sors. The principles: (1) permit fallback to the neutral
platform interface, and (2) adapt to the architectures that
competitors may provide. Our reference implementa-
tion, called pre-virtualization, also reduces the effort of
para-virtualization via automation. We demonstrated the
feasibility of pre-virtualization by supporting a variety of
very dissimilar hypervisors with the same approach and
infrastructure.

We believe that pre-virtualization enables other excit-
ing approaches we would like to explore in the future.
This includes migration of live guests between incom-
patible hypervisors, after serializing the CPU and device
state in a canonical format; the target hypervisor would
rewrite the annotated instructions, and then restore the
CPU and device state, using its own in-place VMM. Also
soft layering can optimize recursive VM design, by by-
passing redundant resource management in the stack of
VMs, e.g., avoiding redundant working set analysis.
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