
Energy Management for Hypervisor-Based Virtual Machines

Jan Stoess Christian Lang Frank Bellosa

System Architecture Group, University of Karlsruhe, Germany
{stoess, chlang, bellosa}@ira.uka.de

Abstract
Current approaches to power management are

based on operating systems with full knowledge of
and full control over the underlying hardware; the
distributed nature of multi-layered virtual machine
environments renders such approaches insufficient.
In this paper, we present a novel framework for en-
ergy management in modular, multi-layered oper-
ating system structures. The framework provides
a unified model to partition and distribute energy,
and mechanisms for energy-aware resource account-
ing and allocation. As a key property, the frame-
work explicitly takes the recursive energy consump-
tion into account, which is spent, e.g., in the virtu-
alization layer or subsequent driver components.

Our prototypical implementation targets hyper-
visor-based virtual machine systems and comprises
two components: a host-level subsystem, which con-
trols machine-wide energy constraints and enforces
them among all guest OSes and service components,
and, complementary, an energy-aware guest oper-
ating system, capable of fine-grained application-
specific energy management. Guest level energy
management thereby relies on effective virtualiza-
tion of physical energy effects provided by the vir-
tual machine monitor. Experiments with CPU and
disk devices and an external data acquisition system
demonstrate that our framework accurately controls
and stipulates the power consumption of individual
hardware devices, both for energy-aware and energy-
unaware guest operating systems.

1 Introduction

Over the past few years, virtualization technology
has regained considerable attention in the design of
computer systems. Virtual machines (VMs) estab-
lish a development path for incorporating new func-
tionality – server consolidation, transparent migra-
tion, secure computing, to name a few – into a sys-
tem that still retains compatibility to existing oper-
ating systems (OSes) and applications. At the very
same time, the ever increasing power density and dis-
sipation of modern servers has turned energy man-
agement into a key concern in the design of OSes.

Research has proposed several approaches to OS di-
rected control over a computer’s energy consump-
tion, including user- and service-centric management
schemes. However, most current approaches to en-
ergy management are developed for standard, legacy
OSes with a monolithic kernel. A monolithic kernel
has full control over all hardware devices and their
modes of operation; it can directly regulate device
activity or energy consumption to meet thermal or
energy constraints. A monolithic kernel also controls
the whole execution flow in the system. It can easily
track the power consumption at the level of individ-
ual applications and leverage its application-specific
knowledge during device allocation to achieve dy-
namic and comprehensive energy management.

Modern VM environments, in contrast, consist of
a distributed and multi-layered software stack in-
cluding a hypervisor, multiple VMs and guest OSes,
device driver modules, and other service infrastruc-
ture (Figure 1). In such an environment, direct
and centralized energy management is unfeasible, as
device control and accounting information are dis-
tributed across the whole system.

At the lowest-level of the virtual environment,
the privileged hypervisor and host driver modules
have direct control over hardware devices and their
energy consumption. By inspecting internal data
structures, they can obtain coarse-grained per-VM
information on how energy is spent on the hard-
ware. However, the host level does not possess any
knowledge of the energy consumption of individual
applications. Moreover, with the ongoing trend to
restrict the hypervisor’s support to a minimal set of
hardware and to perform most of the device control
in unprivileged driver domains [8,15], hypervisor and
driver modules each have direct control over a small
set of devices; but they are oblivious to the ones not
managed by themselves.

The guest OSes, in turn, have intrinsic knowledge
of their own applications. However, guest OSes oper-
ate on deprivileged virtualized devices, without di-
rect access to the physical hardware, and are un-
aware that the hardware may be shared with other
VMs. Guest OSes are also unaware of the side-
effects on power consumption caused by the vir-

1

vCPU

Service

Hypervisor

Drv.
NIC

Drv.

CPU

Guest OS

Applications

vNIC vDISK vNIC vDISK

DISK

vCPUvCPU

vCPU vCPU

Guest OS

Applications

Figure 1: Increasing number of layers and components
in today’s virtualization-based OSes.

tual device logic: since virtualization is transpar-
ent, the “hidden”, or recursive power consumption,
which the virtualization layer itself causes when re-
quiring the CPU or other resources simply vanishes
unaccounted in the software stack. Depending on
the complexity of the interposition, resource require-
ments can be substantial: a recent study shows
that the virtualization layer requires a considerable
amount of CPU processing time for I/O virtualiza-
tion [5].

The whole situation is even worsened by the non-
partitionability of some of the physical effects of
power dissipation: the temperature of a power con-
suming device, for example, cannot simply be par-
titioned among different VMs in a way that each
one gets alloted its own share on the temperature.
Beyond the lack of comprehensive control over and
knowledge of the power consumption in the system,
we can thus identify the lack of a model to com-
prehensively express physical effects of energy con-
sumption in distributed OS environments.

To summarize, current power management
schemes are limited to legacy OSes and unsuitable
for VM environments. Current virtualization solu-
tions disregard most energy-related aspects of the
hardware platform; they usually virtualize a set of
standard hardware devices only, without any special
power management capabilities or support for en-
ergy management. Up to now, power management
for VMs is limited to the capabilities of the host OS
in hosted solutions and mostly dispelled from the
server-oriented hypervisor solutions.

Observing these problems, we present a novel
framework for managing energy in distributed,
multi-layered OS environments, as they are com-
mon in today’s computer systems. Our framework
makes three contributions. The first contribution is
a model for partitioning and distributing energy ef-
fects; our model solely relies on the notion of energy
as the base abstraction. Energy quantifies the phys-
ical effects of power consumption in a distributable
way and can be partitioned and translated from a

global, system-wide notion into a local, component-
or user-specific one. The second contribution is a
distributed energy accounting approach, which ac-
curately tracks back the energy spent in the system
to originating activities. In particular, the presented
approach incorporates both the direct and the side-
effectual energy consumption spent in the virtual-
ization layers or subsequent driver components. As
the third contribution, our framework exposes all re-
source allocation mechanisms from drivers and other
resource managers to the respective energy manage-
ment subsystems. Exposed allocation enables dy-
namic and remote regulation of energy consumption
in a way that the overall consumption matches the
desired constraints.

We have implemented a prototype that targets
hypervisor-based systems. We argue that virtual
server environments benefit from energy manage-
ment within and across VMs; hence the prototype
employs management software both at host-level
and at guest-level. A host-level management subsys-
tem enforces system-wide energy constraints among
all guest OSes and driver or service components.
It accounts direct and hidden power consumption
of VMs and regulates the allocation of physical de-
vices to ensure that each VM does not consume more
than a given power allotment. Naturally, the host-
level subsystem performs independent of the guest
operating system; on the downside, it operates at
low level and in coarse-grained manner. To ben-
efit from fine-grained, application-level knowledge,
we have complemented the host-level part with an
optional energy-aware guest OS, which redistributes
the VM-wide power allotments among its own, sub-
ordinate applications. In analogy to the host-level,
where physical devices are allocated to VMs, the
guest OS regulates the allocation of virtual devices
to ensure that its applications do not spend more
energy than their alloted budget.

Our experiments with CPU and disk devices
demonstrate that the prototype effectively accounts
and regulates the power consumption of individual
physical and virtual devices, both for energy-aware
and energy-unaware guest OSes.

The rest of the paper is structured as follows: In
Section 2, we present a generic model to energy man-
agement in distributed, multi-layered OS environ-
ments. We then detail our prototypical implementa-
tion for hypervisor-based systems in Section 3. We
present experiments and results in Section 4. We
then discuss related approaches in Section 5, and fi-
nally draw a conclusion and outline future work in
Section 6.

2

2 Distributed Energy Management

The following section presents the design principles
we consider to be essential for distributed energy
management. We begin with formulating the goals
of our work. We then describe the unified energy
model that serves as a foundation for the rest of our
approach. We finally describe the overall structure
of our distributed energy management framework.

2.1 Design Goals

The increasing number of layers, components, and
subsystems in modern OS structures demands for a
distributed approach to control the energy spent in
the system. The approach must perform effectively
across protection boundaries, and it must comprise
different types of activities, software abstractions,
and hardware resources. Furthermore, the approach
must be flexible enough to support diversity in en-
ergy management paradigms. The desire to control
power and energy effects of a computer system stems
from a variety of objectives: Failure rates typically
increase with the temperature of a computer node or
device; reliability requirements or limited cooling ca-
pacities thus directly translate into temperature con-
straints, which are to be obeyed for the hardware to
operate correctly. Specific power limits, in turn, are
typically imposed by battery or backup generators,
or by contracts with the power supplier. Controlling
power consumption on a per-user base finally enables
accountable computing, where customers are billed
for the energy consumed by their applications, but
also receive a guaranteed level or quality of service.
However, not only the objectives for power manage-
ment are diverse; there also exists a variety of al-
gorithms to achieve those objectives. Some of them
use real temperature sensors, whereas others rely on
estimation models [3, 12]. To reach their goals, the
algorithms employ different mechanisms, like throt-
tling resource usage, request batching, or migrating
of execution [4, 9, 17]. Hence, a valid solution must
be flexible and extensible enough to suit a diversity
of goals and algorithms.

2.2 Unified Energy Model

To encompass the diverse demands on energy man-
agement, we propose to use the notion of energy
as the base abstraction in our system, an approach
which is similar to the currentcy model in [28]. The
key advantage of using energy is that it quantifies
power consumption in a partitionable way – unlike
other physical effects of power consumption such as

the temperature of a device. Such effects can easily
be expressed as energy constraints, by means of a
thermal model [3, 12]. The energy constraints can
then be partitioned from global notions into local,
component-wise ones. Energy constraints also serve
as a coherent base metric to unify and integrate man-
agement schemes for different hardware devices.

2.3 Distributed Management

Current approaches to OS power management are
tailored to single building-block OS design, where
one kernel instance manages all software and hard-
ware resources. We instead model the OS as a set of
components, each responsible for controlling a hard-
ware device, exporting a service library, or providing
a software resource for use by applications.

Our design is guided by the familiar concept of
separating policy and mechanism. We formulate the
procedure of energy management as a simple feed-
back loop: the first step is to determine the current
power consumption and to account it to the origi-
nating activities. The next step is to analyze the
accounting data and to make a decision based on
a given policy or goal. The final step is to respond
with allocation or de-allocation of energy consuming
resources to the activities, with the goal to align the
energy consumption with the desired constraints.

We observe that mainly the second step is asso-
ciated with policy, whereas the two other steps are
mechanisms, bound to the respective providers of
the resource, which we hence call resource drivers.
We thus model the second step as an energy man-
ager module, which may, but need not reside in a
separate software component or protection domain.
Multiple such managers may exist concurrently the
system, at different position in the hierarchy and
with different scopes.

Energy

manager
Resource driver 1

Resource driver 2

Energy consuming

resource 2

energy accounting

Energy consuming

resource 1

Client
Client

Client

energy allocation

Figure 2: Distributed energy management. Energy
managers may reside in different components or pro-
tection domains. Resource drivers consume resources
themselves, for which the energy is accounted back to
the original clients.

Each energy manager is responsible for a set of
subordinate resources and their energy consump-

3

tion. Since the system is distributed, the resource
manager cannot assume direct control or access over
the resource; it requires remote mechanisms to ac-
count and allocate the energy (see Figure 2). Hence,
by separating policy from mechanism, we translate
our general goal of distributed energy management
into the two specific aspects of distributed energy ac-
counting and dynamic, exposed resource allocation;
these are the subject of the following paragraphs.

Distributed energy accounting Estimating
and accounting the energy of a physical device usu-
ally requires detailed knowledge of the particular de-
vice. Our framework therefore requires each driver
of an energy consuming device or resource to be ca-
pable of determining (or estimating) the energy con-
sumption of its resources. Likewise, it must be ca-
pable to account the consumption to its consumers.
If the energy management software resides outside
the resource driver, it must propagate the account-
ing information to the manager.

Since the framework does not assume a single ker-
nel comprising all resource subsystems, it has to
track energy consumptions across module bound-
aries. In particular, it must incorporate the re-
cursive energy consumption: that is, the driver of
a given resource such as a disk typically requires
other resources, like the CPU, in order to provide
its service successfully. Depending on the complex-
ity, such recursive resource consumption may be sub-
stantial; consider, as examples, a disk driver that
transparently encrypts and decrypts its client re-
quests, or a driver that forwards client requests to a
network attached storage server via a network inter-
face card. Recursive resource consumption requires
energy, which must be accounted back to the clients.
In our example, it would be the responsibility of disk
driver to calculate its clients’ shares of the disk and
on its own CPU energy. To determine its CPU en-
ergy, the driver must recursively query the driver of
the CPU resource, which is the hypervisor in our
case.

Dynamic and exposed resource allocation To
regulate the energy spent on a device or resource,
each driver must expose its allocation mechanisms to
energy manager subsystems. The manager leverages
the allocation mechanisms to ensure that energy
consumption matches the desired constraints. Allo-
cation mechanisms relevant for energy management
can be roughly distinguished into hardware and soft-
ware mechanisms. Hardware-provided power saving
features typically provide a means to change power
consumption of a device, by offering several modes of

operation with different efficiency and energy coeffi-
cients (e.g., halt cycles or different active and sleep
modes). The ultimate goal is to achieve the opti-
mal level of efficiency with respect to the current
resource utilization, and to reduce the wasted power
consumption. Software-based mechanisms, in turn,
rely on the assumption that energy consumption de-
pends on the level of utilization, which is ultimately
dictated by the number of device requests. The rate
of served requests can thus be adapted by software
to control the power consumption.

3 A Prototype for
Hypervisor-Based Systems

Based on the design principles presented above, we
have developed a distributed, two-level energy man-
agement framework for hypervisor-based VM sys-
tems. The prototype employs management soft-
ware both at host-level and at guest-level. It cur-
rently supports management of two main energy
consumers, CPU and disk. CPU services are directly
provided by the hypervisor, while the disk is man-
aged by a special device driver VM. In the following
section, we first describe the basic architecture of
our prototype. We then present the energy model
for CPU and disk devices. We then describe the
host-level part, and finally the guest-level part of
our energy management prototype.

3.1 Prototype Architecture

Our prototype uses the L4 micro-kernel as the priv-
ileged hypervisor, and para-virtualized Linux kernel
instances running on top of it. L4 provides core ab-
stractions for user level resource management: vir-
tual processors (kernel threads), synchronous com-
munication, and mechanisms to recursively con-
struct virtual address spaces. I/O devices are man-
aged at user-level; L4 only deals with exposing in-
terrupts and providing mechanisms to protect device
memory.

The guest OSes are adaptions of the Linux 2.6 ker-
nel, modified to run on top of L4 instead of on bare
hardware [11]. For managing guest OS instances, the
prototype includes a user-level VM monitor (VMM),
which provides the virtualization service based on
L4’s core abstractions. To provide user-level device
driver functionality, the framework dedicates a spe-
cial device driver VM to each device, which exports
a virtual device interface to client VMs and multi-
plexes virtual device requests onto the physical de-
vice. The driver VMs are Linux guest OS instances

4

themselves, which encapsulate and reuse standard
Linux device driver logic for hardware control [15].

Driver VM

Hypervisor

Legacy guest OS

APP APP APP APP

vDISK

Energy

Mgr.

APP APP APP APP

Energy-aware OS

vCPU vDISKvCPU

vCPU

CPU

DISK

accounting

allocation

accounting

allocation

Figure 3: Prototype architecture. The host-level
subsystem controls system-wide energy constraints and
enforces them among all guests. A complementary
energy-aware guest OS is capable of performing its own,
application-specific energy management.

The prototype features a host-level energy man-
ager module responsible for controlling the energy
consumption of VMs on CPUs and disk drives. The
energy manager periodically obtains the per-VM
CPU and disk energy consumption from the hyper-
visor and driver VM, and matches them against a
given power limit. To bring both in line, it responds
by invoking the exposed throttling mechanisms for
the CPU and disk devices. Our energy-aware guest
OS is a modified version of L4Linux that imple-
ments the resource container abstraction [1] for re-
source management and scheduling. We enhanced
the resource containers to support energy manage-
ment of virtual CPUs and disks. Since the energy-
aware guest OS requires virtualization of the energy
effects of CPU and disk, the hypervisor and driver
VM propagate their accounting records to the user-
level VM monitor. The monitor then creates, for
each VM, a local view on the current energy con-
sumption, and thereby enables the guest to pursue
its own energy-aware resource management. Note,
that our energy-aware guest OS is an optional part of
the prototype: it provides the benefit of fine-grained
energy management for Linux-compatible applica-
tions. For all energy-unaware guests, our proto-
type resorts to the coarser-grained host-level man-
agement, which achieves the constraints regardless
whether the guest-level subsystem is present or not.

Figure 3 gives a schematic overview of the basic
architecture. Our prototype currently runs on IA-
32 microprocessors. Certain parts, like the device
driver VMs, are presently limited to single processor
systems; we are working on multi-processor support
and will integrate it into future versions.

3.2 Device Energy Models

In the following section, we present the device en-
ergy models that serve as a base for CPU and disk
accounting. We generally break down the energy
consumption into access and idle consumption. Ac-
cess consumption consists of the energy spent when
using the device. This portion of the energy con-
sumption can be reduced by controlling device allo-
cation, e.g., in terms of the client request rate. Idle
consumption, in turn, is the minimum power con-
sumption of the device, which it needs even when it
does not serve requests. Many current microproces-
sors support multiple sleep and active modes, e.g.,
via frequency scaling or clock gating. A similar tech-
nology, though not yet available on current standard
servers, can be found in multi-speed disks, which al-
low lowering the spinning speed during phases of low
disk utilization [10]. To retain fairness, we propose
to decouple the power state of a multi-speed device
from the accounting of its idle costs. Clients that
do not use the device are charged for the lowest ac-
tive power state. Higher idle consumptions are only
charged to the clients are actively using the device.

3.2.1 CPU Energy Model

Our prototype leverages previous work [3, 13] and
bases CPU energy estimation on the rich set of per-
formance counters featured by modern IA-32 micro-
processors. For each performance counter event, the
approach assigns a weight representing its contribu-
tion to the processor energy. The weights are the re-
sult of a calibration procedure that employs test ap-
plications with constant and known power consump-
tions and physical instrumentation of the micro-
processors [3]. Previous experiments have demon-
strated that this approach is fairly accurate for in-
teger applications, with an error of at most 10 per-
cent. To obtain the processor energy consumption
during a certain period of time, e.g., during execu-
tion of a VM, the prototype sums up the number of
events that occurred during that period, multiplied
with their weights. The time stamp counter, which
counts clock cycles regardless whether the processor
is halted or not, yields an accurate estimation of the
CPU’s idle consumption.

3.2.2 Disk Energy Model

Our disk energy model differs from the CPU model
in that it uses a time-based approach rather than
event sampling. Instead of attributing energy con-
sumption to events, we attribute power consumption
to different device states, and calculate the time the

5

device requires to transfer requests of a given size.
There is no conceptual limit to the number of power
states. However, we consider suspending the disk to
be an unrealistic approach for hypervisor systems;
for lack of availability, we do not consider multi-
speed disks as well. We thus distinguish two different
power states: active and idle.

To determine the transfer time of a request –
which is equal to the time the device must remain
in active state to handle it –, we divide the size of
the request by the disk’s transfer rate in bytes per
second. We calculate the disk transfer rate dynami-
cally, in intervals of 50 requests. Although we ignore
several parameters that affect the energy consump-
tion of requests, (e.g., seek time or the rotational
delays), our evaluation shows that our simple ap-
proach is sufficiently accurate. Our observation is
substantiated by the study in [26], which indicates
that such a 2-parameter model is inaccurate only be-
cause of sleep-modes, which we can safely disregard
for our approach.

3.3 Host-Level Energy Management

Our framework requires each driver of a physical de-
vice to determine the device’s energy consumption
and to account the consumption to the client VMs.
The accounting infrastructure uses the device en-
ergy model presented above: Access consumption is
charged directly to each request, after the request
has been fulfilled. The idle consumption, in turn,
cannot be attributed to specific requests; rather, it
is alloted to all client VMs in proportion to their re-
spective utilization. For use by the energy manager
and others, the driver grants access to its accounting
records via shared memory and updates the records
regularly.

In addition to providing accounting records, each
resource driver exposes its allocation mechanisms to
energy managers and other resource management
subsystems. At host-level, our framework currently
supports two allocation mechanisms: CPU throt-
tling and disk request shaping. CPU throttling can
be considered as a combined software-hardware ap-
proach, which throttles activities in software and
spends the unused time in halt cycles. Our disk re-
quest shaping algorithm is implemented in software.

In the remainder of this section, we first explain
how we implemented runtime energy accounting and
allocation for CPU and the disk devices. We then
detail how the these mechanisms enable our energy
management software module to keep the VMs’ en-
ergy consumption within constrained limits.

3.3.1 CPU Energy Accounting

To accurately account the CPU energy consumption,
we trace the performance counter events within the
hypervisor and propagate them to the user-space en-
ergy manager module. Our approach extends our
previous work to support resource management via
event logging [20] to the context of energy man-
agement. The tracing mechanism instruments con-
text switches between VMs within the hypervisor;
at each switch, it records the current values of the
performance counters into an in-memory log buffer.
The hypervisor memory-maps the buffers into the
address space of the energy manager. The energy
manager periodically analyzes the log buffer and cal-
culates the energy consumption of each VM (Figure
4).

By design, our tracing mechanism is asynchronous
and separates performance counter accumulation
from their analysis and the derivation of the energy
consumption. It is up to the energy manager to per-
form the analysis often enough to ensure timeliness
and accuracy. Since the performance counter logs
are relatively small, we consider this to be easy to
fulfil; our experience shows that the performance
counter records cover a few hundred or thousand
bytes, if the periodical analysis is performed about
every 20th millisecond.

Hypervisor

Energy

Mgr. PMC

Log
log

CPU
PMC

Figure 4: The hypervisor collects performance counter
traces and propagates the trace logs to user-space energy
managers.

The main advantage of using tracing for recording
CPU performance counters is that it separates policy
from mechanism. The hypervisor is extended by a
simple and cheap mechanism to record performance
counter events. All aspects relevant to energy esti-
mation and policy are kept outside the hypervisor,
within the energy manager module. A further ad-
vantage of in-memory performance counter records
is that they can easily be shared – propagating them
to other guest-level energy accountants is a sim-
ple matter of leveraging the hypervisor’s memory-
management primitives.

In the current prototype, the energy manager
is invoked every 20 ms to check the performance
counter logs for new records. The log records con-
tain the performance counter values relevant for en-

6

ergy accounting, sampled at each context switch to-
gether with an identifier of the VM that was ac-
tive on the CPU. For each period between subse-
quent context switches, the manager calculates the
energy consumption during that period, by multiply-
ing the advance of the performance counters with
their weights. Rather than charging the complete
energy consumption to the active VM, the energy
manager subtracts the idle cost and splits it between
all VMs running on that processor. The time stamp
counter, which is included in the recorded perfor-
mance counters, provides an accurate estimation of
the processor’s idle cost. Thus the energy estimation
looks as follows:
/* per -VM idle energy based on TSC advance (pmc0) */
for (id = 0; id < max_vms ; id++)

vm[id].cpu_idle += weight [0] * pmc[0] / max_vms ;

/* calculate and charge access energy (pmc1.. pmc8) */
for (p=1; p < 8; p++)

vm[cur_id]. cpu_access += weight[p] * pmc[p];

3.3.2 Disk Energy Accounting

To virtualize physical disks drives, our framework
reuses legacy Linux disk driver code by executing it
inside VMs. The driver functionality is exported via
a translation module that mediates requests between
the device driver and external client VMs. The
translation module runs in the same address space as
the device driver and handles all requests sent to and
from the driver. It receives disk requests from other
VMs, translates them to basic Linux block I/O re-
quests, and passes them to the original device driver.
When the device driver has finalized the request, the
module again translates the result and returns it to
the client VM.

The translation module has access to all informa-
tion relevant for accounting the energy dissipated
by the associated disk device. We implemented
accounting completely in this translation module,
without changing the original device driver. The
module estimates the energy consumption of the disk
using the energy model presented above. When the
device driver has completed a request, the transla-
tion module estimates the energy consumption of
the request, depending on the number of transferred
bytes:
/* estimate transfer cost for size bytes */
vm[cur_id]. disk_access += (size / transfer_rate)

* (active_disk_power - idle_disk_power);

Because the idle consumption is independent of
the requests, it does not have to be calculated for
each request. However, the driver must recalculate
it periodically, to provide the energy manager with
up-to-date accounting records power consumption of

the disk. For that purpose, the driver invokes the
following procedure periodically every 50 ms:
/* estimate idle energy since last time */
idle_disk_energy = idle_disk_power * (now - last)

/ max_client_vms;
for (id = 0; v < max_client_vms; id++)

vm[id].disk_idle += idle_disk_energy;

3.3.3 Recursive Energy Accounting

Fulfilling a virtual device request issued by a guest
VM may involve interacting with several different
physical devices. Thus, with respect to host-level
energy accounting, it is not sufficient to focus on
single physical devices; rather, accounting must in-
corporate the energy spent recursively in the virtu-
alization layer or subsequent service.

We therefore perform a recursive, request-based
accounting of the energy spent in the system, ac-
cording to the design principles presented in Section
2. In particular, each driver of a physical device
determines the energy spent for fulfilling a given re-
quest and passes the cost information back to its
client. If the driver requires other devices to fulfill a
request, it charges the additional energy to its clients
as well. Since idle consumption of a device cannot be
attributed directly to requests, each driver addition-
ally provides an “electricity meter” for each client. It
indicates the client’s share in the total energy con-
sumption of the device, including the cost already
charged with the requests. A client can query the
meter each time it determines the energy consump-
tion of its respective clients.

As a result, recursive accounting yields a dis-
tributed matrix of virtual-to-physical transactions,
consisting of the idle and the active energy con-
sumption of each physical device required to provide
a given virtual device (see Figure 5). Each device
driver is responsible for reporting its own vector of
the physical device energy it consumes to provide its
virtual device abstraction.

Driver VMEnergy

Mgr.

vCPU DISK

vDISK1 vDISK2

vdisk1 vdisk2

disk 3+2W 3+3W

CPU 4+4W 4+6W

Hypervisor
CPU

driver VM

CPU 6+12 W

idle

active

Figure 5: Recursive accounting of disk energy consump-
tion; for each client VM and physical device, the driver
reports idle and active energy to the energy manager.
The driver is assumed to consume 8W CPU idle power,
which is apportioned equally to the two clients.

7

Since our framework currently supports CPU and
disk energy accounting, the only case where recur-
sive accounting is required occurs in the virtual disk
driver located in the driver VM. The cost for the
virtualized disk consists of the energy consumed by
the disk and the energy consumed by the CPU while
processing the requests. Hence, our disk driver also
determines the processing energy for each request in
addition to the disk energy as presented above.

As with disk energy accounting, we instrumented
the translation module in the disk driver VM to de-
termine the active and idle CPU energy per client
VM. The Linux disk driver combines requests to get
better performance and delays part of the process-
ing in work-queues and tasklets. When determin-
ing the active CPU energy, it would be infeasible
to track the CPU energy consumption of each in-
dividual request. Instead, we retrieve the CPU en-
ergy consumption at times and apportion it between
the requests. Since the driver runs in a VM, it re-
lies on the energy virtualization capabilities of our
framework to retrieve a local view on the CPU en-
ergy consumption (details on energy virtualization
are presented in Section 3.4).

The Linux kernel constantly consumes a certain
amount of energy, even if it does not handle disk
requests. According to our energy model, we do
not charge idle consumption with the request. To
be able to distinguish the idle driver consumption
from the access consumption, we approximate the
idle consumption of the Linux kernel when no client
VM uses the disk.

To account active CPU consumption, we assume
constant values per request, and predict the energy
consumption of future requests based on the past.
Every 50th request, we estimate the driver’s CPU
energy consumption by means of virtualized per-
formance monitoring counters and adjust the ex-
pected cost for the next 50 requests. The follow-
ing code illustrates how we calculate the cost per
request. In the code fragment, the static variable
unaccounted cpu energy keeps track of the devia-
tion between the consumed energy and the energy
consumption already charged to the clients. The
function get cpu energy() returns the guest-local
view of the current idle and active CPU energy since
the last query.
/* subtract idle CPU consumption of driver VM */
unaccounted_cpu_energy -= drv_idle_cpu_power

* (now - last);

/* calculate cost per request */
num_req = 50;
unaccounted_cpu_energy += get_cpu_energy();
unaccounted_cpu_energy -= cpu_req_energy * num_req ;
cpu_req_energy = unaccounted_cpu_energy / num_req ;

3.3.4 CPU Resource Allocation

To regulate the CPU energy consumption of individ-
ual machines, our hypervisor provides a mechanism
to throttle the CPU allocation at runtime, from user-
level. The hypervisor employs a stride scheduling al-
gorithm [21,23] that allots proportional CPU shares
to virtual processors; it exposes control over the
shares to selected, privileged user-level components.
The host-level energy manager dynamically throt-
tles a virtual CPU’s energy consumption by adjust-
ing the alloted share accordingly. A key feature of
stride scheduling is that it does not impose fixed up-
per bounds on CPU utilization: the shares have only
relative meaning, and if one virtual processor does
not fully utilize its share, the scheduler allows other,
competing virtual processors to steal the unused re-
mainder. An obvious consequence of dynamic upper
bounds is that energy consumption will not be con-
strained either, at least not with a straight-forward
implementation of stride scheduling. We solved this
problem by creating a distinct and privileged idle
virtual processor per CPU, which is guaranteed to
spend all alloted time with issuing halt instructions
(we modified our hypervisor to translate the idle pro-
cessor’s virtual halt instructions directly into real
ones). Initially, each idle processor is alloted only a
minuscule CPU share, thus all other virtual proces-
sors will be favored on the CPU if they require it.
However, to constrain energy consumption, the en-
ergy manager will decrease the CPU shares of those
virtual processors, and idle virtual processor will di-
rectly translate the remaining CPU time into halt
cycles. Our approach guarantees that energy limits
are effectively imposed; but it still preserves the ad-
vantageous processor stealing behavior for all other
virtual processors. It also keeps the energy-policy
out of the hypervisor and allows, for instance, to
improve the scheduling policy with little effort, or
to exchange it with a more throughput-oriented one
for those environments where CPU energy manage-
ment is not required.

3.3.5 Disk Request Shaping

To reduce disk power consumption, we pursue a sim-
ilar approach and enable a energy manager to throt-
tle disk requests of individual VMs. Throttling the
request rate not only reduces the direct access con-
sumption of the disk; it also reduces the recursive
CPU consumption which the disk driver requires to
process, recompute, and issue requests. We imple-
mented the algorithm as follows: the disk driver pro-
cesses a client VM’s disk requests only to a specific
request budget, and it delays all pending requests.

8

The driver periodically refreshes the budgets accord-
ing to the specific throttling level set by the energy
manager. The algorithm is illustrated by the follow-
ing code snippet:
void process_io(client_t *client)
{

ring = &client ->ring;

for (i=0; i < client ->budget; i++)
{

desc = &client ->desc[ring ->start];
ring ->start = (ring ->start +1) % ring ->cnt;
initiate_io(conn , desc , ring);

}
}

3.3.6 Host-level Energy Manager

Our host-level energy manager manager relies on
the accounting and allocation mechanisms described
previously, and implements a simple policy that en-
forces given device power limits on a per-VM base.
The manager consists of an initialization procedure
and a subsequent feedback loop. During initializa-
tion, the manager determines a power limit for each
VM and device type, which may not be exceeded
during runtime. The CPU power limit reflects the
active CPU power a VM is allowed to consume di-
rectly. The disk power limit reflects the overall ac-
tive power consumption the disk driver VM is al-
lowed to spend in servicing a particular VM, includ-
ing the CPU energy spent for processing (Neverthe-
less, the driver’s CPU and disk energy are accounted
separately, as depicted by the matrix in Figure 5).
Finding an optimal policy for allotment of power
budgets is not the focus of our work; at present, the
limits are set to static values.

The feedback loop is invoked periodically, every
100 ms for the CPU and every 200 ms for the disk.
It first obtains the CPU and disk energy consump-
tion of the past interval by querying the account-
ing infrastructure. The current consumptions are
used to predict future consumptions. For each de-
vice, the manager compares the VM’s current energy
consumption with the desired power limit multiplied
with the time between subsequent invocations. If
they do not match for a given VM, the manager reg-
ulates the device consumption by recomputing and
propagating the CPU strides and disk throttle fac-
tors respectively. To compute a new CPU stride,
the manager adds or subtracts a constant offset from
the current value. When computing the disk throt-
tle factor, the manager takes the past period into
consideration, and calculates the offset Δt according
to the following formula. In this formula, ec denotes
the energy consumed, el the energy limit per period,
and t and tl and denote the present and past disk

throttle factors; viable throttle factors range from 0
to a few thousand:

Δt =

⎧⎨
⎩

1
4 (tl − t) + el−ec

|el−ec| :
{

ec > el, t > tl
ec < el, t < tl

4
3 (t − tl) + el−ec

|el−ec| : else

3.4 Virtualized Energy

To enable application-specific energy management,
our framework supports accounting and control not
only for physical but also of virtual devices. In fact,
the advantage of having guest-level support for en-
ergy accounting is actually twofold: first, it enables
guest resource management subsystems to leverage
their application-specific knowledge; second, it al-
lows drivers and other components to recursively de-
termine the energy for their services.

The main difference between a virtual device and
other software services and abstractions lies in its
interface: a virtual device closely resembles its phys-
ical counterpart. Unfortunately, most current hard-
ware devices offer no direct way to query energy or
power consumption. The most common approach
to determine the energy consumption is to estimate
it based on certain device characteristics, which are
assumed to correlate with the power or energy con-
sumption of the device. By emulating the according
behavior for the virtual devices, we support energy
estimation in the guest without major modifications
to the guest’s energy accounting. Our ultimate goal
is to enable the guest to use the same driver for vir-
tual and for real hardware. In the remainder of this
section, we first describe how we support energy ac-
counting of virtual CPU and disk. We then present
the implementation of our energy-aware guest OS,
which provides the support for application-specific
energy management.

3.4.1 Virtual CPU Energy Accounting

For virtualization of physical energy effects of the
CPU, we provide a virtual performance counter
model that gives guest OSes a private view of their
current energy consumption. The virtual model re-
lies on the tracing of performance counters within
the hypervisor, which we presented in Section 3.3.1.
As mentioned, not only an energy-aware guest OS
requires the virtual performance counters; the spe-
cialized device driver VM uses them as well, when
recursively determining the CPU energy for its disk
services.

Like their physical counterparts, each virtual CPU
has a set of virtual performance counters, which

9

Hypervisor

log

CPU
PMC

Guest OS vPMC = pPMC –

PMCOtherVMs

PerfCtr

Log

vCPU
vPMC

Figure 6: Virtualizing performance counters via
hypervisor-collected performance counter traces.

factor out the events of other, simultaneously run-
ning VMs. If a guest OS determines the current
value of a virtual performance counter, an emula-
tion routine in the in-place monitor obtains the cur-
rent hardware performance counter and subtracts
all advances of the performance counters that oc-
curred when other VMs were running. The hardware
performance counters are made read-accessible to
user-level software by setting a control register flag
in the physical processors. The advances of other
VMs are derived from the performance counter log
buffers. To be accessible by the in-place VMM, the
log buffers are mapped read-only into the address
space of the guest OS.

3.4.2 Virtual Disk Energy Accounting

In contrast to the CPU, the disk energy estimation
schemes does not rely on on-line measurements of
sensors or counters; rather, it is based on known
parameters such as the disk’s power consumption
in idle and active mode and the time it remains in
active mode to handle a request. Directly translat-
ing the energy consumption of physical devices from
our run-time energy model to the parameter-based
model of the respective guest OS would yield only in-
accurate results. The VMM would have to calibrate
the energy consumption of the devices to calculate
the energy parameters of the virtual devices. Fur-
thermore, parameters of shared devices may change
with the number of VMs, which contradicts the orig-
inal estimation model. To ensure accuracy in the
long run, the guest would have to query the virtual
devices regularly for updated parameters.

For our current virtual disk energy model, we
therefore use a para-virtual device extension. We
expose each disk energy meter as an extension of
the virtual disk device; energy-aware guest operating
systems can take advantage of them by customizing
the standard device driver appropriately.

3.4.3 An Energy-aware Guest OS

For application-specific energy management, we
have incorporated the familiar resource container
concept into a standard version of our para-
virtualized Linux 2.6 adoption. Our implementation
relies on a previous approach to use resource contain-
ers in the context of CPU energy management [3,24].
We extended the original version with support for
disk energy. No further efforts were needed to man-
age virtual CPU energy; we only had to virtualize
the performance counters to get the original version
to run.

Similar to the host-level subsystem, the energy-
aware guest operating system performs scheduling
based on energy criteria. In contrast to standard
schedulers, it uses resource containers as the base
abstraction rather than threads or processes. Each
application is assigned to a resource container, which
then accounts all energy spent on its behalf. To
account virtual CPU energy, the resource container
implementation retrieves the (virtual) performance
counter values on container switches, and charges
the resulting energy to the previously active con-
tainer. A container switch occurs on every context
switch between processes residing in different con-
tainers.

To account virtual disk energy, we enhanced the
client-side of the virtual device driver, which for-
wards disk requests to the device driver VM. Orig-
inally, the custom device driver received single disk
requests from the Linux kernel, which contained no
information about the user-level application that
caused it. We added a pointer to a resource con-
tainer to every data structure involved in a read or
write operation. When an application starts a disk
operation, we bind the current resource container to
the according page in the page cache. When the ker-
nel writes the pages to the virtual disk, we pass the
resource container on to the respective data struc-
tures (i.e., buffer heads and bio objects). The cus-
tom device driver in the client accepts requests in
form of bio objects and translates them to a request
for the device driver VM. When it receives the reply
together with the cost for processing the request, it
charges the cost to the resource container bound to
the bio structure.

To control the energy consumption of virtual de-
vices, the guest kernel redistributes its own, VM-
wide power limits to subordinate resource contain-
ers, and enforces them by means of preemption.
Whenever a container exhausts the energy budget of
the current period (presently set to 50 ms), it is pre-
empted until a refresh occurs in the next period. A

10

simple user-level application retrieves the VM wide
budgets from host-level energy-manager and passes
them onto the guest kernel via special system calls.

4 Experiments and Results

In the following section, we present experimental re-
sults we obtained from our prototype. Our main goal
is to demonstrate that our infrastructure provides an
effective solution to manage energy in distributed,
multi-layered OSes. We consider two aspects as rele-
vant: At first, we validate the benefits of distributed
energy accounting. We then present experiments
that aim to show the advantages of multi-layered
resource allocation to enforce energy constraints.

For CPU measurements, we used a Pentium D
830 with two cores at 3GHz. Since our implemen-
tation is currently limited to single processor sys-
tems, we enabled only on one core, which always
ran at its maximum frequency. When idle, the core
consumes about 42W; under full load, power con-
sumption may be 100W and more. We performed
disk measurements on a Maxtor DiamondMax Plus
9 IDE hard disk with 160GB size, for which we
took the active power (about 5.6W) and idle power
(about 3.6W) characteristics from the data sheet
[16]. We validated our internal, estimation-based ac-
counting mechanisms by means of an external high-
performance data acquisition (DAQ) system, which
measured the real disk and CPU power consumption
with a sampling frequency of 1KHz.

4.1 Energy Accounting

To evaluate our approach of distributed energy ac-
counting, we measured the overall energy required
for using a virtual disk. For that purpose, we ran a
synthetic disk stress test within a Linux guest OS.
The test runs on a virtual hard drive, which is mul-
tiplexed on the physical disk by the disk driver VM.
The test performs almost no computation, but gen-
erates heavy disk load. By opening the virtual disk
in raw access mode, the test bypasses most of the
guest OS’s caching effects, and causes the file I/O to
be performed directly to and from user space buffers.
Afterwards, the test permanently reads (writes) con-
secutive disk blocks of a given size from (to) the disk,
until a maximum size has been reached. We per-
formed the test for block sizes from 0.5 KByte up
to 32 KByte. We obtained the required energy per
block size to run the benchmark from our accounting
infrastructure.

The results for the read case are shown in Fig-
ure 7. The write case yields virtually the same en-

 30

 40

 50

 60

 70

 80

0.5K
1K 2K 4K 8K 16K

32K
64K

P
ow

er
 (W

at
t)

Block size (bytes)

base power
idle power (driver:disk)

 (driver:CPU)
active power (driver:disk)

 (driver:CPU)
 (clientVM:CPU)

external DAQ (CPU+Disk)

Figure 7: Energy distribution for CPU and disk during
the disk stress test. The thin bar shows the real CPU
and disk power consumption, measured with an external
DAQ system.

ergy distribution; for reasons of space, we do not
show it here. For each size, the figure shows disk
and CPU power consumption of the client and the
device driver VM. The lowermost part of each bar
shows the base CPU power consumption required
by core components such as the hypervisor and the
user-level VMM (36W); this part is consumed in-
dependently of any disk load. The upper parts of
each bar show the active and idle power consump-
tion caused by the stress test, broken into CPU and
disk consumption. Since the client VM is the only
consumer of the hard disk, it is accounted the com-
plete idle disk power (3.5) and CPU power (8W)
consumed by the driver VM. Since the benchmark
saturates the disk, the active disk power consump-
tion of the disk driver mostly stays at its maximum
(2W), which is again accounted to the client VM as
the only consumer. Active CPU power consump-
tion in the driver VM heavily depends on the block
size and ranges from 9W for small block sizes down
to 1W for large ones. Note that the CPU costs for
processing a virtual disk request may even surpass
the costs for handling the request on the physical
disk. Finally, active CPU power consumption in the
client VM varies with the block sizes as well, but
at a substantially lower level; the lower level comes
unsurprising, as the benchmark bypasses most parts
of the disk driver in the client OS. The thin bar on
the right of each energy bar shows the real power
consumption of the CPU and disk, measured with
the external DAQ system.

4.2 Enforcing Power Constraints

To demonstrate the capabilities of VM-based energy
allocation, and to evaluate the behavior of our disk
throttling algorithm over time, we performed a sec-
ond experiment with two clients that simultaneously

11

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100
 110

 120

D
is

k
P

ow
er

 (W
at

t)
VM1
VM2

external DAQ

 0
 10
 20
 30
 40
 50
 60

 0 20 40 60 80 100Th
ro

ug
hp

ut
 (M

B
/s

ec

Time (seconds)

VM1
VM2

Figure 8: Disk power consumption and throughput of
two constrained disk test simultaneously running in two
different guest VMs.

require disk service from the driver. The clients in-
terface with a single disk driver VM, but operate
on distinct hard disk partitions. We set the active
driver power limit of client VM 1 to 1W and the
limit of client VM 2 to 0.5W, and periodically ob-
tained driver energy and disk throughput over a pe-
riod of about 2 minutes. Figure 8 shows both dis-
tributions; we set the limit about 45 seconds after
having started the measurements. Our experiment
demonstrates the driver’s capabilities to VM-specific
control over power consumption. The internal ac-
counting and control furthermore corresponds with
the external measurements.

4.2.1 Guest-Level Energy Allocation

In the next experiment, we compared the effects
of enforcing power limits at the host-level against
the effects of guest-level enforcement. In the first
part of the experiment, we ran two instances of
the compute-intensive bzip2 application within an
energy-unaware guest OS. In the unconstrained case,
a single bzip2 instance causes an active CPU power
consumption of more than 50W. The guest, in turn,
is alloted an overall CPU active power of only 40W.
As the guest is not energy-aware, the limit is en-
forced by the host-level subsystem. In the second
part, we used an energy-aware guest, which com-
plies with the alloted power itself. It redistributes
the budget among the two bzip2 instances using the
resource container facility. Within the guest, we set
the application-level power limits to 10W for the
first, and to 30W for the second bzip2 instance. Note
that the power limits are effective limits; strictly spo-
ken, both bzip2 still consume each 50 Joules per sec-
ond when running; however, the resource container

implementation reduces the each task time accord-
ingly, with the result that over time, the limits are
effectively obeyed.

 0

 10

 20

 30

 40

 50

 60

host-level mgmt. guest-level mgmt.
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

P
ow

er
 (W

at
t)

Th
ro

ug
hp

ut
 (B

lo
ck

s/
se

c)

active power (VM:complete)
(VM:bzip2-1)
(VM:bzip2-2)

throughput (VM:bzip2-1)
(VM:bzip2-2)

Figure 9: Guest-Level energy redistribution.

The results are given in Figure 9. For both cases,
the figure shows overall active CPU power of the
guest VM in the leftmost bar, and the throughput
broken down to each bzip2 instance in the rightmost
bar. For the energy-aware VM, we additionally ob-
tained the power consumption per bzip2 instance as
seen by the guest’s energy management subsystem
itself; it is drawn as the bar in the middle.

Note that the guest’s view of the power consump-
tion is slightly higher than the view of the host-level
energy manager. Hence, the guest imposes some-
what harsher power limits, and causes the overall
throughput of both bzip2 instances to drop com-
pared to host-level control. We attribute the differ-
ences in estimation to the clock drift and rounding
errors in the client.

However, the results are still as expected: host-
level control enforces the budgets independent of the
guest’s particular capabilities – but the enforcement
treats all guest’s applications as equal and thus re-
duces the throughput of both bzip2 instances pro-
portionally. In contrast, guest-level management al-
lows the guest to respect its own user priorities and
preferences: it allots a higher power budget to the
first bzip2 instance, resulting in a higher throughput
compared to the second instance.

5 Related Work

There has been a considerable research interest in
involving operating systems and applications in the
management of energy and power of a computer
system [6, 7, 9, 10, 14, 25, 27]. Except for the ap-
proach of vertically structured OSes, which will be
discussed here, none of them has addressed the prob-

12

lems that arise if the OS consists of several layers and
is distributed across multiple components, as cur-
rent virtualization environments do. To our knowl-
edge, neither the popular Xen hypervisor [2, 19] nor
VMware’s most recent hypervisor-based ESX Server
[22] support distributed energy accounting or allo-
cation across module boundaries or software layers.

Achieving accurate and easy accounting of energy
by vertically structuring an OS was proposed by the
designers of Nemesis [14,18]. Their approach is very
similar to our work in that it addresses account-
ability issues within multi-layered OSes. A verti-
cally structured system multiplexes all resources at
a low level, and moves protocol stacks and most
parts of device drivers into user-level libraries. As
a result, shared services are abandoned, and the ac-
tivities typically performed by the kernel are exe-
cuted within each application itself. Thus, most re-
source and energy consumption can be accounted to
individual applications, and there is no significant
anonymous consumption anymore.

Our general observation is that hypervisor-based
VM environments are structured similarly to some
extent: a hypervisor also multiplexes the system re-
sources at a low level, and lets each VM use its own
protocol stack and services. Unfortunately, a big
limitation of vertical structuring is that it is hard
to achieve with I/O device drivers. As only one
driver can use the device exclusively, all applica-
tions share a common driver provided by the low-
level subsystem. To process I/O requests, a shared
driver consumes CPU resources, which recent ex-
periments demonstrate to be substantial in multi-
layered systems that are used in practice [5]. In a
completely vertically structured system, the process-
ing costs and energy can not be accounted to the
applications. In contrast, it was one of the key goals
of our work to explicitly account the energy spent in
service or driver components.

The ECOSystem [27] approach resembles our
work in that it proposes to use energy as the base
abstraction for power management and to treat it
as a first-class OS resource. ECOSystem presents a
currentcy model that allows to manage the energy
consumption of all devices in a uniform way. Apart
from its focus on a monolithic OS design, ECOSys-
tem differs from our work in several further aspects.
The main goal of ECOSystem is to control energy
consumption of mobile systems, in order to extend
their battery lifetime. To estimate the energy con-
sumption of individual tasks, ECOSystem attributes
power consumptions to different states of each device
(e.g. standby, idle, and active states) and charges
applications if they cause a device switch to a higher

power state. ECOSystem does not distinguish be-
tween the fractions contributed by different devices;
all cost that a task causes is accumulated to one
value. This allows the OS to control the overall en-
ergy consumption without considering the currently
installed devices. However, it renders the approach
too inflexible for other energy management schemes
such as thermal management, for which energy con-
sumption must be managed individually per device.

In previous work [3], Bellosa et al. proposed
to estimate the energy consumption of the CPU
for the purpose of thermal management. The ap-
proach leverages the performance monitoring coun-
ters present in modern processors to accurately esti-
mate the energy consumption caused by individual
tasks. Like the ECOSystem approach, this work uses
a monolithic operating system kernel. Also, the es-
timated energy consumption is just a means to the
end of a specific management goal, i.e., thermal man-
agement. Based on the energy consumption and a
thermal model, the kernel estimates the temperature
of the CPU and throttles the execution of individual
tasks according to their energy characteristics if the
temperature reaches a predefined limit.

6 Conclusion

In this work, we have presented a novel framework
for managing energy in multi-layered OS environ-
ments. Based on a unified energy model and mech-
anisms for energy-aware resource accounting and
allocation, the framework provides an effective in-
frastructure to account, distribute, and control the
power consumption at different software layers. In
particular, the framework explicitly accounts the re-
cursive energy consumption spent in the virtualiza-
tion layer or subsequent driver components. Our
prototypical implementation encompasses a host-
level subsystem controlling global power constraints
and, optionally, an energy-aware guest OS for lo-
cal, application-specific power management. Exper-
iments show that our prototype is capable of en-
forcing power limits for energy-aware and energy-
unaware guest OSes.

We see our work as a support infrastructure to
develop and evaluate power management strategies
for VM-based systems. We consider three areas to
be important and prevalent for future work: devices
with multiple power states, processors with support
for hardware-assisted virtualization, and multi-core
architectures. There is no design limit with respect
to the integration into our framework, and we are
actively developing support for them.

13

Acknowledgements

We would like to thank Simon Kellner, Andreas
Merkel, Raphael Neider, and the anonymous review-
ers for their comments and helpful suggestions. This
work was in part supported by the Intel Corporation.

References

[1] G. Banga, P. Druschel, and J. C. Mogul. Resource con-
tainers: A new facility for resource management in server
systems. In Proceedings of the 4th Symposium on Oper-
ating Systems Design and Implementation, pages 45–58,
Berkeley, CA, Feb. 1999.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In Proceedings of the 19th
Symposium on Operating System Principles, pages 164–
177, Bolton Landing, NY, Oct. 2003.

[3] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-
driven energy accounting for dynamic thermal manage-
ment. In Proceedings of the Workshop on Compilers and
Operating Systems for Low Power, pages 1–10, New Or-
leans, LA, Sept. 2003.

[4] R. Bianchini and R. Rajamony. Power and energy man-
agement for server systems. IEEE Computer, 37(11):68–
74, 2004.

[5] L. Cherkasova and R. Gardner. Measuring CPU over-
head for I/O processing in the Xen virtual machine mon-
itor. In Proceedings of the USENIX Annual Technical
Conference, pages 387–390, Anaheim, CA, Apr. 2005.

[6] K. Flautner and T. N. Mudge. Vertigo: automatic
performance-setting for Linux. In Proceedings of the
5th Symposium on Operating Systems Design and Im-
plementation, pages 105–116, Boston, MA, Dec. 2002.

[7] J. Flinn and M. Satyanarayanan. Energy-aware adapta-
tion for mobile applications. In Proceedings of the 17th
Symposium on Operating System Principles, pages 48–
63, Charleston, SC, Dec. 1999.

[8] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Safe hardware access with the Xen
virtual machine monitor. In 1st Workshop on Operating
System and Architectural Support for the On-Demand
IT Infrastructure, Boston, MA, Oct. 2004.

[9] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-
and-run: leveraging SMT and CMP to manage power
density through the operating system. In Proceedings
of the 11th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 260–270, Boston, MA, Sept. 2004.

[10] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: dynamic speed control for power
management in server class disks. In Proceedings of the
30th annual international symposium on Computer ar-
chitecture (ISCA), pages 169–181, New York, NY, June
2003.

[11] H. Härtig, M. Hohmuth, J. Liedtke, and S. Schönberg.
The performance of µ-kernel based systems. In Proceed-
ings of the 16th Symposium on Operating System Prin-
ciples, pages 66–77, Saint Malo, France, Oct. 1997.

[12] T. Heath, A. P. Centeno, P. George, L. Ramos,
Y. Jaluria, and R. Bianchini. Mercury and Freon: tem-
perature emulation and management in server systems.
In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 106–116, San Jose, CA, Oct.
2006.

[13] R. Joseph and M. Martonosi. Run-time power estimation
in high performance microprocessors. In Proceedings of
the 2001 International Symposium on Low Power Elec-
tronics and Design, pages 135–140, Huntington Beach,
CA, Aug. 2001.

[14] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. T.
Barham, D. Evers, R. Fairbairns, and E. Hyden. The de-
sign and implementation of an operating system to sup-
port distributed multimedia applications. IEEE Journal
of Selected Areas in Communications, 14(7):1280–1297,
Sept. 1996.

[15] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Un-
modified device driver reuse and improved system de-
pendability via virtual machines. In Proceedings of the
6th Symposium on Operating Systems Design and Imple-
mentation, pages 17–30, San Fransisco, CA, Dec. 2004.

[16] Maxtor Corporation. DiamondMax Plus 9 Data Sheet,
2003.

[17] A. Merkel and F. Bellosa. Balancing power consumption
in multiprocessor systems. In Proceedings of the 1st Eu-
roSys conference, pages 403–414, Leuven, Belgium, Apr.
2006.

[18] R. Neugebauer and D. McAuley. Energy is just another
resource: Energy accounting and energy pricing in the
nemesis OS. In Proceedings of 8th Workshop on Hot
Topics in Operating Systems, pages 67–74, Schloß El-
mau, Oberbayern, Germany, May 2001.

[19] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield,
D. Magenheimer, J. Nakajima, and A. Malick. Xen
3.0 and the art of virtualization. In Proceedings of the
2005 Ottawa Linux Symposium, pages 65–85, Ottawa,
Canada, July 2005.

[20] J. Stoess and V. Uhlig. Flexible, low-overhead event
logging to support resource scheduling. In Proceedings
of the Twelfth International Conference on Parallel and
Distributed Systems, volume 2, pages 115–120, Min-
neapolis, MN, July 2006.

[21] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski.
Towards scalable multiprocessor virtual machines. In
Proceedings of the 3rd Virtual Machine Research and
Technology Symposium, pages 43–56, San Jose, CA, May
2004.

[22] VMware Inc. ESX Server Data Sheet, 2006.

[23] C. A. Waldspurger and W. E. Weihl. Lottery schedul-
ing: Flexible proportional-share resource management.
In Proceedings of the 1st Symposium on Operating Sys-
tems Design and Implementation, pages 1–11, Monterey,
CA, Nov. 1994.

[24] A. Weissel and F. Bellosa. Dynamic thermal manage-
ment for distributed systems. In Proceedings of the 1st
Workshop on Temperature-Aware Computer Systems,
Munich, Germany, May 2004.

[25] A. Weissel, B. Beutel, and F. Bellosa. Cooperative
IO - a novel IO semantics for energy-aware applica-
tions. In Proceedings of the 5th Symposium on Operat-
ing Systems Design and Implementation, pages 117–130,
Boston, MA, Dec. 2002.

[26] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishna-
murthy, and R. Wang. Modeling hard-disk power con-
sumption. In Proceedings of the Second Conference on
File and Storage Technologies, pages 217–230, San Fran-
cisco, CA, Mar. 2003.

[27] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
ECOSystem: managing energy as a first class operating
system resource. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 123–132, San
Jose, CA, Oct. 2002.

[28] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Cur-
rentcy: unifying policies for resource management. In
Proceedings of the USENIX 2003 Annual Technical Con-
ference, pages 43–56, San Antonio, TX, June 2003.

14

