Design and Implementation of Fast Local TPC
for the L4 Microkernel

Study Thesis/Studienarbeit

Horst Wenske
System Architecture Group

University of Karlsruhe, Germany
Horst. Wenske@h-wenske.de

Supervisors: Dr. Kevin Elphinstone and Dipl.Inf. Uwe Dannowski

July, 2002

Abstract

This work extends the paper “Lazy Process Switching” [1]. It de-
scribes a concrete prototype implementation of fast Local Inter Process
Communication for the L4 version X.0 microkernel. The main idea be-
hind LIPC is to extend kernel-level threads with user-level characteris-
tics, which means user-level IPC with kernel-level threads is in special
cases possible. The necessary synchronisation between the different
user and kernel-thread context can be done lazily when the kernel
entry is inevitable (e.g. timer interrupt). This L4 LIPC prototype
implementation needs 23 cycles for a short intra-address-space IPC
between two threads, what is about 8-13 times faster than a normal
L4 short IPC. LIPC is fast enough to reconsider the usage of IPC for
fine-grained synchronisation and multi-threaded servers in the same
address space.

Acknowledgements

My thanks go to Dr. Kevin Elphinstone and Uwe Dannowski for supporting
and supervising my thesis as well for their insights and discussions.

Most of all, my gratitude go to Uwe Dannowski and Andreas Haeberlen who
helped me several times to debug my source code.

Finally, I thank all who supported my work in one way or another!.

!Even a Starcraft game can sometimes help to find a bug ...

CONTENTS

Contents

1 Introduction
1.1 Motivation

1.2 Synopsiso

2 Background
2.1 The Microkernel Approach
2.2 Threads and Tasks

2.3 Inter Process Communication

3 Related Work
3.1 Middleweight-Kernel-Level Threads
3.2 User-Level Threads

4 Design

4.1 Concepts and Problems of LIPC
4.2 User/Kernel Thread Control Block
4.3 General Structure of LIPC
4.4 LIPC Inconsistency Detection
4.5 Lazy Update and Thread Status Fixing
4.6 Status Inconsistency Problems

4.6.1 Closed/Open Send Queue Problem
4.7 Coprocessor Synchronisation

4.8 Safety and Security of LIPC

5 Implementation
5.1 Implementation Constraints

5.2 First Prototype in a Linux User-Space Environment

5.3 UTCB and CurrentUTCB Implementation

11
11
11

12
12
13
14
16
17
17
20
22
24

CONTENTS 4

5.4 Local and Global Thread Identifier 28
5.5 Modified IPC Path 28
5.6 LIPC Implementation 29
5.6.1 General LIPC Restrictions 29

5.6.2 LIPC Application Binary Interface 30

5.6.3 The LIPC Call 31

57 LIPCPath. 31
5.8 Kernel-Fix-Up Code 33
5.8.1 Exception Frame Fix Up 33

5.8.2 Kernel-Fix-UpPath. 34

5.9 Implementation Restrictions 35

6 Measurements 36
6.1 Intra/Inter-Address-Space IPC 36
6.2 Intra-Address-Space LIPC 37

7 Conclusions 37
8 Future Work 38
9 APPENDIX 39
9.1 Sample LIPC C Binding 39

1 INTRODUCTION 5
1 Introduction

1.1 Motivation

Although Inter Process Communication (IPC) performance has improved
in the last five years, it is still too slow on certain processors, for instance
Intel TA-32 based processors. Critical sections in real-time applications and
multi-threaded servers, two examples motivating even faster IPC, are briefly
discussed below.

Critical sections in real-time applications suffer from the well-known priority-
inversion problem [10]. Multiple solutions have been proposed, e.g. priority
inheritance (which is generally not sufficient), priority ceiling [10] and stack-
based priority-ceiling [9]. All mentioned methods need to modify a thread’s
priority while the thread executes the critical section. In the stack-based
priority-ceiling protocol, for example, a thread has to execute the critical
section always with the maximum priority of all threads that might eventually
execute the critical section, regardless of its original priority.

A very “natural” solution for a stack-based priority ceiling in a thread /TPC-
based system is to have a dedicated thread per critical section. This thread’s
priority is set to the (static) ceiling priority. Any “client” thread calls the
critical section through a Remote Procedure Call (two IPCs). Priorities
are automatically updated through the underlying thread switch. The syn-
chronous IPC mechanism also serialises threads automatically that compete
for the critical section. Provided that simultaneously pending request TPCs
are delivered in prioritised order, we have a simple and elegant implementa-
tion of stack-based priority ceiling.

For achieving highest performance, multi-threaded servers often need cus-
tomised policies to distribute incoming requests to worker threads. For in-
stance, a server might want to handle up to three requests in parallel, but
queue further requests. The “natural” solution is to use one distributor thread
which also implements a request queue, and three worker threads which com-
municate via IPC with the distributor thread.

All these methods require a fast IPC mechanism which does not degrade sys-
tem performance. The current .4 microkernel intra-address-space IPC time
on a Pentium III is about 100-200 cycles, which can be too expensive for the

2 BACKGROUND 6

mentioned examples. Such costs are only acceptable when real synchronisa-
tion actions are necessary. For example, entering the invoker thread into a
wait queue if the critical-section thread is blocked on a page fault. These
IPC costs (100-200 cycles) are relatively low in comparison to the overall
consumed time.

This works aims at providing the first prove of concept LIPC prototype
implementation. The LIPC prototype should give new insights implementing
LIPC and provide a foundation for further LIPC implementations

1.2 Synopsis

This thesis is organised in eight main chapters. Following this introduction,
Chapter 2 briefly describes the terms being required for understanding this
work. In Chapter 3 related approaches are introduced and Chapter 4 presents
the necessary theory and algorithms behind LIPC. Chapter 5 points out
certain aspects of the implementation and Chapter 6 discusses performance.
Finally, Chapter 7 summarises this work and Chapter 8 discusses the scope
for further work.

2 Background

An extremely short and surely incomplete overview of the microkernel ap-
proach, threads, tasks and IPC is given in this chapter. A special focus is
set on the IPC section which describes the most important L4 IPC specifics.

2.1 The Microkernel Approach

The following microkernel introduction is (mostly) taken from J. Liedtke [7]
and inspired by S. Wagner study thesis [16].

The key idea of microkernels is to keep the kernel minimal. Ideally, all Op-
erating System (OS) services which can safely and securely be implemented
outside the kernel are implemented as user-mode servers in their own address
space. The microkernel approach reduces the kernel’s size to only manda-
tory kernel parts and protects the OS services from each other and the users.

2 BACKGROUND 7

It is possible to introduce OS services that are not necessarily fully trusted
by every user and by any other OS service (which is not possible with the
monolithic kernel approach).

The central idea of this approach is the address-space paradigm. An address
space on the hardware level is a mapping between virtual pages and phys-
ical frames. Any server and any user-mode program has its own protected
address space. The kernel, preventing corruption of address spaces, controls
all address space changes.

For example, a file system service and the network service (like TCP/IP)
reside in different address spaces so that they are isolated and protected
from each other. As a consequence, the microkernel has to supply user and
system services (there is no difference from the kernel point of view) with a
cross-address-space communication facility. This key mechanism is usually
called Inter Process Communication (IPC).

But the microkernel approach has also some other advantages. Different
Application Program Interfaces (API), file systems and OS personalities can
coexist in the system. Furthermore, server malfunctions are isolated like
normal application malfunctions, the system structure is modular and easy
to maintain.

The L4 [17] is a second generation microkernel developed by Jochen Liedtke
at the GMD, IBM and the University of Karlsruhe. Currently there are
three implementations of L4 for x86 available [17, 18] which differ in their
implementation and API. Additionally, there are implementations available
for DEC-Alpha from the Dresden University of Technology and for MIPS
from the University of New South Wales. L4 is one of the smallest and
fastest microkernels developed so far.

2.2 Threads and Tasks

A thread is an activity, being characterised by some kind of state information
and an associated address space. Typically, a thread is represented by a
sequence of code that is operating as a unit on behalf of a single user or
transaction. Each thread has an execution state (running, ready, etc.), saves
its context (e.g. instruction pointer) when not running, and has its own
storage for local variables and execution stack. Threads have shared access
to the address space and resources (files etc.) of their task.

2 BACKGROUND 8

A task is the entirety of exactly one address space and all threads executing
within this address space. Moreover a task is also a protection domain for
IPC.

User-Level threads are handled by a thread library in user-space (Many-to-
One model). The kernel is not aware of the existence of user-level threads
and is not involved in a user-level thread switch. The thread library contains
the code for creating and destroying user-level threads, passing messages and
data between them, saving and restoring thread contexts and scheduling the
thread execution.

For kernel-level threads (One-to-One model) all thread management is done
by the kernel. An API to the kernel thread facility is required. The kernel
maintains context information for the task and its threads so that switching
between kernel-level threads requires the kernel.

Threads are sometimes described in terms of their weight, meaning how much
contextual information has to be saved for a given thread so that it can be
referred to by the system during the life of the thread. The context of a
traditional Unix process, which is one task with exactly one thread, includes
the hardware registers, the kernel and user stack of the process, etc. The
time required to switch that much context is considered large so that an
Unix process is said to be a heavyweight thread. In some modern operating
system kernels, such as L4, multiple threads can exist in a single address
space, which decreases the amount of context information that has to be
saved with each, and reduces the switching time. These kernel-level threads
are considered to be middleweight threads. When all necessary context and
thread operations are exposed to the user-level, each application needs only
the minimal amount of context saved with it so that context switching can
be reduced to a minimal amount of cycles. Therefore, user-level threads are
considered lightweight threads.

2.3 Inter Process Communication

This IPC introduction is restricted to L4 specifics since IPC in general is a
wide field. IPC is used for data transfer, event notification and synchronisa-
tion. Thread communication via IPC is the fundamental feature of the L4
kernel. During the IPC, there is an agreement between the sender and the
receiver. The sender decides which information will be sent, and the receiver

2 BACKGROUND 9

can decide whether to interpret and accept the received information. An IPC
will only take place if the receiver has agreed, i.e. the receiver is in the state
“receiving from sender thread”.

IPC delivers a message from one thread to another. L[4 supports several
types of IPC:

e Short IPC
e String IPC

e Map and grant

Rich types help to improve end-to-end IPC performance.

A short IPC transfers data in general-purpose registers. On the TA-32 plat-
form, up to three 32 bit words can be transferred as a register message. As
no extra copy operations between address spaces are necessary (all data is
being held in registers), short IPC has the lowest IPC costs, totalling 100-200
cycles on a Pentium IIT 450 MHz.

An TPC memory message consists of a string (direct string IPC) up to two
megabytes, which can be used to copy longer messages from the sender’s to
the receiver’s address space. This message transfer needs copy operations,
and the kernel might establish a temporary mapping (map and copy) to re-
duce the copying costs [4].

A direct string IPC can transfer up to 31 indirect strings in a memory mes-
sage. An indirect string consists of a base address and a size and specifies a
buffer in the sender’s address space. It avoids unnecessary copy operations
to/from the message buffer. On the receiver side, buffers for such strings can
be specified so that the IPC can transfer directly from the sender to the re-
ceiver. Scatter/Gather flags permit strings to be gathered on the sender side
and /or scattered on the receiver side. Thus multiple blocks can be directly
transferred to a single receiver buffer; a single send buffer can be split into
multiple blocks.

Map messages map pages or larger parts of the sender’s address space, called
a flexpage, into the receiver’s address space; a flexpage consists of a base and
a size of a memory region. By invoking a map operation, a thread can make
a memory region in its address space accessible to another address space,
provided the recipient thread agrees. The grant operation is a specialisation

2 BACKGROUND 10

of the map operation. By granting a flexpage, the pages are mapped to the
grantee’s address space, but in contrast to the map operation, the mapped
pages are removed from the granter’s address space. The granter has no
longer access to the granted pages. Map and grant enable user-level pager
and main memory management on top of the kernel. Special communication
mechanisms based on shared memory regions can also be constructed. Fur-
ther explanations can be found in the microkernel lecture notes [7].

LIPC is a special short IPC optimisation in the case two threads in the same
address space communicate via IPC. Since both threads are in the same ad-
dress space, there is no need of real data transfer via IPC. Both threads can
access the same data and destroy each other if they like.

The atomic IPC system call can be parameterised as send, call, receive and
atomic send and receive. Atomic send and receive means in this context that
both operations are done atomically and cannot be interrupted after the send
phase. An open (receive from any thread) or closed wait (receive only from
a specified thread) can be specified (see [6]).

L4 supports only synchronous IPC; after invoking an IPC operation, the
sender thread blocks until the message has been transferred, the IPC has
been aborted or the given timeout has expired.

The TPC in L4 version X.0 allows various timeouts. A send, a receive, a sender
page fault and a receiver-page-fault timeout. The send timeout determines
how long IPC should try to wait for the receiver to become ready. The receive
timeout specifies how long IPC should wait for an incoming message. Both
timeouts specify the maximum period of time before message transfer starts.
Once started, message transfer is no longer influenced by send or receive
timeouts.

Page faults (e.g. when a page is not present in memory) that occur during
IPC are controlled by send and receive page fault timeouts. A page fault
is translated to an RPC (two IPCs) by the kernel. In the case of a page
fault in the receiver’s address space, the corresponding RPC to the pager
uses the send-page-fault timeout (specified by the sender) for both send and
receive timeout. In the case of a page fault in the sender’s address space,
receive-page-fault timeout specified by the receiver is taken. A timeout can
be specified as 0 (do not wait), co (wait forever) or time periods from 1us
to approximately 19 hours. The timeouts are necessary to avoid denial of
service attacks, e.g. a malicious pager or a non responding sender/receiver.

3 RELATED WORK 11

3 Related Work

Speeding up the IPC is not a new topic. There are several papers available
which discuss new techniques to speed up IPC [4, 13, 11, 12|. IPC is a
valuable mechanism for structuring complex systems, as it allows systems
to be decomposed. In addition to being a good structuring mechanism,
IPC is a fundamental primitive in distributed and parallel computing; the
performance of distributed systems and parallel programs is often determined
by the performance of IPC primitives. To develop efficient programs, the IPC
performance is the determining factor how far it is possible to decompose a
program. Usually, there are two different approaches to implement threads,
which has direct consequences on the IPC performance. Threads can be
supported either at user-level or in the kernel. Both approaches have several
advantages and disadvantages.

3.1 Middleweight-Kernel-Level Threads

The kernel-level thread approach is a nice concept, but suffers normally from
poor performance. In the last years new techniques have been presented to
overcome the poor performance [4, 15, 12]. Some of the new approaches
try to reduce the complexity and message transporting costs of IPC. With
optimised assembler code, the L4Ka achieves an IPC performance of about
100-200 cycles, which is a real milestone compared to old IPC performance
values.

3.2 User-Level Threads

User-level threads might achieve the required speed, but don’t have the nice
semantics of a kernel-level thread. Furthermore, making user-level threads
able to run in the kernel schedule, more than compensates their speed gain
[2]. Having two concepts, kernel and user-level threads, is conceptually inel-
egant and contradicts the idea of conceptual minimality. There are several
approaches [13, 15, 14] to overcome the disadvantages of user-level threads.
For example, the Solaris user-level threads in the “green thread library” where
several kernel-level threads are mapped to a group of user-level threads to
reduce IO-blocking times.

4 DESIGN 12

4 Design

This chapter points out the design goals. After inspecting an intra-address-
space thread switch, the first subsection identifies the problems of a local IPC
implementation. The following subsections present the proposed solutions
and mechanisms to overcome the identified problems.

4.1 Concepts and Problems of LIPC

In all the above mentioned examples, we need a very fast IPC, particularly for
intra-task communication which does not include an address-space switch.
Therefore, the goal is to find an implementation of kernel-level threads that
offers all speed advantages of user-level threads for intra-task communica-
tion. The main idea is to extend kernel-level threads with user-level charac-
teristics, which means user-level IPC with kernel-level threads is in special
cases possible. The necessary synchronisation between the different user and
kernel-thread context can be done lazily when the kernel entry is inevitable
(e.g. timer interrupt).

To find a way to extend kernel-level threads with user-level IPC character-
istics, let us revisit an intra-address-space thread switch for an atomic Sen-
dAndWaitForReply IPC, which is typically used for RPC. Client and server
variant of this call differ only marginally. The client thread sends a request
to a server thread and waits for a reply from the server. Correspondingly,
the server thread replies to the client thread and waits for the next request
which may arrive from any client.

The client variant:

Thread A — Thread B

call IPC function, i.e. push A’s instruction pointer;

IF B is a valid thread id AND thread B waits for thread A THEN
save A’s stack pointer;
set A’s status to ‘“‘wait for B’’;

(X1 3.,

set B’s status to ‘“‘run’’;
load B’s stack pointer;
current thread := B;

return, i.e. pop B’s instruction pointer;

4 DESIGN 13

ELSE
more complicated IPC handling;
ENDIF

Analysing the system call above, you can recognise three main problems.

Kernel Data Access

Stack pointer, thread status and “current thread” are protected data that can
only be accessed by the kernel to prevent user-level code from compromising
the system. The kernel data has to be made somehow controlled accessible,
without compromising the system.

Atomicity

Checking B’s state and the following thread switch have to be executed atom-
ically to avoid inconsistencies. Normally, any user-level code can be inter-
rupted, e.g. at an end of a time slice or a hardware interrupt, which can
cause inconsistencies. The LIPC system call must prevent any exception or
the exception must be properly handled.

Inconsistent User/Kernel Thread Status

Using LIPC, the thread status, user instruction and user stack pointer in
user-space can differ from saved values in the kernel thread control block.
The LIPC implementation has to provide user/kernel status synchronisation
to ensure consistency.

4.2 User/Kernel Thread Control Block

Normally, each thread has its own Thread Control Block (TCB) in kernel
space, which contains the whole context of the thread. A general applicable
technique to make kernel protected variables of the TCB user-accessible is
based on the idea to have a kernel twin of the Kernel Thread Control Block
(KTCB) in users-pace, the so called User Thread Control Block (UTCB), for
each unprotected variable. In this vein the LIPC code can access and modify

4 DESIGN 14

the stack pointer or the status of a thread or others, without accessing the
kernel space. Before the unprotected variable is used by the kernel, the kernel
always checks for consistency. If the unprotected variable and kernel twin do
not match, the kernel takes the appropriate actions to reestablish consistency.

4.3 General Structure of LIPC

Ensuring atomicity in user mode is relatively simple as long as the kernel
knows the executed code. The method goes back to an idea that Brian Ford
[3] proposed in 1995: “Let some unmodifiable ’kernel code’ execute in user
space so that the kernel can act specifically to this code if an interruption

occurs within this "kernel code’ ”.

In the LIPC system call, the kernel resets the thread’s instruction pointer to
the beginning of the IPC routine (‘restart point) if an interrupt occurs before
a real status modification has become effective. After the system state has
been partially modified, the kernel would have to either undo those modi-
fications or complete the LIPC operation before handling the interruption.
Such a method cannot ensure atomicity in general; e.g., it fails if the code
experiences a page fault. That’s why the LIPC system call code is always
mapped (mapped read-only kernel memory in user-space).

Thread A — Thread B:
call IPC function, i.e. push A’s instruction pointer;
save A’s stack pointer;
--- RESTART POINT ---
IF B is a valid thread id AND thread B waits for thread A THEN
--- FORWARD POINT ---
set A’s status to ‘“‘wait for B’’;
set B’s status to ‘“‘run’’;
load B’s stack pointer;
current thread := B;
--- COMPLETION POINT ---
return , i.e. pop B’s instruction pointer;
ELSE ...

Interruption including page faults between restart point and forwarded point
occur before the system’s state has really changed. Provided that no required

4 DESIGN 15

registers have been overwritten, there should be no problem. If a page fault
occurs when (U)TCB B is accessed to check B’s status, the IPC operation
simply restarts at the restart point after page-fault handling. We assume that
after the forward point, no legal page faults can occur since both UTCBs
have been accessed in the check phase. However, illegal page faults might
occur, e.g. if a user program jumps directly to the middle of the code or
even to the middle of an instruction. Consequently, any page fault in this
region is illegal and permits to kill the thread. If a “normal” interruption
between forward point and completion point occurs, the missing instructions
are executed, and the instruction pointer is set to the completion point:

interruption between FORWARD POINT and COMPLETION POINT:
IF is page fault THEN
kill thread A;

ELSE
A’s status := ‘“‘wait for B”’;
B’s status := ‘‘run”’;

load B’s stack pointer;

current thread := B;

set interrupted IP to completion point;
ENDIF

The only critical part of the LIPC system call is the section between forward
and completion point, where the status of the thread is being changed. The
LIPC implementation must ensure that any interruption, e.g. timer interrupt
in this section causes a “roll forward” to the completion point. If an inter-
ruption after the completion point occurs, the IPC operation simply restarts
after interruption handling.

On a uniprocessor, we have thus guaranteed atomicity without using privi-
leged instructions. For multiprocessor, the method can be extended to work
for threads residing on the same processor. Anyhow, cross-processor com-
munication is currently an order of magnitude more expensive than intra-
processor communication. Restricting user-level IPC to intra-processor is
thus acceptable.

4 DESIGN 16

4.4 LIPC Inconsistency Detection

The fundamental insight is that twin inconsistencies need only to be checked
on kernel entry. This sounds obvious, however, its immediate consequence is
that an TPC executing completely in user-level does not need to synchronise
with the kernel.

In particular, this type of IPC can switch threads, without directly telling
the kernel. The kernel will synchronise, i.e. execute the thread switch in
retrospect upon the next kernel entry, e.g. timer tick, device interrupt, cross-
address-space IPC or page fault.

In general, lazily-evaluated operations pay if more of them occur than have
to be effectively evaluated, i.e. real work phases are short. Correspondingly,
lazy switching can pay if only a small fraction of lazy-switching operations
lead finally to real kernel-level process switches. Such behaviour can be
expected whenever a second ITPC, for example the reply or a forwarding
IPC, happens before an interrupt occurs. The motivating examples “critical
section” and “request distribution” fall into this category provided that their
real work phase is short.

The LIPC prototype implementation has to detect a possible inconsistency
caused by LIPC. Therefore, an unprotected kernel variable CurrentUTCB,,
which is intended to point to the current thread’s UTCB and its protected
kernel-space twin CurrentUTCBy, are introduced. The only variables that
trigger synchronisation is CurrentUTCB, ;). Inconsistencies that include
only status changes are ignored because they are always illegal. Due to lazy
scheduling [4], status inconsistencies can be tolerated.

CurrentUTCB inconsistency:
IF CurrentUTCB, is in valid UTCB region THEN //predefined
NewKTCB := CurrentUTCB,—KTCB;
IF NewKTCB is in valid KTCB region and aligned
AND NewKTCB—UTCB=CurrentUTCB, THEN
switch from CurrentKTCB to NewKTCB;
CurrentKTCB := NewKTCB;
CurrentUTCB; := CurrentUTCB, ;
return;
ENDIF
ENDIF

4 DESIGN 17

If a CurrentUTCB inconsistency is detected (CurrentUTCB,, #CurrentUTCBy,)
during the kernel entry, the above algorithm will perform a CurrentUTCB
cross check, which verifies whether the CurrentUTCB,, is valid and sets the
new CurrentKTCB and CurrentUTCB,, values.

4.5 Lazy Update and Thread Status Fixing

Inconsistency should only be caused via a performed LIPC. When the LIPC
prototype implementation detects a CurrentUTCBy, /) inconsistency, it has
lazily to update the thread states. The algorithm below describes how to
update the kernel thread status:

status inconsistency:

IF status, = ‘“‘run’® AND status; is ‘‘wait for’’ THEN
insert thread into run queue;
status; := status, ;

ELSE IF status, is ‘‘wait for’’ AND statusy = ‘“‘run’® THEN
delete thread from run queue;
status, := status, ;

ELSE
kill thread;

ENDIF

In principle, the algorithm synchronise the kernel and the user state of both
threads, which have an inconsistent user-level vs. kernel-level state, and
updates the run queue.

The algorithm can be straightforwardly extended to handle more thread
states than only “run” and “wait for X” whereby it is flexible for different
kinds of thread states.

4.6 Status Inconsistency Problems

Figure 1 illustrates a normal IPC and an LIPC chain.

Both scenarios have the (L)IPC chain A—B—C, which is another term for
an (L)IPC sequence. When you compare both IPC types, you can recognise

4 DESIGN 18

| Normal IPC-Chain | LIPC - Chain
Kernelspace

T UTCBs
(¢} O
‘ o . a

Userspace Userspace

Figure 1: Normal IPC and LIPC Chain

several differences. Using the “normal” IPC you have three kernel entries and
save all thread information only in the Kernel TCBs. All IPCs are visible
from the kernel perspective and synchronised with the TCBs.

In the LIPC case, LIPC performs no kernel entry and is only synchronised
with the UTCBs. From the kernel perspective thread A is running all the
time, and when thread C does a normal IPC, the kernel detects an incon-
sistency and recognises that thread C is actually running. From the LIPC
chain A—B—C the kernel can only detect the end points A and C, but that
thread B was running in the middle and has changed its state, stack and in-
struction pointer is for the kernel not visible. We have to revisit all possible
undetected changes in an LIPC chain and the consequences for the whole
system. The changes are not really invisible for the kernel. It can access the
UTCB of thread A and can read the current state, instruction pointer etc.
The only problem is that the kernel doesn’t detect that the state of B has
changed and that the KTCBs and some queues (e.g. send queue) must be
updated.

The modification of the stack and instruction pointer of thread B is not
critical for LIPC since for further LIPCs the current values of the UTCBs
are used. Normal IPC has now the problem that the values in the KTCBs
don’t necessarily contain the current values (modified via LIPC). That’s why
it must be ensured that the current values in the UTCBs are used directly.
The KTCB access must be redirected to the current UTCB values. Only
redirecting KTCB accesses has the problem that some kernel lists, queues,

4 DESIGN 19

etc. cannot be properly updated because no changes of thread B are detected.
All these hidden updates concern only the state of the “hidden” thread B,
that’s why we must revisit all possible kernel-hidden state changes. The state
changes of the UTCBs of thread A and C are not a problem since their kernel
states can be updated during the kernel entry (see 4.5).

Let us focus on the possible “undetected” status changes of thread B. Figure
2 illustrates all possible state changes of thread B. Before and after an LIPC
thread B must be in the receiving state. But the type of the receiving state
can change. Thread B could have been in one of three possible receiving
states (before it became active):

e Closed wait on thread A (only thread A can send an IPC to B)

e Open local wait? (any local thread in the same address space can send
an IPC to B)

e Open global wait (any thread can send an IPC to B)

Possible State of Thread B before LIPC: Possible State of Thread B after LIPC:
OO
closed W:;it Thread A closed wait Thread X
open local wait open local wait
open global wait open global wait

Figure 2: Invisible Status Changes of Thread B
After B has performed the LIPC, there are three possible receiving states:

e Closed wait on thread X (only a specified thread X can send an IPC
to B)

e Open local wait (any local thread in the same address space can send
an IPC to B)

e Open global wait (any thread can send an IPC to B)

Not detecting these receive status changes from thread B can cause some
problems.

2Open local wait is not implemented in this LIPC prototype.

4 DESIGN

4.6.1
1) Kernel
/
ready IPC
closed w. A running
open w.
AS One AS Two
3) Kernel

open w.
punning blocked by B
LIPC
open w.
AS One AS Two

2)

4)

Closed /Open Send Queue Problem

20

Kernel
runni
LIPC
closed w. A blocked by B
open w.
AS One AS Two
Kernel
open w.
lost wakeup @
,,,,,,,,,,,,,,,,,, -
open w. blocked by B
running
AS One AS Two

Figure 3: Closed/Open Send Queue Problem

Figure 3 illustrates a scenario which is called the “Closed/Open Send Queue

Problem”.

In the first picture, there are three threads (A,B,C) in address space one,
and thread D in address space two. Thread D tries to send B a message, but
this is blocked since thread B is on a closed-wait state for thread A. In the
second picture, thread A starts running and sends an LIPC to thread B. In
picture three, B sends an LIPC to thread C and changes its status to open

receive. In picture four, thread C is running and thread B is in an open wait
receiving state. The problem is that thread D has not detected the status

4 DESIGN 21

change of thread B, and B can not wake up thread D since it doesn’t know
that thread D is in “send pending” state on thread B. The message is not
delivered although it would be possible and would be done in the normal
IPC case.

In general, there are two cases where the receive state change is dangerous:

e Closed wait — open local /global wait
e Open local wait — open global wait/closed wait to the pending thread

e Open local wait — closed wait to a pending thread which has been
waiting to send this thread a message.

In the for-mentioned cases, the receive state change can make new IPCs
possible. There are several possible solutions to solve this problem.

Restrictive “Close/Open Send Queue Problem” Approach

For this approach the old receive state of the LIPC sender must be saved (e.g.
in its UTCB). On each LIPC it must be checked if the sender thread will
change to a different receive state compared to its old receive state. Since
LIPC can only be used for call (see 5.6.1), there can only be transitions from
one receive to another receive state. If the LIPC causes a different receive
state, the sender thread has to abort the LIPC and perform a normal IPC,
where it synchronises with the kernel.

LIPC status check:
IF old_thread_status = new_thread_status THEN
proceed with LIPC;
ELSE
abort LIPC and initiate normal IPC;
ENDIF

This approach is relatively easy to implement and prevents the “Close/Open
Send Queue Problem” since hidden-receive state changes are not possible.
The second advantage of this approach is status consistency with the kernel.
Before receiving an LIPC and after an issued LIPC, the thread has the same
kernel-level and user-level state.

4 DESIGN 22

Pending Send Approach

The latter approach is sometimes overly restrictive. For instance, there would
be no problem to allow a state change, e.g. from closed to open wait if no
thread is waiting to send to the LIPC thread. To implement the Pending
Send Approach, we have to add a pending send counter to every UTCB.
Its initial value is zero, and every time a sender is blocked by this thread, the
pending send counter is incremented. When a pending IPC is executed, the
pending send counter of the receiver is decremented. As soon as a thread
tries to send an LIPC, its UTCB pending send counter is checked. If the
value is greater than zero, the thread has to abort the LIPC and perform a
normal IPC. In the other case the thread can deliver the message via LIPC.
The gain is that the LIPC is only aborted if a thread exists which is in the
state pending send for the LIPC performing thread. The drawback of this
approach is that the user-level state of a non running thread in can differ
from its corresponding kernel-level state. That’s why the current state of a
thread can only be checked in its UTCB. While performing an inter-address-
space IPC, the kernel has to access an UTCB in another address space to
get the current state of the receiver thread, which usually causes costly cache
and translation look-aside buffer misses.

4.7 Coprocessor Synchronisation

Several modern processors can save and restore floating-point registers and
those of other coprocessors lazily. Those resources can be locked by the
kernel. If another thread tries to access them, an exception is raised that
permits the kernel to save the coprocessor registers in the TCB which used the
coprocessor so far and reload the registers from the current TCB. Typically,
coprocessors can only be locked by kernel-mode software.

LIPC can cause coprocessor confusion which would not occur using normal
IPC. Let us assume thread A tries to access the coprocessor and performs an
LIPC to thread B which also tries to access the coprocessor. The first time
thread A accesses the coprocessor an exception arises (the coprocessor was
locked), and the kernel saves the coprocessor registers in the TCB which has
used the coprocessor so far. The coprocessor is now unlocked and thread A
is working with the coprocessor (modifying floating-point registers). Thread

4

1)

3)

DESIGN

 FPU_Registers(A) TCB A
10] g
10 % TCB_B
,,,,,,,,,,,,,,,, TCB_ C
L ocked

‘ KERNEL

USERSPACE
FPU_Registers(B) TCB A

2.0

50 TCB B
TCB_C

KERNEL

USERSPACE

2)

4)

23

20 |L*°

20 TCB_B

TCB_C

KERNEL

®)

USERSPACE

FPU_Registers(B) TCB A

TCB_B
TCB_C

KERNEL

USERSPACE

Figure 4: Coprocessor Synchronisation Problem

A performs an LIPC to thread B, which later also accesses the coprocessor.

From the kernel point of view, thread A is still running, and the coprocessor

is further unlocked. Thread B is working with the coprocessor and invalidates

the floating-point register values of thread A.

LIPC coprocessor check:

IF coprocessor_used = false THEN

proceed with LIPC;

ELSE

abort LIPC and initiate normal IPC;

ENDIF

4 DESIGN 24

Therefore, we have to extend the above CurrentUTCB synchronisation algo-
rithm to make it coprocessor safe. A new user-space-readable flag Coproces-
sorUsed is introduced. The flag is set by the kernel whenever the coprocessor
is allocated. The user-level IPC code now checks whether CoprocessorUsed
is not set. If it is set, user-level IPC is not possible and full kernel IPC is in-
voked. Doing a normal thread switch, the kernel resets the CoprocessorUsed
flag so that further LIPC is possible.

4.8 Safety and Security of LIPC

The Kernel data involved are the A-TCB and B-TCB variables stack pointer,
status and the system variable current thread. We have to analyse whether
these variables must be really protected from unauthorised user access.

For the time being, let us assume that the above mentioned LIPC code runs
read-only in user mode. The TCB variable stack pointer holds a thread’s
user stack pointer. Remember that A and B both run in the same address
space so that they can arbitrarily modify each others’ stack and perhaps
even code. Protection would therefore not be significantly better if A’s stack
pointer would be protected against access from B. Consequently, the TCB
variable stack pointer can be user accessible.

The state case is a little more complicated. Assume that a thread’s status
can only be “run” or “wait for X”. We have to analyse three cases when thread
A maliciously switches thread B’s status: from “run™ to “wait for X”, from
“wait for X” to “wait for Y”, and from “wait for X” to “run”.

Whenever A modifies B’s status illegally, we see user-level effects and system
effects. User-level effects within A’s address space can be ignored (see above).
Effects in different address space that indirectly result (a transitive cause
chain) from user-level effects within A’s address space are also irrelevant,
since A has full access to the threads of its address space and can even
modify their code. As long as only thread states within the same task are
accessible, user-level effects are thus uncritical.

System effects are more serious. Whenever the system state depends on a
thread’s state variable, we need provisions ensuring system integrity. Unau-

30n this level of abstraction, “run” is used to denote a ready-to-run thread as well as
a thread that currently executes on a processor.

5 IMPLEMENTATION 25

thorised modification of a state variable must in no case lead to system incon-
sistencies. For instance, the kernel can no longer assume that a thread with
status “run” (ready-to-run) is always in the run queue. Similarly, a thread
might be in the run queue although its status says “wait for X”. The LIPC
prototype has to use the presented LIPC algorithms and new structures to
detect and respectively prevent such scenarios.

5 Implementation

This chapter discusses some aspects of the LIPC prototype implementation
and its constrains. A few important data structures and implementation
details are described as the concrete kernel fix up implementation and some
LIPC important TA-32 specifics.

5.1 Implementation Constraints

To finish this work in a reasonable amount of time for a study thesis*, the
LIPC prototype must be submitted to some restrictions:

1. The LIPC prototype runs only on a single-processor machine

2. The LIPC prototype is only developed for the Intel IA-32 architecture

3. LIPC is an extension for the .4 - Hazelnut kernel version X.0

4. LIPC is only developed for intra-address-space communication

5. LIPC is only short IPC (means only register transfer)
Restrictions 1-3 specify the development environment and can be changed
while restrictions 4-5 are consequences of the local IPC approach. Inter-
address-space IPC involves automatically the kernel so that LIPC makes in

this case no sense. Transferring larger messages via LIPC is not useful either,
since threads in the same address space can access data from each other.

4Normally, you have only three months to complete a study thesis.

5 IMPLEMENTATION 26

5.2 First Prototype in a Linux User-Space Environment

To develop and debug the first LIPC system-call version, an LIPC Linux user-
space emulation was created. The emulation includes UTCBs, special thread
stacks and the LIPC “system call”®. This simple prototype without any
kernel-fix-up/synchronisation code (obvious in a pure Linux environment)
takes 12 cycles for an “LIPC” on a Pentium III processor. These 12 cycles
included the transport of four message registers (different LIPC API) from
Thread A to B with hot® caches, hot Translation Look-Aside Buffer (TLB)
and no extra marshalling costs.

5.3 UTCB and CurrentUTCB Implementation

Internally, threads are represented by Thread Control Blocks (TCBs). The
LIPC prototype separates each thread’s TCB into a User-Level Thread Con-
trol Block (UTCB) and a Kernel-Level Thread Control Block (KTCB). The
UTCB is mapped user-level accessible and unprotected in the task’s address
space, while the KTCB can only be accessed by the kernel. A thread’s UTCB
holds mainly the thread’s user stack pointer, its status, and its global id to
find the KTCB address, which is of course untrustworthy. However, the
KTCB holds a back pointer, respectively the local id, which is the same as
the UTCB address to its corresponding UTCB so that the UTCB’s KTCB
pointer can be validated over the cross check algorithm 4.4.

UTCB Layout:

+60-64 byte dummy not used
not used
+28-32 byte | from specifier old old status of the thread
+24-28 byte processor processor id - not yet implemented
+20-24 byte | user _defined handle not yet implemented
+16-20 byte myself global thread id of the thread
+12-16 byte succ_ link not yet implemented
+8-12 byte ip instruction pointer of the thread
+4-8 byte from _specifier saved state of the thread
+0-4 byte stack stack pointer of the thread

®Under Linux it was a “normal” function call
8“Hot” caches is a common term for currently filled/updated caches.

5 IMPLEMENTATION 27

The UTCB entries are shortly explained:

stack: The stack entry contains the saved stack pointer of the thread.

from _specifier: The from _specifier entry contains the current state of
the thread.

ip: The ip entry contains the saved instruction pointer of the thread.

succ_link: The SuccLink entry points to the next UTCB. The pointer
value is relative to the begin of the current UTCB. This is a appropriate
way to find all valid local thread ids and the global ids of all threads
which reside in the current address space (see myself field). All active
UTCBs of an address space are in a circular linked list.

myself: The myself entry contains the global id of the thread. A trans-
lation local id to global id is thus simple and fast.

user _defined handle: This handle can be freely set by user threads.
It can e.g. be used for storing a thread number, etc.

processor: The processor entry contains the processor number on which
the thread currently executes.

from specifier_old: The from specifier old entry contains the old
receive state of the thread.

UTCBs are 6 bit aligned and have in the prototype implementation a size of
64 bytes so that all UTCBs of an address space need exactly one 4 KB page
of kernel memory (L4 version X.0 can have 64 threads in an address space
[6]). For the ease of implementation, each address space has a fixed UTCB
area (0xB0000000-0xBOO00OFFF), which contains the UTCBs of all threads
residing in this address space.

The unprotected kernel variable CurrentUTCB, is saved in gs:[0] (IA-32
GS segment) and can be accessed from the user mode. Its protected twin,
CurrentUTCBy, lives in kernel space and can be calculated from the ESPO
pointer, which points to the TCB of the active thread (from the kernel point

of view).

5 IMPLEMENTATION 28

5.4 Local and Global Thread Identifier

Normally, the L4 version X.0 microkernel has only global thread identifiers
(see [6]), but for LIPC it is sensible to introduce a local thread identifier
for a fast UTCB access. Local thread ids identify threads within the same
address space. They are identified by the sic lower-most bits being 0 (only
26 significant address bits). A local thread id is basically a direct pointer to
the thread’s UTCB.

| UTCB address/64 | 000000 |

5.5 Modified IPC Path

The normal IPC path in the kernel must be modified since the stack and
instruction pointer of a thread can change without knowledge of the kernel
(see Figure 2). The whole L4 IPC Path is one of the most complicated parts
in the L4 microkernel; that’s why only the modifications are outlined.

Enter Kernel IPC-Path
IF CLOSED_IPC THEN
IF RECEIVE_FROM thread in the same address space THEN
set FROM_SPECIFER to proper local thread_id (LIPC possible);
ELSE
set FromSpecifier to NIL_THREAD (no LIPC);
ENDIF
ELSE IF OPEN_IPC THEN
set FromSpecifier to ANYTHREAD (LIPC possible);
ENDIF
set current stack pointer in the UTCB;
set current instruction pointer in the UTCB;

--> set Waiting and switch to next thread;
<-- get active again (message received);

get and set UTCB user instruction pointer for return;
get and set UTCB user stack pointer for return;

5 IMPLEMENTATION 29

set FromSpecifier to NIL_THREAD (no LIPC);
return to thread;

After doing the kernel fix up (see 5.8), the LIPC ensures a consistent “user-
level” and kernel thread state, but the user stack/instruction pointer can be
different from the kernel point of view. A thread in the middle of an LIPC
chain has a changed user stack/instruction pointer, which the kernel cannot
detect. That’s why the kernel can only use the stack and instruction pointer
values of the UTCB and must ensure that any stack/instruction pointer
modification via kernel code is passed through to the UTCB (set/get stack
and instruction pointer in the IPC path). The kernel fix up ensures that user
— kernel status synchronisation is done, but it must be also ensured that
any thread status change in the kernel is propagated to user space.

5.6 LIPC Implementation

The LIPC system-call code is mapped read-only to the fixed address 0xF00D0000
in user address space and can be executed in user mode. Atomicity is guar-
anteed as described in 4.3.

5.6.1 General LIPC Restrictions

1. The operation must contain a send and receive phase.

2. The recipient (to thread) must exist and reside in the sender’s address-
space.

3. The recipient (to thread) must be specified as a local thread id.

4. The send message may consist of up to 3 untyped words and must not
contain typed elements.

5. The send timeout is implied to be infinity.
6. The receive timeout is implied to be infinity.

7. LIPC includes no map/grant operations.

5 IMPLEMENTATION 30

A receive only operation is not sensible since kernel support would be needed.
For a receive only operation, the kernel has to remove the thread from running
queue and to insert it into the waiting queue. A send only operation is
possible, but would complicate the LIPC path and would require further
changes of the LIPC interface.

Restriction two and thre follow directly from the LIPC restriction that it
is a local IPC in the same address-space. The local thread id is needed
to find the proper UTCB. Restriction four is a design decision to have an
easy data transfer without kernel support. Since you have no kernel-space
access (no kernel entry, no wakeup queue), you cannot specify other timeouts
(restriction five and six) and cannot access page tables for a map and grant
operations (restriction seven).

5.6.2 LIPC Application Binary Interface

Pre: ‘ ‘ = H Post: ‘ ‘
UTCB_ADDR EAX UTCB_FROM | EAX
Return Address ECX not defined ECX

MSG.W0 EDX RCV.W0 EDX
MSG.W1 EBX RCV.W1 EBX
FROM SPECIFIER | EBP not defined EBP
UTCB_TO ESIT not defined ESI
MSG.W2 EDI RCV.W2 EDI
USER SP ESP USER SP ESP

LIPC is a subset of the general IPC system call. It may be used for intra-
address-space communication and synchronisation.

All communication is synchronous and unbuffered: a message is transferred
from the sender to the recipient if, and only if, the recipient has invoked a
corresponding IPC operation (L4 policy [6]). The sender blocks until the
destination becomes ready to receive from the sender, or the given timeout
expires. For LIPC the send and receive timeout is implied to be infinity. You
can’t enforce other timeouts without kernel access. If the receiver thread is
not ready to receive or a global thread id is given, a normal IPC is initiated
(LIPC initiates IPC).

5 IMPLEMENTATION 31

5.6.3 The LIPC Call

word 14_lipc” (utcb_t to, dword_t FromSpecifier,
dword_t sndw0, dword_t sndwl, dword_t sndwl,
dword_t *rcvwl, dword_t *rcvwl, dword_t *rcvwe,
utcb_t from)

LIPC parameters:

to Receiver local thread id for the LIPC ‘

FromSpecifier | Specifies the waiting status of the sender thread
after a successful LIPC:
FromSpecifier=ANYTHREAD (0xFFFFFFFF)
Incoming LIPCs / IPCs are accepted from any
thread.

FromSpecifier#ZANYTREAD

Incoming messages are accepted only from the
specified thread (local thread id).

‘ sndwO - sndw2 ‘ Three send words which contain a message. ‘

rcvw0 - rcvw2 | Three receive words which contain the response

message
‘ from ‘ Sender local thead id for the LIPC. ‘

5.7 LIPC Path

Thread A -> B

jump to LIPC function;

save return address in UTCB;

--- restart point ---

IF B is not Local_ID (last 6 Bits Zero and valid UTCB Area?) THEN
initiate normal IPC1 (assume Global_ID);

ELSE IF B is not waiting for ANYTHREAD or sender thread THEN
initiate normal IPC2;

ELSE IF A’s 0l1d Receiving Status != A’s New Receiving Status THEN
initiate normal IPC2;

ELSE IF coprocessor_used = TRUE THEN

"See sample LIPC C-Binding in the Appendix

5 IMPLEMENTATION 32

initiate normal IPC2;
ELSE

--- FORWARD POINT ---

set A’s status to FromSpecifier;

save A’s stack pointer;

save B’s o0ld status;

set B’s status to ‘“‘run’’;

load B’s stack pointer;

set current_thread to B;

--- COMPLETION POINT ---

return, i.e. use return address in the UTCB;
ENDIF
initiate normal IPC1: (Assume a normal IPC call)

push UTCB return address on the stack;

trigger IPC;

return, i.e. pop return address from the stack;
initiate normal IPC2: (Assume an LIPC call)

set snd_descriptor to short IPC (033);

set rcv_descriptor to open/close IPC;

set global id to the destination thread;

push UTCB return address on the stack;

set timeout (to infinity);

trigger IPC;

return, i.e. pop return address from the stack;

You can see from the LIPC pseudo code that LIPC can only be performed
under special conditions:

1. A valid receiver local thread id is given
2. The receiver thread is ready to receive from the sender
3. The sender thread does not change its old /kernel waiting state

4. The sender thread has not used the coprocessor

All four conditions are reasonable (see theory section) but condition three can
be troublesome. While creating a thread, a new UTCB is allocated and ini-
tialised. At the beginning FromSpecifierOld is initialised to ANYTHREAD.

5 IMPLEMENTATION 33

When the newly created thread tries to perform a special LIPC sequence
which changes the FromSpecifier from closed IPC to open IPC in alternating
order, all LIPCs fail and a normal IPC is initiated. Normally, this shouldn’t
be a problem since a thread has a more or less fixed characteristic and does
not change its receiving state all the time, but this depends on the applica-
tion.

5.8 Kernel-Fix-Up Code
5.8.1 Exception Frame Fix Up

Let us assume that thread A performs an LIPC to thread B and thread
B gets a timer interrupt. From the kernel point of view thread A is still
running and the exception frame consisting of the context information of
thread B is saved on A’s kernel stack. For further information about Intel
TA-32 exception frames look at the IA32 documentation [22].

It can not be prevented that the exception frame of thread B is saved on the
kernel stack from thread A, but after the fix-up code has detected a user vs.
kernel inconsistency the exception frame can be copied and modified. Figure
5 illustrates how to get the right exception frames on the right kernel stacks
(very simplified).

TCB_A K_ESP TCB_B TCB_A K_ESP TCB B
_ss 1 ss DT
ESP | | New ESP b o ESP !
S| EFLAGS 5 ! O| EFLAGS | O| EFLAGS
< < <
E_‘) cs o 5 cs | 5 cs
EIP --—= New_EIP Lo EIP
N Copy and update | ! | I
Error_Code |< I I T T =1 Error_Code !
— I I
Stack I
Kemel_ESP Kernel ESP |+ L -4 Kemel_ESP : Kernel_ESP |+
Tss: TSS: |
E
Kernelspace ESPO Kernelspace SPO

Figure 5: Exception Frame Fix Up

The basic strategy is to copy the exception frame from A’s kernel stack
to B’s kernel stack and to generate a default exception frame with proper
user stack and instruction pointer on A’s kernel stack. Afterwards, the kernel

5 IMPLEMENTATION 34

stack pointer and the ESP0 entry in the Tasks State Segment (TSS), a kernel
variable which points to the TCB end of the active thread, is set to B’s kernel
stack to complete the lazy thread switch from thread A to thread B.

5.8.2 Kernel-Fix-Up Path

The pseudo code below outlines the kernel fix up path.

Thread A and B are the endpoints of the LIPC chain
and B gets an exception:
IF exception in kernel section THEN

skip LIPC kernel fix up code;

ELSE IF EIP between RESTART_POINT and FORWARD_POINT of the LIPC THEN
set (USER)EIP to RESTART_POINT and skip LIPC kernel fix up code;

ELSE IF EIP between FORWARD_POINT and COMPLETION_POINT of the
complete section and set(USER)EIP to COMPLETION_POINT;
ELSE
skip LIPC kernel fix up code;
ENDIF
IF CURRENT_UTCB_U=CURRENT_UTCB_K THEN
skip LIPC kernel fix up code;
ENDIF
IF CURRENT_UTCB_U is invalid THEN
kill current thread;
skip LIPC kernel fix up code;
ENDIF
--- LIPC fix up code ---
delete A from run queue;
set A’s TCB status to WAITING;
IF A is in CLOSED_WAIT THEN
set partner in A’s TCB;
ENDIF
insert B in run queue;
set B’s TCB status to RUNNING;
copy stack frame from A to B;
set proper (KERNEL)ESP for B;
set ESPO in the TSS to B’s stack end;

LIPC THEN

5 IMPLEMENTATION 35

fix A’s (USER)EIP in its exception frame (A’s UTCB values);
fix A’s (USER)EIP in its exception frame (A’s UTCB values);
set (KERNEL)ESP of A to the end of its exception frame;

set (KERNEL)EIP of A to a special LIPC_WAIT function;

The first part of the LIPC fix-up code checks whether it was an exception
in the kernel mode, then the fix up is skipped, or the exception occurs in
an LIPC call. Depending on the position in the LIPC call, the code does a
code roll forward or backward (see 4.3). Furthermore, it is checked whether
a CurrentUTCB,, # CurrentUTCBy, inconsistency exists.

Is this the case, the status and exception frame fix up is done as described
in the design chapter. After the fix up, thread A does not only have to
be in a waiting state, it must also set in a proper “position” in the IPC
path. That’s why the LIPC prototype has a special sys lipc_ wait function
which emulates the activation and receiving part of the normal IPC path (see
pseudo code below).

<-- get active again (message received);

get and set UTCB user instruction pointer for return;
get and set UTCB user stack pointer for return;

set FromSpecifier to NIL_THREAD (no LIPC);

do special IPC argument marshalling;

return to thread;

When thread A becomes “active” again, it executes the sys lipc_ wait func-
tion, which sets the current user instruction and stack pointer of thread A.
Furthermore, the sys_lipc_ wait function marshalles the IPC arguments and
returns back to user mode.

5.9 Implementation Restrictions
The LIPC implementation is a prototype implementation which is more a

proof of concept than a complete implementation of all features. That’s why
some features of the L4 version X.0 microkernel can not yet be used.

1. Small Address Spaces

6 MEASUREMENTS 36

2. IPC via sysenter

Small Address Spaces is a technique to “simulate” tagged TLBs on the Intel
[A-32 architecture by dividing one “big” address space into several smaller
address spaces [8]. Since the LIPC prototype uses a fixed UTCB address
scheme, Small Address Spaces are not yet applicable.

IPC via sysenter is a kernel entry optimisation which causes different excep-
tion frame layouts on the kernel stack, what would further complicate the
kernel-fix-up code. That’s why the LIPC prototype can only use IPC via int
0x30 which needs about 300 cycles for intra-address-space IPC, rather than
about 180 cycles via sysenter.

6 Measurements

The pingpong test-suite from L4Ka is used to measure the overhead of nor-
mal IPC with the LIPC prototype. Further, kernel profiling identifies the
code where the CPU spends the most time. The benchmark system is a
normal Intel Pentium IIT 450 MHz PC with 64 MB RAM. The IPC measure-
ments include one unidirectional TPC without marshalling costs. All IPCs
are repeated 8000 times and the average is calculated.

LIPC Prototype Development Environment:

e Linux Debian (Woody) system
e Intel Pentium IIT 1 GHz
e gce-3.04 and gee-2.95.4 C++ Compiler

e binutils Version 2.12.90.0.1-4

6.1 Intra/Inter-Address-Space IPC

‘ ‘ Intra-Address-Space TPC ‘ Inter-Address-Space IPC ‘

L4 microkernel 306 488 cycles
LIPC prototype 349 cycles 634 cycles

‘ Overhead ‘ 43 cycles ‘ 146 cycles ‘

7 CONCLUSIONS 37

The 43 cycles intra-address-space IPC overhead (about. 14%) are expected
since the LIPC prototype kernel must do several checks and UTCB updates.
The LIPC implementation tries to prevent jump failure predictions and un-
necessary memory accesses, but some checks and extra updates are inevitable.
The 146 cycles inter-address-space IPC overhead (about. 30%) are rather
high. Code profiling has verified the idea that the IPC path has suffered TLB
misses when it accessed the UTCB of another address space (not necessary
for the unmodified TPC path). These extra UTCB accesses are inevitable,
but the extra TLB miss overhead could perhaps be reduced by using Small
Address Spaces® [8].

6.2 Intra-Address-Space LIPC

‘ ‘ Intra-address-space LIPC ‘ Inter-address-space LIPC ‘

‘ LIPC prototype ‘ 23 cycles ‘ not possible -> normal TPC ‘
‘ Speed gain ‘ 1330 % ‘ - ‘

The 23 cycles for a complete LIPC satisfy the expectations. In comparison
to the first Linux user-space prototype (12 cycles for an “LIPC”), the “real”
LIPC prototype includes several modifications and new checks. LIPC can
compete in speed with pure user-level IPC and is about 1330% faster than a
normal intra-address-space kernel-level IPC.

7 Conclusions

It is possible to implement a fast local IPC with kernel-level threads which
can compete in speed with pure user-level implementations. Together with
a fast IDL compiler, for example IDL* [19, 21, 20], it should be possible to
use LIPC for fine-grained synchronisation and fine-grained multi-threaded
servers. The drawbacks of this approach are an overhead for normal kernel-
level IPC (14-30%), and the general LIPC restrictions which prevent its usage
in some cases. This work focuses to achieve a high LIPC performance and
to handle inconsistencies caused by LIPC. Reducing the overhead for normal
kernel-level IPC caused by LIPC extensions was not the main goal. A speed

8Small Address Spaces are not part of this study thesis

8 FUTURE WORK 38

gain of over 1330% for intra-address-space IPC should more than compensate
the “normal” IPC overhead, but this is subject of future research.

8 Future Work

Firstly, it has to be examined how much fine-grained synchronisation and
fine-grained multi-threaded servers profit by LIPC. There are several open
research and implementation aspects to this:

e LIPC Small Address Space implementation

e LIPC sysenter and IPC fast-path implementation

LIPC on SMP machines

Further reduction of the kernel-level IPC overhead caused by the LIPC
extensions

Further LIPC stability testing, e.g. L4 Linux on top of an LIPC capable
L4 kernel

Using the insights from this LIPC prototype implementation for the
next L4 kernel version (L4 Pistachio [17])

Having a very fast IPC mechanism which prevents a kernel entry will be even
more important in the future. You can recognise the trend that kernel entry
costs for new CPU architectures are increasing (large amount of registers
to save and restore); one example is the TA-64 [23| architecture (successor
of the TA-32 architecture). Having a fast IPC mechanism which speed is
independent from the kernel entry costs can help to increase the overall IPC
performance of a system.

9 APPENDIX 39
9 APPENDIX

9.1 Sample LIPC C Binding

word l4_lipc (utcb_t to, dword_t FromSpecifier,
dword_t sndw0, dword_t sndwl, dword_t sndwZ2,
dword_t *rcvw0, dword_t *rcvwl, dword_t *rcvw2,
utcb_t from){
dword_t dummy;
__asm__ __volatile__ (
/* save frame pointer */
"pushl %%ebp \n\t"
/* move from_specifier from ECX to EBP %/
"movl %%ecx, %hebp \n\t"
/* save return address in ECX register x/
"movl $1f,%%ecx \n\t"
"jmp " LIPC_ENTRY " \n\t" /* LIPC_ENTRY = 0xFOODOOO
"1: \n\t"
/* restore frame pointer x/
"popl %kebp \n\t"
: /* define Output */
"=a" (utcb_from), /% 0
"=dq" (*rcv_dword0O), /* 1, Save value of EDX into *rcv_dwordO
"=p" (*rcv_dwordl), /* 2, Save value of EBX into *rcv_dwordl
"=D" (*rcv_dword2) /* 3

, Save UTCB_FROM -> EAX x/

, Save value of EDI into *rcv_dword2

: /x set registers for Input */

"a" (utcb_from), /% 4, UtcbAddr_from -> EAX */

"d" (sndwO), /* 5, sndwO -> EDX */

"b" (sndwl), /* 6, sndwl -> EBX */

"c¢" (from_specifier), /* 7, from_specifier -> ECX -> EBP %/
"S" (utcb_to), /* 8, to -> ESI */

"D" (sndw2) /* 9, sndw2 -> EDI x/

: /* scratch memory */
"memory") ;

REFERENCES 40

/* clobber ESI and EAX x*/

__asm__ __volatile__ (
" \n\t "
"=S" (dummy) ,
"=c" (dummy)) ;
}
References

[1]

2]

3]

[4]

5]

(6]

7]

8]

J.Liedtke, H.Wenske. Lazy Process Switching. The 8th Workshop on
Hot Topics in Operating Systems (HotOS-VIII), Elmau/Oberbayern,
Germany, May 2001.

T.E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Sched-
uler activations: Effective kernel support for the user-level management

of parallelism. In 13th ACM Symposium on Operating Systems Princi-
ples (SOSP), Pacific Grove, CA, October 1991.

B.A. Ford and J. Liedtke. private communication, December 1995.

J.Liedtke. Improving IPC by kernel design. In 14" ACM Symposium
on Operating System Principles (SOSP), pages 175-188, Asheville, NC,
December 1993.

J.Liedtke. Lazy Context Switching Algorithms for Sparc-like Processors.
GMD Technical Report No. 776. September 1993.

J.Liedtke. L4 Nucleus Version X Reference Manual X86, September
1999.

J.Liedtke. Lecture Construction of Microkernels. University of Karlsruhe
(2001).

J.Liedtke. Improved Address-Space Switching on Pentium Processors by
Transparently Multiplexing User Address Spaces. GMD Technical Report
No. 933. November 1995

REFERENCES 41

[9] T.P.Baker. A stack-based resource allocation policy for realtime pro-
cesses. 117" Real-Time Systems Symposium (RTSS). IEEE, December
1990.

[10] L.Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Transactions on
Computers, 39(9), September 1990.

[11] W. C. Hsieh, M. F. Kaashoek, and W. E. Weihl. The Persistent Rel-
evance of IPC Performance: New Techniques for Reducing the IPC
Penalty. Workshop on Workstation Operating Systems (1993)

[12] J.S. Shapiro, D. J. Farber, J. M. Smith. The Measured Performance of
a Fast Local IPC (1996)

[13] B.D. Marsh, M. L. Scott, T. J. LeBlanc, E. P. Markatos. First-Class
User-Level Threads. Proceedings of the 13*» ACM Symposium on Oper-
ating Systems Principle (SOSP). 1991

[14] D.S. Ritchie, G.W. Neufeld. User Level IPC and Device Management in
the Raven Kernel (1993)

[15] B. Mukherjee, G. Eisenhauer, K. Ghosh. A Machine Independent Inter-
face for Lightweight Threads. ACM Operating Systems Review 1994.

[16] S.Wagner. An Architecture Independent Kernel Debugger for Hazelnut -
Study Thesis. University of Karlsruhe (September, 2001)

[17] L*Ka Homepage: http://www.l4ka.org
[18] Fiasco Homepage: http://os.inf.tu-dresden.de/fiasco/

[19] A. Haeberlen. Using Platform-Specific Optimizations in Stub-Code Gen-
eration - Study Thesis. University of Karlsruhe (July, 2002)

[20] IDL* Homepage: http://www.uni-karlsruhe.de/ uhns/id14/

[21] A. Haeberlen, J.Liedtke, Y.Park, L. Reuther, V. Uhlig. Stub-Code Per-
formance is Becoming Important. In the First Workshop on Industrial
Experiences with System Software (WIESS), San Diego, CA.

[22] Intel Architecture Developer Manual IA32 Vol. 1-3

REFERENCES 42

[23] Intel Itanium Processor Family: http://www.intel.com/design/itanium/

