
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Asynchronous Communication Using
Synchronous IPC Primitives

Stefan Götz

Diplomarbeit

Verantwortlicher Betreuer: Prof. Dr. Alfred Schmitt
Betreuende Mitarbeiter: Dipl.-Inf. Volkmar Uhlig

Dipl.-Math. Gerd Liefländer

30. Mai 2003

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfaßt und keine anderen
als die angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources
have been used.

Karlsruhe, den 30. Mai 2003

Stefan Götz

5

Abstract

The asynchronous communication model provides applications with paral-
lelism, message buffering, and a convenient programming model. In con-
trast to the synchronous model however, it is inherently associated with
policy regarding the management and delivery of buffered messages. Com-
munication partners are dependent on controlling these policies in order to
achieve additional semantics and performance optimizations customized to
their communication behavior.

Many existing operating systems implement asynchronous IPC primi-
tives at kernel level but suffer from significant performance penalties com-
pared to synchronous systems. Also, buffer management policies are hidden
from the applications. Communication frameworks focusing on performance
achieve high throughput even across multiple protection domains. However,
they also imply memory management related policies and custom applica-
tion trade-offs between throughput and latency are not possible.

This thesis describes how the advantages of both communication mod-
els can be combined by emulating asynchronous communication on top of
synchronous IPC primitives. It discusses the emulation with regard to per-
formance, trust and protection between the involved communication part-
ners, and transparency towards existing protocols. The presented concepts
are evaluated on the L4 micro kernel. It is shown that asynchronous com-
munication is achievable at user level with performance comparable to the
synchronous IPC it is based on while preserving protocol transparency and
flexibility for application specific policies.

6

Acknowledgments

I would like to thank my supervisors Volkmar Uhlig and Gerd Liefländer.
Their expertise, patient support, and encouragement made this work possi-
ble.

The members of the System Architecture group in Karlsruhe have been
a constant source of ideas and suggestions. In particular, I am thankful
for the insightful discussions with Andreas Haeberlen and Uwe Dannowski’s
thorough proof reading.

Contents

1 Introduction 9

2 Background 11
2.1 L4 . 11

2.1.1 IPC Performance . 12
2.2 Implications of Asynchronous IPC 13
2.3 Communication in Multi-Server Systems 14

2.3.1 Message Passing . 16
2.3.2 Message Buffers . 17
2.3.3 Transfer Semantics . 17
2.3.4 Transfer Mechanisms 18
2.3.5 User-Level Paging . 18

3 Related Work 21
3.1 Mach . 21
3.2 Mbufs . 21
3.3 Fbufs . 22
3.4 IO-Lite . 22

4 Design 25
4.1 Assumptions and Prerequisites 25
4.2 Parameters . 26
4.3 Asynchronous IPC . 27
4.4 Protocol Transparency . 27
4.5 Transparent Optimizations 28

4.5.1 Proxy Threads . 29
4.5.2 Co-Location . 30
4.5.3 In-Place Consumption 31
4.5.4 Lazy Process Switching 31
4.5.5 Meta-Data Protocol 32

4.6 Protocol Optimizations . 32
4.6.1 Shared Memory . 33
4.6.2 IPC Coalescing . 35

7

8 CONTENTS

4.6.3 Sharing Meta Data . 36
4.6.4 Lazy Notification . 37
4.6.5 Forwarding . 37

5 Implementation on L4 39
5.1 The SawMill Multi-Server Operating System 40
5.2 Transparent Asynchronous IPC 40

5.2.1 Co-Location . 40
5.2.2 Asynchronous Send . 41
5.2.3 Asynchronous Receive 42
5.2.4 Reply Handling . 43
5.2.5 Security . 43

5.3 Shared-Memory Communication 44
5.3.1 Integration with Dataspaces 44
5.3.2 Applied Optimizations 45

5.4 Producer-Consumer Synchronization 46

6 Results 47
6.1 Transparent Asynchronous IPC 47

6.1.1 Send Primitive . 47
6.1.2 Latency . 48

6.2 Shared-Memory Communication 49
6.2.1 Primitives . 49
6.2.2 Crossing Multiple Domains 51
6.2.3 Communication Overhead 52
6.2.4 Copying Overhead . 53

7 Discussion and Interpretation 55
7.1 Proxy Management . 55
7.2 Modularization . 56
7.3 User-Level Policies . 56

8 Conclusion 57

9 Future Work 59
9.1 Multi-Processor Support . 59
9.2 Analysis of Cache Impact . 60
9.3 Access Revocation on Shared Buffers 60
9.4 Impact of Intermediate Domains 60

Chapter 1

Introduction

Communication across protection domains is fundamental to securely modu-
larize software systems. Modularized designs can benefit from reduced com-
plexity, higher flexibility, and enhanced customizability. In order to achieve
safe interaction of untrusted components and fault isolation, components
can be placed into their own protection domains. This is of particular im-
portance for overall robustness of component based operating systems.

Separating components by protection boundaries incurs a performance
overhead on the interaction and communication between those components.
However, components need to interact frequently. For example, non-trivial
service requests often need to be handled by a series of interacting compo-
nents with specific functionality instead of a single monolithic entity. Thus,
the performance impact of cross-domain interaction is multiplied. Especially
applications with high-bandwidth demands such as file and web servers suf-
fer from the costs of multiple cross-domain data transfers and have received
attention from researchers [5, 13] on classic and early micro kernel systems.

Modern micro kernels are highly suited for modular system designs.
They provide simple and well-understood abstractions for the fundamen-
tal building blocks of a system: execution contexts and protection domains.
This minimality is a primary design principle of the L4 micro kernel result-
ing in a flexible and policy-free interface and very good performance of its
primitives, in particular for inter-process communication (IPC).

The performance of the IPC primitive of L4 has in part to be attributed
to its simple synchronous nature, i.e. communication is blocking and un-
buffered. An important alternative model is asynchronous buffered com-
munication. Asynchrony is necessary to achieve parallelism by overlapping
communication and computation and thus, e.g. to increase CPU utiliza-
tion. Server components for example can exploit parallelism in order to
continue providing service to their clients while communication with other
components is in progress.

A synchronous message transfer across a protection boundary causes a

9

10 CHAPTER 1. INTRODUCTION

switch between the protection domains in most cases. This implies exe-
cution time overhead as the address spaces need to be switched which re-
quires kernel involvement. Also the consequential costs due to cache flushing
can be significant on architectures such as IA-32. Asynchronous IPC can
help to avoid this problem because messages are buffered, thus the number
of address space switches can be reduced. Together with other optimiza-
tions, these properties of asynchronous communication allow to create very
efficient facilities for cross-domain message transfer. Consequently, perfor-
mance close to monolithic systems becomes possible while maintaining the
benefits of modularization.

However, asynchronous communication is also inherently associated with
the additional costs of handling buffered messages, in particular the overhead
of copying messages into a temporary buffer. This reduces the effectiveness
of the hardware caches and incurs consequential costs on applications.

Furthermore, the buffer management is affected by a large number of
parameters, e.g. the location of the buffers, resource accounting, or real-
time guarantees, which are of different importance to specific applications.
It is very difficult to expose all ranges of policies inherent to asynchronous
IPC to the user without dynamic kernel extensions.

The synchronous and asynchronous models can be emulated by each
other. Thus, asynchronous semantics can be achieved on top of synchronous
primitives without modifying the kernel. At the same time, all aspects
related to semantics, policies, and performance can be addressed at user
level and adapted to specific application demands.

This thesis shows how to achieve asynchronous communication seman-
tics based on synchronous IPC primitives. Its fundamental approach is to
obtain parallelism and thus asynchrony by delegating the execution of syn-
chronous primitives to other threads. It explores optimization techniques to
enhance performance for different application demands characterizing the
results with regard to protection, transparency, and performance with a fo-
cus on the IA-32 architecture. The applicability of the resulting designs
ranges from asynchronous communication that is fully transparent to syn-
chronous communication partners to high-bandwidth communication across
multiple domains as is common in multi-server I/O scenarios.

Chapter 2

Background

This chapter gives an overview of the L4 micro kernel. It reviews the costs
relevant for IPC with focus on the IA-32 architecture based on the extremely
fast L4 IPC primitive. It analyzes the inherent properties of asynchronous
communication compared to synchronous communication and provides an
introduction to the structure of multi-server operating systems and their
particular requirements on communication.

2.1 L4

The L4 micro kernel was originally developed by Jochen Liedtke. Several
designs and versions have emerged from the original ideas. In this document
we will relate to the Version 4 API [15] developed and implemented at the
University of Karlsruhe.

L4 is based on threads and address spaces as its fundamental abstrac-
tions. For communication between threads, L4 offers synchronous, i.e. un-
buffered, inter-process communication (IPC). Other aspects of its function-
ality, such as interrupt or page fault handling, are mapped to these abstrac-
tions and mechanisms. Classic OS services like paging and hardware device
handling are completely exported to user level.

Address spaces implement virtual memory and serve as protection do-
mains. They are recursively constructed by user-level pagers. An initial
address space, Sigma0, contains all physical memory in an idempotent map-
ping. Further address spaces are populated by creating mappings of virtual
memory regions between these spaces.

While mapping establishes shared memory leaving the memory accessi-
ble to the sender the grant operation has move semantics so that only the
receiver can access the granted memory. Both operations are integrated
with the IPC primitive requiring consent of the partner to receive a map-
ping. The receiver implicitly accepts that the mapping can be revoked at
any time.

11

12 CHAPTER 2. BACKGROUND

L4 exports paging to user level by establishing a user-configurable as-
sociation of every thread with a pager thread. On a page fault, the kernel
synthesizes a blocking IPC from the faulting thread to its pager. The pager
resolves the fault by establishing a memory mapping and replying to the
faulting thread. On the reply, the kernel unblocks the faulting thread.

Threads have globally unique identifiers which are managed by a privi-
leged thread. It is also responsible for creating and destroying threads. The
in-kernel scheduler dispatches threads based on a fixed-priority round-robin
policy.

With the IPC primitive of L4, threads can communicate in a synchronous
fashion. Since messages are not buffered by the kernel, an IPC is only
successful when sent to a thread that is ready to receive. I.e. a rendezvous
has to occur between the sender and the receiver. The time spent blocking on
a busy sender or receiver can be limited via timeouts. Receivers may choose
between accepting messages from a specific (closed wait) or any thread (open
wait). IPC interacts with scheduling in that a send operation causes a thread
switch to the receiver only if it has a higher priority than the sender.

An IPC message descriptor is stored in a static buffer private to each
thread. It contains both data and meta data. The latter either references
a memory area containing additional data or descriptors for address space
operations. A similar structure allows receivers to specify where incoming
data or mapped memory is to be placed by the kernel.

The propagation feature enables senders to impersonate other threads.
This is transparent but detectable by the receiver who also learns the identity
of the true sender. Propagation is permitted if the true sender resides in
the faked sender’s or the receiver’s address space. A privileged thread can
control propagation between disjoint address spaces.

All aspects of L4 design - architecture, algorithms, interface, and imple-
mentation - focus on minimality in order to achieve a maximum of perfor-
mance. [9] reports that only the synergy of multiple optimization techniques
on all design levels results in such low costs. Special attention is paid to hard-
ware caches and how crucially performance depends on caching effects. An
important property of L4 is its small impact on caches, in particular for short
IPC system calls. Thus the performance improvements of caching remain
with the applications despite the communication via the kernel. This as-
pect is of even greater importance today as the gap between processor and
memory speed has steadily grown and continues to do so. Thus, caching
becomes more and more crucial for performance.

2.1.1 IPC Performance

Three important factors in IPC performance can be deduced from Liedtke’s
observations:

2.2. IMPLICATIONS OF ASYNCHRONOUS IPC 13

Data copying: the process of copying data itself is bound by memory
bandwidth which is slow compared to today’s CPU speeds. Since the
hardware caches are of limited size, they become ineffective when copy-
ing large amounts of data and the cache pollution caused by copying
incurs consequential costs.

Context switches: the IA-32 architecture implements un-tagged transla-
tion look-aside buffers. Thus, it is necessary to flush the TLB when
switching from one address space to another causing consequential
costs for re-populating the TLB. Also virtual caches, e.g. the trace
cache of the Intel Pentium 4, need to be flushed and re-populated on
context switches.

Entering and leaving the kernel: the base costs of system calls have led
Gefflaut at al. [7] to the observation that despite L4’s well performing
IPC primitive communication costs need to be reduced by avoiding
system calls where possible.

Although these factors are platform dependent, kernel involvement is re-
quired for IPC in order to securely cross protection domains. The kernel
needs to install the new protection domain and possibly change the exe-
cution context. Thus, synchronous message based communication across
protection domains is associated with certain costs which can not be cir-
cumvented. Bershad et al. [3] proposed a user-level IPC facility to cross
protection domains but it is restricted to shared memory multi-processor
systems and user-level threads.

2.2 Implications of Asynchronous IPC

Asynchronous IPC is inherently associated with implications on the perfor-
mance and the policy of a message transfer. This is one reason for syn-
chronous IPC in L4.

In order to implement asynchronous communication, all messages that
have been sent but not delivered need to be stored in an intermediate buffer
until the receiver consumes them. This is to achieve copy semantics so
modifications of the buffers of a sent message do not affect the message
contents. In contrast to synchronous IPC, where the message can be copied
directly from the sender to the receiver, messages need to be copied twice
for asynchronous IPC. Thus, the asynchronous IPC operations inherently
increase cache footprint.

Copy semantics for asynchronous page mappings pose a similar problem.
Although in this case the process of copying can be deferred using the copy-
on-write technique, copying is still required when the mapped pages are
modified by the sender or the receiver. Consequently, L4 offers only share
or move semantics for memory mappings.

14 CHAPTER 2. BACKGROUND

Application Application Application

File SystemMemory Management

Kernel

Drivers

User
Mode

Mode
Privileged

Figure 2.1: Structure of a monolithic operating system

A number of parameters can control the asynchronous communication
process, such as the order in which buffered messages are delivered to a re-
ceiver, where they are stored in memory (which can be of importance, e.g.
for cache-coloring), real-time guarantees, and how the message transfer fa-
cility accounts for the memory holding the buffered messages. Furthermore,
new variables are introduced by new application demands. Thus, it is hard,
if not impossible, to export all policy associated with asynchrony to the user.

Since asynchronous communication can be emulated by synchronous
communication and vice versa [6], it is not necessary to implement both
models in the micro kernel. To do so would mean to violate the minimality
principle of L4 which is a key to its performance. Thus, it is reasonable
to realize a fast and flexible synchronous IPC primitive in the kernel and
emulate the asynchronous model at user level giving access to all policy and
performance trade-offs as applications demand.

With this approach the synchronous primitive forms the performance
base-line for asynchronous communication. Additional costs arise from the
emulation of asynchrony.

2.3 Communication in Multi-Server Systems

Traditional monolithic operating system implement a large set of services.
For example, drivers for device access, memory management, user interfaces,
and the necessary infrastructure for interaction between subsystems (see
Figure 2.1). The operating system kernel executes in a privileged processor
mode while applications execute in a non-privileged mode. Thus, the kernel
can be protected from the applications. At the same time, all subsystems
of the kernel have to be trusted not to compromise the rest of the system.

The monolithic approach not only emerged naturally from simpler sys-
tems, it also allows to perform any kind of optimization across subsystems.
However, monolithic systems have already grown to a very high level of

2.3. COMMUNICATION IN MULTI-SERVER SYSTEMS 15

Application Application Application

Memory Management

Micro−Kernel

User
Mode

Mode
Privileged

File SystemDriver

Figure 2.2: Structure of a multi-server operating system

complexity and continue to do so with every additional feature required by
new application demands. Thus, it becomes increasingly hard to maintain
them and to ensure security and reliability.

Multi-server operating systems take a different approach. System ser-
vices are separated into modules executing at user level in their own pro-
tection domains, which are typically represented by virtual address spaces
(see Figure 2.2). A micro kernel provides protection and allows modules
to safely communicate across address space boundaries. From the kernel’s
perspective there is no difference between modules implementing system
services and regular user applications accessing those services. Instead, the
protection mechanisms offered by the kernel allow to safely manage the per-
missions to perform otherwise privileged operations, e.g. device access or
page table manipulations.

The complexity of operating systems is addressed by multi-server sys-
tems using the standard software engineering technique of modularization.
Subsystems are isolated and their interactions and interdependencies are
restricted to well-defined interfaces. Extending the system functionality is
usually localized to a small number of modules. Similarly, existing modules
can be added or removed from the system as required by the environment
or as performance needs dictate.

When a subsystem is protected except for the interface it exports via
IPC, there are few possibilities to compromise it. Thus, it becomes less
likely that a flawed module can affect other parts of the system. At the
same time it becomes possible to safely extend the system with untrusted
modules.

A service can require the interaction of several modules, e.g. a file ac-
cess could involve the file system and the disk driver. Significantly deeper
nesting than in this simple example is not unlikely in larger systems. Since
protection is enforced by the kernel, communication across address space
boundaries requires kernel involvement. This makes subsystem interaction

16 CHAPTER 2. BACKGROUND

more expensive compared to a monolithic system where all data is shared
and directly accessible.

2.3.1 Message Passing

Message passing IPC primitives allow to easily emulate common program-
ming models. The remote procedure call (RPC) paradigm extends the no-
tion of a local function call to a service invocation, e.g. across protection
or machine boundaries. Thus, a caller sends a message containing the ar-
guments to the callee and blocks. The callee identifies the operation to be
performed on behalf of the caller as part of the communication protocol.
After the operation finished, the callee re-activates the caller by sending a
reply message which contains the results of the operation.

The similarity to local function calls makes RPC simple and integrate
well with existing programming models. Tools exist which automatically
generate the communication code.

Message passing can also be used to model the transfer of messages
as parts of a larger data stream. Splitting data into multiple messages
is sometimes necessary due to protocol requirements or restrictions of the
communication primitives, such as a maximum message size. Grouping fixed
or variable amounts of data into message is common in communication and
particularly network protocols e.g. to temporarily store and then forward
the data or for fault tolerance. Consequently, a message serves as a partial
conversion of time-multiplexed data to a space-multiplexed form.

Messages and thus data travel from a source to a sink. They are often
processed by several software layers with distinct functionality. In multi-
server systems, these layers are often represented by components which re-
side in their own protection domains. Any layer in a system can act as
source and sink and thus also forward messages.

We will call the sequence in which data traverses software layers the
data path. This path does not only depend on static factors such as the
data contents and the interaction of the involved layers but also on dynamic
aspects, e.g. user configuration and load balancing. Furthermore, data
paths from an incoming layer can diverge to several outgoing layers and vice
versa. Thus, the complete path that data is to take through a system can
not always be determined by the initial source.

A data path provides locality, i.e. often more data can be expected on
the same path within a certain time frame [12]. An obvious example is the
transfer of a large file where all data will usually travel on the same path
from the disk driver through the protocol stack to the network interface
driver. In protocol design, the locality of data paths can be exploited for
performance optimizations.

2.3. COMMUNICATION IN MULTI-SERVER SYSTEMS 17

2.3.2 Message Buffers

Messages can be represented by buffers containing a fixed amount of the
data in contiguous virtual memory. After a buffer is allocated, this simple
representation is sufficient for read only access to the message contents in-
place modifications.

More complex operations are common-place in network protocols storing
messages in buffers. They add or remove protocol information to the begin-
ning or the end of a buffer. Also the contents of multiple buffers are joined
to form larger messages or a buffer is split into smaller pieces. Since a buffer
can not be shrunk or grown in size (unless additional space is pre-allocated
in each buffer), such operations have to be realized by allocating additional
buffers and copying the relevant data. This causes increasing overhead with
larger message sizes.

An abstract data type (ADT) can help to avoid data copying when mod-
ifying a buffer. It introduces a level of indirection describing an aggregate of
buffers referring to parts of their contents. The join and split operations are
reduced to logical operations on the ADT. For adding data to the message,
additional buffers need to be allocated and added to the aggregate. BSD
mbufs [11] are an example of buffer aggregation based on an ADT.

Furthermore, the contents of buffer aggregates can be modified without
changing the contents of the buffers. Instead, new buffers are allocated,
the modified data is written to them, and they are inserted into the ag-
gregate where the modifications are to appear, leaving the original buffers
unchanged.

2.3.3 Transfer Semantics

When passing a buffer between protection domains, the involved domains
can have different sets of access permissions to the buffer after the transfer
is complete, which we call the transfer semantics.

Copy Both sender and receiver domain retain access to a private copy of
the buffer. Thus, subsequent modifications are only visible locally.
The copy-on-write optimization delays the copying until one of the
buffers is modified. However, the overhead introduced by copying is
unacceptable for large amounts of data.

Share After a buffer has been transferred, the sender and receiver domain
have access to a single copy of the buffer and modifications of the buffer
are immediately visible in both domains. The same holds for buffers
transitively shared among multiple domains. Sharing can often be
combined with modifying access rights of the buffer, e.g. the sender
can pass only read rights to the receiver but retain read and write
permissions.

18 CHAPTER 2. BACKGROUND

Move The sender loses access to a buffer when passing it into a receiver
domain. Similar to copy-on-write, move can be performed lazily so
that the receiver can revoke the access rights of the sender for an
initially shared buffer.

2.3.4 Transfer Mechanisms

Many IPC implementations provide copy semantics to enforce protection
via private message buffers. But they suffer from the overhead of explicitely
copying the data. Druschel and Peterson evaluate the characteristics of two
other mechanisms commonly available: page remapping and static shared
memory [5].

They conclude that sharing memory statically can not safely eliminate
all copying. A globally shared memory area accessible by all protection
domains violates data privacy. Pair-wise shared memory requires copying
when data is to be forwarded into a third domain and group-wise shared
memory requires that a source domain can determine the complete data
path of a buffer before its allocation.

Instead, virtual memory pages containing buffers have to be passed dy-
namically between protection domains. Virtual memory systems support
different semantics of such transfers: move in System V, copy(-on-write) in
Mach, share and move at kernel level and copy at user level in L4.

2.3.5 User-Level Paging

Modern micro kernels, such as L4 [10] and Eros [14], export virtual memory
management to the user. This is safe because the kernel maintains protection
boundaries and ensures that a user task can fully control the manipulation
of its address space.

The basis for user-level paging are memory mappings and page fault
handling by the user. When a virtual memory region is mapped from a
source to a destination address space, the kernel establishes page table en-
tries so that the region in the destination space refers to the same physical
memory as in the source address space. A mapping can have copy, share, or
move semantics depending on the virtual memory system implemented by
the kernel.

User-level page fault handling requires the kernel to reflect page faults
to a handler provided by the user. This handler can then resolve the page
fault by mapping memory to the faulting thread or by requesting a mapping
to the faulting thread from another entity.

With user-level paging, the page remapping and shared memory mech-
anisms are unified as user tasks are responsible to establish shared memory
via memory mappings. Also each memory buffer is associated with a mem-
ory provider. The memory provider is responsible for mapping the memory

2.3. COMMUNICATION IN MULTI-SERVER SYSTEMS 19

that backs the buffer to the address space in which the buffer is to be ac-
cessed. The fact that also the sender and the receiver of a buffer can act as
its memory provider offers a large design space with regard to overall system
structure, performance, and resource management.

20 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

This section gives an overview on earlier work on asynchronous communi-
cation models.

3.1 Mach

The Mach micro kernel [1] implements an asynchronous IPC primitive.
Liedtke provides a detailed performance comparison of L4 and Mach in
[9]. It is shown that the performance of Mach IPC suffers from copying a
message twice, as we discussed in section 2.2 . As a result, the costs of a
message transfer increase about twice as fast compared to L4. Combined
with the high base costs of a Mach IPC, this incurs a substantial overhead
on communication.

Furthermore, Liedtke analyzes the cache behavior of Mach and its effects
on system performance in [10]. He shows that Mach has a significant cache
footprint. Thus, applications have to re-establish their cache working sets
after system calls and the overall system performance is degraded.

3.2 Mbufs

The BSD operating system avoids the overhead of copying messages when
data needs to be added to or removed from message buffers. These are
commonplace operations in network protocols.

Messages are internally represented as mbufs [11]. They are abstract data
types referencing and describing a data buffer. Modifying, concatenating,
and stripping buffer contents thus become logical operations. They require
to modify the meta data in the mbuf structure and potentially the allocation
of further mbufs. However, the buffer contents remain unmodified.

21

22 CHAPTER 3. RELATED WORK

3.3 Fbufs

With fbufs, Druschel and Peterson [5] acknowledge the importance of effi-
ciently crossing multiple protection domains in multi-server systems. The
fbuf approach circumvents the costs of copying data in cross-domain trans-
fers by dynamically establishing shared memory via page re-mapping. Fo-
cusing on user-to-user throughput for high-bandwidth network connections,
they employ a number of very effective optimizations in order to avoid all
per-page and per-message costs for cross-domain transfers in the common
case.

Message buffers are introduced as primordial objects into the messaging
and memory management system. A centralized buffer management is re-
sponsible for establishing memory mappings so the communication partners
can access and transfer the buffers.

Buffers are only writable for the allocating protection domain and only
until they are sent to a different domain. Thus, the receiver domains can
rely on the buffer not being modified. Buffer aggregates similar to mbufs are
introduced which allow modifications at the aggregate level in the domains
receiving the buffer.

Based on locality of communication (see section 2.3.1), memory map-
pings stay established after a buffer has been de-allocated. The buffer re-
mains associated with the memory mapping and is put into a pool dedicated
to the data path. New buffers for the same data path can be allocated di-
rectly from that pool, but write access needs to be restored to the allocating
domain. It is necessary to determine the data path of a message before
allocating a buffer for it. When all sending domains are trusted not to mod-
ify the buffer contents, write permissions can be retained in those domains,
eliminating the need to toggle write access permissions.

Druschel and Peterson show that page re-mapping significantly reduces
the costs of cross-domain communication for large amounts of data and even
for small messages when all optimizations can be applied. The efficiency
of the framework results from the presented optimizations which eliminate
the per-page and per-buffer costs of the page remapping mechanism in the
common case.

The fbufs approach relies on an IPC mechanism to indicate that a mes-
sage was sent. The reference implementation benefits from the asynchronous
nature of Mach IPC.

3.4 IO-Lite

IO-Lite [13] addresses the fact that fbufs do not support a unified I/O frame-
work which can be used to transfer all I/O data efficiently across protection
boundaries. IO-Lite uses the same basic concepts as fbufs and extends the

3.4. IO-LITE 23

buffer management to disk I/O data and the file cache.
Although IO-Lite does unify disk and network I/O data, it can not be

seen as a truly unified framework which allows to efficiently pass arbitrary
memory contents across protection domains without copying. This is mainly
due to the assumption of centralized memory management. Consequently,
a special purpose allocator serves the buffer memory making it necessary to
copy data into the buffer before it can be efficiently transferred as presented.
This is an acceptable restriction for I/O data which often needs to be copied
from a device into main memory or vice versa. It does however not apply
to devices which map on-chip memory into main memory areas. Copying
would also be required to transfer data that originally is not allocated in an
I/O buffer and resides in a different memory region.

24 CHAPTER 3. RELATED WORK

Chapter 4

Design

This chapter describes how asynchronous communication semantics are achieved
based on synchronous IPC primitives. It identifies design parameters rele-
vant in multi-server operating systems and presents how the design can be
optimized with regard to these parameters.

4.1 Assumptions and Prerequisites

The work presented in this chapter is inspired by the abstractions and mech-
anisms available in the L4 micro kernel and implemented in the SawMill
multi-server operating systems. However, the design is applicable to more
abstract and thus other systems as well. This section lists the fundamental
assumptions our design relies on.

Virtual Address Spaces: Virtual address spaces are expected to serve as
protection domains enforced by the kernel. Thus, entities in separate
address spaces can only interact with each other under the control of
the kernel.
Physical memory is also represented by and accessed via virtual ad-
dress spaces. The association between virtual and physical memory is
managed by the user-level paging system.

Multiple Execution Contexts: The system has to support multiple ex-
ecution contexts, i.e. threads. Each thread executes in an address
space.

IPC: Message-based inter process communication is required which allows
threads to communicate within and across address space boundaries.
The communication is assumed to be unbuffered and blocking, i.e.
synchronous. To ensure safe interaction between address spaces, the
user needs to be able to control when communication takes place and
how it affects its address space.

25

26 CHAPTER 4. DESIGN

Paging: We assume a generic paging system for applicability to a wide
range of systems, including user-level paging.

4.2 Parameters

Communication is a central aspect of operating systems and applications.
Thus, the design of asynchronous communication as an additional model is
affected by a large number of variables which determine whether it satisfies
particular demands, such as its applicability to real-time or distributed sys-
tems. Based on the design assumptions presented in the previous section,
we focus on three parameters which are important in the construction of a
multi-server system:

Trust and Protection: Protection is a basic construction principle in multi-
server operating systems. By placing components into separate pro-
tection domains, they can safely interact although they do not trust
each other. All protection mechanisms have to be enforced by the
underlying system which is implicitly trusted. With the given de-
sign assumptions, protection is provided by address spaces. Threads
have to be able to safely interact via IPC across and within protection
domains. Trust relationships between components also determine to
what extent transparency and performance can be achieved.

Transparency: The interaction between subsystems or components fol-
lows certain protocols. For correct interaction these protocols must
not be broken. In order to achieve transparency, the asynchronous
communication must adhere to the given protocols. Communication
in multi-server systems relies in most cases on IPC, thus the design
addresses transparency with regard to protocols based on IPC.

Performance: The high degree of communication between components
makes performance an important aspect. We concentrate on three
key issues:

• Cache impact: the widening gap of processor and memory speed
makes performance continuously more dependent on hardware
caches. The performance of applications can suffer significantly
from cache pollution, e.g. when data is copied in memory.

• System calls: architectures with long pipelines and out-of-order
execution, such as IA-32, suffer from a high overhead of enter-
ing the processor’s privileged mode and returning to user mode.
Thus, system calls should be avoided when possible.

4.3. ASYNCHRONOUS IPC 27

• Address space switches: on the IA-32 architecture, caches related
to address spaces, such as TLBs and virtually tagged caches, need
to be invalidated on address space switches. The overhead of re-
populating caches in the new address space can be amortized by
reducing the number of switches.

The design addresses the issues arising from these aspects and proposes
adequate solutions.

4.3 Asynchronous IPC

The fundamental difference of the asynchronous communication model com-
pared to the synchronous model is that messages are buffered. The buffering
takes place when a message is sent. A communication partner may receive
the message from the buffer at a later point in time. Thus, communica-
tion partners do not have to achieve a rendezvous situation, i.e. they do
not have to ensure that one partner blocks until the other one also initiates
communication.

The properties of an asynchronous communication system depend on the
properties of the buffer, the buffer management, and the access protocol.
The properties of a buffer are for example whether it is located in a separate
protection domain or how many messages it can hold. The management of
the buffer controls how messages are inserted or removed and how they are
delivered. The access protocol determines how the buffer can be accessed
externally, for example whether messages are exchanged via IPC or shared
memory.

The design parameters affect these properties. To protect the buffer
from the communication partners it can be placed into a separate address
space. The buffer access protocol is restricted by transparency requirements.
Performance improvements, on the other hand, often affect the protection
and transparency parameters.

Buffers are a shared resource, as multiple communication partners can
access them. This raises resource management issues. For example, a mali-
cious thread can try to monopolize a buffer with a large amount of messages
so that it can not be used by other threads. Access policies and protocols,
e.g. per-thread quotas or maximum message life times, can be employed to
prevent such situations.

4.4 Protocol Transparency

In order to transparently introduce asynchronous communication, existing
protocols need to be followed. Within the design space a protocol is deter-
mined by the following properties:

28 CHAPTER 4. DESIGN

Rendezvous Semantics: Synchronous protocols require rendezvous seman-
tics. A message transfer is only successful if at a single point in
time both partners have commenced the transfer. For most proto-
cols and communication systems this implies that one of the partners
has to block until the other partner performs the transfer. To match
this property, the emulation of asynchronous communication needs to
achieve rendezvous semantics towards the synchronous communication
partners. Consequently, an additional entity is required, e.g. a place-
holder or proxy, which blocks on a communication partner to handle
a message transfer. Given the design assumptions, this entity is a
thread.
With a synchronous protocol, a rendezvous point has to be provided
for every message. For n incoming messages at a certain point in
time, all of them are transferred only if there are n proxies ready to
receive them. Similarly, with n pending outgoing messages, a ren-
dezvous point for every message is only guaranteed to exist with n
proxies blocked on sending each message.

Endpoints: Communication is performed between communication endpoints.
They are associated with semantics, e.g. particular communication
partners or a certain functionality. Thus, communication partners
address each other or services via the names of endpoints. For trans-
parency of asynchronous communication, the semantics and the names
of communication endpoints have to be preserved.

Message Format: The format of a message determines its structure and
semantics. For example, messages can be used to transfer data or
to delegate rights. Transparency also requires the message format to
remain unchanged.

Timing Constraints: A protocol determines how rendezvous semantics
are achieved via timing constraints. For example, a server can require
its clients to block for a minimum amount of time when sending a
service request. Timing constraints often serve to detect misbehavior
and to be able to react to it. Message sequences can also be subject
to timing constraints, e.g. to limit latency or frequency of communi-
cation. Where such constraints are part of a protocol, they have to be
preserved for full transparency.

4.5 Transparent Optimizations

As a starting point for designing a transparent emulation of asynchronous
communication, a brute-force approach is taken. Message buffers and proxy
threads were identified as fundamental requirements for achieving asyn-
chrony. The message buffer, all proxy threads necessary to receive and

4.5. TRANSPARENT OPTIMIZATIONS 29

Communication
Partners

Messaging
System

Proxy
Threads

Buffer

Protocol

Figure 4.1: A transparent isolated messaging system

deliver messages, and the functionality to manage these entities are termed
the messaging system. In order to protect it from malicious communication
partners, it is placed inside a separate address space, as depicted in Figure
4.1.

The messaging system achieves transparency by implementing the pro-
tocol used between the communication partners. However, their communi-
cation becomes asynchronous since the messages are buffered by the messag-
ing system. Thus, such a messaging system can be transparently interposed
between synchronous communication partners to make them communicate
asynchronously, if the timing constraints of their protocol allows to do so.

Since all partners and the messaging system itself reside in their own
address spaces and communicate via IPC, protection is not reduced. Also
the trust-relationships between the communication partners are not altered.
However, the partners share the message buffer as a common resource. Thus,
in order to detect misbehaving partners and to prevent denial-of-service
attacks, the messaging system can put constraints on the communication
protocol.

The presented approach can introduce significant overhead to a message
transfer via the messaging system. For example, a large amount of proxy
threads may need to be managed and additional copying is necessary per
message. The following subsections address these issues.

4.5.1 Proxy Threads

As discussed in section 4.4, preserving rendezvous semantics requires a proxy
thread per message. The costs of continuously creating and destroying
threads can be alleviated by pooling and reusing existing threads.

30 CHAPTER 4. DESIGN

Threads also cause costs by consuming resources. In particular, threads
require kernel state, a stack, and potentially other resources at user level,
such as meta data for thread management, thus increasing cache footprint.
The consequential costs do not only affect the messaging system itself but
also make it harder to achieve transparency, e.g. to meet timing constraints.
Consequently, it is desirable to reduce the number of necessary proxy threads
while maintaining rendezvous semantics.

The observation was made that one thread is required per message pro-
vided that no assumptions about scheduling behavior can be made. How-
ever, the underlying system may be able to guarantee, e.g. via strict prior-
ities, that proxy threads are scheduled in favor of the communication part-
ners. Then the communication partners can not initiate a message transfer
as long as a proxy thread is active. A proxy thread becomes inactive by
blocking for a message transfer. Thus, when a communication partner sends
or receives a message, a proxy is guaranteed to be provided as a rendezvous
partner. The messages are serialized on the proxy threads. Consequently, a
single proxy can handle all incoming messages and it is sufficient to assign
one proxy to each communication partner to which messages need to be
sent.

Another optimization can be based on the timing constraints of the com-
munication protocol. The protocol may ensure that the receiver waits for a
message for a certain amount of time. Thus, the messaging system can delay
a message for this amount of time without breaking the protocol. A proxy
thread can exploit this fact to deliver messages to other receivers in the
meantime. Consequently, the message delivery is serialized across receivers
and less than one proxy per receiver is required.

The looseness of the protocol’s timing constraints determines how many
threads can be saved based on this optimization. When it is important to
keep the costs caused by proxy threads low and transparency towards these
timing constraints is not mandatory, the number of threads can be controlled
via an additional protocol. This protocol limits the number of proxies based
on, e.g. timing conditions or quotas per communication partner.

4.5.2 Co-Location

When the messaging system resides in its own protection domain, messages
exchanged between communication partners have to cross an additional pro-
tection boundary. This additional address space switch is inherently asso-
ciated with the costs in execution time due to the kernel and consequential
costs, as virtually tagged caches, e.g. the TLB on the IA-32 architecture,
need to be flushed and repopulated. However, these costs are unavoidable
where the protection of address spaces is necessary.

Specific components or subsystems may rely on the messaging system
to achieve asynchrony when interacting with their communication partners.

4.5. TRANSPARENT OPTIMIZATIONS 31

Thus, they directly depend on the messaging system to reliably and securely
handle their communication requirements. As a result, their trust space
extends to the messaging system. Provided that such components and the
messaging system have the same set of privileges, they can be safely placed
within a single trust domain and thus a single address space. This eliminates
an address space switch per message which would otherwise be necessary.

The co-location optimization maintains protection and trust relation-
ship between the communication partners. However, the common address
space becomes a shared resource between the messaging system and the
original component. Thus, the interaction of communication partners and
the messaging system can also affect the original component. To prevent
denial-of-service attacks exploiting this fact, resource management needs to
be introduced.

4.5.3 In-Place Consumption

If messages are received into a static buffer, they can be overwritten before
they are consumed. Thus, the messages need to be copied to another mem-
ory location before the next message is received. Copying the message in
memory pollutes hardware caches and thus incurs costs on the messaging
system.

To eliminate these costs, copying should be strictly avoided. Instead,
each message needs to be received directly into a separate memory location.
When messages are received, i.e. produced, faster than they are consumed,
eventually all message buffers contain unconsumed messages. A protocol
between the producers and the consumers of the messages can be established,
which addresses this situation. For example, the producer may block until
a buffer is consumed, the number of buffers could be increased, or message
buffers could be overwritten after they exceeded a certain age without being
consumed.

This optimization is only applicable if a receiver can specify to which
location in its address space incoming messages are written.

4.5.4 Lazy Process Switching

To achieve asynchrony, messages are relayed via an additional IPC. Thus at
least the overhead of one system call is added to an asynchronous message
transfer.

Lazy process switching [8], introduced by Liedtke et al., safely exports
kernel thread state to user level so that context switches within an address
space can be performed without a mode switch. On L4 this mechanism
is integrated with the existing thread and IPC abstractions. A user level
context switch is performed as a local IPC. When an IPC between two
threads blocks the sender and unblocks the receiver, the IPC can be executed

32 CHAPTER 4. DESIGN

locally, i.e. without entering the kernel. The kernel state of the involved
threads is updated on the next kernel entry.

Proxy threads can make use of lazy context switching when delivering
buffered messages to local threads. In case the receiver is blocked waiting
for the message, the system call is avoided and the context switch to the
receiver thread can be performed at user level.

This optimization is only available on systems which provide lazy context
switching and applies to co-located messaging systems. It is a pure perfor-
mance optimization and does not affect trust, protection, or transparency.

4.5.5 Meta-Data Protocol

Message transfer via IPC causes cache pollution and execution time over-
head. The proxy threads and the threads of the original component (the
worker threads) exchange messages via IPC and thus suffer from these costs.

The copy and its costs can be avoided by changing the protocol between
the proxies and the worker threads. Instead of transferring the complete
message via IPC, only meta data is exchanged. In most cases it is possible
to encode meta data in a significantly smaller form than the actual message,
e.g. by using a pointer. Thus large messages can be exchanged with reduced
overhead in execution time and smaller cache pollution.

4.6 Protocol Optimizations

The optimizations presented so far improved the internal interaction between
the messaging system and a component, preserving transparency to the
external protocol of the component. Since the external protocol is based on
the IPC primitive, it implies certain costs due to the overhead associated
with the system call, the address space switch, and the copying of messages.

When these inherent costs are unacceptable for the performance de-
mands of particular applications, they can only be avoided by modifying
the protocol. Thus, the transparency property is lost and the implementa-
tion of all involved communication partners needs to be adapted.

The original protocol is based on IPC for safe interaction of untrusting
communication partners in separate address spaces. This is not necessarily
the case when shared memory is established. Consequently, trust and pro-
tection issues that arise from protocol modifications need to be addressed.

This section discusses performance optimizations not transparent to pro-
tocols based on IPC between communication partners that potentially dis-
trust each other. For each optimization, it describes the performance bene-
fit, the optimization method with respect to trust and protection, and the
protocol constraints under which it is applicable.

4.6. PROTOCOL OPTIMIZATIONS 33

Memory
Provider

Page−

Handler
Fault

Page−

Handler
Fault

Sender Receiver

Figure 4.2: Shared memory with user-level paging

4.6.1 Shared Memory

The transfer of large messages between two address spaces via in-memory
copying, as inherent to IPC, has two major impacts on performance. Namely,
it consumes execution time and it pollutes hardware caches leading to con-
sequential costs for the communicating and other applications in the system.
Based on our design assumptions, shared memory is an alternative to IPC
in order to cross protection domain boundaries. It avoids the direct costs of
copying and reduces the cache footprint of a message transfer because the
message is consumed in-place. Hereby, zero copy semantics can be achieved.

Figure 4.2 depicts the entities involved with a generic shared memory
setup in systems with user-level paging. Memory is shared when two memory
mappings exist from the same virtual memory range in the memory provider
to both partners. The mappings can be established eagerly on request or
lazily on page faults via the page fault handlers.

After two partners created a shared memory region, the message is trans-
ferred by the sender generating the message into that region and notifying
the receiver with an IPC. Now the receiver can consume the message from
the shared memory after receiving the IPC. The IPC serves two purposes:
as with a copying message transfer, it acts as an activity transfer indicating
that a message has been sent or received. Also, it can contain meta data
describing the message, such as its location and size in the shared memory
region.

Transparency is lost because shared memory needs to be set up and the
message format can not be preserved. However, the message format can be
customized. A sender may for example choose to pass only a part of the
message to the receiver via shared memory and the rest of the message via

34 CHAPTER 4. DESIGN

IPC.
When memory is shared between two address spaces, they are no longer

strictly separated. Interaction is possible between them without kernel in-
volvement. However, the kernel is assumed to ensure that the interaction
is limited to memory modifications within defined regions in each address
space. The following protection problems arise:

Mapping: it is not possible to access the shared memory if no memory map-
pings are established for it, e.g. due to a malicious memory provider.

Modification: the contents of messages can be modified while being ac-
cessed by the receiver. Thus, the time between the validation and the
use of data can be exploited to invalidate it, known as the time of
check vs. time of use (TOCTOU) problem. It arises if the semantics
of a message are relevant for the receiver and it needs to interpret or
validate the data. Otherwise, this is equivalent to the problem of the
sender passing invalid or meaningless data to the receiver via IPC.

Resource Management: shared resources can be a source for denial-of-
service attacks. Resource accounting and management protocols be-
tween the involved partners have to address this problem. Concurrent
access can also be controlled via protocols.

If the partners trust each other and the memory provider, these protection
problems are irrelevant.

In case the partners distrust each other but trust the memory provider,
the memory can be assumed to be accessible within the timing guarantees
given by the memory provider. If the receiver interprets the message con-
tents, it has to validate them. Otherwise, the partner could supply it with
invalid data. In this case, the TOCTOU problem arises. There are two
measures for the receiver to protect itself:

Private copies: The receiver copies the parts of the message it needs to
access from shared memory into private memory. Then it can check
and access them without interference from the sender. However, the
copying introduces overhead and reduces the performance benefit of
the shared memory transfer.

Revoking access: The sender’s write access to the shared memory is re-
voked after it transferred a message. It needs to be restored when
the receiver consumed the message so the sender can reuse the buffer.
These operations incur overhead and reduce the performance improve-
ment by using shared memory.

An untrusted memory provider raises mapping and modification issues.
Modification can be addressed as above. If no memory mappings are sup-
plied by the memory provider, the partners need to be able to recover from

4.6. PROTOCOL OPTIMIZATIONS 35

unhandled page faults. Depending on the underlying system, specific pro-
tocols have to be employed in such a situation. For example, the memory
management or a timeout mechanism could be used for recovery. The part-
ners have to ensure that they access the shared memory in a state that does
not prevent the page fault handling or recovery. If the memory provider is
untrusted but safety is a requirement, the system has to provide adequate
recovery protocols.

To protect against untrusted partners, shared resources have to be man-
aged based on protocols. They allow the involved entities to detect misbe-
havior and to react to it.

Protection is necessary against an untrusted partner that does not release
shared memory after receiving a message. An adequate protocol is to limit
the time the receiver may hold the shared memory buffer without releasing
it to the sender. If the receiver does not release the buffer in time, it is
misbehaving. The sender can react by aborting the communication with
the receiver or by writing the next message into the buffer. If transparency
towards external timing constraints is required, this resource management
protocol has to be adapted accordingly or may not be applicable.

Depending on the format of the meta data, it can be used by the sender
to compromise the receiver. If the sender is not trusted and able to specify
meta data which describes memory not within the shared memory region in
the receiver’s address space, the receiver has to validate the meta data for
correctness before using it.

Address translations necessary to access messages in the shared memory
buffer consume execution time. They can be eliminated by placing the
shared memory regions at the same virtual addresses in the address spaces
of both partners. Given that the protocol allows it, e.g. information about
the message format can be treated as implicit by both partners. Thus, it
does not need to be transferred as explicit meta data thereby reducing the
cache footprint of the IPC.

These optimizations are limited to messages which can be represented
in memory. They are not suited for messages that e.g. transport access
rights to communication endpoints or memory. Such messages have to be
transferred via IPC.

4.6.2 IPC Coalescing

In the original protocol, each message is bound to an IPC, i.e. the activity
is related to the message transfer. This implies that every message causes at
least one system call and one address space switch. Additional IPCs might
be required e.g. for resource management.

By transferring multiple messages per IPC, i.e. by coalescing the IPCs,
these costs can be reduced. For IPC coalescing, the sender places multiple
messages into the shared memory region. The IPC it sends to the receiver

36 CHAPTER 4. DESIGN

then not only contains the meta data for a single message but for all messages
in the buffer. Similarly, the receiver derives the layout of the buffer and the
format of each message from the meta data. The same optimization can be
applied to IPC based protocols that are used to indicate when a message is
consumed by the receiver.

With this optimization, the receiver is not immediately notified of the
availability of a new message. Thus, the latency of the message transfer
is increased. If messages are produced at high rates, the costs of IPCs
and context switches may limit throughput. In this case, the optimization
provides additional throughput at the cost of increased latency. With an
additional protocol between the communication partners, they can control
this trade-off, e.g. by limiting the time the notification IPC may be delayed.

The increased latency through coalescing consumption notifications pro-
vokes shared resource management problems. It results in parts of the buffer
being consumed but not immediately available to the sender. A larger buffer
or a protocol can be employed to handle these issues. In a very simple pro-
tocol, the receiver waits for the sender to produce messages and send an
IPC. Symmetrically, the sender blocks on the receiver until it consumed all
messages and replies to the sender. For example, the partners can protect
themselves from being starved by using timeouts.

Since the protocol is implemented at user level, it can be adapted to
incorporate specific policies regarding latency and throughput. For example,
the latency of messages can be bounded by sending an IPC after the oldest
message in the buffer has reached a certain age without being delivered.

This optimization does not introduce new mechanisms and thus no ad-
ditional trust or protection issues. However, it is only applicable where the
timing constraints of the protocol allow for the additional latency and if it
is not required to send one IPC per message.

4.6.3 Sharing Meta Data

The IPC coalescing optimization increases the amount of meta data trans-
ferred with each IPC, resulting in larger cache footprint. This can be avoided
by transferring meta data itself in shared memory. The IPC no longer needs
to contain data and only indicates when messages are transferred by acti-
vating the receiver.

The meta data has to be interpreted by the receiver in order to access
the transferred messages. When it resides in shared memory, the TOCTOU
problem arises which can be addressed as discussed in section 4.6.1.

Otherwise, this optimization does not introduce additional trust or pro-
tection issues compared to IPC coalescing. It is also subjected to the same
restrictions.

4.6. PROTOCOL OPTIMIZATIONS 37

4.6.4 Lazy Notification

Section 4.6.2 introduced a simple protocol for managing the shared memory
buffer. This protocol does not allow the receiver to consume messages which
have been produced by the sender but no notification IPC has been sent for.
Thus, the partner can not exploit the parallelism of shared-memory multi-
processor machines.

The protocol can be enhanced so that the receiver does not wait for an
IPC from the sender. Instead, it consumes any message in the buffer based
on the meta data in shared memory. Consequently, the sender and receiver
can concurrently produce and consume messages. At the same time the
number of IPCs and the resulting costs are further reduced.

The algorithm presented in [16] by Unrau and Krieger can be adapted to
efficiently handle the cases where the shared memory buffer is empty or full.
When it is empty, the receiver can indicate via the buffer that it is waiting
for a notification IPC and block on the sender. When the sender produces
a packet, it checks the buffer and sends a notification IPC if necessary.
Symmetrically, the sender blocks on a full buffer for a notification IPC from
the receiver, which is sent on the next consumed message. The protocol
reduces the number of IPCs when few messages are sent or the buffer is
rarely empty or full. This is the case when messages are produced and
consumed at similar rates.

If the communication partners do not trust each other, they have to
introduce an additional protocol, for example based on timing constraints,
to avoid not being woken up by the partner.

4.6.5 Forwarding

Receivers may also act as senders to other partners. They can make use
of the proposed optimizations in order to improve performance. To avoid
additional trust and protection issues, they have to use separate shared
memory buffers for each partner. As a consequence, forwarding messages
from one of the partners to another requires to copy them from the sender’s
shared memory buffer to the receiver’s.

A forwarder may need to modify messages that it forwards. The more
a message needs to be modified, the more the costs of the modification
approach those of copying it. Thus by combining both steps, the additional
costs become increasingly irrelevant compared to in-place modification. This
is for example the case with compression and encryption of messages.

Messages do not need to be copied for forwarding when the forwarder
communicates with both partners on the same shared memory buffer. On
the other hand, the protection and trust problems discussed for each opti-
mization become transitive among the partners sharing a single buffer. Also,
meta data is only valid for two communication partners and can in general

38 CHAPTER 4. DESIGN

not be shared transitively. The shared resource protocols established for
managing the buffer need to take the transitivity into account as well.

Chapter 5

Implementation on L4

The design presents generic solutions for achieving asynchronous IPC. Based
on the experiences from constructing multi-server operating systems on L4,
two scenarios are of particular interest for an implementation.

Many applications have to preserve transparency towards a synchronous
protocol. At the same time, they would benefit from the properties of
asynchrony. This is e.g. the case when notification messages to several
other components need to be sent without blocking. Similarly, incoming
synchronous request can be delivered asynchronously without requiring the
receiver to block. In order to evaluate the fundamental costs for transpar-
ent asynchrony, we decided to provide an implementation which exploits all
optimization possibilities presented in the design. Most importantly, the
messaging system and the original component are co-located in the same
address space.

For other applications, such as drivers, the achievable throughput and
latency for communication are of primary importance. In particular their
external protocol determines how well these requirements can be met even
when crossing multiple protection domains. Thus, the second part of the
implementation is guided by the intransparent optimizations discussed in
the design to provide high performance to applications.

The implementation is based on the L4KA::Pistachio micro kernel which
implements the L4 Version 4 API. Also, basic thread and memory manage-
ment functionality of the SawMill multi-server operating system is used.

After giving a short overview on the SawMill operating system, this chap-
ter describes our implementation focusing on transparency and throughput.
The last section addresses the implementation issues of producer-consumer
synchronization.

39

40 CHAPTER 5. IMPLEMENTATION ON L4

5.1 The SawMill Multi-Server Operating System

SawMill was developed at the IBM T.J. Watson Research Center focusing
on the decomposition of Linux as an example for a legacy system. The
resulting set of system servers is designed to maintain the semantics of the
original OS kernel. In [7] Gefflaut et al. illustrate the mechanisms and
protocols employed to achieve protection, coherent system semantics, and
performance for the decomposed system.

An integral part of SawMill is formed by a highly flexible memory man-
agement framework described by Aron et al. in [2]. It is based on the notion
of dataspaces as an abstract data container. It can uniformly represent arbi-
trary memory objects, e.g. physical or anonymous memory, files, or device
related memory.

Dataspaces are implemented by dataspace managers which provide the
dataspace contents as virtual memory. A dataspace can be accessed by
associating it or parts of it with a virtual memory region in an address space
(it is said to be attached to the region). The association is implemented by
a region mapper, which is realized as a user-level page fault handler. It is
responsible for translating an access to a particular address in an address
space into a dataspace and its manager. This information is then used to
request a page mapping from the dataspace manager to the address space
in which the dataspace is attached.

5.2 Transparent Asynchronous IPC

In applications such as servers, asynchronous communication is often re-
quired as an internal optimization while the external protocol needs to be
preserved. Our implementation addresses these requirements by providing
the necessary buffer and proxy thread management functionality discussed
in the design. Furthermore, it applies the presented optimizations to achieve
good performance. As a library, it makes the integration of asynchronous
communication into applications very simple.

5.2.1 Co-Location

The design presented several optimizations that rely on co-locating the ap-
plication and the messaging system. Since our implementation is based on
the IA-32 architecture, avoiding the costs of address space switches is of
particular importance to provide good performance to applications.

Impersonation of threads in L4 (propagation) is available to threads
within the same address space. Propagation across address space bound-
aries can be performed only by privileged threads or it is coupled with
forceful redirection of IPCs via the address space in which propagation is
to take place [15]. The redirection of all inter-address-space IPC through

5.2. TRANSPARENT ASYNCHRONOUS IPC 41

a proxy does not only imply a significant performance impact. It can also
render protocols relying on direct communication (e.g. for synchronization)
ineffective. L4 supports a single redirector per address space. This prevents
threads to directly communicate with multiple proxies, i.e. redirectors, in
different address spaces.

Local proxy threads can handle memory mappings as part of incoming
or outgoing messages in the same way as if sent directly. This simplifies the
implementation compared to separate proxies that need to manage memory
mappings in their address space and account clients for it.

In the L4 Version 4 API propagation is supported only for the send
part of an IPC operation. Thus we implemented the scenario of sending
messages asynchronously according to our design while the asynchronous
receive scenario follows a worker-thread model not requiring propagation.
In the following sections both cases are covered in more detail.

5.2.2 Asynchronous Send

Before sending a message asynchronously the sender needs to explicitely
allocate a message buffer. It is free to do on-demand or preallocation of
buffers. In our implementation the allocation is performed via the malloc()
function but it can be easily adapted to other sources of buffer memory. The
layout of the message buffer corresponds directly to the static L4 message
registers. Thus, the contents of string items need not be copied. However,
applications have to be aware that the data referenced by the string items
should not be modified until the message was transferred. The buffer also
contains control data for the proxy, most importantly the thread identifiers
of the sender and the receiver.

The de-allocation of a message buffer is also left to the sender. Thus
the proxy can communicate the status of the message back to the sender,
e.g. whether the message is delivered or whether an error occurred during
delivery. Instead of deallocating it, the sender can choose to re-use a message
buffer.

Sending the message is implemented as adding the buffer to a message
queue from which it is consumed by a proxy thread. We decided to use FIFO
message ordering to preserve the message order in time. This is assumed to
be a common case application requirement and serves as a base line for the
performance evaluation.

Taking advantage of the optimizations presented in the design, each re-
ceiver is assigned one proxy thread. Thus, the send primitive uses per-
receiver message queues. Each queue is handled by a single proxy thread.
New message queues are associated with an idle proxy if one exists. Other-
wise, a new proxy thread is created. Thus, the costs associated with creating
a new thread occur as startup costs until the number of proxies approaches
the number of busy receivers.

42 CHAPTER 5. IMPLEMENTATION ON L4

As shown by the design, the transparency towards existing protocols
depends on the number proxy threads. On L4, the configuration of an
address space determines how many proxies can reside in this address space.
Thus, when transparency is required for an application, it has to ensure
that its address space is configured to support a sufficient number of proxy
threads.

5.2.3 Asynchronous Receive

Since L4 IPC does not support impersonation when receiving, our imple-
mentation deviates from the generic design. Most importantly, the identity
of the proxy is not opaque to an actual receiver. Since the actual receiver
is able to communicate with other threads impersonating the proxy, it can
still achieve the impression of a single communication endpoint. Further-
more, this approach integrates well with the worker-thread model common
in SawMill multi-server design.

Asynchronous reception of messages is set up by explicitely creating the
proxy and an associated message queue. Each such pair is identified by
a unique handle allowing threads to operate on multiple pairs of proxies
and message queues. Also, any number of threads within an address space
can receive from the same message queue. A receive operation dequeues
a message or, if the queue is empty, optionally blocks the receiving thread
for a timeout it specified. The proxy appends new messages it receives
immediately to the message queue. In case there are blocked receivers, it
sends a notification IPC to the thread that most recently blocked (as it has
the highest probability of a still intact cache working set). Again we use a
FIFO policy on the message queue and LIFO policy on the wait queue as
we expect them to be most commonly required. However, any other policy
can be easily implemented.

For the receive case, explicit allocation of message buffers would require
the receiver to allocate buffers and pass them to the proxy for every message
the proxy receives. This gives the receiver full control over the format of
every single message accepted by the proxy. However, the proxy can not
receive messages when the receiver does not supply buffers (e.g. because
the receiver can not keep up with the rate of incoming messages). Thus, we
decided on implicit on-demand allocation of message buffers by the proxy
via a call back function. This mechanism provides good control over buffer
allocation but de-couples the allocation from the state of the actual receiver.

The buffer returned by the call back function serves two purposes: it
describes the sender(s) and the format of the messages to be accepted by
the proxy and stores the contents of a received message. Before invoking the
receive operation, the proxy retrieves a buffer from the call back function
and loads the from specifier, acceptor, receive window, and buffer register
contents from the buffer. After it received a message, it stores it in the

5.2. TRANSPARENT ASYNCHRONOUS IPC 43

buffer.
Receiving string items or memory mappings asynchronously requires to

set the string buffers and receive window for each receive operation so that
data not yet consumed is not overwritten. Applications can implement
arbitrary allocation and control policies for these secondary buffers in the
call back function for buffer allocation.

5.2.4 Reply Handling

Due to the missing impersonation feature in the receive operation of L4, we
can not implement reply handling as suggested in the design. An application
can however achieve a similar effect for communicating with a server in RPC
style by combining the send and the receive case.

First the sender has to set up a receive proxy so that it performs a
closed wait on the server. Then it sends the request asynchronously to the
server passing the thread identifier of the receive proxy instead of its own
to the send proxy. Thus, the server replies to the receive proxy and the
actual sender can retrieve the reply asynchronously from the receive proxy.
Additional receive proxies are required for multiple concurrent asynchronous
RPC requests.

If the server internally associates state with the thread identifiers of
clients, the application has to propagate all its communication via the receive
proxy to achieve full transparency.

5.2.5 Security

Our implementation does not expose memory to other protection domains
thus only IPC remains a possible source of attack.

For sending messages asynchronously, proxies wait for a notification IPC
if there are no pending messages to be delivered. They only accept messages
from threads within their address space and are thus not vulnerable from
outside.

In the receive case, worker threads wait for a notification IPC when the
message queue is empty. This is a closed receive on the proxy associated
with the message queue, so no other thread can send an IPC to the worker
thread.

The worker threads can control the message format accepted by the
proxy. They also control which senders the proxy receives messages from.
Thus, the application can implement custom policies to control denial-of-
service attacks.

44 CHAPTER 5. IMPLEMENTATION ON L4

5.3 Shared-Memory Communication

When a large amount of data, e.g. network traffic, needs to be transferred
across possibly multiple protection domains, the costs of copying are pro-
hibitive for achieving high throughput. The protocol of the data transfer is
a crucial aspect for the performance of the transfer facility. Transparency
to existing protocols is not an issue in such sceanrios. Our implementation
relies on shared memory for message transfer and focuses on throughput and
latency based on the optimizations presented in the design chapter.

5.3.1 Integration with Dataspaces

Shared memory is established in a dataspace environment by attaching a
dataspace in multiple address spaces. Thus, the dataspace manager maps
the memory associated with the dataspace to those address spaces. The
semantics of memory contents depend on the dataspace and its manager.
This setup is similar to the generic model for user level paging presented in
section 4.6.1.

As a brute-force approach, a message is represented as a dataspace and
transferred between two communication partners by passing access rights for
the dataspace from the sender to the receiver. This generic approach has the
advantage that it allows to transfer the contents of arbitrary dataspaces and
thus arbitrary data between two communication partners with zero-copy
semantics.

However, it requires to open a dataspace, transfer access rights, and
close the dataspace for every message. Such an approach is inefficient for
small messages because all steps involve requests via IPC to the dataspace
manager. This incurs execution time overhead and consequential costs due
to mode and address space switches.

To avoid those costs, a dataspace can be reused for multiple messages by
statically sharing it between the communication partners. This optimization
can be applied only to modifiable dataspaces, e.g. dataspaces representing
anonymous memory. If data from another dataspace is to be transferred
via the shared buffer, it needs to be attached at a different location in the
sender’s address space and the data needs to be copied into the shared buffer.
Consequently, the zero-copy semantics are lost and the copying results in
additional costs.

The copying and its costs arise because the memory mappings between
the sender and the receiver are established statically. This can be avoided
if the sender remaps memory dynamically to the receiver. In the dataspace
framework, memory mappings for dataspaces are established by their datas-
pace managers. Thus, to maintain transparency to the dataspace protocol,
the sender has to implement the dataspace manager interface. When the re-
ceiver attaches a dataspace exported by the sender, the sender can transfer

5.3. SHARED-MEMORY COMMUNICATION 45

a message by mapping it to the receiver.
Our implementation does not make assumptions on how memory map-

pings are established. Thus, applications are free to implement custom poli-
cies addressing their specific requirements with regard to trust, protection,
and performance.

5.3.2 Applied Optimizations

Since transparency is not relevant in this implementation scenario, the costs
associated with proxy threads were avoided by eliminating the proxy threads
themselves. Thus, the sender and the receiver communicate directly.

The shared memory in which the messages reside is called the data buffer.
Meta data is also transferred via shared memory in a separate control buffer
in order to support message forwarding across multiple address spaces in
a singel data buffer. The implementation allocates meta data statically,
i.e. the control buffer contains a fixed amount of message descriptors. This
limits the number of messages that can reside in the data buffer. It re-
quires applications to determine the size of the data and the control buffer
according to their communication behavior before allocating them.

Messages are assumed to consist of contiguous unstructured data. Thus,
a message descriptor consists of a pointer to a message and its size. Ap-
plications can layer an abstract data type on top of this representation for
additional semantics. The pointer is an offset into the shared memory region,
thus the shared memory does not need to be located at the same addresses
in the sender’s and the receiver’s address spaces.

To reduce the number of necessary IPCs for message transfers, the lazy
notification protocol was extended so that multiple threads on the sender
and the receiver side can communicate via the data and control buffers.
This made it necessary to add thread descriptors to the control buffer for
managing threads that wait for notification IPCs.

The implementation allows applications to control when notification
IPCs are sent to the partner and when to block on the partner to receive
messages. Thus, our implementation exports policies regarding message
batching and consequently transfer latency and throughput to the user.

The primitives for allocating, freeing, sending, and receiving messages
operate on meta data only. The management of the data buffer needs to be
performed by applications directly for maximum flexibility.

In applications where the communication partners do not trust each
other the TOCTOU problem arises. It is addressed in our implementation
by creating private copies of the meta data before checking and accessing
it. If the memory provider, i.e. dataspace manager, of the buffers is not
trusted, a protocol is necessary to recover from unhandled page faults on
the buffers. On L4, such a protocol can be implemented by the pager, e.g.
by requiring that a dataspace manager serves a page fault within a certain

46 CHAPTER 5. IMPLEMENTATION ON L4

amount of time. If this timeout expires, the faulting thread is reactivated
and made to execute a handler function. This protocol can be implemented
orthogonally to message transfer, hence it is not part of our implementation.

5.4 Producer-Consumer Synchronization

Section 4.6.4 discussed the lazy notification protocol for buffer management.
It is based on two communicating threads which indicate via a flag in shared
memory when they block and thus require a notification IPC from the part-
ner.

If the partners do not trust each other, they can be starved on the
notification IPC by a partner which sets the flag but never blocks. Thus the
notification IPC has to be sent with a small or no timeout so the sender is
not blocked by the receiver. If the notification IPC to the receiver fails, it
is assumed to be misbehaving and the notification is dropped.

However, there are two conditions under which a notification IPC from
a thread A to a thread B can fail, although B is cooperating:

• after setting the flag and before blocking, B is descheduled in favor of
A, which examines the flag and sends a notification IPC that fails

• B unblocks by itself via a timeout; before it can reset the flag, it is de-
scheduled in favor of A which unsuccessfully tries to send a notification
IPC

The first case is critical because B would block without being reactivated
by A. Thus it needs to be able to recover from this race condition. In the
second case, it is safe to ignore the failed notification.

The delayed preemption feature of L4 allows threads to safely defer asyn-
chronous preemptions for a certain amount of time or to generate an IPC
to an exception handler thread in case an asynchronous preemption occurs.
Thus, B can recover in cooperation with the exception handler when the
race condition occurs. B needs to activate the delayed preemption feature
before it sets the notification flag and blocks. In case B is descheduled in
favor of A before it blocks, the notification IPC fails, but B can be recovered
by the exception handler.

The delayed preemption feature is controlled by a privileged thread. It
also depends on the priorities of threads. Since no assumptions about these
entities and parameters can be made without limiting genericness, our im-
plementation does not make use of delayed preemptions for synchronization.

Chapter 6

Results

This chapter analyzes the performance of asynchronous communication on
top of the synchronous primitives provided by L4. It determines the base-
line costs of the asynchronous primitives, the latency of a message transfer,
the achieved throughput, and quantifies the impact of communication on
application performance.

The implementation and measurements are based on a prerelease version
of the L4KA::Pistachio micro kernel. The measurements were conducted
on a 450 MHz Intel Pentium III processor with 16 KB 1st level cache for
instructions and data each, 512 KB shared 2nd level cache, a 4 way set
associative instruction TLB with 32 entries for 4 KB pages and one with 2
entries for 4 MB pages, a 4 way set associative data TLB with 64 entries
for 4 KB pages and 8 entries for 4 MB pages. The machine was equipped
with 196 MB RAM. We used the processor’s internal performance counter
registers for our measurements.

6.1 Transparent Asynchronous IPC

This chapter presents the performance of the asynchronous send primitive
and compares the latency induced by an asynchronous message transfer
compared to synchronous IPC.

6.1.1 Send Primitive

Figure 6.1 shows the base costs of the asynchronous send operation with and
without the costs incurred by creating a proxy thread. The send primitive
accepts a user-specified pointer to a message descriptor. It derives the mes-
sage queue associated with the the receiver thread identified in the message
descriptor via a hash table. If necessary, a new message queue is allocated.
The message descriptor is appended to the message queue. In case the mes-
sage queue had to be allocated, also a new proxy thread is created to handle

47

48 CHAPTER 6. RESULTS

1

10

100

1000

10000

100000

Send (no new proxy) Send (create new proxy)

Cycles
User Instr.
Kernel Instr.

Figure 6.1: Costs of asynchronous send primitive

the queue. Otherwise, there is no interaction with the proxy thread.
The numbers reflect the average of 100 iterations as the number of cycles

per message spent on the send primitive. They match our expectations of
the costs for the involved data manipulations and the synchronization via a
spin locks using the processor’s atomic compare and exchange instruction.

Figure 6.1 also shows the overhead incurred when a new message queue
and a new proxy have to be created. These costs are caused by an IPC to
a privileged thread, a ThreadControl and a Schedule system call, the reply
IPC, and a ExchangeRegister system call to start the proxy. The results
show that thread creation in its entirety is an expensive operation, thus the
optimization of pooling proxy threads is very important to mitigate these
costs.

6.1.2 Latency

This measurement compares the latency induced by a synchronous message
transfer with that of an asynchronous transfer via a proxy thread. In both
cases, the message consists of a single word containing a cycle timestamp
taken by the sender immediately before the send operation. Another times-
tamp is taken when the message is received. The latency is given in Table
6.1 as the result of subtracting the sender’s from the receiver’s timestamp.
Reading and storing the processor’s timestamp register takes 30 cycles which

6.2. SHARED-MEMORY COMMUNICATION 49

Messages Latency (Cycles) Std. Deviation
Synchronous 100000 606 8%
Async. Send 1000000 1542 6%

Async. Receive 1000000 1488 7%

Table 6.1: Per-message latency of asynchronous message transfer

is included in the results.
The asynchronous send scenario includes the allocation of a new message

queue which gets associated with the receiver. A notification IPC is sent to
an existing idle proxy which gets associated with the message queue. In the
asynchronous receive scenario, the receiver is blocked on the proxy waiting
for the message. Thus, the proxy has to send a notification IPC to the
receiver to consume the message from the message queue.

This behavior models a communication protocol that requires the re-
ceiver to block on the sender until a message is received. It is common place
in client / server interaction.

Sending a message asynchronously via a proxy has higher costs than
when a message is received asynchronously. This is due the message queue
lookup which is not necessary for receiving as there is only a single message
queue.

The relatively high standard deviation of the results is due to timer in-
terrupts occurring during the experiment. A latency of more than 600 cycles
for a synchronous short IPC on L4 is surprising. However, a base-line cost of
408 cycles was determined for the measurement setup. The discrepancy of
about 200 cycles is due to the overhead of timestamping and of the generic
L4 convenience programming interface used in our implementation.

6.2 Shared-Memory Communication

In this section the costs of transferring messages via shared memory are
presented. After analyzing the base costs of the primitives for transferring
a message, the effects of crossing multiple protection domains are shown
with regard to latency and throughput. The overhead of communication on
checksumming as a typical operation on messages is presented and finally
the overhead of copying communication is analyzed.

6.2.1 Primitives

Figures 6.2 and 6.3 show the costs of the meta data manipulation necessary
to send or receive a message via shared memory. Sending a message consists
of allocating a message descriptor from a pool in the control buffer, specify-

50 CHAPTER 6. RESULTS

0

50

100

150

200

250

300

350

Primitives Send

Total
Send
Set
Alloc
Loop

0

100

200

300

400

500

600

700

800

900

1000

Primitives Send

Total
Send
Set
Alloc
Loop

Figure 6.2: Costs of send primitives (cycles)

0

50

100

150

200

250

300

Primitives Receive

Total
Receive
Free
Loop

0

100

200

300

400

500

600

700

800

900

Primitives Receive

Total
Receive
Free
Loop

Figure 6.3: Costs of receive primitives (cycles)

6.2. SHARED-MEMORY COMMUNICATION 51

Intermediate domains 0 1 2 4 8
Average latency in cycles/1000000 1.0 2.9 4.8 9.5 20.1
Throughput in packets/ms 1063 335 197 100 36

Table 6.2: Overhead of forwarding messages across multiple domains

ing the message offset and size by writing these values to the descriptor, and
adding the message to the shared message queue. A message is received by
removing it from the message queue, reading the message parameters, and
deallocating the descriptor to the descriptor pool.

Given that pure meta data operations were measured, the costs appear to
be unexpectedly high, e.g. 50 cycles for setting the message offset and size in
the message descriptor. They are due to the function call overhead, pointer
dereferencing, and sanity checks performed by our implementation. An opti-
mized but less generic implementation is assumed to achieve markedly better
results. Also the experiment operated on a large array of distinct message
descriptors, thus it can be assumed that cache misses occurred frequently.

A notification IPC triggered by a send or receive operation increases
the costs of those operations by 602 cycles for sending and 590 cycles for
receiving. This is consistent with the latency measured for synchronous IPC
in the previous section.

6.2.2 Crossing Multiple Domains

Table 6.2 shows the effect of crossing multiple protection domains on latency
and throughput. Both values show the costs of the meta data manipulations
and notification IPCs necessary to repeatedly transfer messages via a buffer
with a capacity of 4096 messages. The source domain generates a notification
IPC per 4096 messages and blocks for deallocated message descriptors on
the receiver. Similarly, the sink domain notifies the sender of deallocated
message descriptors every 4096 messages and blocks for new messages. In
the intermediate domains, two different threads are used. One forwards
messages towards the sink by acting both as a receiver and a sender. The
other one forwards deallocated message descriptors towards the source. The
latency is measured as in section 6.1.2 between the source and the sink and
the average over all messages is shown.

The high average latency in the base case without an intermediate do-
main results from the fact that the transfer of 4096 messages is batched.
Only after the sender sent all 4096 messages, the receiver is activated.

Dividing the average latency by the number of messages yields per-
message transfer costs of 244 cycles. This value roughly reflects the costs of
transferring a message. However, a message transfer requires both the send-
ing and the receiving primitives to be invoked. Thus, based on the costs

52 CHAPTER 6. RESULTS

1027 1060 1040

1517

0

200

400

600

800

1000

1200

1400

1600

16KB local 16KB remote 1KB local 1KB remote

Cycles/KB

Figure 6.4: Message transfer overhead on checksumming

determined for the primitives, twice as many cycles would be expected. We
assume that the hardware caches were better utilized than in the previous
experiment because the 4096 message descriptors form a significantly smaller
working set (80 KB).

The non-linear performance reduction per intermediate domain is not
unexpected. One reason for the non-linearity are the increasing consequen-
tial costs of address space switches. Another reason is that in addition to
the message transfer from the data source to the sink, deallocated message
descriptors have to be passed in the opposite direction.

6.2.3 Communication Overhead

This experiment determines the overhead of the communication primitives
on application performance. As a typical operation on data the TCP check-
sum algorithm [4] was chosen. For the measurement a data buffer is parti-
tioned into 256 messages and the TCP checksum is calculated for each mes-
sage. We compare checksumming with and without invoking the receive and
de-allocation primitives that potentially blocking the receiver. The sender
uses the data buffer as is and does not access it to transfer the messages
repeatedly to the receiver. The data buffer is statically shared between the
sender and the receiver. The checksumming is performed in the receiver
after receiving a message from the sender. No page faults occur. In total,

6.2. SHARED-MEMORY COMMUNICATION 53

Message size in bytes IPC copy overhead
4 0.922
8 0.925
64 1.217

1024 1.944
4096 5.828

Table 6.3: Overhead of message copying

4 GB of data is checksummed and the results are given as the number of
cycles consumed per kilobyte of checksummed data.

As depicted in Figure 6.4, the overhead incurred by receiving the mes-
sages via the data buffer is 3% for 16 KB messages. However, with 1 KB
messages the overhead increases to 46% compared to checksumming with-
out invoking the communication primitives. There are two major reasons
for this behavior:

• with 1 KB messages the communication primitives need to be invoked
16 times more often per KB data to be checksummed than with 16
KB messages.

• a pipelining effect is introduced by kernel scheduling for 16 KB mes-
sages. The receiver can checksum at least one but not all messages in
the buffer within its timeslice. Thus, the receiver sends a notification
IPC in case the sender is blocked and continues checksumming until
it is descheduled. The sender reuses the message descriptors freed by
the receiver to send more messages. They are picked up by the re-
ceiver without ever blocking on an empty message queue. For 1 KB
messages however, the receiver frequently blocks on an empty message
queue requiring notification IPCs from the sender.

6.2.4 Copying Overhead

Table 6.3 compares the cycles required to transfer messages via IPC and
via shared memory using our implementation. The shared memory control
buffer contains 16 message descriptors. For the measurement, 16 messages
with their sizes ranging from 4 to 4096 bytes are transferred. This includes
the notification IPC of the sender to the receiver sent with the first message.
For the IPC scenario, a single IPC is sent transferring 16 indirect strings
each of which references data of the given sizes. The overhead is given as
(cycles for IPC)/(cycles for shared memory).

This setup is not modeled after a realistic communication model. The
performance of the synchronous IPC could for example be increased by

54 CHAPTER 6. RESULTS

transferring the messages as direct instead of indirect strings. The results
are meant to roughly quantify the overhead caused by copying during a
message transfer.

Chapter 7

Discussion and
Interpretation

This section evaluates the benchmark results presented in Chapter 6. It
discusses their implications on the management of proxy threads, on system
design with regard to the nesting depth of communicating components, and
on the importance of application specific policies for performance.

7.1 Proxy Management

Creating a proxy thread for asynchronous communication is significantly
more expensive than the message transfer itself. This is shown by the bench-
marks of the asynchronous send primitive. To achieve good performance for
asynchronous communication, it is very important to reduce the number
of necessary proxy threads. The design discusses several optimizations ad-
dressing this problem.

Our implementation creates new proxy threads on demand. If this de-
mand arises, a message transfer is delayed until a new proxy is created. This
can violate protocols with rigid timing constraints. Thus, this approach is
not applicable for preserving transparency to such protocols. In order to
satisfy the timing constraints, proxy threads have to be pre-allocated.

In case an existing proxy is assigned a message transfer and the desti-
nation thread is ready to receive, the message latency is increased by 154%
compared to a synchronous transfer. Given the base-line costs of 185 cy-
cles for intra address space IPC and 408 cycles for inter address space IPC,
at least 45% overhead can be attributed to the notification IPC. Lazy pro-
cess switching, which was not available in L4KA::Pistachio at the time of the
measurements, is expected to reduce this overhead significantly for receiving
messages via a proxy.

The best case behavior allows a sender to send a message asynchronously
with 75% less execution time overhead than an empty synchronous IPC. This

55

56 CHAPTER 7. DISCUSSION AND INTERPRETATION

behavior is achieved for example with bursty communication characteristics.

7.2 Modularization

A substantial performance degradation of crossing multiple protection do-
mains with our implementation is shown in section 6.2.2. This limits the
nesting depth of components transferring messages on a data path at which
acceptable performance can be achieved. Four intermediate domains can
be seen as a landmark figure for which latency is increased and throughput
reduced by an order of magnitude.

The recursive deallocation of message descriptors via the intermediate
domains was identified as one source for these costs. It is not possible to
deallocate the descriptors for a region in the data buffer globally in our im-
plementation because the message descriptors are shared privately between
each pair of communication partners and are not directly related to each
other.

To avoid the costs of recursive deallocation, the meta data needs to be
either shared globally which implies transitive trust relationships between
the involved communication partners. Alternatively, the message handling
and the meta data can be centralized in a protection domain similar to the
fbufs approach.

7.3 User-Level Policies

The checksumming experiment illustrated that the costs of common opera-
tions on messages can cover the overhead induced by communication. The
flexibility of the primitive operations also allow applications to benefit from
their low costs by implementing custom policies.

Another common operation on messages is to add or to remove protocol
headers. These operations can be performed with zero-copy semantics by
layering an abstract data type on top of our implementation and allocating
additional message descriptors on demand.

Similarly, the pipelining effect observed in the checksumming experiment
is achieved by the specialized message handling policy of the receiver. Thus,
it is essential to export the freedom to apply custom policies to applications.
This allows applications to benefit from additional semantics and increased
performance.

Chapter 8

Conclusion

IPC is a central mechanism for constructing componentized systems as it al-
lows components to safely interact across the protection domains they reside
in. Two fundamental IPC models are synchronous and asynchronous com-
munication. The L4 micro kernel shows that the synchronous blocking and
unbuffered model can be implemented very efficiently. The asynchronous
model provides non-blocking and buffered communication and thus paral-
lelism but is inherently associated with policy, e.g. for the buffer manage-
ment.

Since both models can be emulated by each other, it is desirable to com-
bine their advantages. To benefit from high IPC performance and exporting
policies to applications, we propose to emulate asynchronous communication
semantics on top synchronous IPC primitives.

The approach of this thesis is to buffer messages and to achieve paral-
lelism via additional proxy threads at user level. The design focuses on trust,
protection, transparency, and performance as key aspects. It illustrates how
asynchronous semantics can be transparently and safely interposed between
communication partners while preserving their existing communication pro-
tocols. For components requiring asynchronous communication while main-
taining transparency towards an external protocol several performance op-
timizations are presented.

In scenarios demanding high throughput for cross domain data transfer
the costs of copying data across protection boundaries is prohibitive. Thus,
the design provides asynchronous communication with zero-copy semantics
by transferring messages via shared memory. With additional optimizations
it addresses the costs caused by IPC system calls and address space switches
to further reduce the communication overhead.

We show that asynchronous communication can be implemented on the
L4 micro kernel purely at user level on top of its synchronous IPC prim-
itives. In the common case, the asynchronous primitives for transparent
communication via proxy threads achieve performance comparable to the

57

58 CHAPTER 8. CONCLUSION

synchronous primitives. In the best case, they outperform the synchronous
primitives by a factor of four. The message transfer via shared memory is
shown to effectively eliminate the overhead of copying and to provide high
throughput.

The results also highlight the importance of providing a high degree of
flexibility to applications. It allows to implement application specific policies
for additional semantics and increased performance. A micro kernel with
flexible and well-performing synchronous communication primitives such as
L4 has been found to be an ideal basis for achieving this goal.

The obtained performance encourages the construction of modularized
systems. However, the performance impact of decentralized message han-
dling limits the number of domains that can be crossed efficiently with our
zero-copy approach. This impact has to be reduced for fine-grain compo-
nentized systems and constitutes an area of further research.

Chapter 9

Future Work

This chapter gives an overview on topics that could not be covered in this
work due to the limited amount of time available.

9.1 Multi-Processor Support

On uniprocessor systems, the parallelism provided by asynchronous IPC
increases concurrency but does not necessarily result in an overall reduction
of execution time. This effect can be achieved on multi-processor machines.

However, thread migration and cross-processor communication can in-
cur a significant overhead. Furthermore, applications and proxy threads
co-located on a single processor might benefit from utilizing shared local
processor caches. Pipelining effects as exposed by the checksumming exper-
iment in section 6.2.3 are also expected to become even more important on
multi-processor systems. Thus, an analysis of the communication behav-
ior on multi processors and the involved trade-offs is necessary in order to
maximize the benefit provided by the additional parallelism.

An important aspect on multi processors is synchronization. Coarse-
grained pessimistic synchronization is currently used in our implementation.
This is acceptable for uniprocessors where experiments have shown that up
to 16 threads involved in shared memory communication have no visible
effect on message latency and throughput. With 256 involved threads the
overhead due to synchronization is 30%.

However, the simple synchronization is assumed to hamper performance
on multi processor systems where lock contention becomes more likely. Im-
provements can be expected from well-known optimistic fine-grained syn-
chronization techniques. An evaluation of the applicability of the delayed
preemption mechanism available on L4Ka::Pistachio is of particular interest.

59

60 CHAPTER 9. FUTURE WORK

9.2 Analysis of Cache Impact

The cache behavior of communication facilities is crucial for performance.
For example, Mach IPC performance suffers significantly from the cache
footprint of the Mach kernel, as we discussed in section 3.1.

Thus, an emulation of asynchronous IPC can only deliver maximum
performance to applications by optimizing it for low cache impact. An
analysis has to show under which circumstance our implementation exposes
high cache footprint and identify possible solutions. In particular for asyn-
chronous communication via proxies, we expect that e.g. a reduction of the
meta data size and buffer reuse are possible methods of improving cache
behavior.

9.3 Access Revocation on Shared Buffers

The TOCTOU problem discussed in section 4.6.1 is addressed in our imple-
mentation by copying the possibly volatile data to private memory before
checking and accessing it. Due to the small size of the meta data that is
copied, the performance impact is acceptable. However, in applications that
need to check and access large messages, the overhead introduced by this
approach can be prohibitive.

Dynamic revocation of access rights on the memory to be accessed was
discussed as an an alternative to copying the data. The dataspace model
implemented in SawMill supports this solution. However, it requires the re-
ceiver to contact the dataspace manager via IPC and is thus also associated
with inherent costs. Another possible solution is to implement the protec-
tion semantics in the dataspace manager providing the buffer memory and
to enforce the access restrictions on demand when memory mappings are
requested by the involved communication partners.

An analysis of these approaches has to show under which circumstances
which method is most applicable with regard to trust, protection, and per-
formance.

9.4 Impact of Intermediate Domains

The benefits of modularization and encapsulation speak in favor of systems
with a very fine-grained level of componentization. However, the costs of
communication across multiple protection boundaries increases significantly
with each intermediate domain as shown in section 6.2.2. We attributed the
costs mainly to the mechanism of deallocating message descriptors and the
impact of address space switches.

Analyzing these costs in more detail can help to identify their particular
sources. Based on such an analysis, specific improvements could be devel-

9.4. IMPACT OF INTERMEDIATE DOMAINS 61

oped for both the process of switching address spaces and the behavior of
the communication system.

62 CHAPTER 9. FUTURE WORK

Bibliography

[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for UNIX development. In Proceeding of the USENIX 1986
Summer Conference, pages 93–112, Atlanta, 1986. USENIX.

[2] Mohit Aron, Jochen Liedtke, Yoonho Park, Luke Deller, Kevin Elphin-
stone, and Trent Jaeger. The SawMill framework for virtual memory
diversity. In Australasian Computer Systems Architecture Conference,
Gold Coast, Australia, January 2001. IEEE Computer Society Press.

[3] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and
Henry M. Levy. User-level interprocess communication for shared
memory multiprocessors. ACM Transactions on Computer Systems,
9(2):175–198, 1991.

[4] B. Braden, D. Borman, and C. Partridge. Computing the internet
checksum; RFC 1071. Internet Request for Comments, (1071), Septem-
ber 1988.

[5] Peter Druschel and Larry L. Peterson. Fbufs: A high-bandwidth cross-
domain transfer facility. In Symposium on Operating Systems Princi-
ples, pages 189–202, 1993.

[6] B. Ford and J. Lepreau. Microkernels should support passive objects.
Systems, pages 226–229, December 1993.

[7] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V. Uhlig,
J.E. Tidswell, L. Deller, and L. Reuther. The SawMill multiserver
approach. In 9th SIGOPS European Workshop, Kolding, Denmark,
September 2000.

[8] J. Liedtke and H. Wenske. Lazy process switching. In Proceedings of
the 8th Workshop on Hot Topics in Operating Systems, pages 15–20,
2001.

[9] Jochen Liedtke. Improving ipc by kernel design. In 14th ACM Sympo-
sium on Operating System Principles (SOSP), December 1993.

63

64 BIBLIOGRAPHY

[10] Jochen Liedtke. On micro-kernel construction. In Symposium on Op-
erating Systems Principles, pages 237–250, 1995.

[11] M. J. Karels M. K. McKusick, K. Bostic and J. S. Quarterman. The
Design and Implementation of the 4.4BSD Operating System. Addison-
Wesley Longman, Inc., 1996.

[12] J. C. Mogul. Network locality at the scale of processes. ACM Transac-
tions on Computer Systems, 10(2):81–109, May 1992.

[13] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-Lite: A unified
I/O buffering and caching system. ACM Transactions on Computer
Systems, 18(1):37–66, 2000.

[14] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS:
a fast capability system. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles (SOSP’99), pages 170–185. Kiawah
Island Resort, near Charleston, Sout Carolina, December 1999.

[15] L4Ka Team. L4 Experimental Kernel Reference Manual. System Ar-
chitecture Group, University of Karlsruhe, May 2003.

[16] R. Unrau and O. Krieger. Efficient sleep/wake-up protocols for user-
level IPC. Technical report, Dept. of Computer Science, University of
Alberta, Edmonton, Canada, 1997.

	Introduction
	Background
	L4
	IPC Performance

	Implications of Asynchronous IPC
	Communication in Multi-Server Systems
	Message Passing
	Message Buffers
	Transfer Semantics
	Transfer Mechanisms
	User-Level Paging

	Related Work
	Mach
	Mbufs
	Fbufs
	IO-Lite

	Design
	Assumptions and Prerequisites
	Parameters
	Asynchronous IPC
	Protocol Transparency
	Transparent Optimizations
	Proxy Threads
	Co-Location
	In-Place Consumption
	Lazy Process Switching
	Meta-Data Protocol

	Protocol Optimizations
	Shared Memory
	IPC Coalescing
	Sharing Meta Data
	Lazy Notification
	Forwarding

	Implementation on L4
	The SawMill Multi-Server Operating System
	Transparent Asynchronous IPC
	Co-Location
	Asynchronous Send
	Asynchronous Receive
	Reply Handling
	Security

	Shared-Memory Communication
	Integration with Dataspaces
	Applied Optimizations

	Producer-Consumer Synchronization

	Results
	Transparent Asynchronous IPC
	Send Primitive
	Latency

	Shared-Memory Communication
	Primitives
	Crossing Multiple Domains
	Communication Overhead
	Copying Overhead

	Discussion and Interpretation
	Proxy Management
	Modularization
	User-Level Policies

	Conclusion
	Future Work
	Multi-Processor Support
	Analysis of Cache Impact
	Access Revocation on Shared Buffers
	Impact of Intermediate Domains

