
Implementation of an Orthogonally Persistent
L4 �-Kernel Based System

Christian Ceelen
�����������	
����

Supervisor: Cand. Scient. Espen Skoglund
Universiẗat Karlsruhe

15th February 2002

2

3

Abstract

Orthogonal persistent systems open up possibilities for a wide number of appli-
cations. Even more, it is a very natural concept for the storage of information,
since objects and information persists until the end of their lifetime. Most current
commercial non-persistent systems have only an explicit storage model. Thus, an
application has to care for the persistent storage of data itself. This has to be done
by transforming the data structures into something that can be stored within a file.
Furthermore the file has to be opened, written to and saved explicitly; a source
of overhead for programmers. Moreover the programmer also has to estimate the
life-time of all valuable data. Including the conversion and recovery of data, the
amount of code needed to store data explicitly could easily take up a third or half
of the actual programming work.

In order to support a convenient system environment, persistent storage could
be handled implicitly by the operating system. The operating system has to store
for each task an image of the user memory and all kernel internal data like page-
tables, mapping structures, file descriptors and so on. This approach is very de-
manding and very error-prone for current monolithic systems. Therefore we pro-
pose a�-kernel based system instead. The proposed work should provide an
implementation base for further persistent systems by supplying the necessary
mechanisms to build persistent applications on top of the�-kernel. The stable
storage of all data is achieved by regular checkpointing of all user-level memory
and all needed kernel meta-information through user-level mechanisms.

Since�-kernel are still a matter of in depth research, this thesis also pushes
the�-kernel idea to its limits by applying the concepts learned previously on a or-
thogonally persistent system. Further it analyze feasibility for a system structured
this way.

4

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Persistence On Top Of A�-kernel 8
1.3 Related Work 9
1.4 Aim of Thesis 10
1.5 Structure of the Thesis 11

2 The L4-�-Kernel 13
2.1 Motivation for a�-Kernel based System 13
2.2 �-Kernels in General 14
2.3 Short History of�-Kernels . 15
2.4 The L4�-Kernel in General 15

2.4.1 Address Spaces, Threads and IPC 16
2.4.2 External Pagers in L4 17

2.5 L4 API . 18
2.6 Implementation Notes on L4 19

3 Design 21
3.1 Conceptual Design. 21
3.2 Persistent and Transient Objects. 21
3.3 Implicit Persistent Objects 22
3.4 Main-Memory Checkpointing 23

3.4.1 Write-back of a checkpoint 23
3.4.2 Recovery of Memory Pages 25

3.5 Kernel Checkpointing 26
3.6 Kernel Recovery .. 28

3.6.1 Recovering TCBs 28
3.6.2 Recovering In-Kernel Threads 29
3.6.3 Recovering IPC 29

5

6 CONTENTS

4 Implementation 31
4.1 Implementation on L4Ka/Hazelnut 31
4.2 L4Ka: An L4 compatible�-kernel 31

4.2.1 Thread Control Blocks. 31
4.2.2 Scheduling and Dispatching 33
4.2.3 Kernel Memory Mapping 33

4.3 Copy on Write Scheme 33
4.4 Resolving Kernel Page Faults 34

4.4.1 General Solutions 34
4.4.2 Special Cases 35

4.5 TCB Allocation . 36
4.6 Changes to the Mapping Implementation 37
4.7 Kernel Internal Structures 37
4.8 System Call Mechanism 39
4.9 Thread Switch . .. 39
4.10 Changes to the IPC implementation 40

4.10.1 Communicating with persistent threads 41
4.10.2 Long-IPC Messages 42

4.11 Changes to the page fault implementation 42
4.12 Recovering TCBs in L4Ka 43
4.13 Miscellaneous . .. 44

4.13.1 Floating-Point Registers 44
4.13.2 �� and L4Ka 44
4.13.3 Kernel Memory Management 45

5 Conclusions 47
5.1 Achievements . .. 47
5.2 Discussion 47
5.3 Final Conclusions. 48
5.4 Future Work 48

Chapter 1

Introduction

This chapter gives a short introduction to the motivation for the thesis and de-
scribes related work in context of orthogonally persistent systems.

1.1 Motivation

In an orthogonally persistent system the persistence of an object is orthogonal to
its type and implementation. Every object persists until it is no longer needed
and after this end of life-time it is deleted explicitly (e.g., either by the user or a
garbage collection system). Orthogonal persistence is therefore a natural concept
because it is exactly what people expect when manipulating data. People not
familiar with the explicit storage model of a computer would expect data to be
orthogonally persistent. They would draw from their experience with existing
“storage systems” like pen and paper, that after creation and writing the data on
the paper the information is preserved through the special physical nature of the
ink and the paper. In context of a computer, two different kind of papers exists.
The first one persists, the other one looses its contents soon after usage. The first
one is the natural behavior of paper, the second one is that of normal computer
memory. One would use the latter for short-lived drafts and notes, but use the
real paper for anything that has any worth. Since the amount of time needed to
evaluate and write down the data and is much more precious than wasting a sheet
of paper. Therefore one would even use the persistent paper when writing things
that initially are not thought to last long, just because it might unexpectedly turn
up as more valuable than initially expected. This way one does not have to make
an explicit copy of the data. In terms of computer systems the amount of extra
work needed for orthogonal persistence would pay for the convenience. There
are a number of applications that do not need this kind of convenience, however,
for instance shortlived schedules, notes, or scientific computations. Only while

7

8 CHAPTER 1. INTRODUCTION

developing optimized applications would a developer care about using memory
that is not orthogonally persistent, since this feature does come at cost of some
performance.

There are many ways to implement an orthogonal persistent system and guar-
antee the consistency of the stored objects. The one chosen for this thesis is the
use of system wide checkpoints, because it could be understood easily and is sim-
ple to implement. Furthermore, it is possible to implement checkpointing through
user-level mechanisms. This way the orthogonal persistence is an optional feature
and not a mandatory one. In order to achieve persistence some of the kernel in-
ternal structures have to be accessed by the checkpointer. The needed meta-data
needed additionally to the checkpoint could include page-tables, mapping struc-
tures, file descriptors and so on. After perfoming the checkpoint and gathering the
necessary meta-data everything has to be written to stable storage. This is quite
complex since the consistency of the system has to be ensured at any point in time.
Therefore one motivation of this thesis is therefore to reduce the amount of work
needed to build an orthogonally persistent system. Future research and develop-
ment should be able to focus on problems that appear within a system supporting
persistent and transient application.

1.2 Persistence On Top Of A �-kernel

Many monolithic systems are designed around the file-abstraction. Monolithic
systems like Unix or Plan 9 try to use this abstraction of files and directories as of-
ten as possible, even if it is sometimes inappropriate while dealing with structured
data. The file model is good in the usage of hard-disks or other block-oriented
devices and serial streams, but not structured objects, e.g., graphs. If an orthog-
onally persistent system is used, the usage of a persistent filesystem to organize
data and memory is no longer necessary. Thus a new hierarchy to structure the
information is needed. The new hierarchy could be a tree-like directory structure
comparable to standard filesystems, or any other structure that binds objects to
a human-readable naming scheme. This naming scheme is important for users
of the system. The main difference to a normal filesystem now is that these ob-
jects may be raw data streams (files) or any kind of structured data used by an
application.

The�-kernel approach of structuring a system is to use very few well defined
abstractions. These are carefully designed to allow any kind of policy to be im-
plemented on top of the kernel. The abstractions and the�-kernel concept itself,
however, is still a matter of research. The practicability still has to be proven by
implementing non-standard system semantics like orthogonal persistence on top
of a �-kernel. If it turns out that the implementation of these non-standard se-

1.3. RELATED WORK 9

mantics fit neatly into the existing abstractions, the�-kernel concept comes closer
to prove its flexibility and feasibility in practice. A further motivation for using
a �-kernel is the small number of well understood concepts. Dealing with, e.g.,
complex memory management and open files in a monolithic system pose much
more problems and is much harder to implement correctly than on top of a�-
kernel. Persistence can easily be added to systems built on top of a�-kernel since
only a very small part of the system have to be modified.

1.3 Related Work

The concept of orthogonal persistence is not a new one. In L4’s predecessor
L3[11] it was an integral part of the kernel and persistence was system-wide. In
L3, during the write-back of the checkpoint all TCBs were removed from all ker-
nel internal queues and marked copy on write, thus blocking the whole system.
However, in L4 persistence is not an integral part, but can be implemented on top
of the kernel.

There are several other�-kernels that integrate persistence. For instance EROS
[9] and its predecessor KeyKOS [10] are capability based systems and implement
persistence at kernel-level. During a snapshot EROS also performs a consistency
check of critical kernel data structures. This catches possible implementation bugs
and prohibits these from stabilize in the system, rendering the system unusable.
This check is unnecessary in L4 since no critical kernel structures are included
within the checkpoint.

Fluke [14] is a�-kernel that exports user-visible, partly “pickled” kernel ob-
jects to the user. This way a user-level checkpointer “pickles” the remaining parts
of the kernel objects and save these along with the memory image of the tasks.

Grasshopper [16] is a larger system, because it is not based upon a�-kernel
and uses abstractions specially designed with persistence in mind. These kernel
abstractions are used to implement persistence on kernel level. Based on the ex-
perience with Grasshopper its designers later created a�-kernel based operating
system, Charm [17], to support persistent applications. In Charm, the kernel pro-
vides the application system with mechanisms to implement its own persistence
policy by exposing all in-kernel meta-data to the application. The application has
to ensure persistence itself by storing the data. As such, no specific persistence
model is enforced.

There are also persistent single address space operating systems like Mungi
[21], Opal and many other. In these systems protection and security is not im-
plemented by address space boundaries but by capabilities or strong language
environments. Orthogonal persistence in these systems is just the extension of the
systems paging mechanism to store the main memory on a storage device. As

10 CHAPTER 1. INTRODUCTION

there are no different address spaces less meta-data like page-tables and mappings
than in the case of a multi-address space system have to be stored besides the
memory itself.

Another common way to achieve user-level checkpointing is to use the������

UNIX system call to periodically create a snapshot of the task’s image [15]. This
allows the application to continue execution while the checkpoint is written to
stable storage. The major disadvantage is the loss of almost all kernel state upon
a system crash. Therefore, it is not possible to use every feature of the system
and persistent application is mainly limited to special libraries. Moreover, the
consistence of the checkpoint could not be guaranteed if the application interacts
with the surrounding system, because it is a per task checkpoint. Therefore this
checkpointing facility has only a limited number of applications mainly in the
field of scientific computation.

1.4 Aim of Thesis

The goal of this thesis is to build a transparent orthogonal checkpointing mecha-
nism on an existing�-kernel system, the L4-�-kernel. First the necessary addi-
tions should be discussed regarding the abstractions of the L4�-kernel. Then the
proposed mechanisms should be implemented using the current L4Ka�-kernel
developed at the Universit¨at Karlsruhe. This should provide the basis for further
exploration of the concept of persistence.

The integration of the proposed mechanisms should prove to be a somewhat
easy matter given that the right abstractions are used. Some problems concerning
consistence of the system arise while dealing with legacy services not aware of
persistent applications. But it is beyond the scope of this thesis to fully discuss
the problems arising through orthogonal persistence in conjunction with transient
applications, and describe all system components to implement orthogonal per-
sistence. For a brief discussion of these issues see the paper[13] upon which this
thesis is based. The main problems that have to be dealt with is the data consis-
tence of the system at any point in time and the persistent storage of all application
data. For instance, persistent applications may communicate with transient ones.

Several problems are expected in how to achieve a consistent snapshot of all
kernel internal data and how the kernel could continue execution while a huge
amount of its data is locked or read-only (e.g. read-only TCBs). In the L4 kernel
this may have side effects on other parts of the kernel (e.g. communication, kernel
memory allocation, kernel page fault handling).

1.5. STRUCTURE OF THE THESIS 11

1.5 Structure of the Thesis

Chapter 2 gives a brief introduction to the L4-�-kernel. The concepts provided
by this�-kernel are adapted in Chapter 3 to support persistent application through
user-level servers. The implementation of the necessary kernel mechanisms and
the major problems that arose during the implementation due to the special de-
sign of L4Ka are discussed in Chapter 4. Thereafter some conclusions are briefly
reported in Chapter 5 regarding portability and flexibility of the L4Ka-�-kernel.
Since the implementation of the user-level mechanisms and servers can be derived
straight-forwardly from the conceptual design, they will not be discussed within
this thesis.

12 CHAPTER 1. INTRODUCTION

Chapter 2

The L4-�-Kernel

2.1 Motivation for a �-Kernel based System

Growing complexity is a major concern of current systems. In terms of operating
systems this complexity comes from the amount of supported services and control
facilities (e.g. many supported file systems, emulation of other OSs and so on).
In most current commercial operating systems these services are implemented as
one central monolithic kernel. All supported services and control facilities are im-
plemented within this single kernel, execute within the same context and therefore
use the same resources. In Figure 2.1 an example for a monolithic system is pic-
tured on the left side. All system services are concentrated within the monolithic
kernel and execute with full privileges to control the hardware and the system.
Therefore an implementation bug may show consequences in any other part of
the kernel. This bug may cause an immediate reboot of the system or fail and
settle silently. Even worse, the error could start a whole chain of further errors at
completely unrelated locations in the kernel. These kind of errors arevery diffi-
cult to debug. Therefore, as any complex system most monolithic systems have
a number of bugs shipped with them, which could not be found due to the com-
plexity and size of the kernel. E.g. Engler [18] applied a source-code checker to
find program errors in Linux 2.4.1 (dereferences of null-pointers, missing unlock
of a semaphore after a lock, etc.) and found more than 200 errors in code which
checking for null-pointer and also 12 security errors. Despite this amount of er-
rors, if implemented properly, a monolithic system is able to perform better than
a�-kernel-based one. However, the performance overhead induced by a�-kernel
can be decreased to the point where it is negligible. In a�-kernel-based system
the size of code of the kernel is manageable. Other OS-services are implemented
outside the�-kernel, thus the kernel is independent from these. Therefore the ker-
nel might survive a failure of a single or several OS-services and is not influence

13

14 CHAPTER 2. THE L4-�-KERNEL

Application Application
ApplicationApplication

operates
in
user mode

operates in
supervisor
mode

operates
in
kernel mode

operates
in
supervisor
mode device

driver
����
����
����
����
����

����
����
����
����
����

device
driver

Hardware Hardware

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
����������
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

µ−kernel

µ−kernel based system

UVM−Pager

TCP
protocol

memory

virtual

monolithic kernel

file
system

console
driver
disk

driver

server

file
 TCP/IP

stack
server server

console

Figure 2.1: A monolithic kernel structure compared to a�-kernel-based system
with several services implemented in different tasks.

by other bugs present in the service system. Due to its small size it is manageable
and easier to maintain than a larger kernel. It is even believed feasable to formally
verify such a�-kernel[22, 23].

2.2 �-Kernels in General

Micro-kernels take a step in the other direction of the monolithic kernel archi-
tectures described above, and offer a set of well known basic mechanisms and
abstraction. Most�-kernels offer address spaces to implement a memory pro-
tection scheme to provide protection between tasks, means to manage hardware
resources, and threads to manage the flow of control and time resources. They
also provide some mechanism to communicate between threads in different ad-
dress spaces, i.e., inter process communication (IPC). The IPC mechanism can
used to implement, e.g., synchronization and shared memory. A detailed discus-
sion about selecting appropriate abstractions for�-kernels and how to implement
them can be found in [3].

Using the abstractions described above, almost any kind of system structure
can be built on top of the�-kernel, even monolithic kernels (see L�Linux in [12]
or MkLinux [20]). The abstractions can also be used to build a component-based
or multi-server system (see right sketch in Figure 2.1) as Sawmill Linux [24].
For each service a clean interfaces is specified to ensure compatibility between
different versions and implementations of the same service. These components
can now be implemented protected from each other in different tasks or in almost
any other fashion. This allows bugs to be isolated much easier. By dividing the
system into more and more fine grained services and components, communication

2.3. SHORT HISTORY OF�-KERNELS 15

between the services gets much more frequent. Thus the IPC operation should
be designed very carefully to allow fine grained system structuring without any
performance overhead.

2.3 Short History of �-Kernels

The first generation�-kernels were built top-down by conceptually stripping a
Unix-like system kernel from all unnecessary parts and services that could eas-
ily be implemented outside the kernel. In these�-kernels the overhead to set
up an IPC-message and deliver it was a major performance problem. A much
worse problem was that the time needed to do an IPC operation did not scale with
the processor speed. Thereby it is not surprising that the overall performance of
systems using these�-kernels has been devastatingly slow1. The main perfor-
mance problems come from the complex asynchronous IPC-mechanism. During
the sending of a message, the message must be copied multiple times because of
the need for in-kernel buffering. This drastically slows down the message trans-
fer and furthermore fills the processor caches. Since caches have become more
and more performance critical these days, since system-calls generally require a
message transfer, and since every message transfer is an IPC, the speed of the IPC
operation dictates the overall performance. The second generation�-kernels re-
searched nowadays are built bottom-up and implement a much smaller subset of
the previous kernels. The design has been focused particularly on the IPC opera-
tion to allow fine grained system structures with a high need for communication.
For further details on�-kernel design issues see [4] and [3].

2.4 The L4 �-Kernel in General

The L4 kernel is a 2nd generation�-kernel. It strives to be policy free by allowing
as few concepts within the kernel as possible. This is achieved by only permit-
ting concepts within the kernel if an implementation within user-level would be
impossible or prevent other functionality to be implemented. Following this de-
vice drivers and memory management (paging, swapping, etc.) are implemented
in user-level tasks. Based on this philosophy, the main abstractions used within
the L4�-kernel are threads, address spaces and IPC (see [3, 4] for the rationale).
All other concepts, abstractions and services have to be implemented outside the

1Even though Apple nowadays use Mach 3.0 for their new MacOS X and do get satisfactory
performance, they archive performance by avoiding the usage of the Mach’s IPC-operations as
much as possible.

16 CHAPTER 2. THE L4-�-KERNEL

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

Thread Pager

Kernel
(1)

(2)

map message (3)

kernel maps page frame

page fault message

Figure 2.2: A page fault (1) is caught by the�-kernel and translated into an IPC
(2). The page fault handler thread maps a page (3) to the faulting location in the
address space of the faulting thread.

�-kernel in order to get an operational system. As a consequence of this minimal-
istic �-kernel approach the L4 Version X.0 API [7] specifies only 7 system calls2

that implement mechanisms to use the basic abstractions.

2.4.1 Address Spaces, Threads and IPC

An address space is L4’s abstraction for memory and protection. It contains all
memory objects an application can access directly. A thread is an activity ex-
ecuting entity inside an address space. The address space defines its execution
context and can be shared with other threads. A set of threads sharing an address
space and the address space itself is commonly referred to as a task or a pro-
cess. Threads within different address spaces are protected from each other while
threads within the same are not. Threads can communicate with each other by
inter-process-communication (IPC).

The IPC primitive is the most carefully designed primitive and most funda-
mental mechanism in the L4-�-kernel. It is the only means of communication
between threads which does not share an address space, and is also used as an
abstraction to signal exceptions and interruptions. For example all interrupts is-
sued by I/O devices or other hardware components are sent as an IPC message to
a thread that handles the interrupt.

All IPCs are synchronous operations. Thus, both the sending or receiving
thread must agree on the message transfer and there is no need for buffering the
message inside the kernel. In order to cope with faulting or not trustworthy com-
munication partners, each IPC is bounded with a timeout. This timeout can be a
zero, infinity or a value between approx.��s and�� hours.

2System calls are kernel operations invoked by an application.

2.4. THE L4�-KERNEL IN GENERAL 17

������
������
������

������
������
������

����������
����������
����������
����������

������
������
������
������

������
������
������

������
������
������

sigma 0

Figure 2.3: The address space of all pagers and applications is backed by��

2.4.2 External Pagers in L4

The L4 kernel does not implement any kind of memory management policy such
as (demand) paging, swapping and address space organization. It merely im-
plements basic mechanisms to implement these different policies through user
level pagers, and offers just the necessary hardware specific memory management
mechanisms to construct further address spaces recursively from already existing
ones. In L4 every thread has a specific pager that backs its address space. It has
to trust this pager completely since the thread only “borrows” its memory from
the pager. Whenever a page fault exception occurs, it is automatically translated
by the�-kernel into a page fault message and send to the pager of the faulting
thread. The pager can then map a page in the address space of the faulting thread
by sending a map message. The�-kernel intercepts the map message and maps
the page sent by the pager into the address space of the faulting thread (see Figure
2.2). During the page fault handling the faulting thread is suspended.

Because only recursive address space construction is allowed in L4, an initial
address spaces is needed that resembles all physically addressable memory. This
address space is called��. Other address spaces are constructed hierarchically by
layering address spaces on top of�� (see Figure 2.3).�� itself maps pages using
physical addresses to other address spaces if a page fault occurs. To implement
virtual memory a pager layered between the application and�� is needed that
translates a virtual a addresses to physical one. This way a hierarchical address
space organization and protection scheme can be constructed (see Figure 2.4).

�� hands out all memory initially and the pager below�� usually hand out free
pages downwards in the hierarchy.�� just unconditionally hands out all pages on
a first-come first-serve basis.

18 CHAPTER 2. THE L4-�-KERNEL

4

?

?

Task

Pager

sigma 0

Physical memory

1

2

4

5

6

3

Figure 2.4: The page fault(1) that occurred within the a task is propagated to the
pager of the task. The pager tries to allocate an empty page to resolve the page
fault and sends a page fault message (2) to�� to allocate a new page frame.��
searches for an available page (3) and maps it to the pager (4). The pager maps
the empty page frame to the task (5) and the task is restarted (6).

2.5 L4 API

The L4 API (actually an ABI) specifies 7 system calls to construct operating sys-
tems upon. It uses register-only parameters for as many system calls as possible
and is therefore tightly coupled to the hardware architecture. A discussion of the
system calls can be found in [5]. The register-only parameters are favored to speed
up kernel calls by requiring fewer memory references. It also reduces the com-
plexity of system calls because they do not have to cope with page faults while
accessing the parameters. Therefore many system calls can run atomically. The
IPC system call is a bit special in this regard. All message parameters are passed
within the registers, but the message itself is copied via memory. However, parts
of the message can be passed via registers as an optimization.

The amount of threads and address spaces in the L4 API is limited. In the
experimental L4-X.0 API a thread ID is 32-bits, whereas the previous Version 2
of the API had 64-bit thread IDs. Within the 32 bit ID of the experimental API 8
bits (the task number field) identifies the address space and 6 bits (the local thread
number field) identifies the thread within the address space. There is also a field to
specify a version number to reuse thread IDs, and a chief field of 8 bits. The chief
field is a relict of the clans and chiefs model [6]. It is a mechanism to control
messages sent to a thread not within the same task group (called a clan). Each

2.6. IMPLEMENTATION NOTES ON L4 19

message to an exterior task has to pass through each chief of each clan involved.
This needs to be used in order to build secure systems. The clans and chief-model
has been dropped for the more flexible IPC-redirection model [8], which will be
part of the forthcoming API.

2.6 Implementation Notes on L4

Most system calls can be implemented so that they are time-bound. Therefore, the
system calls can be executed with disabled interrupts since they are short enough
to run atomically. There are some issues with this scheme, though. First, there
is the long message transfer time when many message words (often referred to as
long IPC). Then there is the time taken to unmap a page. Since a page frame can
be mapped arbitrarily often, there could be an arbitrary number of page tables that
have to be changed. These issues can prevent realtime systems with tight time
constraints to be used on top of the�-kernel because the maximal response time
to signals or interrupts could be prolonged by the noted system calls.

The long IPC can be implemented in way that copying from one address space
to another is preemptable. If the copy operation is interrupted, it is simply resumed
at a later point in time. All other message transfers are relatively short and thus
do not interfere with the time constraints. The un-mapping of a page is a bit more
problematic because the operation is heavily accessing kernel internal structures.
Even worse is the fact that the duration of the system call depends on the amount
of existing mappings. It is possible to make the system call preemptable, though,
if the accessed kernel structures are locked for the duration of the modification.
One problem with locks is that it adds to the complexity of the kernel when, e.g.,
destroying a thread which is holding a lock. The usage of a lock-free mechanism
to ensure consistent data structures would pay off here. Another possibility is
to restrict the amount of mapping the system is allowed to do, but this requires
changes to the API itself and is therefore not an option for an implementation
using the L4-X.0 API.

20 CHAPTER 2. THE L4-�-KERNEL

Chapter 3

Design

3.1 Conceptual Design

There are many ways to achieve a persistent system. A conceptually simple and
well-understood method is the periodical generation of a checkpoint. The main
problems tied to this checkpoint model is the generation of consistent checkpoints
and the recovery of the state after a system crash. This work proposes periodical
checkpoint generation as a way to achieve a persistent system and describes how
to implement it upon a modern�-kernel. These checkpoints are per-machine and
not synchronized with any system external entity. Also, synchronization between
persistent and transient tasks, threads and further objects are not discussed.

The vision of this work is to implement a transparent user-level checkpoint
server acting as a memory pager that makes regular snapshots of the persistent
applications. Moreover, this should work orthogonal by other user-level services
(pagers, file systems, security layers, etc.). Figure 3.1 gives an overview of the
envisaged run-time environment. Every application that has all its memory backed
by the checkpoint server is going to be persistent.

3.2 Persistent and Transient Objects

In a real system there will always be a mixture of persistent and transient objects.
In Figure 3.1 transient objects are all components beneath or next to the check-
point server or components which are explicitly marked transient. These include
device drivers, which can not be made persistent since hardware usually has some
implicit transient state, and other system services that implement the proper pro-
tocols for object handling in context of these devices. In case of a traditional file
systems, all objects dealt with are explicitly persistent because they store their
state on a stable device.

21

22 CHAPTER 3. DESIGN

Network Screen

Checkpoint ServerDisk

Driver

L4−µkernel

User Level

Kernel Level

Persistent Tasks

Transient Tasks

Transient Pager Persistent Pager

Calender

persistentpersistent

Application

transient

Application

transient

Application

Figure 3.1: Architectural overview

Persistent applications might want to use these services and other transient
services or applications (e.g. a time server or remote web site). In order to support
interaction between transient and persistent applications, a system can only offer
basic mechanisms to detect inconsistencies. Using this mechanism a protocol
can be implemented that ensures the consistency of the shared object. A general
method to recover from this inconsistency would be to invalidate all connections
to transient applications and restart the corresponding operations. These problems
are not discussed in this thesis.

3.3 Implicit Persistent Objects

Implicit persistent servers and applications are applications that originally do not
include persistence. This is now added by transparently changing the set of system
servers used by the application. The servers handle open connections, dangling
references to transient services and consistence problems. Pagers and other legacy
services that are explicitly persistent have to be exchanged and have either to be
persistent themselves or recoverable. This new user-level environment takes care
of generating synchronized checkpoints of the main-memory of the application,
the kernel memory state, and backing-store state.

Most implicit persistent applications are going to use a legacy filesystem, since
they are not aware of their persistent nature. The normal usage of a stable stor-
age system could lead to consistency problems. For instance, an application reads
some data� from a file, alters it to�� and writes�� back to the file. If the system
crashed before a checkpoint includes the changed disc state, the previous check-
point is flawed. Upon system recovery, an application state is recovered that is
prior to the disk access and therefore resembles a state when the application ex-

3.4. MAIN-MEMORY CHECKPOINTING 23

pects� within the file, but gets��. Therefore, a recoverable filesystem is needed
for implicit persistent applications. This can be achieved using a recoverable-disk
driver that maintains the disk state of the last checkpoint and the modifications
made in between checkpoints. Using this, the previous disk state can then be
recovered.

3.4 Main-Memory Checkpointing

In L4 address spaces are constructed recursively. Hence it is sufficient to have one
initial persistent address space to construct further persistent ones. This initial
address space offer persistent memory to other applications and is responsible
to periodically store all used pages to stable storage. Since all memory frames
given to persistent applications belong to the checkpointer, the checkpointer has
full access to the memory of its clients. Therefore the clients have to trust the
checkpointer. The checkpointer can be introduced somewhere within the pager
hierarchy. If it is inserted above all persistent pagers, it automatically checkpoints
all physical memory frames used by persistent applications including all mapping
information stored by their pagers.

Kernel state of a thread is also stored in some kernel structure which is located
within the main memory. Let’s assume for now that this is magically included in
the memory checkpointed by the user level checkpoint server. How this is going
to work is explained in detail in Section 3.5.

3.4.1 Write-back of a checkpoint

As all external pagers, the checkpoint server itself is a regular user-level task.
Therefore it is subject to interruptions. These interruptions may occur at any time
during the checkpointing algorithm, even while writing a memory page to disk.
During the interruption a persistent application might be scheduled that could
try to change its state and thereby modify the memory currently checkpointed.
This is not a desired behavior since the consistence of the checkpoint is violated.
Therefore, the storing of the memory snapshot has to be atomic. Atomicity could
be achieved by several means. One could virtually suspend all other threads, by
modifying the priority of the running threads or telling the kernel to stop all other
threads. This would ensure global serialization of the write-back and all other
threads. Fortunately it is already sufficient to ensure that all persistent memory
is write protected. This way transient applications can run concurrently to the
checkpoint server. Furthermore it is possible to execute the persistent applications
concurrently if they are not allowed to modify memory which has not been stored
on a disk yet. The checkpoint server can now achieve a consistent snapshot of

24 CHAPTER 3. DESIGN

01
1

even mapping information
odd mapping information

partition 0 partition 1

partition header indicates last valid checkpoint pointer

Figure 3.2: Partition Layout: The partition header indicates which block of
������-bits has to be used. These bits tell which disk block has to be indexed.

the memory by marking all page frames given to persistent tasks read-only. At
this point persistent threads are virtually suspended because every write access to
memory causes now a page fault. Every page fault is propagated through the pager
hierarchy and ends up at the checkpointer. Since the checkpointer is currently
taking the checkpoint the page fault handling is delayed until the checkpointer
has taken a consistent snapshot of the system image. Thus the checkpointer has
control of all write accesses that might render the snapshot inconsistent. After the
snapshot has been taken the pager could now either eagerly or lazily write any
altered page frame to disk. Upon page faults it could either delay the mapping of
the page until the snapshot has been written to stable storage, or copy it to a buffer
and remap the page frame writable. This way persistent tasks do not have to be
suspended fully during the write-back of the checkpoint, only during the copying
of their pages.

The checkpoint mechanism used is based upon similar mechanisms as in Eros[9],
KeyKOS[10] and L3[11]1. On the disk there are 2 disk blocks allocated for each
page frame. These blocks are located on separate partitions and are used to store
the data of separate checkpoints. A�������	
-bit exists per page frame that in-
dicates which disk block contains the valid checkpoint of the corresponding page
frame. If the contents of a dirty page should be written to disk the page is stored
in the disk-block not indicated by the�������	
-bit. If a crash happens during the
write operation there is a valid memory image on disk, but without the�������	

bit-map it is not reconstructible. Therefore this bit-map has been stored on disk,
too. Since the writing of a disk block can fail, an inconsistent disk image of the
snapshot may occur. Thus a similar technique is needed for storing the�������	
-
bits. For each checkpoint a disk area is allocated that stores all�������	
-bits of a

1The algorithm is a fair bit older, but the quoted ones are related to�-kernels and therefore
more similar to this than database systems.

3.4. MAIN-MEMORY CHECKPOINTING 25

1

2

3

4

5

6

7

?

?

Physical memory

Checkpointer

Task A’s pager

Task A

(a) Page faults are propagated up

requests the page frame from
stable storage.

to the checkpoint server which
(b) Once the page frame is copied
into the main memory, the mappings are
propagated down to the faulting task.

Figure 3.3: Cascading page faults. The numbers enumerate the order in which the
steps are taken. The arrows in Figure (a) indicate page fault requests(IPCs) or data
requests from disk to memory. In Figure (b) arrows indicate mapping of pages or
data transfers from disk to memory

checkpoint. To distinguish in which of these areas the valid partition-bits reside,
an overall checkpoint state is introduced (odd, even). The changed�������	
-bits
are written to the disk-area which contains the outdated�������	
-bits of check-
point prior to the last valid one. The principal partition layout is shown in Figure
3.2. An optimization of this checkpoint mechanism could write logs to minimize
seek time whenever the amount of dirty pages is low. Since the amount of dirty
pages depends on the checkpoint timing, it may pay off to reduce this time to
benefit a log-structured disk usage.

3.4.2 Recovery of Memory Pages

After a system crash no applications are running and all address spaces are empty
since all kernel internal data structures describing threads and address spaces are
lost. These have to be rebuilt somehow. Now, if a persistent thread of a task is
restarted magically by the kernel it would try to read its code. However, since
the address space is empty the access generates a page fault exception. The page
frame is backed by a thread-specific pager that manages this address space. There-
fore, the page fault is propagated to the pager of the persistent thread (see Figure
3.3, label 1). The pager receives the message and tries to execute the necessary
algorithms to remap the page to the persistent thread. Since its address space is

26 CHAPTER 3. DESIGN

empty too, its code is missing and another page fault exception occurs. This page
fault has to be resolved before the actual page fault of the persistent thread can
be resolved. Since the pager is persistent and its address space was constructed
from another one, its pager has to resolve this page fault. Once the pager is able
to handle the request it accesses the requested page, thereby generating another
page fault that is sent to the checkpointer (label 2). The checkpointer now tries to
find the appropriate page-frame within its mapping data and read the correspond-
ing page from the disk (label 3). The address space of the checkpointer is not
implicitly persistent, but restored manually at startup time. Therefore no further
page faults happen here. After the page has been transfered to memory (label 4)
the page appears within the checkpointer’s address space (label 5). The check-
pointer then maps the page to the pager to answer the page fault request (label 6).
The pager now continues the map operation started earlier and remaps the page
received from the checkpointer to the faulting thread (label 7), allowing the thread
to access its code and continue running. This procedure is now going to happen
for every page mapped previously to the application address space.

3.5 Kernel Checkpointing

To restart a thread in a certain CPU state, a checkpointer needs access to the regis-
ters of a thread and its kernel state. This data is stored in the kernel memory. For-
tunately the design of L4 allows us to relatively easily concentrate all necessary
kernel information in the thread control block. Moreover, as seen in the previous
section, there is no need to include any mapping information or page table struc-
ture, since page faults are handled by external pagers and these have to store the
mappings themselves. Therefore, upon system restart, the mapping database and
the page-tables are reconstructed dynamically during runtime. The kernel uses the
mapping instructions in steps 5-7 in Figure 3.3 to rebuild the mapping database
and the page-tables of the persistent task.

To make a consistent checkpoint of each persistent application’s kernel state,
we need to have access to the kernel memory containing all TCBs of persistent
threads. This could easily be achieved if there was a trusted user-level pager from
which we could allocate pages for TCB-memory. Since all persistent applica-
tions have to trust the main-memory checkpointer, to use it also as TCB pager is
just the next logical step. Thus all page frames for TCBs are allocated from the
checkpointer (see Figure 3.4).

The TCB pager takes regular snapshots of the TCB pages by mapping all
pages read-only (see Figure 3.5). If the kernel tries to modify a write-protected
TCB (label 1) a page fault is raised and sent to the TCB pager (label 2). The
checkpointer looks up whether the page has been written to disk. If the page is not

3.5. KERNEL CHECKPOINTING 27

A

user−level memory

kernel memory
Checkpointer

Kernel

code/data
TCB−Area

BA C

CB

Figure 3.4: TCB paging. The user-level checkpointer owns the pages residing in
the TCB area of the kernel. The mappings from the checkpointer’s address space
to the TCB-Area are indicated by arrows.

stored yet, the page is copied into a buffer (label 3) for later write-back. Thereafter
the old page is mapped writable to the kernel (label 4) and the suspended kernel-
internal operation is restarted.

Looking at the pager hierarchy in L4, it is easy to see that not all TCBs could
be allocated from the TCB pager. For instance the TCBs for�� and the TCB pager
itself must be writable, otherwise the system could not schedule them. Therefore
it makes sense to preallocate a small amount of TCB-pages for basic transient
system services (��, TCB pager, Disk driver, and so on), basically all threads
started prior to the checkpointer. Since these TCBs are not needed for a consistent
checkpoint the TCB pager does not need access to them. These TCBs could, for
example, either be preallocated by the kernel and tagged with fixed thread IDs or
be all threads and TCBs are tagged persistent or transient through a protocol with
the checkpoint server.

To optimize response time of the system during the write back of the check-
point, one should not blindly mark all TCB-pages copy-on-write. Since some of
the mapped TCB pages might contain TCBs of transient threads and need not be
mapped read-only. The amount of kernel-page faults can thus be reduced and the
number of threads to schedule enlarged. In any case, the information about which
TCB is persistent and about which not has to be stored somewhere by the TCB
pager. Therefore this information could be used to sort out the persistent threads
and specifically unmap the TCBs of these. This requires that the checkpointer has
detailed knowledge of the TCB structure or mapping since it has to distinguish
TCBs of persistent and transient threads.

28 CHAPTER 3. DESIGN

user−level memory

kernel memory
Checkpointer

Kernel

code/data
TCB−Area

A B

BA

1

?2

Kernel Page−Fault

user−level memory

kernel memory
Checkpointer

Kernel

code/data
TCB−Area

A B

BA B

3

4

TCB−Pager handle KPF

Figure 3.5: TCB copy-on-write-scheme: The TCB pages are marked copy (dark
grey). The kernel raises a page fault while modifying the thread B’s TCB. The
page fault is sent as an IPC to the TCB pager which handle the page fault.

3.6 Kernel Recovery

3.6.1 Recovering TCBs

After a system crash the TCB area is empty except of the TCBs of the basic
system services like disk driver,��, the checkpointer and so on. In order to recover
persistent tasks, the kernel has to ask the checkpointer, using a simple protocol,
which TCBs it should try to recover. The kernel then tries to access the virtual
address of the TCBs he should recover. This raises a page fault which is sent to
the TCB pager as explained in the previous section.

After the kernel received a TCB from the TCB pager, it has to integrate it into
its kernel-internal structures and recover the previous thread state. All kernel in-
ternal queues are restructured at this point of time. That is, all TCBs are enqueued
in a present queue and, depending on their thread state, in further queues. More-
over, each queue can be reconstructed in any internal order since applications can
make no assumptions about the order within the queue.

3.6. KERNEL RECOVERY 29

3.6.2 Recovering In-Kernel Threads

Ideally no persistent thread should be “inside the kernel” during the generation of
a checkpoint. However, due to preemptable and ongoing IPC-operations, many
threads could be inside the kernel. Strictly speaking, all threads besides the cur-
rently running one are inside the kernel because there can be only one thread
executing at a time on a single-processor machine. Therefore, all system calls
must either be restartable, or the thread has to be put into a consistent state during
system recovery. Even though the L4 kernel was not designed with persistence in
mind, all system calls except IPC are restartable. Thus, if a TCB is found to be
checkpointed during a system call, it is restarted by setting it back to user-level
onto the instruction that started the system call. The TCB would look like the TCB
of a thread that had been preempted right before entering the kernel. This scheme,
however, would only work if all system call parameters are stored in a well known
place. Fortunately, all system calls have register-only parameters. Therefore, by
using the register values saved in the TCB at kernel entry, a kernel stack frame is
constructed that starts the thread right on the instruction that entered the kernel.

3.6.3 Recovering IPC

The IPC system call cannot be restarted unconditionally because it may consist
of two phases: a send phase and a subsequent receive phase. Each phase on their
own is restartable since the indication that the thread is still doing the single-phase
IPC-operation leads to the conclusion that the message has not been sent/received
yet. An interrupted long IPC operation would simply be restarted, which would
just result in copying the whole message again. This is not serious, however, since
system performance at recovery of the system is not a crucial issue. The assump-
tion that a thread still doing an IPC has not sent/received the message holds, even
if a long IPC has been interrupted by a page fault, and the checkpoint has been
taken during the page fault handling. As such, the kernel just has to determine
whether the interrupted IPC was a two-phase operation or not. If the checkpoint
is taken after a completed send phase, but before the combined receive phase has
been completed, restarting the system call would repeat the send phase a second
time and send a message even though the checkpointed recipient has received the
first message. This message duplication can break any protocol relying on the as-
sumption that IPC does not duplicate messages. The problem of duplication could
be prevented by evaluating the thread state of each thread checkpointed during an
IPC. If the thread has already sent its message and is thus waiting to receive a
message, the send phase of the IPC is skipped by altering the stored parameters
of the system call (i.e., altering the parameters to not include a send-phase). On
a restart of the system call the thread enters the receive phase directly. Uncom-

30 CHAPTER 3. DESIGN

pleted send operations of two-phase IPCs are simply restarted in the same manner
as single-phase IPCs.

One open issue remain here. What should be done with IPCs that bounded
their period of validity with a timeout? All IPC with zero or infinite timeouts pose
no problems. The former IPC would be aborted with a timeout-error before the
checkpoint could be taken, and the latter is just restarted since the timeout is still
valid. Non trivial timeouts are a problem however. Basically there are two models
of timeouts that have to be discussed. (1) Timeouts given relative to the current
point of time (e.g. in five seconds) and (2) timeouts that specify a fixed point in
time (e.g. Monday 11:00 AM). The first timeout is based upon the current system
time which does not tick during a power-off or system crash. This time model
describes computation time. Since the computation time does not tick during a
system downtime the relative timeout might not be exceeded. The second time
model is based on the absolute time of the external environment (i.e. wall clock).
This time ticks during the system downtime and therefore timeouts could have
been due much prior to the system restart or could be still valid. The desired be-
havior for these timeouts is to continue all IPCs with absolute timeouts that are
still valid and return a timeout error-code in all other cases. Since the current L4
Version X.0 and L4 Version 2 API do not support absolute timeouts, the current
implementation return timeout errors for all IPCs waiting on a non-trivial timeout.
Since applications using timeouts have to be able to deal with timeout errors in the
first place this behavior is transparent to persistent applications. One might think
of sending a further error code to the application explaining the timeout in detail,
because this might help persistent applications that are aware of their persistence.
But this behavior is not transparent to implicit persistent applications. Further-
more, if the persistent application wants to know whether the timeout occurred
due to system crash, it could simply contact the checkpoint server or another sys-
tem component that keeps track of this.

Chapter 4

Implementation

4.1 Implementation on L4Ka/Hazelnut

The envisaged system should be added transparently to user-level threads, thus
should make no or only transparent changes in the L4 X.0 API. Furthermore the
proposed system should allow the coexistence of transient and persistent tasks. All
new mechanisms that implement the persistent tasks should work orthogonally to
the normal kernel operations and rely as far as possible on existing mechanisms
to show the flexibility of the L4�-kernel and the ease of adapting it to new needs.

4.2 L4Ka: An L4 compatible �-kernel

L4Ka is an implementation of the experimental L4 API Version X.0. It has been
implemented at the System Architecture Group of the Universit¨at Karlsruhe and
is currently in active development (see [1]). It is written in C/C++ and assembler.
The assembler parts in L4Ka handle hardware specific setup and startup routines,
generate a kernel stack layout at kernel entry compatible to the C-calling conven-
tion, implement hardware specific kernel entry/exit points for system calls and
exceptions/interruptions, perform the thread switch and an experimental hand op-
timized IPC path. The C routines implement the portable kernel abstractions and
mechanisms like scheduling, page fault handling and system calls.

4.2.1 Thread Control Blocks

Threads are implemented in L4Ka through thread control blocks (TCBs). The
TCB of a thread contains all thread context and kernel data needed to administer
it. The context information consists of a thread state which specifies which threads
are������	,
����� or ������, the kernel stack pointer, a thread ID (TID),

31

32 CHAPTER 4. IMPLEMENTATION

TCB

TCB

TCB

TCB

4 kb aligned
kernel page

1 kb aligned
TCB struct

Kernel
Stack
Pointer

 Thread ID

Kernel Stack

State

Page Table

Ready Queue

....

....

End of Struct

Figure 4.1: Alignment of 4 TCBs with each 1 KB size within a 4 KB memory
frame.

the TID of its pager, a reference to the page table of this address space and several
scheduling parameters as well as all pointers for kernel internal thread manage-
ment queues. All these kernel queues are implemented by doubly linked lists. The
present queue contains all TCBs of existing and valid threads. Theready queue
holds all runnable threads ordered by scheduling priority. Thewakeup queue
stores all threads that blocked on an IPC timeout. These queues are all global
ones. A further local queue exists per thread which stores all threads wanting to
send an IPC to this thread.

The TCB structure is co-located with the kernel stack of the corresponding
thread (there is a kernel stack per thread). The kernel stack and the TCB have a
combined size of 1024 bytes and are aligned to�

�� byte borders. Thus, on the x86
there are 4 TCBs within on page frame (see Figure 4.1). The TCBs are located
within a special virtual area within the kernel memory, the “TCB Area”. Having
the kernel stack reside inside the TCB allows easy lookup of a TCB if the kernel
stack pointer (KSP) of a thread is known. A pointer to the top of the TCB-structure
could be obtained by simply clearing the lower 10 bits of the kernel stack pointer.

4.3. COPY ON WRITE SCHEME 33

0xF00000000x00000000

protected kernel memoryuser addressable memory

TCB−Area
Kernel Code

1:1 physical mapping of all pages

0xFFFFFFFF0xC0000000 0xE0000000

Figure 4.2: Mapping of the kernel memory. Starting from address����������

all physical memory frames (starting from address����������) are contiguously
mapped.

4.2.2 Scheduling and Dispatching

In the TCB there are several fields containing information for scheduling pur-
poses. Each thread has a specific priority level between 0 and 255. This implies a
precedence relation. A runnable thread with a higher priority is always scheduled
before any runnable thread with a lower priority. Several threads can have the
same priority level. Within each priority level the threads are treated equally and
scheduled in a round-robin fashion.

To reduce the number of special cases within the scheduling code, a runnable
idle-thread always exists. The idle thread has priority� meaning that it is only
scheduled if there is no other runnable thread in the system. It does not have a
user-context and always runs in kernel-mode.

4.2.3 Kernel Memory Mapping

In every virtual address space L4Ka reserves the highest 1 GB (on a 32 bit sys-
tems) for internal usage. This memory area is called kernel memory. It is not user-
accessible, thus protected from modifications of malicious or buggy user threads.
The kernel memory is shared in all virtual address spaces. Certain kernel memory
areas are dedicated for special use (see Figure 4.2). On the x86 the address area
��������������������� is the TCB area, where all TCBs are stored. Starting
from address���������� L4Ka maps all lower 256 MB physical memory frames
contiguously. Within this area the kernel code is linked.

4.3 Copy on Write Scheme

In conjuction with the TCB pager there are many possibilities to implement a
snapshot mechanism for TCB pages within the L4Ka kernel. A kernel internal

34 CHAPTER 4. IMPLEMENTATION

implementation of the copy-on-write scheme could check each TCB on every
access whether it is copy-on-write or not. This imposes a high overhead due to the
added checks, in particular for preemptable system calls, since all checks have to
be done again on every preemption. Furthermore the user-level pager backing the
TCB area should decide to some extent which checkpoint policy to implement. It
might chose to write all TCB pages eagerly or lazily to disk. The kernel should
work as efficient and flexible as possible regarding all these situations and this
should be reflected in the implementation.

A simpler way to implement the copy-on-write scheme would be to remap all
persistent pages read-only during a snapshot. This imposes almost no extra check-
ing overhead in the kernel, since the hardware performs all necessary checks. The
kernel just has to cope with the possibly generated page faults. One might think
the kernel has now to assume a page fault on every TCB write access but this
assumption can be relaxed.

A TCB pager might choose not to implement a copy-on-write scheme this
way, or at all. After all, from the kernels point of view TCB pages are either
mapped read-only or read/writable. Therefore, in the following discussion the
term “marked copy-on-write” is not used since the semantical point of view lies
at the implemented user-level pager.

4.4 Resolving Kernel Page Faults

After writing to a write protected TCB a page fault is triggered. The CPU jumps
to the exception handler and the kernel tries to resolve the page fault. In order to
resolve the kernel page fault the TCB pager has to be notified somehow. This is
handled by sending a page fault message to the TCB pager through the normal
page fault handler mechanism. This has a drawback, since the IPC mechanism
implemented in L4Ka heavily relies on the usage of the participated thread’s TCBs
and IDs to send and receive the message. However, the kernel does not have a TCB
nor a thread ID of its own. Furthermore the communicating threads are blocked
until the message is delivered.

4.4.1 General Solutions

In general the faulting thread might look as a good choice to send the page fault
message from since it cannot continue with its operation until the exception is
handled and the accessed TCB is writable again. Strictly speaking whenever a
thread interacts with a write-protected thread this is its own problem. For instance,
if thread A wants to change the scheduling parameters, IP, SP or pager of thread B
while B’s TCB is write-protected the access raises a page fault. It is not possible

4.4. RESOLVING KERNEL PAGE FAULTS 35

to send a page fault message in the context of B because its TCB is not accessible.
But since thread A’s program relies upon the assumption that the state transition
of thread B has taken place, it has to be suspended during the page fault handling
anyway. Therefore thread A’s TCB could be used to send the page fault message
to TCB pager.

An alternative to this solution is to handle all kernel page faults with a dedi-
cated kernel thread1 and thereby allocate a TCB and a valid thread ID as a proxy
for the kernel. All faulting TCB pages are then queued into a special queue that
is cleared by this kernel thread. As long as this queue is empty the thread sleeps.
Upon a page fault the handler enqueues the TCB page in which the page fault
occurred into the queue and wakes up the proxy thread if it is sleeping. This looks
up a faulting TCB page from the queue, sends a page fault message to the TCB
pager and waits to receive a new mapping for the TCB page. After a new message
is established it removes the TCB page from the queue. Since there is more than
one TCB in a TCB page the page fault handler should ensure that a page only gets
enqueued once. However, all threads originally faulting on the TCB page have to
be blocked during the page fault handling and have to be resumed afterwards. It is
therefore necessary to implement some kind of event system so that each blocked
thread is resumed after the TCB page it accessed gets available.

4.4.2 Special Cases

The first proposed solution sounds quite reasonable regarding most user level
threads. But there also exist several kernel threads which also access TCBs and
therefore could raise a page fault on these. One of these is the idle thread. The
idle thread runs if there are no further runnable threads in the system. This is a
critical thread since the kernel relies upon that it is always runnable and never
blocked. But if the idle thread raises a page fault and one applies the solution
proposed above, the idle thread would block. Furthermore the TCB pager cannot
send a map messages to the idle thread since the thread ID of the idle thread is
invalid. That is, it is not possible to block the idle thread and send a page fault
message. Therefore it is not possible to use the context of the faulting thread un-
conditionally. A further example is the TCB pager itself because it is not able
to transparently resolve its own page faults and send a page fault message to it-
self. Since the TCB pager might depend on disk-access, the same argument is
applicable to device drivers used to access the disk.

If the idle thread or another critical thread accesses a write protected TCB the
page fault message has to be send differently. Since the number of these excep-

1A kernel thread is a normal thread without a user-level context or user address-space. It is
able to run only in kernel mode and never switches to user mode.

36 CHAPTER 4. IMPLEMENTATION

tional cases is relatively small they could be handled within the page fault han-
dler. To do so, the handler has to check the ID of the faulting thread to determine
whether the thread can be blocked or not. This check has to be performed on every
page fault, but since handling of a page fault is not a time critical operation the
additional overhead is neglected. To resolve the special cases a dedicated kernel
thread� could be used to resolve all TCB page faults of critical threads.� sends
the page fault messages to the TCB pager and resumes the thread blocking on the
page fault of the corresponding TCB page.

Except for the special case with system critical threads noted above, there
seems to be nothing that objects to the idea of using the context of the faulting
threads. However, at a closer look there are several other cases which do not
permit the blocking of the faulting threads (e.g., transient realtime threads and
so forth). Strictly speaking, any thread with no active relationship to the write-
protected TCB should not be blocked. Thus only threads actively accessing the
read-only TCB should be blocked. Therefore realtime threads could fulfill their
time constrains by avoiding all contacts to persistent threads.

4.5 TCB Allocation

The current L4Ka deals with non-existent TCBs very simply. A special write-
protected zero-page is mapped at every empty TCB location. There are a number
of reasons for this. It removes the need to keep track of allocated TCBs in a table
since every write access to an empty TCB location results in a page fault and a
new TCB could be mapped into this. Given a thread ID of a non existing thread
no special case handling has to be introduced since a comparison of the thread ID
stored within the TCB and the given ID reveals whether the thread exists and is
active or not. The page fault handling code catches every write fault within the
TCB area and recognizes this fault as a page allocation for TCBs. It fetches a page
from a central page pool that is allocated from�� for kernel internal structures at
startup and maps it to the empty TCB location.

For a kernel supporting persistent threads, to map a TCB page the user-level
TCB pager must be involved. This is achieved by having a page fault IPC sent to
the TCB pager. Following the discussion of chapter 4.4 the context of the thread
that tried to start the new thread is used to send the IPC. Through the usage of an
existing TCB the standard IPC-mechanism and mapping-mechanism can be used.
There is no problem in suspending the current thread, because it has to wait until
the TCB is allocated and its system call that resulted in the TCB page fault can
finish.

4.6. CHANGES TO THE MAPPING IMPLEMENTATION 37

4.6 Changes to the Mapping Implementation

The mapping mechanism maps pages from a given address�� within an address
space�� to a second address�� in an address space��. It simply copies the page-
table entry� of the virtual address�� into the page-table entry� of the virtual
address�� of ��. Depending on the mapping parameter, the access-rights of the
page-table entry� are set to either read-only or read-write. If the map operation
is a grant, the page-table entry� is removed from the address space��. It is not
possible to map within the same address space (�� � ��) since this would allow
easy DOS-attacks2, but it is possible to grant a page within the same address space.
The mapping is also stored within a kernel-internal mapping database to support
later unmapping of the pages.

During the normal mapping of a page several access restrictions apply. The
receiver of a mapping can specify the virtual address to accept the mapped page.
Furthermore normal user-level threads are obviously not allowed to map pages
into the kernel memory. This constraint has to be relaxed for the checkpointer,
however, since we have to trust the checkpointer to map into the TCB area. Cur-
rently this check is enforced by allowing a thread with a specific thread ID (set at
compile time) to map and unmap pages within the TCB area. To set this parameter
at compile time is a bit inflexible, but it could also be passed via the kernel info
page. Anyhow, the kernel needs to know the ID of the TCB pager anyway, or it
would be unable to generate TCB pagefaults.

4.7 Kernel Internal Structures

As mentioned earlier all queue pointers are located within the TCBs. Thus, no
further memory constructs have to be allocated for thread management. At first
this does not look like a problem, but it complicates all handling of queue struc-
tures since all memory frames of persistent TCBs are mapped read-only during the
write-back of a checkpoint, disallowing even the kernel to perform write access to
the TCBs. If a writable TCB of the current thread (e.g., a transient thread) has to
be dequeued from a queue, any of its neighbor TCBs could be a persistent thread
with a write-protected TCB. Figure 4.3 illustrates the problem. To dequeue the
TCB found in the middle of the picture it is necessary to modify the��� pointer
within the previous TCB and the������� pointer within the next TCB. Thus
the dequeue-operation is going to raise a page fault whenever any of the adjacent
TCBs are within a write-protected page frame. As such any queue operation could

2The denial of service attack could consume kernel internal memory by mapping a page re-
cursively within its own space, eating up memory for both page tables and mapping database
structures.

38 CHAPTER 4. IMPLEMENTATION

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

TCB to be
removed from queue

write−protected
TCB

next next

previousprevious

Figure 4.3: The TCB to remove from the queue is in the middle. The access to
next pointer of the previous TCB raises a page fault.

result in a page fault. It is not an option to postpone the queue modification until
a page fault message is sent to the TCB pager and the page fault is resolved be-
cause the kernel (e.g. the IPC code) depends on queue operations to be performed.
However, the queue-pointers need not be persistent since all kernel queues are re-
built at startup. Hence we can implement a special case handling to allow write
access to a write-protected TCB for the duration of the queue operation.

A possible solution to handle this special case would be to extend the access
rights for the page and to diminish them after the queue operation. This could be
done right before and after every modification within the queues. Since queuing-
operations are very frequent operations within the L4Ka�-kernel, performance
would seriously suffer. Therefore it is not an option to modify the page-table
entries within every queue-modification. It may be possible to do a special case
handling within the page fault path to resolve the exception when needed. This
could happen in different ways. The value to store could be extracted from the
exception frame, the access right extended, the store operation executed on behalf
of the faulting and the access right diminished again.

For L4Ka there is a simple way to solve this problem. As described in chapter
4.2.3, there is a writable mapping of the first 256 MB physical page frames in the
kernel starting from address����������. If all queuing operations are done using
this second mapping no page fault occurs at all. By storing a pointer to the second
mapping within each TCB, the complete overhead to access the queue-field can
be reduced to an indirect addressing. The problem of this solution is the limited
scalability of main memory since the size of the mapping area in the kernel is
currently 256 MB. This problem can be solved in the TCB pager by preallocating
enough physical memory below 256 MB border for TCBs.

4.8. SYSTEM CALL MECHANISM 39

4.8 System Call Mechanism

L4Ka uses 2 different hardware mechanisms on the x86 to enter the kernel. Widely
used there is the “software interrupt” mechanism. Software interrupts are syn-
chronous exceptions generated by the user application. The x86 hardware in this
case pushes an exception frame3 onto the kernel stack and jumps to a specific en-
try point yielding control to the kernel. Depending on the exception generated, the
kernel calls the appropriate system call function. As mentioned in Chapter 3.6.2,
it is necessary to store all parameters passed via registers. This is done by pushing
all registers onto the kernel stack before the kernel tries to reorganize the stack4

to call the appropriate C-function for this system call. After successful execution
of the system call the C-function return to a special return function which is an
assembler macro loading the returned parameters into the registers and returning
to the user application.

Since the usage of software interrupts is expensive on the x86, a special mech-
anism to trap into kernel was introduced with the Pentium Pro. The new mecha-
nism uses two instructions,������ and������, to enter and exit the kernel.
Using the sysenter/sysexit mechanism fewer cycles are needed to enter the kernel,
but the kernel code needed to invoke the system call and return to user-level is
more complex. The mechanism is used in the fastest implementation of the IPC-
path in L4Ka. It is possible to use the mechanism in a persistent L4Ka too, but
was not implemented due to the complexity of the mechanism itself.

4.9 Thread Switch

In order to make a thread switch, the context of the thread currently running has
to be stored on the kernel stack. Since in L4KA the kernel stack is within the TCB
this stack could also be write-protected. As such, the kernel stack of the thread
we would like to switch to could be write-protected, too. This poses a problem
because the x86-hardware relies on the assumption that the kernel stack is always
writable. The stack is needed by the hardware to store the reason for the fault and
the last context before the fault occurred. If this write fails, another fault is raised.
The hardware tries again to store the reason for the fault and the last context as
well which raises just the next fault. To avoid endless recursion the processor
reboots on three consecutive faults not handled properly (triple fault).

3Within the exception frame the user-level stack pointer and return address are stored, along
with code-segment and stack-segment selector.

4This is has to be done in order to achieve a stack compatible to the C-calling convention used
within the kernel.

40 CHAPTER 4. IMPLEMENTATION

Thus it is crucial to always have a writable kernel stack on the x86. There-
fore the current context is stored on the kernel stack and, before the real switch
is done, the TCB of the next thread is accessed before changing the stack point-
ers like in normal thread switching. If the next TCB is write protected the page
fault is handled specially within the page fault handler. To distinguish the fault
from a normal kernel page fault, different methods could be used (e.g. setting a
global variable). The implemented solution uses a writable temporary stack when
accessing the TCB of the next thread. If no page fault occurs, the write access is
successful and the kernel just completes the thread switch by loading the current
kernel stack pointer from the new TCB. If a page fault occurs the exception frames
is pushed on the temporary stack and the page fault handler code is executed. The
special kernel stack pointer can then be detected, indicating that the new TCB is
write-protected. Since the context of the thread the kernel just left is secured on
its kernel stack there is no further clean-up necessary. The cost for this are four
additional memory accesses and one additional load of the stack pointer register.
It is possible to reduce this overhead to only two memory accesses, but this would
make the special case handler much more complicated.

Since a thread doing a system call should experience it as an atomic operation
the thread-switch operation should block the last thread and use its context to
send the page fault message if it tried to make a thread switch to a write-protected
destination thread using a system call as�� ���
� ������ or as part of an IPC
operation. In the case of a thread switch due to an end of timeslice the context
of the current thread should not be blocked. How to send a page fault message in
this case was discussed in Chapter 4.4.

4.10 Changes to the IPC implementation

The IPC mechanism accesses TCBs on several different occasions depending on
the type of the message being sent or received. This may raise page fault, because
the TCB of a thread could be unmapped while the thread is waiting for its partner.
There are two cases that have to be carefully analyzed. (1) Communicating with
a persistent thread could block the sender or receiver of a message, and (2) the
interruptible long IPC messages might be interrupted by a page fault originating
from user-memory of either the sender or receiver. The thread state changes mul-
tiple times within this process. If the checkpoint is taken at an inappropriate time,
the recovery mechanism cannot distinguish the thread state of the long IPC and
the page fault IPC.

4.10. CHANGES TO THE IPC IMPLEMENTATION 41

4.10.1 Communicating with persistent threads

Message transfer between threads where at least one thread is persistent is a crit-
ical operation since the TCB of the persistent thread may be read-only and thus
delay the IPC operation until the TCB is writable again. The scheme described
above to send the page fault message within the context of the faulting thread is
suitable for almost all cases of IPC. On a closer look, all IPC modes except the
open receive call specify a distinctive communication partner to wait for. In the
open receive, a thread receives the message of any thread that waits to deliver a
message. The receiving thread does not known from whom it is going to receive
a message. It has agreed upon receiving a message from anyone. For instance, if
a very busy server application tries to receive a new request from a new requestor
and this sender has been waiting for the server some time, it is possible, that the
sender TCB is read-only. In this situation it is questionable to block the receiv-
ing thread since it is not responsible for its communication partner. This happens
quite frequently if a persistent application sends a page fault message to the TCB
pager which does not receive the message yet but instead currently maps all pages
read-only to take a checkpoint. If now the TCB pager tries to handle the next page
fault sent by any thread, a page fault happens during the receive phase of the IPC.
This page fault can not be handled by blocking the faulting thread and sending
a message to the TCB pager since it cannot send a message to itself. Therefore
this case must be handled explicitly. These situations do not occur very frequently
and no checks for this special cases should therefore be included within the IPC-
code since it would degrade IPC performance. Rather, the special case should be
detected and resolved within the page fault handler. The handler can distinguish
threads faulting in an open receive and a plain receive by looking at the receive
parameter. Since this has been stored upon the kernel stack at kernel entry it can
be extracted from there. This is necessary because the receive descriptor is not
stored within the TCB.

After detection of the special case it is necessary to remove the write-protected
TCB from the send-queue of the faulting thread and restart the receive phase of
the IPC, much like recovering a thread which is in an IPC after system crash.
The page fault itself can be resolved by the dedicated kernel thread discussed in
Section 4.4. After handling the page fault the send phase of the sending thread has
to be restarted. It is not sufficient just to enqueue it again in the send queue of the
receiver because this would imply that the receiver is not ready to receive when
the thread may indeed be blocked, waiting to receive. Restarting the whole IPC
is much simpler than programming and maintaining a special trampoline code to
enter the normal IPC-code again at several different places. Since this is a very
infrequent event it is not a critical point for the overall system performance.

42 CHAPTER 4. IMPLEMENTATION

4.10.2 Long-IPC Messages

In L4Ka the message transfer of a long copy message is interruptible. The mes-
sage transfer can be interrupted by a page fault in one of the address spaces or the
end of the current time slice. The transfer is then suspended and another thread
is scheduled. The communicating threads are not runnable until the message has
been transfered. Therefore the kernel does not schedule the receiver of the mes-
sage, but in order to progress it eventually schedules the sender which continues
copying the message5. To achieve this behavior L4Ka has a special thread state
model in which threads currently transferring the message change into a special
state indicating that they are doing a message transfer. Since a checkpoint can be
taken during the message transfer, the kernel has to handle this properly. Fortu-
nately this is not very difficult as the whole message is simply transfered again.

The message transfer may also be interrupted by a page fault within one of
the address spaces. In this situation the thread belonging to the faulting address
space sends the page fault message to its pager and waits for a page to be mapped
into its address space. Note that the thread which was previously not runnable
(due to a message transfer) is now transferring a different message, and is put
into a different state. If a checkpoint is taken during the message transfer of the
page fault message then the thread state stored within the TCB can be completely
unrelated to the actual IPC initiated by the application. For instance, if a page
fault occurs during the message transfer in the senders address space, the kernel
sends the page fault message for the sender and thereafter receives a message
from its pager (see Figure 4.4). Thereby the senders thread state is changed to
receiving. Now consider that a checkpoint is taken after sending the page fault
message, but before the page fault is resolved by the pager and a map message
is sent back to the faulting thread. Then the recovery algorithm would assume
that the send phase of the first IPC has already been executed, and would skip
the uncompleted message sent earlier. Therefore, the thread state of the faulting
thread has to be stored within the TCB prior to sending the page fault message
and erased afterwards. Following this scheme the recovery mechanism can now
correctly recover the last thread-state by checking the saved thread state.

4.11 Changes to the page fault implementation

The page fault handler is invoked whenever a page fault occurs. The modifica-
tions to the page fault handling code and the implementation of the special case
handling described in the previous chapters are straight forward. The only modi-

5This message transfer model is called “active sender” since the sender is transferring the
message while the receiver is waiting.

4.12. RECOVERING TCBS IN L4KA 43

thread
state (copying message)

running waiting
(for the end of the
message transfer)

�������
�������
�������
�������

�������
�������
�������
�������

message transfer

sender’s address space receiver’s address space

thread
state

waiting
(for the end of the
message transfer)

Pager of
Sender

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

message transfer
suspended

map message
page−fault
message

sending (page−fault) /
waiting (for map message)

Figure 4.4: In the upper diagram the message transfer is interrupted by a page fault
in the address space of the sender. It is resolved in the lower picture by sending a
page fault message to its pager and receiving a mapping.

fication of the existing code was the sending of a page fault message to the TCB
pager in case of page fault exception within the TCB area. Since this automati-
cally uses current context no further changes were necessary.

4.12 Recovering TCBs in L4Ka

In Section 4.8 the necessity was discussed for storing all relevant information
(i.e., user registers) within the TCB at kernel entry to recover a thread. Therefore
the recovery mechanism proposed in Section 3.6.3 can be implemented almost
unchanged. The only addition to the recovery mechanism is the saved thread state
discussed in chapter 4.10.2 and a dedicated exit-point that recovered threads use
to return to user-level. The main advantage of storeing all registers on kernel
entry is that all threads have the same kernel stack layout. The exception frame
on the kernel stack just has to be modified slightly during system recovery (i.e.,

44 CHAPTER 4. IMPLEMENTATION

modifying the instruction pointer to point to the instruction that started the system
call before). Thereafter the TCB is enqueued into all necessary kernel queues.

To recover all persistent threads at startup, a user-visible dedicated kernel
thread active only at startup is introduced. Its primary purpose is to send page
fault messages to the TCB pager and thereby initiate the recovery process. Fur-
thermore it recovers all TCBs located within the page frame after the reply of the
TCB pager with the appropriate mapping and thereby restarts the blocked threads.
After the startup this thread could also be used to send the page fault messages as
discussed in Section 4.4.

4.13 Miscellaneous

4.13.1 Floating-Point Registers

In L4Ka there are several kernel-internal operations that are performed lazily, e.g.
storing and restoring of the floating point unit (FPU) state. Since the size of FPU-
state is 128 to 512 bytes on the x86, IPC performance would suffer if it is stored on
every thread switch. Fortunately the FPU-state can be stored on demand. The x86
hardware supports this by allowing locking the FPU. If a thread tries to access the
locked FPU an exception is raised. The kernel searches for the thread that used the
FPU last and stores the FPU-state in its TCB. Thereafter it restores the FPU-state
from the accessing thread.

Having lazily stored FPU state the checkpoint server must ensure the storage
of the FPU-context right before making a snapshot. Otherwise the last state of
the FPU-registers would not be saved, rendering the checkpoint inconsistent if an
application used floating-point operations. It is not sufficient that the checkpointer
simply accesses the FPU and let the kernel do the rest since the checkpointer could
be preempted right before the following unmap of the TCB pages. Therefore
the���
� system call should be modified to automatically store the FPU-context
before unmapping all TCB pages.

4.13.2 �� and L4Ka

In the original design of L4 there is a thread ID reserved for��. This should be
used as the TCB pager that backs all memory needed for TCBs within the kernel.
There are also fields reserved within the kernel-info-page to set up��. In the
current implementation this is not used, since L4Ka does not implement support
for ��.

4.13. MISCELLANEOUS 45

4.13.3 Kernel Memory Management

The L4Ka kernel preallocates a page pool at startup time for kernel internal use.
The pages are used in the non-persistent version of the kernel for TCBs, page ta-
bles and mapping nodes in the mapping database. Since in the persistent L4Ka
kernel TCBs are allocated from the TCB pager, the page pool is only used for the
transient page tables and mapping database. The remaining kernel memory man-
agement is independent of the TCB paging and can therefore be used unmodified.

46 CHAPTER 4. IMPLEMENTATION

Chapter 5

Conclusions

5.1 Achievements

We have seen that the basic concepts and abstractions can easily be modified to
the need of persistent systems on top of the kernel. The mechanisms for user-level
paging of TCB pages and checkpointing has been implemented on top of the L4Ka
and provide the environment proposed in Section 1.4. So far, a user-level TCB
pager and checkpointer is implemented that use an IDE-driver from the Sawmill
system to access the disk. An implementation of a recoverable disk driver as
described in [13] and more thorough testing is needed, however. The implemented
checkpoint server and TCB pager is a bit immature and not optimized, but provide
basic functionality. Therefore no performance measurements have been done yet.
Since this is crucial for a full evaluation of the design decisions the system could
only be partly evaluated.

5.2 Discussion

One open issue with the current implementation is how well it work with other
architectures than the x86. Since the L4Ka is divided into architecture dependent
and independent parts and most of the changes discussed in Chapter 4 are im-
plemented in an architecture dependent part due to their connection to the kernel
stack layout, it may be possible to tackle general issues, discussed in Chapter 3, in
the architecture independent part. The ARM architecture (the only other architec-
ture supported by L4Ka) has a very different exception model (which banks the
kernel registers during a system call), therefore some problems associated with
the kernel stack model of the x86 disappear, but others may arise.

Symmetric-multiprocessor (SMP) systems have been around for many years
and are used in various server and scientific scenarios. If one likes to use system-

47

48 CHAPTER 5. CONCLUSIONS

wide persistence in such a system one has to ensure proper synchronization be-
tween the processors and the checkpointer. The problems that arise through mul-
tiple processors are manyfold and their implications are beyond the scope of this
thesis. At a first glance, however, nothing seems to prevent a orthogonally persis-
tent SMP system. However, preemptable and reentrant system calls can provide
serious further synchronization problems.

Future versions of L4 will include a mechanism to control communication
known as IPC redirection. In this model every IPC a thread is sending could be
rerouted to a different thread. As such it is questionable whether every is able
to send a message to the TCB-pager or/and the checkpointer. In these upcoming
�-kernel it should be considered to save a specific thread ID for the kernel just for
this purpose.

The combination of hard realtime or soft realtime constrains with persistence
is still an open issue. There are several introduced critical sections and bottlenecks
that might end up in priority inversion (e.g. the resolving of a TCB page fault).
Since reentrant and preemptable system calls present problems this issue may
never be tackled.

5.3 Final Conclusions

We have seen that the support for user-level transparent orthogonal checkpointing
on top the L4-�-kernel can easily be implemented upon the existing code base
of L4Ka. The existing mechanisms are easily adapted in implementing the same
abstractions within a persistent context. The key feature of L4 in context of persis-
tence is the concept of recursive address spaces that enables the implementation
of memory management by user-level servers.

5.4 Future Work

The next step to be taken after this thesis is to do a preliminary performance mea-
surement with micro-benchmarks to evaluate the performance impact of the im-
plemented mechanisms on normal�-kernel system calls invoked with and without
persistent applications.

Different implementations of the checkpoint write-back mechanism in the
user-level checkpointer and TCB pager should also be studied in detail. The
mechanism should be optimized regarding disk-access and latency on remapping
a copy-on-write page. The partition-layout should be revisited with, i.e., a log-
structured block storage in mind.

More future work is to implement the system server and system components

5.4. FUTURE WORK 49

which allow the access to legacy file system services (i.e., a recoverable system
driver).

Still an open issue is the feasibility to integrate persistence into L�Linux 1.
How far this integration could be pushed without touching the Linux core itself
should be conducted in a short survey and the major problems identified. In this
context more performance measurements should be conducted to analyze the im-
pact of persistent applications on the performance of the whole system, upon sin-
gle applications and transparent applications running concurrently to persistent
ones.

1L�Linux is a single server Linux compatible operating system on top of L4.

50 CHAPTER 5. CONCLUSIONS

Bibliography

[1] L4-Ka Team,The L4-Karlsruhe, http://l4ka.org

[2] Uwe Dannowski, Espen Skoglund,L4/Ka Design Manual, available along
with the L4/Ka-sources from http://l4ka.sourceforge.net, (manual still under
construction)

[3] Jochen Liedtke,On �-kernel Construction, Proceedings of the 15th ACM
Symposium on Operating System Principles (SOSP ’95), Copper Mountain
Resort, CO, December 3-6 1995.

[4] Jochen Liedtke,Improving IPC by Kernel Design, Proceedings of the 14th
ACM Symposium on Operating System Principles (SOSP’93), Asheville,
NC, December 1993.

[5] Jochen Liedtke,�-kernels Must And Can Be Small, Proceedings of the 5th
IEEE International Workshop on Object-Orientation in Operating Systems
(IWOOOS), Seattle, WA, October 1996.

[6] Jochen Liedtke,Lava Nucleus (LN) Reference Manual, 486, Pentium, Pen-
tium Pro, Version 2.2, IBM T. J. Watson Research Center, March 1998.

[7] Jochen Liedtke, L4 API/ABI Version X.0,
http://l4ka.org/documentations/files/l4-86-x0.ps

[8] T.Jaeger, K. Elphinstone, J. Liedtke, V. Panteleenko and Y. Park,Flexible
access control using IPC redirection, Proceedings of the 7th Workshop on
Hot Topics on Operating Systems (HotOS’99), 1999.

[9] Jonathan S. Shapiro, Jonathan M. Smith, David J. Farber,EROS: a fast ca-
pability system, Proceedings of the 17th ACM Symposium on Operating
System Principles (SOSP ’99), Kiawaha Island, USA, December 1999.

[10] Charles R. Landau,The checkpoint mechanism in KeyKOS, Proceedings of
the 2nd International Workshop on Persistent Object Systems (POS2), Paris,
France, September 1992.

51

52 BIBLIOGRAPHY

[11] Jochen Liedtke,A persistent system in real use: experiences of the first 13
years, Proceedings 3rd International Workshop on Object-Orientations in
Operating Systems (IWOOOS ’93), Asheville, NC, December 1993.

[12] Michael Hohmuth,Linux-Emulation auf einem Mikrokern, Diploma Thesis,
TU Dresden, August 1996.

[13] Espen Skoglund, Christian Ceelen and Jochen Liedtke,Transparent Orthog-
onal Checkpointing Through User-Level Pagers, In 9th International Work-
shop on Persistent Object Systems (POS9), Lillehammer, Norway, Septem-
ber 2000.

[14] Patrick Tullmann, Jay Lepreau, Bryan Ford and Mike Hibler,User-
level checkpointing through exportable kernel state, Proceedings of the
5th International Workshop on Object-Orientations in Operating System
(IWOOOS’96), Seattle, WA, October 1996.

[15] James S. Plank, Micah Beck, Gerry Kingsley and Kai Li,Libckpt: transpar-
ent checkpointing under UNIX, Proceedings of the USENIX 1995 Technical
Conference, New Orleans, LA, January 1995.

[16] Alan Dearle, Rex di Bona, James Farrow, Frans Hensken, Anders Lindstr¨om,
John Rosenberg and Francis Vaughan,Grasshopper: an orthogonally per-
sistent operating system, Computing Systems, 7(3):289-312, Summer 1994.

[17] Alan Dearle and David Hulse,Operating system support for persistent sys-
tems: past, present, future, Software - Practice and Experience, Special Issue
on Persistent Object Systems, 30(4):295-324, 2000.

[18] Dawson Engler, David Yu Chen, Andy Chou,Bugs as Inconsistent Behav-
ior: A General Approach to Inferring Errors in Systems Code, Proceedings
of the 18th ACM Symposium on Operating System Principles (SOSP ’01),
Chateau Lake Louise, Canada, October 2001.

[19] http://www.tunes.org/Glossary/paper/index.html#Persistence

[20] http://www.mklinux.org/

[21] Kevin Elphinstone, Stephen Russell, Gernot Heiser, and Jochen Liedtke,
Supporting Persistent Object Systems in a Single Address Space, In 7th In-
ternational Workshop on Persistent Object Systems (POS7), Cape May, NJ,
USA, May 1996.

[22] Verifiable L4-Fiasco, http://os.inf.tu-dresden.de/vfiasco/

BIBLIOGRAPHY 53

[23] Michael Hohmuth, Hendrik Tews,Work-in-Progress Report: VFiasco - To-
wards a Provably Correct Microkernel USENIX Annual Technical Confer-
ence, 2001

[24] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V. Uhlig, J.E.
Tidswell, L. Deller, and L. Reuther,The SawMill Multiserver Approach, In
9th SIGOPS European Workshop, Kolding, Denmark, September 2000.

