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Zusammenfassung

Ziel dieser Studienarbeit ist es, eine Programmierumgebung zu schaf-
fen, in der Programme mit mehreren Aktivit�atstr�agern entwickelt und ver-
messen werden k�onnen. Die Prozesse der Programmentwicklung und In-
strumentierung sollen dabei m�oglichst unabh�angig von Zielsystem ablaufen,
dessen spezi�sche Eigenschaften trotzdem genutzt werden k�onnen. Wichtige
Fragestellungen, die es im Rahmen dieser Arbeit zu beantworten gilt, sind:

� Wie k�onnen die gew�unschten Analysedaten ohne wesentliche Beein-

ussung des Programmablaufs gewonnen und gespeichert werden?

� Welche Modi�kationen m�ussen evtl. am Laufzeitsystem vorgenommen
werden, um Ereignisz�ahler bei der Umschaltung zwischen verschiede-
nen Aktivit�atstr�agern zu sichern?

� Wie k�onnen diese Daten graphisch sinnvoll aufbereitet werden, um
dem Programmierer Auskunft �uber das Laufzeitverhalten seines Pro-
grammes zu geben?

� Wie kann die Instrumentierung abstrahiert werden, damit eine ein-
fache Portierbarkeit des Systems gegeben ist?

Es ist geplant, die Leistungsf�ahigkeit des entwickelten Systems an einem
Beispiel aufzuzeigen.
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Chapter 1

Introduction

Problem Statement

Computer systems continue to become more powerful, but as they do so the
demands always grow beyond the reach of any existing system. The per-
formance increase that can be achieved by reducing cycle times is limited
because of the �nite speed at which information can propagate and because
of energy dissipation problems. The only other way to increase the perfor-
mance of a system is to exploit the parallelism inherent in the application.

Parallelism on the level of (micro-)instructions has been used for a long
time { most of the technology is in use since the advent of supercomput-
ing. Today, even the cheapest microprocessors have multiple independent
execution units and implement pipelining. Optimising compilers that help
to exploit this �ne-grained parallelism are widely available. As technology
matures, its limits become visible. The parallelism that can be achieved at
this level is very limited. Scalar arithmetic instructions for example cannot
make e�cient use of pipelines deeper than fourteen stages [HP96, page 210].

The advent of cheap single-chip microprocessors has made it feasible to
build multicomputer and multiprocessor systems that exploit parallelism at
a much higher level. Applications are split into multiple threads of control
that cooperate in order to achieve a common goal.

Development of applications that contain multiple threads of control is
still poorly understood and resembles an art rather than an engineering
discipline. Only few tools are available that aid in managing the complexity
of concurrent computation. Most of these only support one step in the
development cycle, e.g. debugging.

Another problem is that computer systems become more complex as the
number of processors and levels in the memory-hierarchy increase. Some of
this complexity leaks through even to the userlevel. Todays machines no
longer provide the programmer with a consistent single system image.
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Goals of this Thesis

The primary goal of this project is to provide tools that allow the program-
mer to write multithreaded applications in an architecture-independent way
and evaluate their performance in di�erent environments, i.e. di�erent hard-
ware, operating systems, and runtime systems.

Performance measurement shall provide an insight into the dynamics
of the program under development as well as the underlying system. As
portability is a primary goal, no additional hardware may be used to record
the data. It follows that a software solution has to be found that meets the
following criteria:

� In
uence of the measurement part of the system on the execution of
the application program must be minimised. All blocking operations
must be done by separate kernel-threads.

� The system must allow the user to specify the set of events that are
to be recorded. Producing too much data slows down the process and
hides the important facts.

� Instrumentation and Visualisation should use the identi�ers given in
the application's source code. The programmer must be able to see
the relation between code and program dynamics.

more

Outline of the Thesis

Performance of multithreaded applications heavily depends on the properties
of the underlying system. Hardware architecture, operating system design,
and design of the runtime system interact with each other in intricate ways.
To understand the reasons for an application's behaviour, one has to look
at all levels of the system.

Thus the �rst chapters discuss some selected topics from the �elds of
computer architecture, operating system design, runtime support, as well
as performance evaluation that constitute the research domain for this the-
sis. This material is meant to show possible performance problems and
programming errors as well as ways to improve the software.

Beginning with chapter 5, the programming environment Socrates is
presented. Its functionality is described and some insight is given into its
implementation. A simple example illustrates the process of developing
and evaluating multithreaded code. Conclusions are drawn in chapter 6.
Appendices inform about topics such as other measurement tools or the
software and hardware that has been used.
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Chapter 2

Multiprocessor Architecture

This chapter presents some aspects of computer architecture that are closely
related with multiprocessor performance. The goal is to show possible per-
formance problems and programming errors. For further information on the
architecture of multiprocessor systems see [HB84, HP96, Kai96].

2.1 Tightly vs. Loosely Coupled Systems

Multiprocessors are classi�ed as being tightly vs. loosely coupled, depending
on whether they share a global physical memory system or not. In tightly
coupled systems, processors have direct access to all memory locations and
thus memory can be used for communication and synchronisation whereas
in loosely coupled systems message passing has to be used. Tightly coupled
architectures can be further subdivided as follows:

2.1.1 Uniform Memory Access (UMA)

In systems with uniform memory access, each processor has direct access to
a single shared memory. All memory locations are equidistant (in terms of
access times) to each processor. Most UMA-systems incorporate caching to
eliminate memory contention but this mechanism is hidden from applica-
tions.

2.1.2 Cache Only Memory Access (COMA)

Systems with cache only memory access do not have a physically shared
memory but caches only. These caches constitute the machines memory
and, together, form a single address space. Access times vary depending on
whether the requested memory location is in the local cache or in a remote
one. Application software may be ignorant of the systems architecture as
the machine behaves very much like a UMA-machine with caching.
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2.1.3 Nonuniform Memory Access (NUMA)

Systems with nonuniform memory access have a distributed shared physical
memory. Each partition of it is directly attached to a node but can be ac-
cessed by processors in other nodes via the interconnection network. Thus
memory access times di�er depending on whether the requested location is
local to the node or remote. This added level of complexity may be hidden
from application software but doing so leads to suboptimal performance.
To make best use of the hardware, the programmer must take its architec-
ture into consideration. Caching may be used between processors and local
memory as well as between nodes. Machines with coherent caching at the
hardware level are called cc-NUMA.

2.2 Interconnection Networks

Interconnection networks can be built using either packet- or circuit-switching
technology and can use various topologies. The more parallelism and redun-
dancy is incorporated, the more complex and expensive the interconnection
network gets. Most solutions in use today represent a reasonable compro-
mise between performance and cost:

Buses are the least expensive interconnection networks. They are also very
easy to manage but do not provide multiple connections at the same time
or failure tolerance. Buses do not scale well { the only way to introduce
parallelism is to replicate them. Systems with a very limited number of
processors use a bus or a small set of buses. Many larger systems, however,
use buses at node-level and another topology at the global level.

Rings allow more simultaneous data transfers than busses because all seg-
ments (the paths between two nodes) of the ring may be used for communi-
cation at the same time. They can also provide fault tolerance if data can be
sent in both directions. On the downside, data that is sent between nodes
that are not adjacent has to travel through switches of other nodes before
reaching the destination, thereby being delayed. This performance problem
grows with the number of nodes connected to the ring.

Cross-bar Switches provide multiple exclusive communication lines between
processors and memory1. If memory is partitioned into n blocks, n concur-
rent memory accesses can be accommodated. Contention can only occur if
two processors try to access the same memory module. Cross-bar switches
scale well but the costs grow quadratically which makes them prohibitively
expensive with larger numbers of processors.

1They may also be used to connect multiple processors.
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Multistage switches provide a means of interconnection that scales reason-
ably well in both performance and cost. The complexity of the network
grows logarithmically with increasing parallelism. As opposed to cross-bar
switches, contention can occur at the network-level. Bu�ers can be intro-
duced to address this problem.

Hypercube networks are often used in loosely coupled systems with store-
and-forward communication. Like multistage switches, their complexity in-
creases only logarithmically. They scale well but the number of processors
always has to be a power of two. Contention at network-level can occur but
is addressed by using store-and-forward communication.

2.3 Caching

A cache is a bu�er used to hide di�erences in operating speed. The gen-
eral scheme can be applied in a lot of situations. Introducing caches into
the memory system has three advantages: the latency of accesses to main
memory is hidden, bandwidth increased, and contention of interconnection
structures reduced.

Processor speed continues to grow faster than main memory speed and
novel multiprocessor architectures have deep memory hierarchies with laten-
cies that can reach a couple of hundred processor cycles. These developments
make caches the central factor in system performance. This section describes
the key attributes of cache subsystems and their impact on performance.

For further information about caching see [HP96, Kai96, Sch94].

2.3.1 Direct Mapped vs. Associative Caches

In a cache subsystem that uses direct mapping, a data item can be stored
in only one cache line. Its address is split into three parts: the �rst is used
to address the line that the data can be found in, the second is stored in
the tag ram to uniquely identify the data in the cache, and the third is the
o�set of the data in the line.

Associative caches use fewer bits to address the cache line than would
be necessary to uniquely identify it. Thus data items can map to multiple
lines. A cache that can map data to n distinct locations is called n-way
associative. In order to identify which data is in the cache, more bits have
to be used in the tag ram. Accessing the cache now requires a search process
as there are multiple lines in which a data item may be stored. In order to
keep the speed of the lookup operation at the level of a direct mapped cache,
the search must be done in parallel, requiring n comparators for an n-way
associative cache.

There are three factors that make associative caches more expensive than
direct mapped ones: the comparators needed, the increased size of the tag
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ram, and the need for a more complex replacement policy (see below). As
these costs increase with the size of the cache, small on-chip caches usually
employ a higher level of associativity than the larger external caches. Making
a cache associative has its advantages: data items that would map to the
same line in a direct mapped cache can now be stored in the cache at the
same time. Trashing is reduced and utilisation improved.

2.3.2 Virtual vs. Physical Caches

Most systems today have a memory management unit (MMU) providing
virtual address spaces. The cache can be placed between CPU and MMU,
or between MMU and main memory. The former is called a virtual cache,
as it only sees virtual addresses, while the latter is referred to as a physical
cache. Both solutions have their speci�c (dis-)advantages:

� Access to virtual caches need not go through the MMU and is thus
faster when a hit occurs.

� Virtual addresses might be larger than physical ones, making virtual
caches more expensive.

� Virtual caches require more control logic as they have to deal with
multiple address spaces.

� Physical caches can to bus-snooping in order to provide cache consis-
tency.

Most CPUs today have the memory management unit integrated so that
external caches are always physical. It is possible to improve the perfor-
mance of a physical cache by using virtual addresses for indexing and phys-
ical addresses for tagging. This way, address translation in the MMU may
be overlapped with cache operation. The resulting architecture is called a
virtual cache with physical tags (see [Sch94]).

2.3.3 Replacement Policies

When new data is written to the cache, old entries may have to be evicted.
Choosing a victim in a direct mapped cache is trivial as there is only one
candidate. In associative caches, multiple solutions exist. The algorithm
that chooses an item to remove is called the replacement policy. Replace-
ment in cache systems is very much like page replacement in virtual memory
systems. The policies used, however, are much simpler because they have
to be implemented in expensive hardware and have to be fast.

LRU works by adding state information to the tag ram which is updated
with every cache reference on the corresponding line. The line that
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was least recently used is selected for eviction. Strict LRU is usually
used for two-way associative caches only as it would require too much
state information for caches with higher associativity.

Pseudo-LRU is used in cache systems with associativity greater than two.
The state information recorded is limited but still enough so that lines
that are used often do not get evicted.

Random replacement requires no state information at all and still yields
good results. It is best suited for large highly associative caches be-
cause it saves a lot of hardware while still performing well.

2.3.4 Write Policies

Write operations by the CPU may update both memory and cache, or the
cache only. The �rst solution is called write-through and has the advantage
that memory always contains up-to-date information. The second policy is
termed write-back. It has the advantage of being faster, as the data need
not be written to the slow main memory. Its disadvantage is that it leaves
the memory in an inconsistent state, requiring additional logic in the case
of parallel operations (e.g. DMA). missing:

write-
allocate2.3.5 Line Size

Another factor that determines the performance of a cache is its line-size.
It determines the amount of data that is moved between main memory
and the cache. Large cache-lines mean that data is prefetched, i.e. loaded
into the cache before the CPU requests it. Assuming spatial locality of the
memory references, this can improve performance and reduce contention
of interconnection networks. Smaller lines, however, can be written back to
memory faster. Choosing the right line-size means �nding a tradeo� between
possible performance gains and losses. Another factor are costs as smaller
lines mean larger tags and thus require more hardware.

2.3.6 Cache Consistency

Caches introduce replication into the memory system. Whenever memory is
accessed by multiple units, care must be taken that the information in the
memory system stays consistent. Cache consistency in uniprocessor systems
can be controlled by soft- or hardware. The only critical operations are
interactions with peripheral devices. A simple solution is to mark all I/O-
bu�ers as non-cacheable. The presence of multiple processors introduces
new di�culties. Although software solutions would be possible (see [Sch94]),
it is necessary to implement consistency protocols in hardware in order to
achieve optimal performance.
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Consistency of caches is implemented by enforcing a set of rules that
determine when a data item may be cached. As long as the data is only
read, there is no problem at all. On a write operation, however, measures
must be taken to keep the view of the memory system consistent. If the
location that is written to is cached, the cache entries have to be either
updated or marked as invalid. Thus cache consistency protocols fall into
two categories: write-update and write-invalidate.

Write-Update Protocols
missing

Write-Invalidate Protocols
missing

2.3.7 Prefetching

Multiprocessors today allow programs to prefetch data from main memory
into caches by issuing special prefetch instructions. Prefetching is done in
parallel to normal CPU operation and can thus help to hide memory latency.

2.3.8 Non-blocking operation
missing

2.4 Memory Models
missing

A = 0 B = 0
. .
. .
. .
A = 1 B = 1
if(B == 0) if(A == 0)
printf("B"); printf("A");
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Chapter 3

Multithreading

This chapter deals with how multithreaded programs can exploit the paral-
lelism provided by multiprocessors and what in
uence the operating system
and the runtime system have on their performance.

3.1 Motivation

One goal of operating system design has always been to improve the utili-
sation of the underlying hardware. Thus batch-processing was superceded
by multitasking. Multithreading is a re�nement of traditional multitasking
that separates the notions of a thread of control and an address space. The
following advantages justify the use of this concept:

Increased Throughput A single-threaded program has to use non-blocking
primitives if it wants to overlap communication with its execution, which
leads to a dramatic increase in program complexity. Multithreading allows
overlapping of communication and execution while using higher-level (i.e.
blocking) services.

E�ciency and Ease of Communication Applications that are distributed
over multiple processes have to use some kind of interprocess communica-
tion. Multithreaded applications automatically use the most e�cient IPC-
mechanism available { shared memory. In most applications, shared memory
is also most intuitive to program.

Program Structure Designing an application as a set of cooperating threads
helps to clarify program structure. Many problems are parallel by nature {
servers might start one thread per request and numeric applications might
divide their data into subsets that are worked on by cooperating threads.

Multiple Processors Multithreaded applications make use of hardware par-
allelism on a �ne level of granularity. A single application program may be

10



executed in parallel using multiple processors which reduces their execution
time. Compared to traditional multitasking, utilisation of multiprocessor
systems is improved.

Availability The interactivity of applications is increased by multithread-
ing. A user need not wait for each of his commands to �nish execution
but can issue new requests while the system works on completing those he
recently made. The need to show a \please wait"-message decreases.

System Resources Multithreaded applications make better use of system
resources than multiprogrammed applications do. Threads need less state
information than processes and context switches are much cheaper.

3.2 Drawbacks

Like every technique, multithreading has its limitations and drawbacks. The
following summarises some aspects that have to be taken into consideration
whenever a decision has to be made whether to use multiple threads or not:

� Some applications do not lend themselves very well to multithread-
ing. Synchronisation and communication eat up much of the speedup
achieved by parallelisation.

� Parallelising an application is a tedious job that introduces new po-
tential programming errors. It is very di�cult to test or proof the
correctness of multithreaded code.

� Most operating systems today provide bu�ering and prefetching for
I/O operations. The use of separate threads for I/O does not improve
performance very much on such systems.

� Interactivity of an application can be achieved by using an event-driven
programming style rather than threads. Ousterhood

3.3 Kernel- vs. Userlevel Threads

Threads can be implemented either as an operating system concept or as a
user library. Both possibilities have their (dis-)advantages:

� Kernel threads are more expensive as they require administrative data
in kernel space and have to do their context switches via the kernel.
All functionality that any application might need has to be included
in the kernel.
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� Userlevel threads are not known to the operating system { kernel ser-
vices can only be used by processes or kernel threads. If a userlevel
thread calls a blocking system-call, all other threads are blocked with
it. Signals cannot be sent to a single userlevel thread.

� With userlevel threads, scheduling is independent of the operating
system and can thus be tuned to �t the applications needs. Syn-
chronization between userlevel threads need not use expensive system
calls.

To overcome these problems and combine the advantages of both con-
cepts, it is now common to use kernel threads as \virtual processors" for
userlevel threads. This, however, introduces a new level of complexity: How
is the mapping between userlevel threads, kernel threads, and physical pro-
cessors to be done? How can the kernel and the userlevel library interact in
order to optimize system performance?

3.4 Scheduling

The scheduler is the entity in the operating system or runtime library that
maps threads of execution onto processing elements. Its impact on system
performance is signi�cant. This section presents some aspects of scheduling
systems and shows why traditional scheduling policies are unsuitable for
multiprocessor systems. Scheduling in uniprocessor systems is described in
[Hof91, Tan92]. Issues that arise in multiprocessors and distributed systems
are covered in [SS94].

3.4.1 Preemptive vs. Nonpreemptive

The scheduler may be invoked whenever a thread of execution enters the
kernel or the runtime library. If this is the only way to initiate scheduling, the
system is said to be nonpreemptive. (in a cooperative system, the scheduler
only runs when a process explicitly calls it). Although this scheme minimizes
context switches, it does not optimize overall system performance as it has
no way of assigning priorities (e.g. to I/O-bound tasks). Another problem
is that a thread of execution may monopolize the CPU and decrease the
system's interactiveness or even bring it to a standstill.

A solution to these problems is preemtiveness. Timer interrupts are used
to periodically force the CPU into kernel mode, where the scheduler may be
invoked. This increases 
exibility but also means that an application cannot
make any assumptions about when scheduling will take place. Some race
conditions only occur in preemptive systems. Programmers have to be well
aware of these potential problems.
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3.4.2 Policy vs. Mechanism

The decision which thread of execution is to be scheduled next is independent
of the mechanism that actually invokes the thread. Only the latter part of
the scheduler has to be part of the operating system or runtime library.
Policy (what is to be done?) may be separated from mechanism (how is it
done?). Performance can be increased if scheduling decisions are made by
the application programs themselves.

A program that enters a state in which is does a lot of computation might
decide not to preempt threads. Thus the tradeo� between interactivity and
throughput can be dynamically adjusted, reducing the number of context
switches.

3.4.3 Scheduling Policies

The following paragraphs introduce some scheduling policies that are com-
mon in modern operating systems and runtime libraries:

Round Robin Each thread is assigned a time quantum. If it does not vol-
untarily relinquish the CPU before its quantum has expired, it is preempted
and inserted at the end of the queue of runable processes. When a new
thread needs to be selected for execution, the �rst in the runqueue is se-
lected. The only important parameter in this scheme is the length of the
quantum. If it is too long, responsiveness will su�er; if it is too short, context
switches will degrade performance.

Priority Scheduling It may be necessary (or convenient) to give some pro-
cesses priority over others. With priority scheduling, the process with the
highest priority is run. To keep low-priority jobs from starving, the prior-
ity of a process that has just run is decreased. Priorities may be assigned
statically or dynamically.

Multiple Queues This scheduling policy was developed for a system that
had very expensive task-switches. The designers recognised the fact that
long-running compute-bound processes should be run less often but with
larger quanta. Multiple queues hold processes with di�erent runtime be-
haviour.

Other Policies There are a lot of other scheduling policies, most of which
are tailored for a speci�c purpose (e.g. realtime processing). Examples are
shortest job �rst, guaranteed scheduling and two-level scheduling. Consult
[Tan92] for further information.
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3.4.4 Scheduling in Multiprocessor Systems

In multiprocessor systems, the scheduler has to map n processes onto m

processors. Issues like caching and communication costs have to be taken
into consideration. The main goal in todays systems is to keep all CPUs
busy by providing data fast enough { CPU power is no longer the limiting
factor for system performance.

A�nity Scheduling

Loadbalancing has to be done in order to keep all CPUs busy but removes
threads from the caches that hold their data. On NUMA systems, a thread
might even be migrated to another node that has to access its data remotely.
A�nity scheduling [BS96, GTU91, TTG95] takes these aspects into account
and tries to migrate only those threads that do no have much data in caches.
Threads are kept on the same node and processor whenever possible. This
scheme is very successful, especially on NUMA systems that have caches
between hypernodes (for an example of such an architecture see [Con94]).

3.5 Synchronization

Support for synchronization of concurrent operations has to be provided
at three levels: hardware, operating system, and programming language.
Hardware support in the form of atomic instructions is needed, if multiple
processors access shared resources such as shared physical memory. Mul-
tiprogramming operating systems have to deal with mutual exclusion be-
tween multiple threads of execution. Programming languages should provide
means of abstraction for the services of hardware and operating system.

This section describes synchronisation in multithreaded environments.
The basic synchronisation problems are discussed as well as the mechanisms
that runtime systems provide to solve them. Finally, techniques that help
to make synchronisation e�cient on multiprocessor systems are discussed.
Synchronization at the software level is discussed in [Hof91, SS94, Tan92].
Hardware aspects are adressed in [HB84].

3.5.1 Deadlocks and Starvation

A deadlock is a situation in which all processes in a system are blocked
waiting for some resource. Because none of these processes will become
runable, no resources can be freed and the system grinds to a standstill.
Another problem arises if processes never become runable although resources
are available. This situation is called \starvation". It is likely to occur in
a system with static priorities. Deadlocks are examined in depth in [SS94,
Tan92]. Deadlocks appear in the following situations:
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� AB-BA deadlock

� recursive locking

more

3.5.2 Synchronization Problems

This section describes four synchronisation problems, each of which repre-
sents a class of similar problems. Almost every situation in which synchro-
nisation is needed can be reduced to one of these \basic" problems:

Mutual Exclusion The basic problem of synchronization is that of mutual
exclusion. Operations on shared data structures have to be \atomic", i.e.
at any point of time, only one thread of execution may work on a given set
of shared data. If mutual exlusion is not guaranteed, data inconsistencies
may occur.

To model mutual exclusion, the notion of a \critical section" has been
introduced. If a thread of execution needs to access a shared data object, it
�rst has to acquire a lock (i.e. enter the critical section). Then it performs
operations on the data and �nally releases the lock (i.e. leaves the critial
section) when it is �nished and the data is in a coherent state again. Locks
may either be associated with the data objects or to the code that modi�es
them.

Bounded Bu�ers This synchronization problem is also known as the producer-
consumer problem. Producer threads send messages to consumer threads
via a bu�er of limited size. Clearly, access to the bu�er has to be mutually
exclusive. Another problem arises whenever a producer needs to send mes-
sages via a full bu�er or a consumer wants to read from an empty one. In
these cases, the processes have to wait for the bu�er's state to change.

Readers/Writers Shared data may be read by multiple threads, but a
thread may only write data if it has exclusive access, i.e. there are nei-
ther other writers nor readers. Two cases have to be distinguished: in the
�rst, priority is given to the readers while in the second the writer may block
arriving readers and thus takes priority. If readers are assigned priority, a
writer may starve if new readers keep arriving.

Dining Philosophers Multiple threads may contend for limited resources,
each needing more than one resource. The classical description of this prob-
lem is that of �ve philosophers alternately thinking and eating. For each
philospher, there is a bowl of spaghetti but there are only �ve forks between
the bowls. A philosopher needs both the left and the right fork in order to
eat. Clearly, no two neighbouring philosophers may eat simultaneously and
access to the forks needs to be synchronized. A situation like this is likely
to cause deadlocks.
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3.5.3 Synchronization Mechanisms

This section describes the four most common constructs used for synchroni-
sation in multithreaded environments. They can be found in most runtime
libraries and are implemented as normal API calls. Thus no support by the
compiler is needed. Programming language constructs for synchronization
are discussed in [SS94]. A formal treatment of synchronization mechanisms
can be found in [Hof91].

Mutexes

Mutexes are synchronization objects that only have the two states \locked"
and \unlocked". Atomic operations can be performed to lock and unlock
mutexes. The lock operation blocks a thread until it acquires the mutex.
Most implementations provide a trylock function that tries to lock a mutex
but does not block on it. If the mutex was already locked, trylock simply
returns an error-code. This functionality can be used to spin on a mutex.

Even scalar values may have to be protected by mutexes, as access to
them might not be atomic on multiprocessors: if the size of the data is
larger than the width of the memory subsystem or in case of misalignment,
multiple memory accesses have to be performed in order to manipulate the
data. Optimizations may be made if it is known that a scalar is accessed
atomically, but code using such optimizations is not portable.

Whenever multiple mutexes have to be acquired, deadlocks may arise.
They can be avoided by using lock hierarchies (i.e. acquiring locks only in
a prede�ned order) or by using the trylock operation and releasing all other
locks if it fails (a stategy called \backo�").

Mutexes are the basis for all other synchronization mechanisms. Their
implementation is straightforward if hardware constructs like test-and-set
instructions are used.

Condition Variables

Condition variables provide a mechanism to wait for a condition to be sat-
is�ed (the bounded bu�er problem can be solved using condition variables).
They are always used in conjunction with a mutex that provides mutual
exclusion. After locking the mutex, the condition may be checked. If the
condition is satis�ed, the program unlocks the mutex and continues execu-
tion. Otherwise, it performs a wait operation that atomically inserts the
thread into a list of waiting threads associated with the condition variable
and unlocks the mutex. Whenever the data that is associated with a condi-
tion is changed, a signal operation has to be performed in order to wake up
a thread that waits for such a change. Most implementations provide two
more operations: a broadcast wakes up all threads waiting on the condition
variable and timedwait allows threads to wait a certain time only.
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Semaphores

were introduced by Dijkstra in 1968 [Dij68] as a mechanism for mutual
exclusion and synchronization. Semaphores can be thought of as an object
consisting of a signed integer value, a condition variable and a mutex. Two
methods are de�ned, namely P and V , both of which are atomic (this is why
the mutex is needed). P decrements the integer and blocks on the condition
variable if the new value is less than zero. If the semaphore contains a
negative number, then this designates the number of processes waiting on
it. V increments the integer and unblocks one process from the condition
variable if the new value is zero or less.

Mutual exclusion can be achieved with a semaphore by initializing it
to one and protecting critical sections with a pair ov P and V operations.
Semaphores used in this way are called binary semaphores.

Synchronization can be achieved by initializing a semaphore to zero.
Now processes can block on the semaphore with P operations and an event
can be signaled to one waiting process by invoking V .

Resource allocation can be controlled by initializing a semaphore to the
number of resources available. Now processes can allocate and free resources
by invoking P and V respectively.

Barriers

are used to synchronize a set of threads at a speci�c location in the program.
Threads reaching a barrier wait until all other threads have also reached it.

more

3.5.4 Synchronisation in Multiprocessor Systems
revise

On uniprocessors, mutual exclusion can be achieved by making the kernel
nonpreemptive (thus exactly on process can be in kernel-mode) and disabling
interrupts during critical sections (thus keeping interrupt-handlers from in-
terfering). All other synchronization problems can be solved building upon
these concepts, e.g. ressources can be protected using the sleep/wakeup-
meachnism that introduces condition variables into the operating system.

Synchronization on multiprocessors is a more complex theme. The non-
preemption-assumption no longer holds and disabling interrupts on all pro-
cessors of a system is hardly a good idea. Furthermore, it is desirable to
have multiple processors execute kernel-code concurrently in order to achive
higher parallelism. For a discussion of multiprocessor kernels see [Sch94].

Most computer systems provide at least some variation of a \Test-and-
Set" operation. This instruction provides atomic access to one memory
address. The old value can be read and subsequently modi�ed with one
operation. Shared memory multiprocessor systems need at least this basic
form of synchronization in order to function properly.
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Thread-Level Synchronisation

As parallelism increases, so does the need for synchronization. In a mul-
tithreaded environment, very lightweight mechanisms have to be provided
in order to achive a maximal performance improvement. Threads rather
than processes should be blocked on resources and synchronization among
userlevel threads should be implemented at this level. more

Spinning vs. Blocking

Spinning (aka. \Busy Waiting") is usually avoided as it waists precious
CPU cycles and memory bandwidth. If however, the process only has to
wait for a short period of time, blocking it would be a bad idea. The cost
of a task-switch may then be greater than the cost for spinning. If the time
that a process has to wait cannot be predetermined, a strategy might be
employed that spins for a speci�c time and then blocks.
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Chapter 4

Performance Measurement

This chapter deals with the art and science of performance evaluation. The
�rst section provides a broad overview of performance evaluation, the con-
text in which measurement stands. The second section describes theoret-
ical aspects of performance measurement as well as current methodology
and tools. Tuning of application software and the runtime environment is
discussed in the last section. For further information about Performance
Measurement see [FSZ83, McK88, Lan92, Jai91, ea95, SK90]

4.1 Introduction to performance evaluation

Performance can be de�ned as a sum of properties of a system that make it
�t for a speci�c purpose. The individual properties are called performance
indices. Di�erent people regard di�erent aspects of a system as important
and each person's view might change in di�erent contexts. Thus, perfor-
mance is a weighted sum of performance indices:

P =
X

i

wipi

The goal of performance evaluation is the improvement of the absolute
performance or of the cost/performance ratio. Even if absolute performance
is the primary goal, only limited resources are available to achieve it. Thus,
speedup and e�ciency are important:

S =
P ?

P
and E =

P

C

Speedup is the ratio of the modi�ed system's performance to the original
performance. E�ciency is performance per cost.

System performance is limited by the weakest link in the chain, in com-
puter science termed a bottleneck. As we eliminate one bottleneck, others
show up while the costs of improving the performance of a system normally
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Level Performance Index

System throughput, capacity, availability
Program time to completion, responsiveness
Process number of page faults, memory usage
Language block execution time, number of executions
Operating System cost of context switches, resource utilisation
OS Resource utilisation, average number of waiting processes
Hardware cache e�ciency, bandwidth, cycle time

Table 4.1: Examples of performance indices

increase with every step of improvement. Thus, every system has a state of
optimal operation, where the cost per performance is minimal or where the
cost of performance improvement becomes unacceptable.

Information processing systems are usually structured into multiple lay-
ers, each of which provides an increased level of abstraction. Accordingly,
performance indices can be de�ned in each of these layers. Some examples
are given in table 4.1. Evaluation of a system's performance is needed in all
stages of its life-cycle:

Design: The developer has to repeatedly evaluate the current state of a
design until the goals have been reached.

Improvement: No product coming to market is perfect. Problems not
encountered in the design phase now become visible and new demands
develop. Thus the design process has to continue with this new input.

Acquisition: Before a system is bought, it has to be veri�ed that is meets
the requirements.

Operation: Most systems are parameterised in some way. To attain max-
imum performance, these parameters have to be tuned.

Capacity planning: A system's workload will probably increase during
operation. The operator has to calculate when the maximum workload
will be reached and how much added performance has to be bought
or whether the system has to be replaced.

There are four basic techniques for evaluating the performance of a sys-
tem, di�ering greatly in requirements, cost and precision:

Analysis of mathematical models A system is described im terms of
mathematical formulas that describe its behaviour.

Simulation A model of the system is generated and each step of operation
is simulated and evaluated.
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Measurement The behaviour of (parts of) the system is measured under
reproducible conditions. This requires that the system be operational.

Benchmarking The time that speci�c programs need for execution is mea-
sured. These programs may be existing applications or arti�cially de-
signed benchmark programs. Benchmarking can be seen as a special
case of measurement.

Of these, measurement is the one examined in this thesis. The following
two sections provide an overview of the theory and practice of performance
measurement.

4.2 Measurement Methodology

The goal of performance measurement is to gain insight into the dynamics of
a system's operation. In contrast to an examination of the (static) descrip-
tion of a system, performance measurement can provide information about
its runtime behaviour and thus lead to performance improvements and the
discovery of race-conditions. The measurement process consists of �ve basic
steps:

Instrumenting the system: sensors and stimuli are attached to the system
in order to extract information and to in
uence the target system.

Generating traces and pro�les: traces record the chronology of events in
the system while pro�les count them or measure durations.

Storing the collected information: interference with the systems operation
must be minimised.

Processing the data: measurement will usually yield a huge amount of
data that must be post-processed.

Visualising the results of processing: collected data has to be presented to
the user in a way that emphasises important information.

Common characteristics of measurement tools are: more

Interference: Measurement tools in
uence the measured system. This in-
terference has to be kept to a minimum.

Accuracy: The system must be able to collect as much data as the user
wishes. Recorded values must be as precise as possible and error ranges
must be known.

Level of Abstraction: Measurement can record data about objects on
any level of a systems hierarchy { from logic gates to complex ap-
plication programs.
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Data reduction capabilities: It must be possible to reduce the amount of
data that is collected to a meaningful quantity. Recording all available
data might hide the important facts.

Scope: A measurement system that is tightly �tted to just one application
cannot be reused and its price will probably be too high compared
with general-purpose systems.

Compatibility: Target- and measurement system have to interact and thus
either have to be built using the same basic technology or be adapted
to each other.

Integration: Measurement is mostly done in the context of a design process
which it has to be integrated into. An ideal system does not interrupt
the design process but rather accompanies it.

Ease of use: Of course, a measurement system has to have a user interface
that makes it easy to use. Another issue is the turnaround time, i.e.
the time between the speci�cation of the measurement parameters and
the display of the results. So-called o�ine systems display data only
after measurement is completed. Online systems display it directly and
may even support interactive changing of measurement parameters.

Costs: Costs are always an issue. A system that costs more than it is worth
is unlikely to be used. One must always consider the running costs of
the system which depend on its resource usage and its ease of use.

4.2.1 Hardware monitors

Hardware monitors provide means to trace the low-level operations of a
system. They can collect data almost without interfering with the target
system and their accuracy is very high. Unfortunately, hardware monitors
are mostly highly specialised tools that have a limited range of applications,
which makes their use very expensive.

4.2.2 Software monitors

Very often, the advantages and drawbacks of software complement those of
hardware. Measurement programs can be far more 
exible, adaptable, easy
to use and easy to integrate. They can be signi�cantly cheaper. Their draw-
backs are in the �elds of interference and accuracy. Software solutions have
to use existing hardware and thus contend for resources with the processes
that are to be measured. In
uence to the target system is high and the
amount of data that can be collected very limited.

22



4.2.3 Hybrid monitors

Hybrid monitors are a way to alleviate the de�ciencies of software monitors.
Special measurement hardware is introduced into the target system that
allows the collection of low-level data that would not be accessible to a pure
software measurement system. Another purpose of the hardware component
may be to reduce the in
uence that the measurement system takes.

Most microprocessors today have at least some support for performance
measurement. There are usually several counters for events like cache-
misses, page-faults, or pipeline stalls (for an example see [WG94]).

4.3 Tuning
reorder

Performance is measured in order to improve a systems behaviour. When-
ever needs are not satis�ed, the system must be changed. One way of im-
proving performance is to buy a more powerful machine. Although this
option is theoretically available in most cases, it is seldom the most cost-
e�ective way. There are two causes for bad performance and thus two ways
to improve the behaviour of an existing system:

4.3.1 Program Behaviour

The most obvious question when addressing performance problems is: Does
the application software make optimal use of the computers resources? It is
so obvious that many people tend to shut their eyes to it. Let me illustrate
this with a short example: �nd a bet-

ter exam-
ple

Most software today makes no use of parallelism at all. Thus, although
multiprocessing can improve the systems overall performance by running
applications in parallel, an individual application cannot pro�t from it. In
todays workstation-oriented environments, there mostly is only one active
process. A workstations resources are unused most of the time and over-
loaded whenever the user makes a request. Nevertheless, the workstation-
model is quite popular.

Here are some examples of how an individual application program can
be improved:

� Parallelism can be introduced by splitting it into multiple processes or
threads. This can be a reasonable step even if the program runs on
uniprocessors as it may improve the applications responsiveness and
hide the latency of communication operations [].

� Locking of shared resources may be made �ner in order to achieve
more parallelism [Sun94, page 116].
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� Alternative algorithms may be considered. If memory usage is the
critical factor, a suboptimal algorithm (in terms of theoretical time
complexity) may be appropriate.

� On a NUMA machine, memory allocation may be modi�ed in order
to bring data closer to the processor working on it. []

Another possibility is to improve the behaviour of an application pro-
gram by changing its environment:

� Most operating systems have a large number of tuneable parameters
that may be adjusted to best �t the most commonly used applications.

� Scheduling is an important factor. Most of todays systems use static
schemes that do not take the program's behaviour (e.g. its usage of
caches) into account. A scheduling policy that adapts to demands
of the running programs can bring great performance improvements
[Ste95, page 14].

� In most systems that use kernel threads as virtual processors for the
user threads, concurrency is reduced whenever a thread makes a block-
ing system call. This may even lead to deadlocks if the number of run-
ning kernel threads reaches zero. There are ways to keep the number
of virtual processors and thus concurrency constant [Kop95].

� Synchronisation mechanisms may be made more e�cient by introduc-
ing a strategy of spinning for some time and then blocking [Ste95, page
46].

Tuning need not be an action that is performed only once. Systems have
been built that monitor a systems operation and try to optimise it without
intervention by the user [Yan88].

4.3.2 Bottlenecks

Performance is limited by the weakest link in the chain: a bottleneck. Buy-
ing faster CPUs will not bring a performance gain if the limiting factor is
memory bandwidth. Bottlenecks can be found in both hard- and software.
Here are some examples:

Software

� Most libraries have been made thread-safe by simply adding one syn-
chronisation object to each subsystem (e.g. the malloc calls). An
application using a lot of dynamic data structures looses parallelism
to this simple scheme.
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� Centralised kernel data structures may become a major bottleneck in
multiprocessor systems. This is especially bad as it a�ects all pro-
cesses.

� If all request to a client-server database are handled by a single process
then this will likely be a bottleneck.

Hardware

� The performance of the memory subsystem and of the communication
paths between processors is today's major bottleneck.

� Mass storage may be a bottleneck in applications that require large
amounts of data but do not perform complex operations on them.

� AMMU may be a bottleneck if it has to access main memory too often
to provide the processor with data fast enough.

How can the bottleneck problem be addressed? There are two basic ways:
Bottlenecks may be eliminated (e.g. by replicating the critical resource) or
they may be hidden (e.g. by introducing caches).

4.3.3 Improving Software

Only seldom is it possible to make changes beneath the level of the ap-
plication software. Better hardware may be unavailable or too expensive.
Changing the operating system may be even more expensive. Even if there
was a better system, switching to it would mean that applications would
have to be rewritten, people be retrained, and so on. A solution that is
feasible is performance tuning of the application software.

Optimising Software for Cache E�ciency

Performance of a computer system can be improved if software is optimised
to make good use of the cache subsystem. The primary goal is to maximise
the cache hit-ratio. Causes for cache misses fall into three categories (called
the \three C's" [HP96]):

Compulsory: Whenever a data item is accessed for the �rst time, a cache
miss occurs. There is no way to prevent these so-called cold start
misses.

Capacity: If a program references more data than �ts into the cache, misses
occur because cache-lines have to be evicted to make room for others.
A way to alleviate this problem is to increase the temporal locality of
the data (e.g. by reordering loops).
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Con
ict: Data items mapping to the same cache lines may expel each other
from the cache. The higher the associativity of the cache is, the less
severe is this problem. Programmers can avoid collision misses by
allocating data structures that are used together in one block.

Compilers can perform code optimisations that improve a programs util-
isation of hardware resources. Higher level reordering, however, still has to
be done by the programmer. Hennessy and Patterson [HP96] present four
basic optimisations that improve cache use:

Merging Arrays: Cache use can be improved if data structures that are
accessed together are merged or at least allocated together. The �rst
optimisation increases spatial locality while the second simply reduces
the probability of collision misses.

Loop Interchange: Programs accessing data in nested loops often trash
caches because the data items are not addressed in the order in which
they are stored. Interchanging inner and outer loops can yield great
performance improvements.

Loop Fusion: If a program accesses the same data in di�erent loops in
order to perform di�erent computations, temporal locality may be
improved by joining these loops.

Blocking: The last optimisation technique tries to eliminate capacity misses
by dividing the problem that is to be solved in multiple subproblems.
An good example for this is matrix multiplication which can be done
block-wise and results in a very unfortunate access pattern when im-
plemented naively.

Improving Multithreaded Code

Re-blocking

Optimizing Synchronisation

Improving the Runtime System
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Chapter 5

Socrates

Developing multithreaded programs is a di�cult and still ill understood
task. Only few tools are available that aid the programmer in designing
correct and e�cient code. Socrates is an environment that allows programs
to be written in an architecture-independent way and their performance to
be evaluated. Figure 5.1 shows an overview of the system.

Source

*.p.c*.d *.h *.c

DB

Events

Generation

Interactive Editing

Execution

Visualization

Compilation & Linking

Post-Processing

Figure 5.1: Overview of the Socrates system

Applications are written in ANSI C using a graphical environment. Sup-
port for multithreading and performance measurement is added in an or-
thogonal way. Instead of extending the language to support parallelism, a
generator has been built that inserts the necessary code into the source.
Chapter 5.1 will show this in detail.

The graphical user interface allows the programmer to browse and edit
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the source code and specify instrumentation parameters. The user must
specify the set of events that are to be generated during execution. This
step is described in chapter 5.2.

The code that is generated can be compiled using an unmodi�ed C com-
piler but may have to be linked with modi�ed versions of the runtime li-
braries and be run using an extended system kernel. During the execution
of the program, an event trace is recorded and saved in a �le in raw form.
This process is discussed in chapter 5.3.

The generator produces a post-processing program which inserts the raw
data into an SQL database. This allows the programmer to perform complex
queries using a standardised language. Socrates does not provide support
for the analysis of the data as there exist a wide variety of programs for
this purpose. Data may be exported to spreadsheet applications, statistical
analysis systems, or plotting software. Chapter 5.4 discusses the bene�ts
and costs of this approach. re
ect

this in
the corre-
sponding
chapters

An example program which illustrates the whole process of writing mul-
tithreaded code, instrumenting it, generating for a speci�c platform, and
analysing the resulting data, is presented in chapter 5.5.

5.1 Programming with Socrates

5.1.1 The User Interface

The user interface of Socrates allows the programmer to browse the source
code and edit it. The code is split multiple parts: types, variables, functions,
and so on.

Figure 5.2: Socrates User-Interface
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5.1.2 The Generator

Once a program has been written using Socrates, C source �les may be gen-
erated that can be compiled using an unmodi�ed C compiler. Declarations
and de�nitions are separated and written to the corresponding �les.

Socrates contains a preprocessor that is able to manipulate the code that
is generated. It allows arbitrary Tcl code to be inserted into the C source
code. Anything between two at-signs is passed to the Tcl interpreter, the
return value being inserted into the output of the generator. This scheme
makes Socrates very easy to extend and adapt to new environments. It
also provides the programmer with more powerful preprocessing function-
ality than the standard C preprocessor does. In the current version, Tcl
commands cannot be nested. This will change in the future, making the
preprocessor even more powerful.

5.1.3 Support for Multithreading

Support for writing architecture-independent multithreaded programs is im-
plemented by the use of the preprocessor and Tcl commands that generate
code for the chosen platform. In the code browser, threads exist as abstract
entities and are thus separated from normal functions. Like functions, they
have arguments and variables. Unlike functions, they have attributes that
specify whether they are bound to a processor, detached from their patent
thread, and so on.

An example of a call to the thread library is @thr self@ which pro-
duces thr self() when Solaris threads are used and pthread self() with POSIX
threads. Socrates provides the same functionality for all runtime libraries.
This does not mean that only the common subset is supported as some
functionality that is missing in a library may be emulated. Solaris threads,
for example, do not have a mechanism for barrier synchronization but code
containing barriers may still be generated for this platform. The prepro-
cessor is able to generate code that implements barriers using mutexes and
condition variables.

Appendix A contains a table of all thread operations and synchronisation
mechanisms supported by Socrates.

5.2 Instrumenting Programs

5.2.1 Overview

The measurement process can produce too much data. Some systems ad-
dress this issue by letting the user �lter events after the measurement pro-
cess. As Socrates uses the same hardware as the target program, a goal of
the instrumentation must be to reduce the amount of data that is generated.
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The user may de�ne which classes of event are to be generated. Only the
corresponding code is instrumented.

5.2.2 Function Calls

5.2.3 User Events

5.2.4 Thread Operations

5.2.5 Synchronisation Objects

5.3 Execution

5.3.1 Collecting Event Traces

During execution of the program, an event trace is generated and stored in
a �le. Here are a few things that the user has to keep in mind:

� In order to use Socrates, it may be necessary to boot special versions
of the operating system kernel. Using Solaris, a version of the kernel
must be used that allows the manipulation of the performance counter
registers and saves their contents during all context switches.

� The event trace �le should be stored on the fastest disk that is avail-
able. If there is enough memory available, it is best to use a ram
disk. This can speed up the process dramatically and help to reduce
interference with the application program.

� The system should be unloaded during measurement. Other processes
may interrupt the program under inspection and thus falsify measure-
ment results (e.g. by evicting data from the caches).

5.4 Post-Processing and Visualization

The post-processing program pp transfers the event data into an SQL database.
No �ltering or other manipulation of the data is done. This is left to the
database system because it provides high-level functionality for exactly this
type of operation.

As soon as the data is loaded into the DBMS, the user may to perform
complex queries that are not normally supported by performance evaluation
tools. An example might be a program that checks the events for the occur-
rence of deadlocks or starvation situations. Freedom, of course, means work.
Interaction with the system is done using SQL which may be embedded into
other programming languages such as C or Tcl.

There are, of course, some programs that perform standard tasks like de-
termining the number of threads in existence, the number of threads waiting

30



on a condition variable, and so on. They work for every application program
and can be used as starting-points for more specialised analysis tools.
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5.4.1 Example: Barriers

This example program written in Tcl/Tk counts the number of threads
waiting in a barrier.
Code barriers.graph

#!/bin/sh

# the next line is executed by sh, but not by tcl

# because for tcl, it is a continuation of this comment \

exec pgtclsh $0 ${1+"$@"}

The pgtclsh is a Tcl-shell linked with routines that allow access to a Postgres
server. A Shell is used to search is using the PATH environment variable.

set dbhandle [pg_connect "graph"]

set plotfd [open "graph.db" w]

A connection to the postgres server is established using the pg connect com-
mand. The resulting handle is stored in the variable dbhandle. Likewise, a
�le is opened for the results of this script.

set res [pg_exec $dbhandle

"select address from barrier_init where name = '${barrier}';"]

set address [pg_result $res -getTuple 0]

pg_result $res -clear

Barriers are identi�ed by their memory address. During initialization, an
event is generated that contains an identi�er for the barrier. This is now
used to map the name of the barrier to its address. In applications that
allocate barriers dynamically, the mapping of addresses to identi�ers may
not be one to one.

set res [pg_exec $dbhandle

"select max(time) from barrier_waited where address = ${address};"]

set maxx [pg_result $res -getTuple 0]

pg_result $res -clear

set res [pg_exec $dbhandle

"select min(time) from barrier_wait where address = ${address};"]

set minx [pg_result $res -getTuple 0]

pg_result $res -clear

In order to scale the time axis of the graph, the minimum and maximum
timestamps are determined.

set res [pg_exec $dbhandle

"create table barrier_events (time float8, event char, eid int);"]

pg_result $res -clear

set res [pg_exec $dbhandle

"insert into barrier_events select time,'e',eid \

from barrier_wait where address = ${address};"]
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pg_result $res -clear

set res [pg_exec $dbhandle

"insert into barrier_events select time,'l',eid \

from barrier_waited where address = ${address};"]

pg_result $res -clear

A table is created that holds all barrier events with their timestamp, event
id, and a tag that identi�es whether the barrier was entered or left.

set res [pg_exec $dbhandle

"select time - (cast '${minx}.0' as float8) as time,event,eid \

from barrier_events order by time,eid;"]

set ntups [pg_result $res -numTuples]

Now the table of barrier events is read. Time is normalized to begin with
zero and the events are totally ordered by time and event id. The resulting
handle will be used to transfer the data from the Postgres server.

set nthreads 0

for {set i 0} {$i<$ntups} {incr i} {

set e [pg_result $res -getTuple $i]

if {[lindex $e 1] == "l"} {

incr nthreads -1

} else {

incr nthreads

}

puts $plotfd "[lindex $e 0].0 $nthreads"

}

Iterating over all events, the number of threads in the barrier is determined
for every event. The result is written to the output �le.

pg_result $res -clear

pg_disconnect $dbhandle

close $plotfd

The last result handle is cleared, the database connection ended, and the
output �le closed.
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The results of such a program may be further processed with programs
for statistical analysis like SPSS or Origin. They can be visualised using �nd GNU

softa data plotting program like gnuplot, xmgr, or plotmtv. Figure 5.3 shows
a plot that was generated from the output �le of the above example using
xmgr.
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Figure 5.3: Barrier Synchronizations.

5.5 Example: All Pairs Shortest Paths

This sample program implements a simple parallelised version of Robert D.
Floyd's algorithm [Flo62, Jun94] for �nding the shortest path between all
pairs of nodes in a directed weighted graph.

5.5.1 The Algorithm

Data Types: Both the graph and the shortest paths found so far are stored
in n� n matrices where n is the number of vertices in the graph. The
elements store information about the existence and length of a path
(i; j) between nodes i and j. A barrier b is provided for synchronisation
between the worker threads.

Initialisation: For each pair of nodes i and j, the result matrix is initialised
to d if there exists a vertex (i; j) with length d and to 1 if no vertex
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(i; j) exists. The barrier b is initialised to n.

Worker i: Each worker is assigned a row of the result matrix that it works
on. It then repeats the following code k = 1 : : :n times:

� For each j see if there exists a path from i to j via node k and,
if it is shorter than the shortest path found so far, store it in the
result matrix.

� Synchronise with the other threads at barrier b.

5.5.2 The Implementation

The following shows an implementation of the algorithm given above.

Thread Worker {

Arguments {

int i,

APSP* apsp

}

Variables {

int j,k;

int r;

}

Definition {

for(k=0;k<apsp->n;k++) /* make k runs through the algorithm */

{

for(j=0;j<apsp->n;j++) /* for each (i,j) with i fixed per thread */

{

if((i!=k) /* nothing to be won in these cases */

&&(j!=k)

&&(i!=j)

&&(apsp->d+apsp->n*i+k)->exist /* if ex. (i,k) and (k,j) */

&&(apsp->d+apsp->n*k+j)->exist)

{

float d;

if(i>k)

{

@mutex_lock (apsp->d+apsp->n*i+k)->m r@;

@mutex_lock (apsp->d+apsp->n*k+j)->m r@;

}

else

{

@mutex_lock (apsp->d+apsp->n*k+j)->m r@;

@mutex_lock (apsp->d+apsp->n*i+k)->m r@;

}

d = (apsp->d+apsp->n*i+k)->dist /* d = |(i,k)|+|(k,j)| */

+ (apsp->d+apsp->n*k+j)->dist;

@mutex_unlock (apsp->d+apsp->n*k+j)->m r@;

@mutex_unlock (apsp->d+apsp->n*i+k)->m r@;
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if((apsp->d+apsp->n*i+j)->exist) /* was there a path before? */

{

if(d<(apsp->d+apsp->n*i+j)->dist) /* see if d is shorter */

{

(apsp->d+apsp->n*i+j)->dist = d; /* new shortest path found */

}

}

else /* new path was found */

{

@mutex_lock (apsp->d+apsp->n*i+j)->m r@;

(apsp->d+apsp->n*i+j)->exist = 1; /* (i,j) now exists */

(apsp->d+apsp->n*i+j)->dist = d; /* and has length d */

@mutex_unlock (apsp->d+apsp->n*i+j)->m r@;

}

}

}

@barrier_wait apsp->k@; /* synchronize all workers */

@barrier_wait apsp->k2@ /* before starting a new run */

}

@barrier_wait apsp->finish@; /* synchronize all threads on exit */

@thr_exit 0@; /* exit */

}

5.5.3 Measurement

Mutex Operations

Every access to the result matrix r is protected by a mutex. Figure 5.4
shows the number of threads waiting for or holding a mutex vs. time. As
can be seen from the graph, contention for mutexes is high. A solution
to this performance problem would be to replace mutexes by reader-writer
locks, thus allowing for more concurrency.

Scheduling

Scheduling has a great in
uence on program performance. Figure 5.5 shows
when a userlevel thread changes its LWP and its CPU. As the Solaris thread
library does not use memory conscious scheduling, there is only little a�nity
to the caches.

Cache Utilisation

Modern microprocessors provide hardware support for performance mea-
surement in the form of event counters that are able to record such informa-
tion as the number of cache references and hits. Figure 5.6 shows the cache
usage of a single userlevel thread. The cache hit rate is about 93 percent.
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Figure 5.4: Number of threads waiting for mutexes.
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Figure 5.5: Scheduling of a userlevel thread.
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Figure 5.6: Cache usage of a userlevel thread.

5.6 Implementation

5.6.1 Implementation

Events that are generated by the instrumented program are collected in
bu�ers. Whenever a bu�er is full, it is inserted into a list. A writer-thread
which is bound to its own LWP scans the lists and writes their contents to
the event trace �le. Generation of events does not introduce much overhead
into the application's code as almost all blocking operations are done by the
writer-thread. Figure 5.7 shows this process.
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Figure 5.7: Generating and writing event traces.
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Chapter 6

Conclusion

What has been achieved?

Not yet bug-free User interface lacks integration

Future Work

As it is, Socrates supports only one platform. Ports are planned to the
MThreads library [Ste95] both on UltraSparc machines and the Convex
SPP1600. This will allow a comparison between di�erent thread libraries.
It is hoped that the bene�ts of memory conscious scheduling can be shown
and di�erent strategies be evaluated.

The user interface lacks integration. The goal is to combine all parts of
the system into one application. Ultimately, all steps of program develop-
ment shall be integrated into a single environment.

40



Appendix A

Socrates Support for

Multithreading

A.1 Thread Management

Data Type Description

thrid The type of an identi�er for a thread

Function Parameters Description

thr start

name
arg (name args*)
options
thrid
result

name of the thread to start
pointer to the argument structure
list of options
thread identi�er
result

thr exit
thr join
thr self
thr suspend
thr continue

A.2 Thread-Local Variables

Function Parameters Description

tgv create
tgv delete
tgv get
tgv set

A.3 Mutexes

Data Type Description

mutex
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Function Parameters Description

mutex init
mutex destroy
mutex lock
mutex unlock

A.4 Condition Variables

Data Type Description

condv

Function Parameters Description

condv init
condv destroy
condv wait
condv signal
condv broadcast

A.5 Semaphores

Data Type Description

sema

Function Parameters Description

sema init
sema destroy
sema wait
sema trywait
sema post

A.6 Barriers

Data Type Description

barrier

Function Parameters Description

barrier init
barrier destroy
barrier setnothr
barrier wait
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Appendix B

Existing Performance

Measurement Tools

B.1 CXtrace

B.2 tha/tnf

B.3 Paradyn

B.4 Pablo

B.5 JED
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Appendix C

Sun Enterprise X3000

The machine used for development and testing of Socrates was a Sun Ultra
Enterprise X3000. The following sections provide a broad overview of the
systems architecture and the particular con�guration used; more informa-
tion can be found in [Sun96].

Memory Subsystem

On-Chip Instruction Cache: 16KB, 2-way associative, line-size of 32bytes

On-Chip Data Cache: 16KB, direct-mapped, line-size of 32 bytes with
16 byte subblocks, write-through with no allocate on write miss, non-
blocking with up to nine outstanding load operations

External Uni�ed Cache: 512KB, direct-mapped, line-size of 64 bytes with
16 byte subblocks, write-back, cache controller integrated in the cpu,
access by the cpu is pipelined

System Bus Architecture

Con�guration

� 3 UltraSparc I modules at 167MHz
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