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Chapter 1

Introduction

1.1 Motivation

When constructing a kernel or an operation system it is often very hard to
determine in which state the CPU or the rest of the system currently is. And
it may be much harder to find any errors in the program code because the
computer simply stops on such an error or does some weird things. It is not
possible to show any information about the system because the only layer
except the kernel or operating system is the pure hardware which has no
debug functionality.

To debug the system, that means display the state of the processor and of the
currently running programs, a different program is used, the kernel-debugger.
It sets up a new layer between the hardware and the software.

1.2 Synopsis

This paper consists of four major chapters. Following this introduction,
Chapter two describes the basic ideas of micro-kernels, especially the L* kernel
and the currently existing debugger. Chapter three presents the design goals
and in Chapter fourare described some aspects of the implementation.
Appendix A presents a manual of the new debugger, appendix B a short
summary of the debugger’s keystrokes.
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Chapter 2

Related work

2.1 The micro-kernel approach

The following text is (mostly) taken from [8].

The idea of micro-kernels is to keep the kernel minimal. Ideally, all OS
services are implemented outside the kernel as servers that execute in user-
mode in their own address-space.

An address-space on the hardware level is a mapping between virtual and
physical page frames.

This approach reduces the kernel’s size and protects the OS services from
each other and the users. Furthermore, it also protects the user from OS
services.

Then it is possible to introduce OS services that are not necessarily fully
trusted by every user and by any other OS service. The central idea of this
approach is the address-space paradigm. Any server (and any user-mode
program) has its own private address-space.

Since file systems and the network (like TCP/IP) reside in different address-
spaces, they are isolated and protected from each other. As a consequence,
the micro-kernel has to supply user and system services (the kernel does not
differentiate between them) with a cross-address-space communication facil-
ity. This mechanism is usually called inter-process communication (IPC).

But this approach has some other advantages too. Different application-
program interfaces (API), file systems and OS personalities can coexist in
the system and it is flexible and extensible. Furthermore server malfunctions
are as isolated as normal application malfunctions, the system structure is
modular and easy to maintain. And such systems tend to have fewer errors.

11



12 CHAPTER 2. RELATED WORK

2.2 The L* micro-kernel

L* is a second generation micro-kernel developed by Jochen Liedtke at the
GMD, IBM and the University of Karlsruhe.

Currently there are three implementations of L* for x86. Two of them im-
plement the L? Version X.0 API [1], an assembler kernel and a C++ imple-
mentation with some inline assembly called Hazelnut. Another version called
Fiasco by the Universitit Dresden implements the L* Version 2 API.

The most important abstractions in the L* kernel are threads and address-
spaces.

A thread is characterized by a register set (including the instruction pointer
and the stack pointer), a status and the address space in which it executes.
Furthermore it needs a thread, a unique identifier to make communication
possible. These values are managed by the kernel in thread control blocks
(TCB).There is a (kernel) TCB per thread.

Thread communication is a fundamental feature of the L* kernel. It is done
via IPC. During the IPC there is an agreement between the sender and the
receiver. The sender decides which information will be sent. The receiver
can decide whether to interpret the received information.

With an IPC a message is delivered from one thread to another. A message
consists of a string up to two megabytes, up to 31 indirect such strings or a
flexpage for map messages (see address-spaces below).

The atomic IPC system-call can be parameterized as send, call, receive and
send and receive. An open and closed wait is possible. IPC is an atomic
operation for performance reasons.

An TPC will only take place, if the receiver has agreed. After invoking an
IPC operation the thread blocks until the message has been transfered, the
IPC has been aborted or the given timeout has expired.

The IPC in L* Version X.0 knows a send, a receive, a sender page-fault and
a receiver page-fault timeout. A timeout can be 0 (do not wait), co (wait
forever) or periods from 1us to 19 hours. These timeouts are stored in a 32
bit word. The timeouts are necessary to avoid denial of service attacks. If i.e.
a page-fault occurs while sending or receiving a message, the corresponding
pager solves it and the transfer is continued. But when the pager does not
map the desired page (if it is maleficent) the IPC will never finish and the
involved threads will block forever. A given page-fault timeout causes the
IPC to be aborted after the specified time.

A basic idea of L* is the possibility to construct address-spaces recursively
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outside the kernel. On system start the physical memory is represented by
the initial address-space ¢0. To build other address-spaces on top of o0 the
kernel provides three operations: map, grant and unmap.

By invoking a map operation the owner of an address-space can make ac-
cessible a region of its address-space to other address-spaces, provided the
recipient agrees. These regions are described by flexpages (fpages). A fpage
consists of all pages actually mapped in this region. The minimum size of
a fpage is equal to the minimum hardware page size. The mapee itself can
recursively map the page to any other address-space.

A thread can remove any of the pages it has formally mapped to other
address-spaces with the unmap operation. The affected address-space owners
agreed to a potential unmap when they received the page by mapping. So it
is safe to unmap the pages without consent of the mapees.

The grant operation is a specialization of the map operation. By granting
a fpage, the pages are mapped to the grantee’s address-space provided the
recipient agrees. But in contrast to the map operation the pages are removed
from the granter’s address-space. Since the granter has no longer access to
the pages, these pages cannot be removed. This allows some memory guar-
antees to special threads.

The important restriction is that instead of physical page frames only pages
accessible to a thread can be mapped or granted.

This address-space concept enables user level management of address-spaces.
The mappings are stored by the kernel in a mapping tree (the mapping data
base MDB) to be able to do the unmap operations as described above.

A description of the latest L* micro-kernel version is given in [2], the behavior
of map, unmap and grant is explained in [8].

2.3 The L* Version X kernel Hazelnut

The motivation for Hazelnut was to get rid of assembler. Its goals are per-
formance, portability and maintainability. It is written at the University of
Karlsruhe under the terms of the GPL.

To achieve portability it is divided into one architecture independent and
multiple architecture dependent parts. The supported platforms are ARM
and x86.

Some hardware dependent control mechanisms like page-faults, the proces-
sor’s clock or IO raise interrupts. On x86 all the system-calls in Hazelnut
like IPC, unmap, task-new, ... are invoked by software interrupts (see [1],
[5]). System-calls on ARM are implemented as invoking page-faults on de-
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fined addresses. So the page-fault handler can decide either to jump to the
coresponding system-call handler or to handle the page-fault. This is done
for performance reasons, but allows the same approach.

This approach has a big advantage. It is not necessary to differentiate be-
tween system-calls and interrupts. The interrupt can be interpreted as IPC
from the invoker (hardware or software) to the corresponding interrupt han-
dler.

The following text refers to the x86 implementation of Hazelnut. After an in-
terrupt occurred the corresponding assembler stub becomes active, prepares
the stack for the handler function which is written in C++ and finally calls
this function. The mechanism is described in section 3.1.

Some input and and output macros, some system-calls and some hardware
controlled things like thread-switch and the initialization of the hardware are
also written in assembler. The rest of the kernel is written in C++.

The kernel can be configured by xconfig, a slightly modified Linux TCL/TK
configuration utility. This displays a configuration menu for the kernel and
the debugger. The configuration of the debugger is described in A.1, the
configuration of the kernel is not part of this paper.

For further information about the L4Ka project see [6].

2.4 Reasons for a kernel debugger

The kernel debugger enables the user to inspect the kernel state. This can be
necessary to find errors in the kernel or to check its correctness after changes.
Furthermore it can be useful when writing an operating system on top of the
kernel. There it is often helpful to see some kernel data or events like the
stack, the occurring page-faults or some details of the IPCs. This is not pos-
sible for user-mode programs and it is no required kernel functionality and
therefore not wanted in the kernel (micro-kernels must be small!).

This job is done by the kernel-debugger. To do it, the debugger needs inti-
mate knowledge of the kernel. But the kernel should be independent of the
debugger (because it does not need it to work). Therefore it must not know
the debugger, the debugger has to be transparent to the kernel.

And for security reasons, the debugger must be transparent to user programs
as well. How this is done is shown in chapter 3.5.

The user manual for the debugger can be found in appendix A.
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2.5 The disadvantages of the old versions

There are three existing debuggers for the L* kernel. One implemented in
C++ in the L4Ka project, another one in assembler for the assembler kernel
and a third one for Fiasco.

In the L4Ka version of the kernel debugger some of the debug functionality
is implemented in the kernel. It remained there from the early days.This was
the only way to test parts of the kernel while it was still under construction.
After finishing the kernel it was fast and easy to implement the debugger by
reusing this code. So this implementation of the debugger is more a proto-
type than a finished program.

And so it has some big disadvantages. As the kernel and the debugger are
interwoven much of the code of the debugger is inside the kernel code. This
enlarges and slows down the kernel which is not desirable. The kernel should
be as small as possible. To solve this problem, the debugger code can be
“removed” from the kernel code by compiler statements. But then the ker-
nel and the debugger are not flexible. The entire kernel must be rebuilt to
change the functionality of the debugger. In other words, it must bee known
which operations the debugger should perform when compiling the kernel,
or the kernel must be recompiled after a crash with the necessary functions.
Then the system must be restarted and it must end up in the same state to
check what has happened. This is not always possible. So the kernel can
either be small and fast, or the debugger is flexible.

If the debugger is completely separated from the kernel, its functionality can
be changed dynamically.

Another big disadvantage of the interweave is that the kernel knows (and
uses) the debugger. The most important functions of the debugger are IPC
tracing and page-fault tracing. These functions are implemented in the IPC
handler and the page-fault handler of the kernel. When IPC or page-fault
tracing is enabled, these handlers do the debugger’s job. They collect the
needed information. But a micro-kernel does not produce any output and
has therefore no print method. This print method comes with the debugger.
The kernel knows that there is a debugger and it knows something about
its implementation. This means the debugger can not be changed without
checking the influence on the kernel. And the kernel cannot run without the
debugger (it ends in linker errors in the current implementation). This is
not desirable on systems limited to a small amount of memory because the
debugger uses memory that user programs may need.

This problem can also be solved by separating the debugger from the kernel.

The assembler implementation of the debugger is strictly separated from
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the kernel. This is basically much better than the debugger in Hazelnut.
But assembler programs are not portable and not easy to be expanded or
maintained.



Chapter 3

Design objectives

"The kernel debugger is much like a small OS beneath the ker-
nel.” (J. Liedtke)

The design of the new debugger tackles five goals.

e Separate the debugger from the kernel.

Make the debugger architecture independent.

Make the debugger easy to be expanded and maintained.

Make the debugger easier to use.

Make the kernel independent from the debugger.

3.1 Separate the debugger from the kernel

Section 2.5 shows, that it is not desirable to make the kernel dependent on
the debugger. To separate the two parts the debug code has to be removed
from the kernel and put into the debugger. But then it is more difficult for
the debugger to get its information.

To reach this goal the debugger has to know the interfaces of the system-calls
and the implementation of their functioning. Furthermore there must be a
possibility to interrupt the kernel while handling the system-call and perform
the debugger’s code in between. This is called daisy chaining.

On x86 processors every system-call of L* is invoked by a software interrupt
(as seen in section 2.3). To get the necessary information the debugger must
recognize the interrupts and handle them before the kernel does.

After the interrupt has occurred the corresponding assembler stub whose

17
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address is stored in the processors interrupt descriptor table (IDT) saves the
registers, builds an exception frame on the stack. This mechanism is invoked
by hardware. Then the real handler C-function is called by the assembler
stub.

Such an exception frame consists of 17 dwords (32 bit values). The fault
code, the values of the data, code and stack segment registers, an extra
segment register, the eight general registers eax to edi, an error code, the
fault address, the eflags and the user stack pointer. This information is
needed by the debugger to see the status of the system when it was invoked.
To be able to trace the interrupts (and so the system-calls) a new assembler
stub for the interrupt is registered in the IDT (an exact description how this
can be achieved is given in the Intel manual [5]). The new assembler stub
prepares the stack for the new handler and calls it. This handler displays
the event or records it into the trace buffer (see section 4.4.2 and appendix
A). After the handler has finished the assembler stub cleans up the stack
and finally jumps to the original assembler stub whose address has previously
been restored. (See section 4.2 for more details about the output of the major
events.) Then the event is handled by the kernel as if the debugger did not
exist.

To disable the debugger only the original IDT entry must be restored. So
the debugger has no more effects on the system.

This approach has another advantage. The functions of the debugger can
be turned on and off during runtime without recompiling the kernel and
rebooting the system. And it also makes the kernel smaller and faster.

3.2 Achieve architecture independency

To achieve architecture independency the debugger’s code has to be sepa-
rated into two parts. The first part contains all the architecture specific
functions and instructions, the second part contains the independent func-
tions of the debugger. The interface between those two parts must be well
defined.

To port the debugger (like the kernel) only the files depending on the ar-
chitecture have to be rewritten for the new architecture. Then the kernel
debugger has to be compiled. Within the current implementation of hazel-
nut the debugger is linked as a library to the kernel. So it is convenient to
build the kernel and the debugger together. The platform can be chosen
within the xconfig menu.
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3.2.1 Architecture independent part

The L* kernel uses some abstractions of the hardware which lead to data-
structures within the kernel like the TCB or the mapping database (MDB).
Reading and displaying of the values of those data-structures does not de-
pend on the used architecture.

The same applies to the initialization and handling of the debugger’s data-
structures like the nicknames of threads or the trace buffer.

The input functions that read from the debugger’s input device (using the
getc function, which depends on the hardware) like kdebug get_hex, kde-
bug_get_task or kdebug_get_thread are also architecture independent.

The output function printf is also independent of the used architecture. It is
able to handle all the L* specific data-structures and the nicknames of the
threads. To display the characters on the screen, printf uses the architecture
dependent function putc.

Furthermore the C-functions of the interrupt handlers are architecture inde-
pendent. These handlers get the values they need as parameters from the
assembler stubs and print them or enter them into the trace buffer.

Finally the menus and the navigation through them (since the debugger is
written in C++) can run on any system with a respective compiler.

3.2.2 Architecture dependent part

After being called the debugger has to decide what to do. This is done by
interpreting an error-code given to it as parameter. Therefore the debugger
has to know the procedure call convention of the architecture.

The debugger uses daisy chaining to get its information. On x86 architectures
this is done by entering the assembler stubs into the processor’s IDT (see sec-
tion 3.1). On ARM architectures there is also a comparable table which holds
the addresses of the handlers. (For performance reasons Hazelnut’s system-
calls on ARM are implemented as invoking page-faults on defined addresses
(see 2.3). To use daisy chaining with this method, the trace-page-fault han-
dler of the debugger has to be modified in a suitable way.) This technique
can be used on any other architecture I know.

The architecture depending part of the debugger contains some other func-
tions, too. As shown in section 3.5 it could be desirable to disable the cache
and the performance-counters.

After the debugger has finished the processor has to be in the same state
as before calling the debugger. This means the debugger must clean up the
registers and memory after its work.

The debugger offers some architecture depending functions to the users.
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These functions are collected within the debugger’s CPU menu. They en-
able the user to display the current state of the CPU, disassemble the next
instructions, do some profiling, handle breakpoints and use the performance-
counters.

The functions putc and getc which contain the layout of the debugger’s input
device also depend on the architecture.

3.3 Achieve extensibility and maintainability

Because of the separation of the debugger from the kernel the debugger can
be easily expanded and maintained. To add or remove some functions the
new code has to be written into the corresponding file without any influence
on the rest of the system. The files contain all the functions and data struc-
tures corresponding to only one part of the functionality of the debugger.
This makes it easy to find the place in the source code to change or to add
functionality to.

3.4 Easier usage

To facilitate the use of the debugger its functions have been arranged in sub-
menus. There is one sub-menu for kernel data, one for memory depending
functions, one to display some information of the CPU or use some of its
special functionality like the performance-counters and one to configure the
debugger. So it is easier to find the desired operation.

The menus are described in appendix A, the key-bindings in appendix B.
But there are also some shortcuts to make frequently used functions accessible
in all menus. A list of these shortcuts is shown in B.2.

3.5 Hide the debugger

It is basically very good to make the kernel independent of the debugger. It
is important because the kernel does not need the debugger to do its work.
To achieve this it is necessary that the debugger is completely invisible to
the kernel and to the user-mode programs, except if they explicitely invoke
it. But it is very easy to implement when using daisy chaining on interrupts.
The only thing to do is enter the debugger (on x86 architectures) by invoking
a software interrupt. Then the same mechanisms as shown in section 3.1 can
be used for all entry points to the debugger (the main entry point or while
displaying the system-calls). This section shows how to hide the debugger to
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the kernel by using this technique on x86 architectures.

Running a program on a computer has some effects on the system. The pro-
gram needs memory for its code and data, these are written in the caches, it
needs time to execute the instructions and the performance counters might
be increased. But the debugger should be transparent to the rest of the sys-
tem (kernel and user programs). So the effects must be hidden if possible or
at least minimized.

The debugger is entered by generating either interrupt 3 (Breakpoints or
main entry point to the debugger), 2 (NMI) or 1 (debug exception). How
those interrupts are handled is described in section 4.2.

The handler for these interrupts is the normal entry point to the debugger,
the kdebug_entry function. It needs an exception frame which is built by the
assembler stub of the corresponding interrupt.

This mechanism is invoked by hardware and cannot be influenced.

Then enter_kdebug calls the arch_entry function. Here it is now possible to
“hide” the debugger. Therefore the first operation of the arch_entry function
is reading the processor clock. By writing this value back to the clock register
as one of the last instructions when leaving (see arch_exit below) it seems
to all the other running programs, that no time has elapsed. So time virtu-
ally stops for the programs while the debugger works, the debugger actually
needs no time for the rest of the system.

Then the performance counters are disabled, this means they stop counting
while the debugger works. So the events the debugger raises will not be no-
ticed by the kernel and the programs in user-mode.

In order not to change the cache content the debugger disables the cache
after disabling the performance counters. The bits CD (cache disable) and
NW (no write-back) are set in cr0 to do that. The effect is that the proces-
sor will not replace cache-lines after cache misses. Write hits will update the
cache, but the debugger does only desired changes on kernel data or on its
own data. So the effects of the debugger to the cache are minimal. For the
kernel and the user-mode programs the cache content does not change. This
slows down the debugger, but performance is not important for the debugger
and the other programs won’t get more cache misses than running without
it. What exactly happens is described in [5], chapter 9, table 9-4.

The only effect of the debugger on memory is the space it occupies. But the
debugger is statically linked as a library to the kernel within the kernel-space.
So it is not possible that the debugger invokes any page-fault on its own code.
(Otherwise the result would be the same as if a page-fault within the kernel
had occurred.) The only possibility for the debugger to raise page-faults is
while dumping memory of threads. To avoid this the debugger checks if the
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page to be dumped is in memory or not. If not, hashes are printed instead
of the memory content.

As the user-mode programs are not persistent they will not see changes of
the memory consumption of the kernel if the debugger is linked to it or not
after a reboot.

If this is done the processor’s state is “frozen” and the debugger runs with
only minimal effect on the rest of the system. Then the event that caused
the debug entry is dealed with.

When the debugger has finished the original state of the processor is re-
stored by enabling the cache and the performance-counters and setting the
clock back to the restored value. This is done by calling the arch_exit func-
tion after the debugger has finished its work. After that the interrupt handler
cleans up the stack and executes an interrupt return.

An exact description of the hardware programming is given in [5].



Chapter 4

Implementation details

This kernel-debugger has been implemented for x86 processors, mostly for
i686. Some functions need a local APIC, so a MP-ready Pentium II or
Pentium III is needed to use them (non-MP processors don’t have one).

4.1 Initialization of the debugger

On boot-up of the system the debugger initializes the serial port, if the input
or output device in the xconfig menu is set to com. Otherwise the hardware
(keyboard or screen) is used.Then the entry point of the debugger is written
in the kdebug_exception field of the kernel_info_page to find it later in the
system.

After that the data-structures of the new debugger are initialized. This
memory is allocated statically. This is necessary because the debugger (and
also its memory consumption) is invisible to the kernel, so the kernel cannot
decide if the memory is used by the debugger or not when the debugger
allocates its memory dynamically. Then the index of the name_tab is set to
zero and last the trace_buffer is created as a doubly linked list.

4.2 Interrupt handling of the kernel and the
debugger

Section 2.3 shows, how system-calls and exceptions are handled by the kernel
and chapter 3 shows, how the debugger handles them.
One of the main features of the debugger is its ability to show (and trace)
those events. Every other interrupt can be handled by this technique as well
by entering a respective assembler stub into the IDT.

23
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The following subsections describe the major events.

4.2.1 1IPC tracing

To be able to monitor the IPCs is most important for the debugger.

IPCs are implemented as invoking interrupt 30H or sysenter.

When IPC tracing is on, any IPC is monitored before it is handled. The
debugger traces every IPC that meet the specified restrictions. It is possible
to restrict IPCs to up to five specific threads and to threads whose thread-
id is inside or outside an interval. Up to five specific thread-ids could be
excluded but by now this resets the other restrictions. It is also possible to
monitor only IPCs with a send part like call, send and reply and wait.

The sender and the receiver, the send descriptor and receive descriptor, the
three message words in the registers, the timeouts and the instruction pointer
of the sender, the local time and the values of the two performance counters
are displayed.

4.2.2 PF tracing

Page-fault monitoring is also most important for the debugger.

If a page-fault occurs the hardware generates an interrupt 14H.

So like IPC tracing, the page-faults that meet the restrictions are monitored
before they are handled, if page-fault tracing is on. Page-faults can be re-
stricted to a list of up to five specific threads and to threads with thread-id
inside or outside an interval, or to all threads not in the list. The last setting
will reset the other restrictions.

For the monitored page-fault it is traced either if it occurs in kernel or in
user mode, the thread-id, the fault address, the instruction pointer and the
pager of the thread, the error-code, the address of the current page table, the
cpu on which the page-fault occurred the local time when it occurred and
the values of the two performance counters.

4.2.3 Exception tracing

Some other exceptions can be monitored as well.

The monitored exceptions can be restricted to a list of five thread-ids or to all
threads not in the list. Changing the mode will reset the other restrictions.
Furthermore monitoring can be restricted to exceptions with an error-code
within a specified interval.

The exception number, the fault address, the error-code, the cpu on which
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the exception occurred, the local time when it occurred and the values of the
two performance counters are displayed.

4.3 Thread names

Threads are identified by thread-ids. These thread-ids are 32 bit hex values.
To make it easier for users to recognize specific threads, they can give a
thread a nickname. The debugger can hold up to 32 nicknames in the name
table.

When a nickname has been associated with a thread, the name is printed
instead of the thread-id whenever it occurs.

Some well-known names like sigma0 can be set in the configuration menu of
the debugger (see appendix A.6).

4.4 Data-types

There are two major data-types in the new debugger. The first data-type is
a buffer to trace the occurring events to be able to look at them later on.
The second one is the name-table where the debugger can store nicknames
for the threads.

4.4.1 The name table

The name table is a list of 32 (thread-id, name) pairs. A name can be up to
eight characters long.

The name table is written circularly, so when entering the 33rd name, the
first one will be replaced.

Entering a new name for a thread whose thread-id is still in the list will
rename the thread.

4.4.2 The trace buffer

The trace-buffer is a doubly linked list of type trace_element. There are ten
pages of memory reserved for the trace buffer. This equals 718 elements.

The structure trace_element contains a prev and a next pointer and a char-
acter defining the type of the traced event. Within the trace buffer there are
three structs. One to store the values of traced IPCs, another one to store
the values of traced page-faults and a third one to store the values of traced
exceptions. To simplify the access to these structures a dword_t array called
raw can be used instead. This array consists of twelve dwords. The three
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| *prev | *next | type | values |

Figure 4.1: Structure of trace_element. The field values can either be one of
the structures to store information about IPC, page-faults or exceptions or
the raw information.

page-faults:
| ec | tid | fault | ip | pg | pt | time | pmcO | pmel | cpu |
IPC:
| snd | rev | s desc | rdesc [ wO | wl | w2]ip | touts | time | pmcO | pmel |

exceptions:
| vector | fault | ec | time | cpu | pmc0 | pmel |

Figure 4.2: The structure to store traced page-faults, IPCs and exceptions

structures and the raw array are combined in a union. The type field of the
structure decides which is used.

When some event has to be traced, the corresponding information is written
into the trace buffer.

4.4.3 Restrict events

The events the debugger should display can be restricted. Therefore the
debugger contains three records. One for each type of event to be traced
(TPC, page-faults and exceptions).

It is implemented as a union of an array for five thread-ids to be restricted
and the lower and upper bound of an interval, or an array for five thread-ids
to be excluded of the trace.

4.4.4 'Trace controlling

To control the behavior of the trace buffer the structure trace_controlling is
used. It consists of three major parts. One to control the behavior of traced
IPCs, one for traced page-faults and one for traced exceptions. These parts
are bit fields of different length.

The IPC field contains four bits. The use bit tells if IPC tracing is turned
on or off. The to_do bit decides whether the debugger should be entered
after the IPC has been invoked, the restr bit tells the debugger if the threads
with thread-id inside or outside the list are restricted. The bit only_sendpart
restricts only to IPCs containing a send part.
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IPC page-faults exceptions

‘ use ‘ todo ‘ restr ‘ snd H use ‘ todo ‘ restr H use ‘ todo ‘ restr ‘ ec ‘

Figure 4.3: Bit-field trace_controlling

The page-fault field contains only three bits. The use bit determines if page-
fault tracing is turned on or off, the bit to_do if the debugger should be
entered after the page-fault occurs or not and the restr bit, if the threads
with thread-id inside or outside the list are restricted.

The exception field contains four bits. Like above the bits use, to_do and re-
str determine if exception tracing is turned on or off, if the debugger should
be entered and how to handle the list. The bit with_errcode determines if
the traced exceptions are restricted to ones with a special error-code or not.
The aliases YES, NO, TRACING, DISPLAY, THREADS_IN_LIST and ALL -
OTHER_THREADS can be used instead of 0 and 1 to make the program
easier to be understood. YES and NO stands for use or do not use the feature,
DISPLAY means enter the debugger and display the event immediately in-
stead of TRACING. THREADS_IN_LIST and ALL_OTHER_THREADS de-
termine if the threads with thread-id inside or outside the list are restricted.
The restrictions are set by default to no tracing, enter the debugger and dis-
play the event, restrict to the threads with thread-id in the list and do not
restrict to send part or error code.

4.5 'Trace buffer dump

To display the contents of the trace buffer the traced events are checked if
they match the chosen event type beginning at the latest entry. Then it
is checked if the traced event matches the restrictions. If that is true, the
event is displayed. The debugger will display up to 718 events on the screen.
It is possible to navigate through the buffer by pressing 'n’ (next) and 'p’
(previous). Pressing ’q’ causes the debugger to return to the main menu.

4.6 Implementation of event restriction

The events the debugger should display can be restricted. To check if a event
matches the restrictions, the thread-id of the thread causing the event and if
necessary the error-code is compared to the entries stored in the correspond-
ing restriction structure.
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To differentiate between the possible restrictions, the structure trace_controlling
is used (see appendix 4.4.3).

4.7 Configuration via Xconfig

Since the debugger is separated from the kernel many of the debug settings
in xconfig are no longer necessary.

To enable the new debugger L4/KA Kernel Debugger and Use new KD must
be switched on. These settings deactivate all the debug code in the kernel
sources and cause the new debugger to be linked to the kernel binary.

The next entries choose the debugger’s input and output devices. Serial in-
put and output device means that the input is read from and the output is
written to the serial port which can be configured. The default value is the
first port (COM1 in DOS notation) with 115200 kbit/s, 8N1.

Choosing kdb as input device reads the input from the keyboard. Only us-
layout is implemented yet. Choosing screen as output device the output is
written on the screen.

enable disassembler enables the x86-disassembler for the debugger. Its code
is copied from binutil’s libopcodes and enlarges the debugger by about 60k.
enable debugging, remote enter-KDB and enter KDB on start specify the
basic behavior of the debugger.

All entries in the trace settings menu have no effect on the new debugger
but enlarge the kernel. For this reason they can all be turned off.

The functionality of the debugger depends on the chosen architecture. It
is implemented for PIII and it will work on PII too. For any other x86
processor it should be configured as i586.

4.8 Shared files between the old and the new
debugger

It is possible to choose either the old or the new version of the debugger while
defining the settings of the kernel and the debugger with xconfig. Therefore
it is possible to use some functions in both versions.

The x86 files, the files init.c, input.c, mdb.c, print.c, tracepoints.c, kdebug.h
and kdebug_keys.h contain functions used by the old and the new version
of the kernel-debugger. The main part of the old version is within the file
mini-kd.c. The main part of the new debugger is within the file new-kd.c.
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Summary and future work

5.1 Summary

This kernel debugger tries to combine the advantages of the existing de-
buggers for the L* version X debuggers without their disadvantages. The
big disadvantage of Hazelnut’s debugger is that it is involved in the kernel.
The idea to completely separate and hide it from the kernel was coined by
the assembler version of the debugger. The solution to this problem is us-
ing daisy chaining for debugging the system-calls. To achieve architecture
independency is a basic idea of the Hazelnut kernel and it is desirable for
the debugger as well. Therefore the debugger is mostly written in C++
and the code is separated into two parts. One part consists of the architec-
ture independent functions of the debugger like the debugging of the kernel
data-types. The second part contains the architecture specific functions. By
implementing it carefully this makes the debugger also easier to be expanded
and maintained. A problem of all old debugger versions is their confusing
menus. When starting to work with the kernel it takes a lot of time to
learn how to use the debugger. To make its usage easier the functions of the
debugger have been arranged in sub-menus containing only one topic.

5.2 Future work

The next steps that have to be taken are implementing the debugger for
other platforms, mainly for IA64, and an adaptation to the L* Version 4-X.2
API (the L4Ka Pistachio kernel). A GUI for the debugger (e.g. with QT)
would also be a very nice item.
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Appendix A

Kernel debugger manual

This appendix describes the functionality and the usage of the debugger. The
functions in the lists can be invoked by typing the parenthetical symbols.
The hierarchical menus should make the usage of the debugger easier for
people beginning to work with it. But there are some shortcuts in every
menu to get some frequently used functions faster. A list of these shortcuts
is shown in B.2.

An online documentation of the debugger can be found on [7].

A.1 Xconfig

To configure the kernel and the debugger the xconfig menu, a slightly modi-
fied Linux TCL/TK configuration utility, can be used by typing make zconfig
in a shell.

There the functionality and the behavior of the kernel and the debugger can
be set. For the new debugger there are only relevant the 10-devices, en-
able disassembler, enable debugging, remote enter-KDB and enter KDB on
start. All other functions are not supplied or automatically integrated into
the debugger. To improve performance and avoid the second print of the
information these other functions are turned off, primarily the trace settings.

A.2 The main menu
The main menu contains the functions to control the debugger like:
e Reset [, 6]

e Continue [g]
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e Display trace buffer [T]

e Step instruction [s]

e Step block [S]

e The sub-menus o, ¢, k, m]

The entries step instruction and step block belong in fact to the CPU sub-
menu, but for implementation reasons they have been placed here. The entry
point to the debugger should be the same in the old and the new versions of
the debugger. But to put the step instruction and step block into the CPU
sub-menu, the entry point has to be changed.

A.2.1 Reset

This resets the Computer. The user is asked if it should really restart. An-
swering yes will immediately reboot the computer. This can cause data loss.

A.2.2 Continue

Returns from the debugger to the kernel/user program.

A.2.3 Display trace buffer

The trace buffer holds a list of 718 events the debugger was told to trace.
These could be IPCs, page-faults or exceptions. To trace those events the
corresponding trace mechanism has to be turned on in the debugger (see IPC
tracing 4.2.1, page-fault-tracing 4.2.2 and exception tracing 4.2.3).

When displaying the trace buffer, the three kinds of entries or any combina-
tion of them can be shown. The same information as when displaying the
event on occurrence is shown.

A.2.4 Step instruction

This leaves the kernel debugger and executes the next instruction. After that
the debugger is invoked immediately. The current stack frame is shown and,
if disassembler is enabled, the next instruction is shown too.
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A.2.5 Step block

This function is only available on 1686 processors. It leaves the debugger and
executes all instructions until the next branch instruction is taken. Then
the debugger is invoked and the stack frame, the current instruction and the
instruction where the branch occurred are displayed.

A.2.6 The sub-menus

There are four sub-menus:

Configure menu [o]

CPU menu |[c]

Kernel menu [k]

e Memory menu [m]

These menus are described below. A short description of the sub menus is
displayed by pressing ’?’ ore ’h’.

A.3 The CPU menu

To this menu belong all the architecture dependent parts (except the step
instruction and the stop block function). It contains the following sub-menus
and commands:

e CPU state [A]
e Performance counters [e]
e The disassembler [U]

e Breakpoints [b]

Most of these functions work on Intel processors only, some of them only on
machines with a local APIC like PII/PIII.

A.3.1 CPU state

This menu shows some information of the current state of the CPU. The gen-
eral descriptor table GDT, interrupt descriptor table IDT, control registers
cr0 to cr4, IO-APIC redirection table, the CPU-id and some information for
small spaces and 1O ports are shown. More information about the tables and
registers are described at [4] and [5].
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A.3.2 Performance counters

In this menu the user can read and write the two performance counters
and assign an event to a specific counter. A list of the possible events can be
shown. The possible events are listed in [5], appendix A.1. On machines with
local APIC the performance counter overflow handler can be enabled and
disabled. When enabled, the debugger is invoked when one of the counters
overruns and displays the value of the performance counters (pmcs) and
enters the debugger.

A.3.3 Disassembler

When the disassembler is enabled, the address to start disassembling can
be chosen. The default setting is the current instruction. By pressing 'u’
another instruction can be chosen, ’q’ returns to the debugger. Any different
key causes the next instruction to be disassembled.

A.3.4 Breakpoints

This function handles breakpoints. The four breakpoint registers of the pro-
cessor can be set or cleared. A breakpoint can be set to a given instruction
'I’, an I/O operation ’o’, a memory access ’a’ or a memory write access 'w’
on the given address. Then the debugger is entered every time the chosen
breakpoint is reached.

'+’ enables the breakpoint using the same settings as last time this break-
point was enabled and -’ disables all breakpoints. A list of all breakpoints
can be shown with ’?7’.

Breakpoints that has been set are enabled for all address-spaces. Enabling a
breakpoint at address x in address-space A will also enable a breakpoint at
address = in address-space B.

A.4 The kernel menu

This menu sumes up the functions to handle all the kernel data-structures
and events. Its entries are:

e Kernel-data [#]
e Priorities (of the threads) [Q]

e IPC tracing [i]
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e Exception tracing [x]
e Irq assignment [I]
e TCB dump [t]

e Task dump [k]

A.4.1 Kernel-data

This function prints either some statistics about the MDB 'm’ or about the
kernel memory allocator ’k’.

The mapping database statistics show the depths of the current mapping
tree and the number of mappings from a single page frame.

The kernel memory allocator statistics show the amount of free kernel mem-
ory and the fragmentation of the free list in the allocator.

A.4.2 Priorities

This function shows the priority queues. If a thread ID is set inside parenthe-
ses it indicates that the thread is not in the ready-queue (i.e., not currently
runnable).

A.4.3 1IPC tracing

Here IPC tracing can be turned on or off.

Pressing a '+’ the debugger will be entered before every IPC matching the
restrictions and displays the sender’s and the recipient’s thread-id, the send-
and receive-descriptors, the three register words, the timeouts and the per-
formance counters and a timestamp.

Pressing a '*’ enters the same values into the trace buffer without displaying
them and entering the debugger.

A ’-’ turns off IPC tracing.

The restrictions can be managed by pressing 'r’. It is possible to restrict the
monitored IPCs to a specific thread 't’ or to all threads except this thread
"T". Then the thread-id or the nickname of the thread must be entered. Up
to five thread-ids can be specified. Switching between ’t’ and "I’ causes a
reset, of the restrictions.

It is also possible to restrict monitoring to IPCs to all threads whose thread-
ids fit or don’t fit into a specific interval 'x’. Then the boundaries of the
interval have to be entered. When the first value is smaller than the second
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one, all threads with thread-ids in the interval are monitored. If the first
value is larger than the second one, all threads outside the interval are mon-
itored. Equality of both values is not permitted.

The restrictions are reset by pressing ’-’.

A.4.4 Exception tracing

Here exception tracing can be turned on or off.

After a '+’ all exceptions matching the restrictions are monitored before they
are handled and the debugger is entered. The exception, the fault address,
the error-code and the performance counters and a timestamp are displayed.
A ’* enters the same information into the trace buffer without displaying
and entering the debugger.

Exception tracing is turned off by pressing ’-’.

Monitored exceptions can be restricted to up to five specific threads ’t’ or to
all except of them "I’. Switching between ’t’ and "1’ causes a reset of the
restrictions.

The monitoring can also be restricted to an error-code in a specific interval.
The boundaries of the interval have to be entered. When the first value is
smaller than the second one, all exceptions with error-code in the interval
are monitored. Otherwise all exceptions with error-code outside the interval
are monitored. Equality of both values is not permitted.

The restrictions are reset by pressing ’-’.

A.4.5 Interrupt assignment

This function shows a list of hardware interrupts and their associated threads.

A.4.6 TCB dump

This function dumps thread control blocks (TCB). The TCB to be dumped
has to be entered, thread-ids and TCB addresses are valid inputs. If nothing
is specified the current TCB will be dumped.

A.4.7 Task dump

This function displays a list of all threads within the task and a short sum-
mary of their current state. The desired task can be chosen by entering a
thread-id within the task, a TCB address or a task number. If no task is
specified, the information about the current task is shown.
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A.5 The memory menu
All functions operating on the memory are in this menu like:

e Memory-dump in the current address-space [d]

Memory-dump in another address-space [D]

Page-table dump [p]

page-fault tracing [f]

Display the mapping [m]

MDB tracing [M]

A.5.1 Memory-dump

This function displays 256 bytes of memory starting at a specified virtual
memory address in the current address-space. The memory content is dis-
played as 32 bit hex values and as printable ASCII character. If the dumped
memory region is unaccessible #-signs are printed instead of the unaccessible
memory contents.

By pressing 'n’ (next) or 'p’ (previous) the display window will be moved
through the virtual memory in the respective direction. The memory dump
is closed by pressing ’q’.

A.5.2 Memory-dump in other address-space

It is possible to dump memory in other address-spaces than the current one.
The output of this function is the same as in A.5.1, but the address-space
to dump is requested. Thread-ids, TCB addresses, task numbers and page
table pointers are valid input values. The default value is the current address-
space.

A.5.3 Page table dump

This function displays page tables. Thread-ids, TCB pointers and task num-
bers are valid inputs. If the input does not indicate a valid thread or task, a
pointer to a page table is assumed. The default is the current page table.
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A.5.4 Page-fault tracing

This function turns page-fault tracing on or off.

Pressing a '+’ the debugger will be entered before every page-fault matching
all restrictions is handled by the corresponding page-fault handler. The oc-
currence of the page-fault (user-mode or kernel-mode) is displayed, the thread
causing the page-fault, the fault address, the thread’s instruction pointer, its
pager, the error-code and the content of control register cr3. Furthermore
the values of the performance counters and a timestamp are printed.
Pressing a '*’ will cause the debugger to enter these values into the trace
buffer without entering the debugger and printing the information on the
screen.

’-” turns the page-fault tracing off.

The restrictions can be managed by pressing 'r’. It is possible to restrict
the monitored page-faults to a specific thread ’t’ or to all threads except this
thread "T’. A thread-id or the nickname of a thread is requested. Up to five
thread-ids can be specified. Switching between t’ and "I causes a reset of
the restrictions.

It is also possible to restrict page-faults to all threads whose thread-ids fit
or don’t fit into a specific interval 'x’. Then the boundaries of the interval
have to be entered. When the first value is smaller than the second one, all
threads with thread-ids in the interval are monitored. When the first value
is larger than the second one, all threads outside the interval are monitored.
Equality of both values is not permitted.

All restrictions are reset by pressing ’-’.

A.5.5 Dump mapping DB

A physical address is requested and the mappings of all virtual page frames
containing this address are dumped. The mapping database dump will show
a tree like structure describing the mappings between different address spaces
and the virtual addresses within the different spaces.

A.5.6 MDB tracing

To use this function MDB tracing has to be enabled via Xconfig.

A ’4’ turns on the mapping database tracing. Some information about the
mapper, the mappee and the mapped fpage are displayed. The debugger is
entered after a page-fault has occurred.

A ’* turns on mapping database tracing without entering the debugger after
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the occurrence of page-faults.
Pressing ’-” turns off mapping database tracing.

A.6 The configuration menu

In this menu it is possible to configure the behavior of the debugger. It
contains:

Name a thread [s]

Nicknames for some well known threads [n]

Show the names of the threads [K]

Enable/disable cache [c]

A.6.1 Name a thread

To make it easier to recognize threads, nicknames can be assigned to thread-
ids. A thread-id and a name are requested. Such a name can contain up to
eight characters. The debugger prints this nickname instead of the thread-id.

A.6.2 Nicknames for some well known threads

In the L* kernel there are some predefined thread-id’s like sigma0, nil and
invalid, also the root task and the idler. This function registers these nick-
names.

A.6.3 Enable/disable cache

This function turns on or off the cache while in debugger. The effect of this
is described in section 3.5. The cache is turned off by default.
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Appendix B

Key-bindings

B.1 Hierarchically ordered Key-bindings

Main menu
continue
", 6 | restart the computer
configuration menu
dump frame
memory menu
CPU menu
kernel menu
step Instruction
dump Trace
step Block
?,h | help

CPU menu
CPU state
performance counter
disassembler
profiling
dump profile
set/clear breakpoints

o

o -

nHHun ®=a B

Qo o

41



42 APPENDIX B. KEY-BINDINGS

Kernel menu
dump statistics
list Priority Queues
IPC tracing
interrupt Association
dump Task
dump TCB
set/clear Tracepoints

NHW‘HH-(O:H:

Memory menu
dump memory
dump memory in other space
dump mapping DB
trace mapping DB
dump page-table
P | page-fault tracing

o Z28 O~

f

Configuration menu

¢ | enable/disable cache while in
debugger (Starting disabled)
list of nicknames

set some known names

name a thread

n =2 X

B.2 Shortcuts

The shortcuts are avaliable in every menu to fasten the access to frequently
used functions.

Shortcuts for faster use
b | set/clear breakpoints
T | dump Trace
- dump frame
continue
7, h | help
t dump TCB
d | dump memory
D | dump memory in other space
p | dump page-table
", 6 | restart the computer
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