Energy Accounting Support in TinyOS

Simon Kellner
kellner@ira.uka.de

Frank Bellosa
bellosa@ira.uka.de

System Architecture Group
Universitat Karlsruhe

ABSTRACT

Energy is the most limiting resource in sensor networks. This
is particularly true for dynamic sensor networks in which the
sensor-net application is not statically planned. We descri-
be three components of our energy management system for
nodes in such dynamic sensor networks: A flexible energy
model and an accounting infrastructure for making sensor
nodes energy-aware, and Resource Containers for managing
the energy accounting information.

1. INTRODUCTION

Energy still is the most critical resource in sensor networks.
Current energy supplies already take up most of a sensor
node’s space, but can provide the desired node lifetimes of
years only when sensor-net application designers give a high
priority to a long sensor-net lifetime. Sensor-Net Operating
Systems (OSes) like TinyOS [2] encourage energy saving by
not providing a convenient CPU-abstraction such as threads,
which could, for example, tempt application developers into
creating CPU-intensive waiting loops and thus into wasting
energy.

Database interfaces to sensor nets like TinyDB [5] make it
easy for users to retrieve sensor data: A sensor-net applica-
tion is formulated as a request in an SQL-like language and
interpreted by the sensor network until the request expi-
res. The program on the sensor nodes only needs the ability
to interpret and execute such requests. This eliminates the
need to reprogram sensor nodes and allows multiple queries
to be processed simultaneously.

Such dynamic systems can support multiple users in a sensor
net, each with his own set of queries. In this scenario it is
desirable to account the energy consumption of each query,
e.g. to bill users based on their sensor-net usage, or to find
the query with the highest energy consumption and cancel
it before it wears down the energy supplies.

In this paper we describe several parts of a solution to energy
management on sensor nodes that addresses multi-user dy-
namic sensor networks. The presented solution is currently
being implemented for MICAz nodes in TinyOS 2. First we
describe our energy model for a sensor node, then the infra-
structure used in taking measurements and accounting the
energy. As a third part, we describe the concept of Resource
Containers, which will be employed to fairly distribute the
accounted energy in our dynamic sensor-net setting.

2. RELATED WORK

The management of energy in sensor networks has received a
significant share of research over the last years, as it concerns
the primary resource of such networks.

PowerTOSSIM|[6] is perhaps the approach most similar to
our own model and accounting infrastructure. It instruments
OS components or simulations thereof to track power states
and uses an energy model to compute energy consumption
for one or more sensor nodes. However, there is no implemen-
tation for current versions of TinyOS. Its energy model only
considers hardware states, not the transitions in-between.
The most significant difference is in the intended use: Our
instrumentation and model are designed to be used in on-
line energy accounting as opposed to off-line simulation.

AEON[4] is the energy model used in the AVRORA[7] si-
mulator. It models the hardware states of a MICA2 node.
Our model is based primarily on the MICAz node and ad-
ditionally considers transitions between hardware states.

Energy measurements of a MICAz node can be found in [3].
The measurements of the AtMegal28 controller are detailed,
but the measurements of the ZigBee controller (CC2420) se-
verely lack details. Our measurements show a real difference
between the listen and the transmit state, regardless of the
programmed output power in the latter.

Resource Containers are an OS-abstraction introduced by
Banga, Druschel and Mogul [1] in 1999 for accounting on
web-servers and consist basically of OS-provided storage for
accounting data. The idea is to separate OS abstractions
for CPU and resource accounting, so one can base accoun-
ting on other, more suitable abstractions. In the PC world,
for example, Resource Containers (RCs) give administrators
and users the ability of accounting all activity connected to
a user request, which usually has a higher significance than
process-based accounting.

3. ENERGY MODEL

Our sensor node energy model is designed to be used both
for off-line simulations and on-line accounting. To this end,
the model is specified in a more formal manner than usual.

Our energy model is based on finite state machines that
closely model the hardware’s power states and transitions.
To account for the concurrency possible on typical hardwa-
re, each subsystem on a sensor node is modeled by its own



cc2az0

name: start_temp
energy: 3.5 uAs

energy: 133 uAs
A time: 0.60 ms
time: 0.41 ms

transmit_15
power=17.08 mA
time: 0.125 ms + 0.76 us * PI

power=21.62mA
time: 0.125 ms + 0.76 us * PI

Figure 1: Energy models for the CC2420 and SHT11
chips

state machine. For example, the OS can finish instructing
the radio controller to send a packet, start taking a measu-
rement on a sensor, and get interrupted by a preset timer. In
this example, the radio controller, the sensor, and the micro-
controller each are modeled by one finite state machine.

States and transitions of these machines are attributed with
their physical characteristics such as time (duration), energy,
or power. These characteristics often depend on parameters
from outside such as the battery voltage or packet length.
Values for these parameters have to be supplied by each
program that uses this model.

The model states describe the hardware states in as much
as they can be distinguished by their power consumption.
A small part of such an energy model is shown in Figure 1.
Simple hardware like sensors or LEDs can be modeled by a
small number of states. The model for the SHT11 chip in
Figure 1, for example, covers the whole process of measuring
the temperature. For other chips like the ZigBee controller
(CC2420 this approach can result in multiple transmit states,
one for each selectable transmission power. Of the 32 availa-
ble and 8 documented power settings, only two are shown
in Figure 1 due to space constraints. Furthermore, the tran-
sitions from cc2420_idle to the transmit states have been
omitted to avoid cluttering.

Transitions in the model describe the time and energy spent
on changing the hardware state. A transition can be named
or unnamed. Unnamed transitions are used for state changes
which are predictable from the hardware layer. For exam-
ple, upon completing a transmission the CC2420 controller
automatically switches back into the listening state where
it could then receive an acknowledgment message. The time
spent transmitting is known from the length of the packet,
which is known, as a packet must be stored in the CC2420’s
transmit buffer prior to transmission. Named transitions, on
the other hand, describe changes that are not predictable
from a hardware viewpoint, e.g., when the software sends
a command to the radio chip to transmit a packet that is
currently in the chip’s buffers. In the example, start_temp,
set_output_power and stxon are of this type.

Some models are further equipped with parameters that can
be used to reduce the number of model states or to calculate
energy consumption. The packet length parameter in Figu-

Application
~

McuAccountingC CC2420AccountingC

AccountingXC_null AccountingXC_accounting AccountingXC_signal

Figure 2: Accounting infrastructure overview

re 1 determines the time the CC2420 spends transmitting, so
the energy consumed for the transmission directly depends
on the packet length. The other parameter, output power
setting, is not strictly necessary for modeling. Its primary
use is to reduce the number of states in the model: Without
it, the number of states would almost triple: As the out-
put power can be programmed in the idle and listen states,
there would have to be 32 versions of both states with bi-
directional transitions between all versions of a state. So not
only would the number of states nearly triple, the number
of transitions would grow quadratically with them.

4. ACCOUNTING INFRASTRUCTURE

Information required to use the model for on-line energy
accounting has to come from various places deep inside a
sensor node operating system. Usually, this means places
where a driver issues commands to or receives interrupts
from the hardware it manages. Due to the high degree of
modularization in TinyOS 2, the relevant code places for one
hardware chip could be scattered over several directories.
The purpose of our accounting infrastructure is to collect
this information in a consistent manner.

The process of gathering the accounting information should
also be transparent to the sensor-net application. This allows
developers to base energy-aware applications on traditional,
statically planned applications without the need to change
a lot of code.

Energy-relevant code fragments are instrumented by an ad-
ditional function call. These function calls are routed first
to a module for the subsystem and then to a central mo-
dule named AccountingC, as shown in Figure 2. Here they
arrive as (component, event) pairs, where component refers
to a finite state machine of the energy model, and event to a
named transition in this machine. The central module then
uses a back-end to process the gathered information. The
choice of back-end is configurable from the command line
at compile time. The default back-end (AccountinXC.null)
simply discards the information. Thus, in spite of introdu-
cing these additional function calls in the source code, this
does not result in additional object code, as the compiler
inlines all involved functions.

Aside from the actual accounting process, the infrastruc-



ture has shown its flexibility in combination with the Ti-
nyOS build system by providing convenient options to in-
dicate the energy-relevant events using a GPIO pin to the
measurement hardware outside. For this scenario, the cen-
tral accounting component is given a different back-end mo-
dule (AccountingXC_signal) to use, which in turn uses a
platform-dependent signaling module to access a GPIO pin.
This proved to be very helpful for extracting the physical
characteristics of our energy model from measurements of
sensor nodes. Parts of the data analysis could be automa-
ted, as phase lengths and transitions can be detected more
easily by these additional signals.

S. RESOURCE CONTAINER

To make energy accounting work not only on a single node
but in a large network, we employ the concept of Resouce
Containers (RCs). RCs can be used to account energy con-
sumption for each query being executed on the node and
aggregate this information throughout the network.

In the following we assume that the sensor-net applicati-
on responds to user-generated queries and that all packets
related to one query carry the same unique ID.

5.1 Normal Resource Containers

A normal RC is associated with a query. As soon as an app-
lication learns the ID of the query currently being processed,
it informs TinyOS that it wishes to switch to the RC asso-
ciated with this query. The selected RC is then bound to the
current TinyOS task.

The energy consumption of all further activities coming from
this TinyOS task is accounted to the selected RC. If the
TinyOS task posts a new TinyOS task or sets up a new
timer, this binding can be stored by the scheduler or timer
system, and can be used to switch back to the stored RC
automatically on the corresponding wake-up call.

The OS here clearly depends on the application for cor-
rect accounting, but this is both feasible and necessary in
a sensor-net application. It is necessary to prevent produ-
cing hard-to-maintain code, and it is feasible because there
should be only few places where this RC-switching occurs,
namely when a sensor-net application starts processing a
query.

5.2 Anonymous Resource Containers

Since TinyOS applications spend most of their time sleeping
and perform only minimal amounts of processing, energy
consumed during interrupt handling is not negligible. For
example, a timer interrupt may cause the activation of a
communication device, which is subsequently used to send
stored sensor data to other nodes. The sensor node is not
aware of the query ID until it accesses the packet it is about
to send. In the meantime, the activation of the communi-
cation device can consume a substantial amount of energy
that cannot be assigned to the correct RC at that moment.

As a solution, the interrupt handler can allocate a tempora-
ry, anonymous RC and use it to account both its own energy
consumption and the device activation. Later, when the ap-
plication becomes aware of the query ID, it can switch to

the RC associated with the query, causing the temporary
RC to be merged and released.

5.3 Special Resource Containers

It may be necessary to employ special RCs to provide addi-
tional information or to handle cases where the correct RC
is not known.

5.3.1 Root Resource Container

One RC worth mentioning is the RC for the whole node. It is
used to collect the amount of energy consumed by the whole
node, regardless of queries. This information is of interest to
the nodes themselves in order to estimate the amount of
remaining energy. It can also be regarded as another data
source and can itself be the target of a query.

5.3.2 Idle Resource Container

Some energy consumption can not be clearly accounted to a
query, e.g., the energy spent during sleep (idle energy). We
call the problem of accounting this energy consumption in
a fair manner accounting fairness.

One way to address the issue of idle energy accounting is
to distribute the accounted idle energy among all queries
known to the sensor node. To achieve this, a special RC for
this energy class is present in the system. At certain times,
this RC is cleared and its content distributed among all exis-
ting normal RCs. This has to be done both periodically and
on creation/expiration of a query:

e Periodically so that the accounting information remains
recent.

e At query instantiation to avoid penalizing this query
by accounting sleeping energy spent before its instan-
tiation.

e At query expiration to avoid losing accounted energy.

The fairness of this distribution is subject to discussion and
thus should be handled by a project-dependent policy. Policy
examples include equal distribution and partitioning accor-
ding to duty-cycle or used energy.

Concluding, one can picture the RCs in a 3-level hierarchy:
the root RC for the node, named RCs for the queries and
anonymous RCs to account energy consumed for a (yet) un-
known purpose. In this hierarchy, the root RC contains the
aggregated accounting data of the named RCs, while the
anonymous RCs will eventually be merged with one of the
named RCs.

5.4 Shared Data

Caching the acquired sensor data introduces another instan-
ce of the accounting-fairness problem. Without additional
measures, the first query to sample data bears the cost of
acquiring it, subsequent queries can use it at almost zero
cost. If the accuracy of timing or accounting can be relaxed,
some trade-offs between one of them and accounting fairness
can and should be considered.



A trade-off between timing accuracy and accounting fairness
can be implemented as a subscriber model for sensor data:
The sensor data is sampled either on time-out after the first
subscription or when enough parties subscribed to this sen-
sor data. The energy is split among all of the subscribed
parties.

A trade-off between accounting accuracy and fairness can be
implemented by assigning a value to the sampled sensor data
that decays with every access. For example, the initial query
bears 3/4 of the costs, the next query 3/4 of the remaining
costs, and after a time-out, the rest is distributed across all
queries that acquired this data.

5.5 Resource Container Aggregation

The usefulness of Resource Containers becomes apparent
when they are shared between all network nodes. With the
collected information in these RCs it is possible to account
the energy consumption of the whole network individually
for each query.

RCs lend themselves quite naturally to sensor nets with dy-
namically created queries. When receiving a new query, a
sensor node allocates an RC for this query, accounts the
query’s energy costs to that RC and sends the accounted
data back together with the responses to this query.

RC contents can easily be aggregated by summation over
all RCs with the same query ID. The design of RCs to store
all of the energy accounted to it since its creation makes it
resilient to occasional packet loss. When accounting infor-
mation is lost in the network due to occasional packet loss,
the aggregated accounting information at the data sink may
be incorrect, but it will be correct again after reception of
the next packet.

To allow the data sink to compare aggregated RC values
from different queries and to detect packet loss, a node
should additionally send the number of sensor nodes invol-
ved in an aggregate, if this information is not already present
in the aggregated sensor data.

6. CONCLUSION

In sensor networks with dynamically created queries, on-line
energy accounting is necessary to make the network energy-
aware. We presented three parts of an on-line energy ac-
counting solution currently being developed for TinyOS 2.
An accounting infrastructure uses an energy model to make

each sensor node energy-aware. Resource Containers allow
to extend this accounting mechanism to cover the whole
network. Together, this is an energy management solution
for multi-user dynamic sensor networks.

7. ACKNOWLEDGMENTS
This work is done as part of the BW-FIT project ZeusS.

8. REFERENCES

[1] G. Banga, P. Druschel, and J. Mogul. Resource

containers: A new facility for resource management in

server systems. In Proceedings of the Third Symposium
on Operating System Design and Implementation

(0OSDI’99), Feb. 1999.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and

K. Pister. System architecture directions for networked

sensors. In ASPLOS-IX: Proceedings of the Ninth

International Conference on Architectural Support for

Programming Languages and Operating Systems, pages

93-104, New York, NY, USA, 2000. ACM Press.

[3] M. Krdmer and A. Geraldy. Energy measurements for

MicaZ node. In 5. GI/ITG KuVS Fachgesprich

wDrahtlose Sensornetze®, number 2006/07, pages

61-68, Universitiat Stuttgart, Institut fiir Parallele und

Verteilte Systeme, July 2006.

O. Landsiedel, K. Wehrle, and S. G6tz. Accurate

prediction of power consumption in sensor networks. In

Proceedings of The Second IEEE Workshop on

Embedded Networked Sensors (EmNetS-1I), May 2005.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The design of an acquisitional query
processor for sensor networks. In SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 491-502,
New York, NY, USA, 2003. ACM Press.

[6] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen,
and M. Welsh. Simulating the power consumption of
large-scale sensor network applications. In SenSys ’04:
Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, pages 188-200,
New York, NY, USA, Nov. 2004. ACM Press.

[7] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora:
scalable sensor network simulation with precise timing.
In IPSN ’05: Proceedings of the 4th International
Symposium on Information Processing in Sensor
Networks, page 67, Piscataway, NJ, USA, 2005. IEEE
Press.

[2

4



