
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Managing Kernel Memory Resources
from User Level

Andreas Haeberlen

Diplomarbeit

Verantwortlicher Betreuer: Prof. Dr. Alfred Schmitt
Betreuende Mitarbeiter: Dr. Kevin Elphinstone

Dipl.-Inf. Volkmar Uhlig

25. April 2003

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfaßt und keine anderen
als die angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources
have been used.

Karlsruhe, den 25. April 2003

Andreas Haeberlen

Abstract

In order to implement abstractions like threads or address spaces, operating sys-
tem kernels need to maintain the corresponding metadata. This metadata is usually
stored in kernel memory, i.e. in a region of physical memory that is reserved for
kernel use. As the amount of available kernel memory is limited, its allocation
must be controlled carefully; otherwise, applications can run a denial-of-service
attack against the kernel by consuming all of its resources.

Some operating system kernels have addressed this problem by providing
powerful management policies. However, with a single global policy, it is dif-
ficult to accommodate multiple domains with different requirements at the same
time. Also, existing solutions allow only limited control over kernel memory;
for example, it is often not possible to reduce an allocation, except by killing the
task that currently holds it. This makes it difficult to respond to changing load
situations or suspected denial-of-service attacks.

In this thesis, we present a new scheme which uses paged virtual memory to
control kernel memory resources from user level. Memory can be preempted from
the kernel and restored later; any kernel metadata affected by this is converted
into an external representation, which can be safely exported. To demonstrate our
approach, we apply it to an existing kernel, the L4 microkernel. We also present
an experimental implementation.

Acknowledgements

This work would not have been possible without the continuous support of my ad-
visors, Dr. Kevin Elphinstone and Volkmar Uhlig. I am grateful for their insights,
expert guidance, and encouragement.

I would like to thank the members of the System Architecture groups at Karls-
ruhe, Dresden and Sydney, for their valuable feedback and many interesting dis-
cussions. There are too many names to mention them all, but I would like to thank
Marcus Völp and Adam Wiggins for patiently discussing many crazy ideas, and
Gerd Liefländer for his encouragement and constant support throughout this the-
sis. Special thanks go to Uwe Dannowski for detailed proofreading and moral
support – and, of course, for sharing his endless supply of chocolate.

Contents

1 Introduction 11
1.1 Problem statement . 12
1.2 Approach . 13

2 Related Work 15
2.1 Kernel memory management . 15

2.1.1 Static in-kernel policy 16
2.1.2 Extensible kernels . 17
2.1.3 State caching . 18
2.1.4 User-level managers . 19

2.2 Exporting kernel state to user level 20
2.3 Summary . 20

3 Paging the Kernel 21
3.1 Requirements . 21
3.2 Proposed scheme . 23

3.2.1 Resource space . 23
3.2.2 Notification . 23
3.2.3 Allocation and deallocation 24
3.2.4 External representation 24

3.3 Analysis . 24
3.4 Techniques for exporting metadata 25

3.4.1 Localization . 25
3.4.2 Partial preemption . 26
3.4.3 Splitting . 26
3.4.4 Export unmodified . 27
3.4.5 Discard and retrieve . 27
3.4.6 Cryptographic sealing 27

4 Application to L4 29
4.1 The L4 microkernel . 29
4.2 Overview . 30
4.3 Data structures . 31

4.3.1 The mapping database 32
4.3.2 The node table . 33

4.4 Accounting . 34
4.4.1 Principals . 34
4.4.2 Sharing . 35

4.5 Placement . 36
4.5.1 Scope . 36
4.5.2 Transparency . 37
4.5.3 Binding . 37

4.6 Request and allocation . 39
4.6.1 Sending the request . 40
4.6.2 Checking the allocation 40
4.6.3 Accepting a resource . 41
4.6.4 Deadlock avoidance . 42
4.6.5 Deadlock resolution . 43
4.6.6 Faults during system calls 44
4.6.7 Nested faults . 45

4.7 External Representation . 46
4.7.1 Page tables . 46
4.7.2 Node tables . 48
4.7.3 Mapping database . 51
4.7.4 User thread control blocks 59
4.7.5 Kernel thread control blocks 60
4.7.6 Summary . 64

4.8 Preemption and revalidation . 65
4.8.1 Trigger events . 65
4.8.2 Inter-resource dependencies 66
4.8.3 Cyclic dependencies . 66
4.8.4 Pages with mixed content 67

5 Analysis 69
5.1 Protection and security . 69

5.1.1 Metadata-based attacks 70
5.1.2 Page-fault-based attacks 74

5.2 Differences to L4 . 75
5.2.1 Resource faults . 76
5.2.2 Persistent mappings . 77

5.2.3 Extended pager privileges 77
5.2.4 Role of ��� . 78

5.3 Lessons learned . 78
5.3.1 No global identifiers . 78
5.3.2 Address spaces as first-class objects 79
5.3.3 Symmetric API . 79

6 Implementation 81
6.1 Goals . 81
6.2 L4/Strawberry . 82
6.3 Kernel design . 83

6.3.1 Continuations . 83
6.3.2 Reference checking . 84
6.3.3 Preemption points . 85
6.3.4 Physical mapping . 85

6.4 Performance . 85
6.4.1 Kernel memory usage 86
6.4.2 Policy overhead . 88
6.4.3 Fast path overhead . 89

7 Conclusions and Future Work 91
7.1 Limitations in existing schemes 91
7.2 Contributions of this thesis . 91
7.3 Future Work . 92

Chapter 1

Introduction

Resource management is one of the core responsibilities of any operating system.
Directly after system startup, the operating system has full control over all the
resources offered by the hardware, such as processing power, storage space, en-
ergy, or bandwidth. It must then distribute these resources to applications in an
appropriate fashion, i.e. in a way that maximizes user utility.

Today, most operating systems support protection, i.e. they can prevent appli-
cations from accessing the resources of another application unless they have been
explicitly authorized to do so. This is obviously beneficial for a multi-user system
where users may want to hide sensitive information from other users, but it can
also be used to enhance the robustness of the system by isolating subsystems that
are untrusted or potentially faulty.

The restrictions required to implement protection are usually enforced by hard-
ware that can distinguish multiple privilege levels. Only one part of the operating
system – the kernel – is allowed to run at the highest privilege level; it uses the
resources to implement a number of core abstractions, such as threads or address
spaces, which it provides to applications.

Most of these core abstractions are associated with metadata. For example,
each thread requires a thread control block to store its context and its state, and
each address space needs a page table, which contains the translation from ad-
dresses to memory resources. If applications were allowed to access this metadata
directly, they could easily change the resource allocation and thus circumvent pro-
tection. Therefore, the kernel must protect the metadata as well.

However, in order to store the metadata, the kernel must use some memory
resources for itself. This kernel memory is a resource in its own right and must be
managed carefully, like any other resource. In particular, the amount of available
kernel memory is limited, e.g. by the amount of physical memory in the system.
If it becomes exhausted, the kernel must deny further requests, which renders the
system effectively unusable.

12 CHAPTER 1. INTRODUCTION

Therefore, the use of a simplistic allocation policy like FCFS leads to many
potential problems, such as:

� Denial of service: An attacker can run a denial-of-service attack against
the kernel by executing an application that consumes all available kernel
memory. This can be done in many ways, e.g. by creating a large number
of threads, which usually does not require any special privileges.

� No isolation: The kernel memory consumption of one subsystem affects
all other subsystems. The resulting cross talk makes it impossible to give
quality-of-service guarantees for a particular subsystem.

� No predictability: Under high load, kernel memory may become exhausted.
From the application’s point of view, this might happen at any time, and
therefore any system call can potentially fail. This makes it impossible to
offer guaranteed response time, e.g. for a real-time client.

Several operating systems have avoided these problems by enhancing the ker-
nel with a powerful policy for metadata management. In the Scout system, it is
possible to limit the amount of kernel resources used by a particular I/O path [40],
which has been demonstrated to be an effective defense against denial-of-service
attacks [49]. The Resource Container abstraction provides systems with a method
to account kernel resources towards individual activities, and to impose limits on
their resource usage [3].

Other operating systems have provided means to dynamically customize or re-
place the management policy. SPIN uses a two-level allocation scheme in which
a system-wide allocator distributes resources to multiple user allocators; code for
the user allocators can be uploaded to the kernel at runtime [4]. The Cache Kernel
does not manage its metadata itself; instead, it acts as a cache for system objects
that are provided by user-mode application kernels [9]. The kernel can evict ob-
jects from this cache when it needs more memory.

1.1 Problem statement
All of these approaches have in common that the ultimate policy used to manage
kernel memory is global to the entire system. We believe this is overly restrictive.
Such a policy is always designed with a particular focus and therefore works well
for some applications, but not so well for others; therefore, it is unsuitable for
a general kernel which must be able to accommodate subsystems with different
requirements at the same time. For example, users may want to run real-time
tasks concurrently with best-effort applications, and service providers may need

1.2. APPROACH 13

to provide different QoS levels to their customers. This is difficult to achieve with
a single global policy.

Furthermore, most of the existing solutions provide only very limited control
over kernel memory resources. For example, it is usually not possible to reduce
an allocation once it has been granted, except by killing the current owner. This
makes it difficult to respond to changing load situations or suspected denial-of-
service attacks because killing tasks is usually not an option.

Finally, related work has shown that applications can benefit significantly from
managing their memory resources according to their own policy [15, 19, 20]. This
is possible because the application has specific knowledge and can therefore give
far more accurate predictions on future resource usage than the kernel. Although
this argument has mostly been used for ordinary memory resources, it can be
applied to kernel memory as well.

1.2 Approach
In this paper, we present a new scheme for kernel memory management which
is based on paged virtual memory. Virtual memory has become ubiquitous in
modern systems as it provides a well understood, flexible, and efficient mecha-
nism to manage physical memory resources. It has proven sufficient to control
the memory usage of competing clients, provide recoverable and transactional
memory [10, 45], provide more predictable or improved cache behavior via page
coloring [28], enable predictable access timing via pinning, and even enable se-
cure application-controlled virtual memory by safely exporting control of basic
virtual memory mechanisms [15, 35, 42]. We show that this powerful mechanism
can also be used for kernel memory, and we demonstrate that similar benefits can
be obtained.

Clearly, if the kernel is to be paged by user-level applications, care must be
taken not to compromise protection, e.g. by allowing applications to see – or even
modify – internal metadata of the kernel. In our system, this is achieved by con-
verting the metadata into an external representation before exporting it to user
level. It has already been shown that this can be done safely, i.e. without enabling
applications to increase their privileges [53]. When the external representation is
returned to the kernel, the original metadata can be fully reconstructed.

We demonstrate the feasibility of our scheme by applying it to an existing
kernel, the L4 microkernel. Previous L4 implementations have mostly used fixed-
size kernel memory pools with FCFS allocation. By making some minor changes
to the API and the internal structure of the kernel, we arrive at a kernel that is fully
pageable, i.e. all of its internal memory resources can be managed from user level.
We also present an experimental implementation, L4/Strawberry, which we use to

14 CHAPTER 1. INTRODUCTION

analyze the performance impact of this scheme.
The rest of this thesis is structured as follows: In Section 2, we summarize

related work, and Section 3 describes the approach in more detail. In the following
three sections, we discuss how we applied our scheme to L4. Section 4 contains
a detailed description of the changes we had to make to the original L4 model,
Section 5 analyzes the consequences, e.g. for performance and protection, and
Section 6 presents and evaluates our experimental kernel, L4/Strawberry. Finally,
in Section 7, we summarize and present our conclusions.

Chapter 2

Related Work

In this chapter, we discuss previous work on kernel metadata management. We be-
gin by describing various approaches to controlling the allocation of kernel mem-
ory, then we present an overview of work that has been done to safely export
kernel metadata to user level.

2.1 Kernel memory management
Similar to a user-level application, the kernel manages its memory resources ac-
cording to a certain set of policies. For example, an allocation policy is used to
decide whether or not a specific request for kernel memory should be granted,
and a placement policy is applied to choose one out of multiple free memory re-
gions. Most of the differences between existing approaches are related to certain
aspects of these policies, i.e. where they are implemented, how powerful they are,
and how much influence applications can exert on them. The following four basic
approaches exist:

� Static in-kernel policy: A fixed management policy is built into the kernel
at compile time. The policy can be customized at runtime, e.g. by changing
certain parameters, but it cannot be replaced with a fundamentally different
policy.

� Extensible kernel: The kernel allows new functionality to be added at run-
time, e.g. by uploading small pieces of code. Thus, the management policy
can be changed or replaced entirely.

� State caching: Kernel objects are maintained by user-level application ker-
nels, who also control the corresponding management policies. The system
kernel reads these objects into an internal cache before it uses them; when
the objects are evicted from this cache, they are written back to user level.

16 CHAPTER 2. RELATED WORK

� User-level managers: The kernel only provides a mechanism for memory
management; the actual policy is implemented by user-level applications.

In the following sections, we discuss each of these approaches in more detail,
and we describe and cite related work.

2.1.1 Static in-kernel policy
The L4 microkernel [34] allocates metadata from an in-kernel memory pool,
which is created during startup and has a fixed size. As long as there is enough free
space available, new requests are always granted. When the pool is exhausted, no
new metadata can be allocated, and the respective system call fails with an error
code. In this case, the requestor can try to free up some memory, e.g. by deleting
threads or address spaces.

The Linux 2.4 memory manager [44] dynamically assigns physical memory
frames to one of multiple pools or caches. These caches include the buffer cache,
the inode cache, a cache for process mapped virtual memory and a slab cache
for kernel metadata. Most of the caches can grow and shrink on demand; thus,
the kernel can free up additional memory for kernel metadata by reducing e.g.
the size of the buffer cache. However, the kernel can still experience memory
pressure when all physical memory is in use. In this case, an emergency recov-
ery function (the Out-of-Memory killer) is invoked, which frees up memory by
randomly terminating tasks.

The K42 kernel [26] segregates kernel memory into pinned memory and paged
memory. Kernel pinned memory contains all code and data necessary to do paging
I/O, while the rest is subjected to the normal paging scheme and can be paged out
to backing store. Thus, the size of the metadata used by the kernel can exceed the
amount of physical memory.

Several other approaches introduce a new abstraction for resource principals.
The Scout operating system [40, 49] supports a special path abstraction that rep-
resents a stream of data flowing through several subsystems, e.g. packets of a
certain TCP connection. Resource Containers [3] can be used to account resource
consumption towards individual activities; for example, a single thread can serve
requests with different priorities by dynamically binding to the respective contain-
ers. The Solaris Resource Manager [51] introduces limit nodes, or lnodes, which
support user- or group-based resource control. Virtual Services [43] support fine-
grain accounting in the presence of shared services; the mechanism intercepts
system calls and uses a classification mechanism to infer the current principal.
All of these approaches support resource limits per principal. If the limit is ex-
ceeded, the system can take action; for example, the principal may be notified,
blocked, or transferred to a best-effort service class.

2.1. KERNEL MEMORY MANAGEMENT 17

Analysis

All of the above approaches rely on a single, system-global allocation policy. We
consider this overly restrictive because this policy is always a compromise be-
tween performance and generality; related work has shown that applications are
often ill-served by the default operating system policy [1, 50] and can benefit sig-
nificantly from managing their own memory resources [15, 19, 20, 27, 29, 39].
Also, while the allocation policy can be configured in some of the approaches,
other policies, e.g. for placement or replacement, cannot be influenced at all.

Furthermore, the effectivity of this approach depends strongly on the policy
that is being used. FCFS, which is implemented in L4 and Linux, cannot prevent
applications from monopolizing kernel memory or running a Denial-of-Service
attack against the kernel. Most of the other schemes use some variant of the
Quota policy, which can either provide predictability (with reservations) or good
utilization (with overcommitment), but not both.

Finally, previous work has consistently failed to address the issue of preemp-
tion and revocation. In most cases, once an allocation of kernel memory is granted,
it can only be freed indirectly by the corresponding principal if it chooses to re-
lease the metadata object that is stored in it; sometimes killing the principal is
offered as an alternative. However, this is unacceptable in most cases.

2.1.2 Extensible kernels

The SPIN operating system [4, 5] allows applications to customize the services
offered by the kernel. This is done by installing a so-called spindle, which con-
tains application-specific code that is written in Modula-3, a type-safe language.
Although spindles are executed with kernel privileges, they cannot interfere with
the rest of the system; the kernel relies on a combination of compile-time and run-
time checks to prevent unauthorized access. New functionality can be based on
core services, which are part of a framework for managing memory and processor
resources that is implemented by the kernel itself.

The VINO kernel [14] uses a similar approach. Applications may customize
the implementation of kernel resources by grafting an extension into the kernel.
However, modules need not be written in a type-safe language; instead, they must
be created with a trusted compiler that inserts base-and-bounds checks or sand-
boxing instructions and then marks the resulting code with a digital signature.

Another approach, which is widely used in current operating systems, is to
insert kernel extensions directly and without any additional checks. In this case,
installing new extensions is a privileged operation that can only be performed by
the supervisor or by users with similar authority.

18 CHAPTER 2. RELATED WORK

Analysis

For our discussion, we distinguish two different types of kernel extensions: Un-
trusted extensions are executed in kernel mode, but not with full privileges; they
are subjected to an in-kernel protection mechanism which prevents them from
invoking certain operations. Trusted extensions are not restricted in any way.

Untrusted extensions solve only part of the problem. Since they do not have
full privileges, they can only modify or extend, but not entirely replace kernel
functionality. For example, untrusted extensions are usually barred from accessing
the MMU, so they cannot replace the virtual memory subsystem; instead, they
must rely on some kind of basic service provided by the original kernel. For
security reasons, memory used by this basic service cannot be managed by an
untrusted extension.

Trusted extensions can only be installed by trusted applications; thus, un-
trusted applications cannot benefit from a custom policy.

2.1.3 State caching

The V++ Cache Kernel [9] does not fully implement all the functionality associ-
ated with its core abstractions, namely threads and address spaces; it merely acts
as a cache for these objects. The management functions are provided by user-
level application kernels, who are also responsible for loading the objects into the
cache when they are needed. When the cache is full, the kernel evicts objects from
its cache and writes them back to user level. In this system, user data and kernel
metadata need not be strictly separated; they are both stored in ordinary memory
and can be maintained entirely at user level.

The EROS kernel [46, 47] implements an abstract virtual machine that is based
on type-safe capabilities. Classical kernel metadata, such as process and address
space descriptors, is constructed from capabilities and maintained at user level.
In order to avoid parsing and validating these data structures on every access, the
kernel keeps several caches and auxiliary data structures, e.g. a context cache for
recently used process contexts. When necessary, information is evicted from the
caches and written back to the original data structures.

Analysis

In this approach, kernel metadata is maintained at user level and stored in ordinary
memory, where it can be subjected to standard memory management policies.
Hence, no separate policy is required to manage kernel metadata.

However, applications must compete for space in the kernel cache instead,
which is also a limited resource. A malicious task can easily flood this cache and

2.1. KERNEL MEMORY MANAGEMENT 19

thus degrade the performance of other tasks. Therefore, the caching approach by
itself is not sufficient to isolate subsystems or to prevent Denial-of-Service attacks;
it must be combined with a management policy for the kernel cache. It is likely
that applications can benefit from customizing this policy as well, e.g. by evicting
less important objects first. The resulting problem is similar to the one discussed
in this thesis.

2.1.4 User-level managers
Liedtke et al. [36] proposed an extension to the memory pool model that was used
in the original L4 microkernel [34]. In their approach, the kernel still allocates
metadata from an in-kernel memory pool and fails system calls when this pool is
exhausted. However, applications can resolve this situation by donating some of
their own memory to the kernel. User-level memory managers must ensure that
the memory being donated is removed from all user address spaces; afterwards,
the kernel can use the additional memory to allocate metadata for the donator.

The Calypso translation layer [52], a virtual memory subsystem for the L4 mi-
crokernel, implements a similar mechanism that differs from the donation model
in two important points: It uses per-task memory pools instead of a single central
pool, and it does not fail system calls when additional memory is needed. Instead,
the requestor is suspended and a page fault is sent to its pager. The pager can then
resolve the fault by allocating additional memory.

In both approaches, the kernel ensures that the memory it uses for metadata is
not mapped to any other address space. This effectively prevents user access to
kernel metadata, but complicates the process of reclaiming kernel memory that is
no longer used. In an earlier approach proposed by the author [18], this problem
is solved by allowing the pagers to retain control over the memory they allocate to
the kernel. However, the kernel must still protect and lock pages that contain live
metadata. Since this would allow malicious applications to hijack memory from
their pagers, a special permission bit is introduced for memory that may be given
to the kernel.

Analysis

By exporting an interface for controlling kernel memory allocation, the kernel
enables applications to use their own management policies; also, different policies
can co-exist in the same system.

However, the above mechanisms are unnecessarily restrictive because they do
not allow managers to decrease or revoke an allocation of kernel memory, except
by killing the principal. Thus, only very simple policies like FCFS and Quota
can be implemented, and it is difficult for the system to respond to sudden load
changes or suspected Denial-of-Service attacks.

20 CHAPTER 2. RELATED WORK

2.2 Exporting kernel state to user level
Several existing kernels are able to export their internal state to user level. How-
ever, this feature has been used mainly to implement process migration and or-
thogonally persistent operating systems, and not to make kernel memory pre-
emptible.

The Fluke microkernel [16, 53] makes every exported operation fully inter-
ruptible and restartable. Thus, the complete state of a thread can always be ex-
posed to user level, even when it is involved in a system call. All kernel state is
kept in user-visible kernel objects, so-called flobs, and can be cleanly exported
and imported at any time. This is exploited by a user-level checkpointer, which
periodically pickles the kernel state, i.e. converts it into an externalized form, and
writes it to stable storage.

L3 [33] and its successor, L4 [7, 48], export kernel metadata to a single trusted
entity, the checkpoint server. Although this server runs with user privileges, it
logically owns part of kernel memory and can access this part directly using map-
pings in its address space. The checkpoint server is also allowed to revoke certain
privileges from the kernel, e.g. to implement copy-on-write for kernel metadata.

The Charm microkernel [12], which is derived from the Grasshopper sys-
tem [11], exposes its metadata to user level in order to support applications in
implementing their own persistence policy. However, applications are not allowed
to create or modify metadata; security-related metadata is not exposed.

2.3 Summary
In short, previous approaches to kernel memory management suffer from at least
one of the following deficiencies:

� They do not allow untrusted applications to benefit from a custom manage-
ment policy,

� They cannot be used to enforce subsystem isolation, or to prevent Denial-
of-Service attacks,

� They are only applicable to part of the variable-size kernel state, but not to
all of it, or

� They support only a very limited range of management policies

Exporting kernel state to user level is not a new feature, but to our knowledge,
it has never been used to page kernel memory.

Chapter 3

Paging the Kernel

In this section, we first discuss requirements for kernel memory management at
a general level, and we define a set of properties we consider necessary for any
such management scheme. Then we present our proposed solution, which is an
application of paged virtual memory to kernel metadata. Finally, we show that
this solution meets all of our requirements.

3.1 Requirements
We begin by defining a set of generic requirements that should apply to any re-
source management scheme:

1. Limits: Managers should be able to limit the amount of resources used by
individual principals. The principals should not be allowed to exceed this
limit without agreement of the manager.

2. No reallocation: Resources that have been allocated to a particular princi-
pal should always be available to it; they should not be transparently reallo-
cated to other principals.

3. Revocation: A manager that has allocated some or all of its resources to a
principal should be able to revoke this allocation at any time.

The above is sufficient to manage ordinary resources; however, kernel memory
is special because it is used to store metadata for all kernel-level resources, includ-
ing itself. If the metadata for kernel memory were excluded from the scheme, the
question would immediately arise how this meta-metadata should be managed,
i.e. the problem would reappear on another level. Therefore, we add the following
requirement:

22 CHAPTER 3. PAGING THE KERNEL

4. Full scope: It should be possible to apply the mechanism to all variable-size
kernel metadata

This excludes kernel code and fixed-size metadata such as global variables,
which can be preallocated during startup.

Kernel memory is also special in the sense that it is not explicitly requested
by a principal; instead, it is implicitly allocated when an application uses a core
abstraction. Therefore, an appropriate principal must be identified a priori. Al-
though other choices are possible, we decide for the principal that uses the core
abstraction, which leads to the following requirement:

5. Accounting: When a resource is used to provide a service for a particular
principal, it should be possible to account the resource towards that princi-
pal.

Metadata that is stored in kernel memory is directly relevant for protection.
Hence, care must be taken not to give too much authority to managers; otherwise,
they would have to be part of the trusted computing base, and an untrusted sub-
system could not easily benefit from a domain-specific policy. Therefore, we add
another requirement:

6. No trust: Resource managers should not have to be trusted. They must
not have power to circumvent protection, nor should they be able to affect
principals other than their own clients.

Finally, we add some desirable features that are not strictly necessary, but are
required to implement many powerful policies:

7. Preemption: It should be possible to revoke a resource temporarily and
save its state in order to restore it later.

8. Notification: Managers should be notified when one of their clients needs
additional resources.

9. Virtualization: It should be possible for managers to hand out virtual re-
sources, and to back them with physical resources when necessary.

10. Delegation: Managers should be allowed to delegate control over some or
all of their resources to other managers

3.2. PROPOSED SCHEME 23

3.2 Proposed scheme

Our approach to kernel metadata management is to construct the kernel virtual
address space using the same model that is used to construct user-level virtual
address spaces, i.e. with paged virtual memory. The proposed model consists of
four basic parts: A scheme for assigning virtual addresses to kernel objects, a
notification mechanism, means for allocating and revoking kernel memory, and
an external representation for exporting kernel metadata safely to user level. We
now describe each of those parts in more detail.

3.2.1 Resource space

Kernel objects are placed in resource space, a special memory region1 which is
part of every virtual address space. When the kernel interacts with user-level
resource managers, it uses virtual addresses in resource space to request mem-
ory for a specific kernel object, or to reclaim an object that has been preempted.
User-level managers can back part of resource space with their physical memory
resources.

Because virtual addresses are used to identify kernel objects, they must be
unique throughout the lifetime of the respective object, i.e. objects must not be
relocated. Also, user-level managers must not be able to deduce any protected
information merely from the location of a kernel object.

3.2.2 Notification

When the kernel detects that a principal lacks the necessary metadata to complete
an operation, it determines the resource manager which is responsible for that
principal and notifies this manager. The notification contains at least an identifier
for the principal and the virtual address of the missing kernel object in resource
space. The faulting operation is suspended until the resource is provided by the
manager, i.e. the corresponding region in resource space is backed with physical
memory.

This operation corresponds to a page fault in the classical paging scheme; in
fact, if page faults are exported to user level, they can be used directly. How-
ever, a page fault usually blocks a single thread, whereas in this case, the faulting
operation can involve multiple threads which must all be blocked.

1It is not strictly necessary to separate resource space from user space; they can overlap or even
be identical. However, conflicts between user and kernel objects may then be hard to avoid.

24 CHAPTER 3. PAGING THE KERNEL

3.2.3 Allocation and deallocation
Resource managers can allocate some or all of their memory resources to back
the resource spaces of their clients, and they can revoke these allocations at any
time. Every allocation is bound to a principal and a specific region in resource
space; the kernel guarantees that the resource will only be used for metadata in
that region, and only for that specific principal.

This corresponds to the map and unmap primitives typically found in user-
level memory management schemes. Of course, the kernel must ensure that live
metadata cannot be accessed from user level, e.g. by temporarily revoking access
to the corresponding resources.

3.2.4 External representation
When a memory resource containing live metadata is preempted, the metadata �
is converted into an external representation ��� �
	 ��� . The conversion function

�
must have the following properties:

1. Reversible: The inverse function
�� �

must exist, and
�� � 	��
	 ������� �

must hold for all valid metadata instances � .

2. Safe: Given metadata ��� �
	 ��� in external form, it must be impossible or
at least computationally hard to find an ��� such that ����� �� � 	 ����� is a valid
metadata instance that conveys more privileges than � .

3. Monotonous: The representation of
�
	 ��� must not be larger than the rep-

resentation of � itself.

This operation does not have an equivalent in the classical paging scheme.
The reason is that by modifying memory contents, a pager can only affect its own
clients, whereas a manager for kernel memory could potentially affect the entire
system if it was given access to kernel metadata in its original form.

3.3 Analysis
By definition, our scheme fulfills requirements 2 (no reallocation), 3 (revocation),
7 (preemption) and 8 (notification). Also, because the resource manager is notified
whenever additional resources are needed, it can easily enforce limits and account
for resource consumption, which corresponds to requirements 1 (limits) and 5
(accounting). Furthermore, it is free to use different physical resources over time
to back the same kernel object, as long as it copies the external representation of
the contents every time; hence, requirement 9 (virtualization) is also met.

3.4. TECHNIQUES FOR EXPORTING METADATA 25

Assuming that the external representation is safe, the resource manager can-
not use it to compromise protection; anything it could do, i.e. delete, modify or
forge metadata, can only affect its own clients, who have to have implicit trust in
it anyway. Therefore, it is safe to have subsystems managed by untrusted man-
agers because the rest of the system cannot be compromised, and requirement 6
(isolation) is satisfied.

Requirement 10 (delegation) is not explicitly addressed; however, delegation
of memory resources is a well-understood problem, and we do not see any specific
issues that would prevent the application of an existing scheme. As the type of the
metadata was not restricted, requirement 4 (full scope) is satisfied as well.

3.4 Techniques for exporting metadata

Obviously, the main challenge in implementing the above scheme is to find an
appropriate external representation for all kernel data structures. To see that this is
possible in principle, consider a simple cryptographic scheme where the metadata
is encrypted upon preemption and exported as ciphertext. However, there are more
efficient techniques; this section presents some of them.

3.4.1 Localization

Some kernel metadata contains references to non-local resources. For example,
Unix file control blocks contain inode numbers, which are global to a file system,
and memory descriptors contain physical frame numbers, which are global in the
entire system. If these references were exported unmodified, principals could eas-
ily forge references to resources they could not access otherwise, e.g. by guessing,
and thus compromise protection.

This problem can be solved by translating the references to a local namespace.
In the example, the inode number can be represented by a file name under which
the inode is known to the principal, and the physical frame number can be trans-
lated to a virtual address. Local references can be safely exported because the set
of objects they can refer to is now limited by the namespace, and there is no way
of forging a reference to anything outside that namespace.

Of course, the local namespace can still contain objects the principal must
not access, e.g. names of protected files; in this case, the kernel can validate the
references by applying permission checks. Also, the principal can still replace one
local reference with another one; however, the same effect can usually be achieved
with standard kernel primitives, e.g. by closing one file and then opening another.

26 CHAPTER 3. PAGING THE KERNEL

3.4.2 Partial preemption

Most kernels contain composite data structures such as lists or trees. These data
structures consist of multiple parts that are connected by references. Because
such a structure can grow very large, preempting it in one piece can be rather
expensive. On the other hand, the individual pieces are hard to export because they
contain references to objects in kernel space. If these were exported unmodified,
a malicious principal could change them and thus cause inconsistencies in the
kernel state; if it is able to guess the address of a privileged object, it could even
compromise protection.

This problem can be solved with pointer swizzling, a standard technique used
in persistent object stores [41]. When part of a composite object is preempted,
all references to and from this part are replaced with virtual addresses in resource
space, which is local to the principal. These addresses can then be used to locate
the referenced objects when the part is restored.

Obviously, a malicious principal can still modify the local references. How-
ever, it cannot increase its privileges by doing so because it can only forge ref-
erences to objects in its local resource space, i.e. to objects it already owns. It
could also try to establish a circular reference or create pointers to invalid objects;
however, this can easily be detected by the kernel when the objects are restored.

3.4.3 Splitting

Some metadata cannot be localized to a single principal because it describes a
relationship between multiple principals, e.g. between a parent and its children,
a server and its clients, or between partners in a communication. Unless there is
mutual trust among the principals, this metadata cannot be exported to only one
of them.

This problem can be solved by splitting the metadata into multiple parts, and
by exporting at least one part to each principal. The metadata can then only be
fully restored by agreement of all principals. Forgery is impossible because each
part can be cross-checked with all the other parts.

Obviously, one part must be sufficient to locate the other parts. Therefore,
each part must contain a reference to at least one other part, e.g. an identifier for
the principal and a virtual address in the resource space of that principal. Because
unidirectional references would still permit forgery by guessing, it is advisable to
use bidirectional references. If link and backlink do not match, the part can be
considered forged and subsequently discarded.

3.4. TECHNIQUES FOR EXPORTING METADATA 27

3.4.4 Export unmodified
When a core abstraction is owned exclusively by one principal, most of its state is
likely to be under control of that principal anyway. Examples include the general-
purpose registers of a thread, the file pointers of an open file, or the data in a
message buffer. This state can be modified freely by its owner using system calls
and/or hardware instructions; therefore it does not make sense to protect it. In-
stead, it can be exported unmodified.

However, it may be necessary to validate the state when it is restored. For
example, the flags register is usually considered part of the thread context and
can be exported directly; however, on some systems, it also contains the current
privilege level, which must not be modified by applications and should thus be
checked before the register is restored.

3.4.5 Discard and retrieve
Sometimes the kernel must store the same information in different places. For
example, some data structures may be supplemented by caches to improve ef-
ficiency. The state in such a cache is derived from the original data structure.
Given that data structure, the state of the cache can be fully reconstructed.

Depending on the amount of work necessary for reconstruction, it may be
more efficient not to export derived state; instead, it can be discarded upon pre-
emption and reconstructed – perhaps lazily – when it is needed again. This has
the additional benefit that, as only one instance of the state is exported, inconsis-
tencies are prevented by design, and the corresponding checks can be omitted.

3.4.6 Cryptographic sealing
Sometimes kernel metadata may not be exportable by one of the above methods,
e.g. because of protection issues. In these cases, it may be possible to simply
encrypt it and export it as ciphertext. Cryptographic signatures may be used to
protect the metadata against tampering.

Of course, without additional means to validate the metadata, this method is
only as safe as the cryptographic scheme it relies on; if an application somehow
manages to break the encryption, it has unrestricted access to kernel metadata. An
attacker can use standard techniques such as replay attacks, dictionary attacks or
known-plaintext attacks; dictionary attacks are particularly dangerous for small
data structures because only a small dictionary is required.

Additionally, depending on the encryption scheme, this method may be pro-
hibitively slow. Yet, in spite of all those disadvantages, it may be useful if preemp-
tions occur rarely, or for metadata that cannot be exported by any other method.

28 CHAPTER 3. PAGING THE KERNEL

Chapter 4

Application to L4

To validate our approach, we decided to apply it to an existing kernel. For this
experiment, we chose the L4 microkernel because it provides only a small set
of core abstractions and therefore does not have to maintain a lot of metadata.
Compared to a monolithic kernel such as Linux, this considerably reduces the
implementation effort. Also, the virtual memory system in L4 already fulfills
many of our requirements and can thus be easily adapted to our scheme.

4.1 The L4 microkernel

The original L4 microkernel was developed by Jochen Liedtke at the German
National Research Center for Information Technology [32]. Since then, many ex-
tended and revised versions have been designed; for our work, we decided to use
the Version 4 API [30]. In this version, the kernel provides only two basic abstrac-
tions, threads and address spaces, which are complemented by a synchronous IPC
primitive for inter-thread communication. All other functionality is provided by
user-level components.

L4 implements the recursive virtual address space model [34], which permits
virtual memory management to be performed entirely at user level. Initially, all
physical memory is mapped to the root address space ��� ; new address spaces can
then be constructed recursively by mapping regions of virtual memory. In L4,
this is done synchronously by sending a descriptor as part of an IPC message,
which ensures the agreement of both sender and receiver. The actual mapping is
established by the kernel during message transfer.

Memory objects can either be mapped or granted. In the former case, the
sender retains ownership of the object and can later use another primitive, unmap,
to reclaim the object and revoke the mapping, including any derived mappings. In
the latter case, ownership is transferred to the receiver, and the object disappears

30 CHAPTER 4. APPLICATION TO L4

C

D E

σ0

BA

map

Disk

grant

map

Figure 4.1: Virtual memory primitives in L4.

from the sender’s address space. Unmapping is performed asynchronously and
does not require consent of the receiver.

Page faults are virtualized by the kernel. Every thread is associated with
another thread, its pager, which is responsible for managing its address space.
Whenever the thread takes a page fault, the kernel catches the fault, blocks the
thread and synthesizes a page fault message on its behalf, which is sent to the
pager via IPC. The pager can then respond with a mapping and thus unblock the
thread again.

Furthermore, the kernel has a built-in thread dispatcher which implements a
fixed-priority scheme. The thread name space is managed by a special task, which
has the authority to create and delete threads through a privileged system call.

4.2 Overview
The L4 virtual memory model already fulfills many of our requirements: It can
be performed entirely at user level, supports delegation, has a notification scheme
(page fault messages) and primitives for allocation and revocation (map and unmap).
Therefore, we decided not to introduce a separate mechanism for managing kernel
memory, but rather to extend the existing scheme.

This approach has the advantage that user and kernel memory can be handled
uniformly, i.e. with the same primitives and by the same manager; thus, managers
can be simpler and more reusable. Also, a single resource pool can be used for
both user and kernel memory; hence, unused kernel memory can be reallocated as
user memory and vice versa, which should result in better utilization.

The disadvantage is that some special properties of kernel memory cannot be
exploited, the most important being its finer granularity. Many kernel objects,
e.g. thread control blocks or address space descriptors, are considerably smaller

4.3. DATA STRUCTURES 31

than a page frame; yet, if VM primitives are to be used, they must be allocated
at page frame granularity, which inevitably leads to fragmentation. Nevertheless,
we believe that this does not justify the cost of adding another mechanism to the
kernel.

Similarly, we did not introduce a separate address space for kernel memory
resources. Instead, we decided to use a previously unused virtual memory region,
the kernel area, which is part of each address space. This area contains kernel
mappings and cannot be used by applications; no valid page faults can happen
there, and no memory can be mapped to it, so addresses in this area can never
conflict with valid memory addresses. Also, the region is virtual and can thus be
managed independently in each address space.

The above decisions result in the following mapping of our scheme to L4:

General scheme Application to L4
Resource space Kernel area in virtual address space
Notifications Page fault messages
Allocation primitive IPC with map element
Revocation primitive Unmap
Delegation Mapping between resource managers

Additionally, we chose an external representation for all exportable kernel data
structures. This representation will be discussed in Section 4.7.

4.3 Data structures
The L4 Version 4 API has been implemented for many architectures, including
IA-32, IA64, PowerPC, MIPS and Alpha; for some of them, even multiple com-
peting kernels exist. A comprehensive discussion would exceed the scope of this
thesis; therefore, we concentrate on one specific architecture, Intel’s IA-32. Of the
many features of this architecture, only three are relevant for this discussion: Its
32-bit address space, its two-level, hardware-walked page tables and its smallest
frame size, which is 4kB.

Most L4 kernels for the IA-32 maintain variations of the following data struc-
tures:

� One page table per address space, which consists of one root frame and up
to 1,024 second-level frames of 4kB each.

� One map node and one cap node for every memory mapping. These nodes
consist of four 32-bit words each and are always paired, reflecting the fact
that mappings are always established between two address spaces. The map

32 CHAPTER 4. APPLICATION TO L4

node describes the recipient’s view, e.g. the size and location of the map-
ping in virtual address space, while the cap node describes the sender’s
view, such as the memory region from which the mapping is derived, or the
privileges it conveys.

� One node table per address space, which links page table entries to the
corresponding map nodes. It has exactly the same structure as the page
table.

� One kernel thread control block (KTCB) for every active thread. The KTCB
stores the protected part of the thread context, such as state, priority or reg-
ister contents. Its size depends on the implementation and usually ranges
between 170 bytes and 2kB1.

� One user thread control block (UTCB) for every active thread, which holds
the user-visible part of the thread context. Each UTCB is 512 bytes long
and includes a message buffer of 64 words, which is used for IPC [38].

Additionally, the kernel uses several global variables, such as a timer and a
pointer to the current thread. However, the amount of memory occupied by these
variables is small and does never change; therefore, the corresponding resources
can be preallocated during startup and do not have to be part of the management
scheme.

4.3.1 The mapping database

Together, map nodes and cap nodes form the mapping database, a tree-like data
structure that is used to keep track of all memory mappings in the system (see
Figure 4.2). The main reason for having a mapping database is the recursive
nature of the unmap primitive, which is defined to revoke not only the mapping
to which it is applied, but all transitively derived mappings as well. The mapping
database not only provides an efficient way to find all of those mappings, it also
stores the hierarchy and the conveyed privileges.

An entry in the mapping database is essentially a tuple

��� 	��� "!#� �%$ �&�(')!#* �%$,+ "!#� �%$(+ �-'.!/* �%$,01�32�4/5�6�$ ')798�: �
with the following components:

1Some implementations do not have per-thread kernel stacks; also, the FPU/MMX register
state is sometimes kept in a different structure, which is allocated on demand.

4.3. DATA STRUCTURES 33

2..3

4..5

0..1 1..2

3..3 0..0 5..5

0..0

3..3

5..5 7..7

7..7
0 0 0

0

0

A

0..7

A A

C D

B

D

B B

ω

σ σ σ BA

σ

C D

σ

A

C D

B

Figure 4.2: Mappings and the corresponding nodes in the mapping database.

Component Description Storage�&�(')!#* � Source address space MapN�� ;!#� � Offset in source address space CapN
+ �(')!#* � Destination address space CapN
+ ;!#� � Offset in destination address space MapN
01�32�4/5�6 Size of the mapping in bytes CapN, MapN')798�:

Maximum privileges conveyed CapN

Thus, the region < �& "!#� �%$ �� "!=� �?>@01�32�4#5�6.� in the source address space is mapped
to <A+ "!#� �%$,+ "!=� �#>B0C�32�4/5�6�� in the destination space with maximum privileges

')798�:
;

the effective privileges are obviously limited by the privileges available in the
source address space. Both map node and cap node contain a length; the effective
length is determined by taking the minimum of the two.

As map nodes and cap nodes are always paired, some implementations have
chosen to co-locate them in a single node type. This node can then be much
smaller because it does not have to contain mutual references, a source space
identifier and a second length; however, it is difficult to find a safe external repre-
sentation for such a node. More details will be discussed in Section 4.7.

4.3.2 The node table

The node table is a ’shadow’ data structure to the page table and has exactly the
same structure. For every entry in the page table, it contains a reference to the
map node from which it was established. During unmap, this reference is used
to quickly locate the affected subtrees in the mapping database. In principle, the
kernel could also find these subtrees without a node table, for example by scanning
the entire database. However, this operation would be very expensive; also, it
would be impossible to guarantee isolation since all nodes in the database would
have to be examined, and not just the ones belonging to the respective subsystem.

34 CHAPTER 4. APPLICATION TO L4

Because of the similarity between page and node tables, some implementa-
tions have chosen to co-locate them, e.g. by keeping them in adjacent physical
frames. In such a scheme, both tables can share a single root frame, which saves
one 4kB frame per address space. However, this is not possible in our scheme be-
cause the node table serves a dual purpose (it also stores the virtual addresses of
preempted map nodes); therefore, we maintain the node table as an independent
data structure.

4.4 Accounting
When the kernel requests memory resources, it does so on behalf of a particular
resource principal. Therefore, having identified all kernel memory resources, we
must now associate each of them with an appropriate resource principal.

4.4.1 Principals
The choice of principal affects the resulting system in the following three ways:

1. Granularity: Since every resource request contains an identifier for the
faulting principal, it is to be expected that user-level managers will base
their accounting scheme on this information. Therefore, if a too large entity
is used as principal, the resulting accounting scheme will be unnecessarily
coarse.

2. Utilization: Since resources allocated to a principal must always be avail-
able to it, unused parts cannot be reallocated transparently to other prin-
cipals and must remain empty. Hence, if a too small entity is chosen as
principal, kernel memory may be underutilized as a result.

3. Protection: In order to support preemption, an external representation must
be chosen for all kernel metadata. However, if the principals are not cho-
sen carefully, e.g. if they can span multiple protection domains, it may be
difficult or impossible to find a safe representation.

The only principals in the original L4 API are threads and tasks, i.e. groups
of threads sharing the same address space. Therefore, resources must either be
associated with threads or tasks, or a new abstraction, such as thread groups or
resource containers, must be introduced.

Page and node tables are used to implement address spaces, which are already
associated with tasks. Therefore, it seemed natural to use tasks as resource princi-
pals for these two data structures. Since address spaces are shared by all threads in

4.4. ACCOUNTING 35

a task, a more fine-grain scheme does not make sense; also, there is no protection
between threads in the same task, and therefore protection is not an issue.

Both KTCBs and UTCBs are associated with individual threads; however,
they are much smaller than the smallest possible allocation of kernel memory
(one page frame), and therefore using individual threads as principals would lead
to bad utilization. Using groups of threads is possible but requires an additional
core abstraction. Therefore we decided to follow the protection argument from
above and use tasks as principals for both types of TCBs.

Similar to page tables, map and cap nodes are used to implement address
spaces and therefore should be accounted to tasks. However, mappings are usually
established between different tasks, which leads to the question whether sender,
receiver, or both of them should be charged.

As it is the receiver who gets the largest benefit from the mapping, it would
be natural to account the entire node pair to the receiver. The opposite approach
is also feasible - the sender pays and then charges its client for the resource con-
sumption - but has the disadvantage that metadata from different clients share the
same resources and is thus more difficult to separate; for example, it is unclear
who should pay for fragmentation.

It is for security reasons that we decided to use the third approach, i.e. to ac-
count the cap node to the sender of the mapping and the map node to the receiver.
This reflects the fact that mappings can only be established by mutual agreement
of sender and receiver during synchronous IPC. If one of them were given control
over both nodes, it would be much easier to taint with mappings, e.g. by forging
nodes. See Section 5.1 for a detailed discussion.

4.4.2 Sharing

The example of the mapping database shows that it is not always easy to use an
existing resource principal for accounting, e.g. when metadata is used by multiple
entities. In this case, it may be necessary to introduce a new core abstraction, e.g.
resource containers [3]. If there is a fixed relationship between the principals, such
as sender and receiver of a mapping, it may also be possible to solve the problem
by splitting the data structure and accounting for the individual pieces.

Some kernels maintain data structures such as packet buffers or a global page
cache, which are shared across the entire system. This would require a more
sophisticated accounting scheme, e.g. one that distinguishes between ’owners’
and ’sharers’ of a resource. In L4, however, the problem need not be solved at
kernel level because the corresponding functionality is implemented by user-level
applications.

36 CHAPTER 4. APPLICATION TO L4

4.5 Placement

In order to make kernel metadata pageable, it must be part of a virtual address
space; therefore, we place all kernel data structures in a special memory region,
the resource area. This memory region can be backed by resource managers with
physical memory frames, just like ordinary virtual memory.

In this section, we discuss possible placement schemes, i.e. ways to assign
virtual addresses to kernel objects.

4.5.1 Scope

When the kernel communicates with user-level managers, virtual addresses are
used to identify the kernel objects that are being requested, allocated or revoked.
Like all identifiers, these addresses are associated with a scope, i.e. an area in
which they can be used without further qualification. This scope need not be
identical with the address space of the corresponding principal; it could span mul-
tiple or even all address spaces in the system. If the scope consists of multiple
address spaces, the kernel must ensure that non-overlapping address ranges are
assigned to all kernel objects in these spaces.

The use of a system-global scope would simplify the assignment of identifiers
considerably. For example, it would be possible to directly use the virtual address
where the object is stored inside the kernel. In this case, identifiers obviously
cannot overlap. However, they could easily be used by applications to circumvent
protection. For example, a covert channel could be established by periodically
creating a kernel object at a well-known location. Other address spaces can then
continually check for its existence, and information can be transmitted by modu-
lating the creation frequency.

The only other scope that is natively supported by L4 is the address space;
therefore, choosing any other scope would require an extra kernel abstraction.
However, a typical resource manager is expected to be responsible for multiple
principals with different address spaces, so space-local identifiers by themselves
are not sufficient to identify resources. Fortunately, in all situations where the
identifiers will be actually used (during request, allocation and revocation), they
are further qualified by the ID of the principal, so the smaller scope is not a prob-
lem.

For our experiment, we decided to use space-local placement because this
seemed a good compromise between security and implementation effort.

4.5. PLACEMENT 37

4.5.2 Transparency

There are two fundamentally different ways to assign virtual addresses to objects.
One is to use an opaque placement scheme in which any object can potentially be
placed anywhere; hence, it is impossible to learn anything about an object from
its address alone. Another possibility is to use a transparent placement scheme in
which certain objects are restricted to certain regions; for example, some regions
could be reserved for objects of a specific type.

The main disadvantage of using transparent placement for kernel objects is
that it inevitably leaks some information about the internal structure of the kernel
to user-level managers; for example, it may be possible to infer the size or pur-
pose of certain kernel objects. Also, even the mere presence or absence of kernel
objects at a particular address may convey information.

On the other hand, the use of transparent placement has considerable advan-
tages because it enables resource managers to make better policy decisions. For
example, if the address allows a distinction between important objects and less im-
portant ones, the managers can respond to memory pressure by revoking frames
with less important objects first. If the address conveys a dependency between ob-
jects, managers may choose to revoke entire subgroups of objects, which results
in better utilization because the dependent objects are useless without their parent
objects anyway.

Of course, if a manager bases its policy on that kind of information, it is no
longer portable across different platforms or even different kernel versions on the
same platform. However, if portability is an issue, the manager can still treat
transparent addresses as opaque.

For our experiment, we decided to use transparent placement. This gives us
the opportunity to explore policies that make use of the additional information.
Also, this does not cause any security issues in L4 because from the kernel data
structures, managers cannot learn anything about applications other than their own
clients, who must have implicit trust in them anyway.

4.5.3 Binding

The binding between kernel objects and their addresses can either be static or
dynamic:

� Static binding: The kernel defines a function
'

which, for every potential
kernel object D , computes an address range

'�	 DE� where it is to be placed. In
order to avoid conflicts,

'�	 DE��F '�	 D&�G�H�JI must hold for all pairs of objects	 D/$,D&��� that can exist at the same time.

38 CHAPTER 4. APPLICATION TO L4

space
User

Resource Space

Kernel
space

0

4G

1G

3G

Node tables

Page tables

Node directory
Page directory

2G
Map nodes

and cap nodes

Figure 4.3: Address space layout. Due to static placement, page and node tables
are allocated at a fixed offset, whereas map and cap nodes are dynamically placed
in the designated region.

� Dynamic binding: Whenever a kernel object D is created, the kernel chooses
a virtual address range

'.K
for it and stores the binding

	 D#$ '�K � throughout the
lifetime of the object. In order to avoid conflicts, the address range must not
overlap with existing objects.

The static scheme has the obvious advantage that no additional metadata is re-
quired to store bindings. Also, it avoids the problem of having to manage resource
space explicitly, e.g. by keeping a list of free address ranges and a placement pol-
icy to choose one of them.

On the other hand, dynamic binding is often more efficient when the objects
are allocated with a finer granularity than the memory used to back them. The dif-
ference is most evident for sparsely populated data structures, where static binding
can lead to high internal fragmentation.

In our experiment, fragmentation particularly affects the mapping database.
Consider the case where every frame in a particular address space has been mapped
to every other address space. This would require 2�LNM 	 2PORQTS&� cap nodes, where
2�L is the number of frames and 2�O the number of address spaces in the system.
Hence, a static address range for cap nodes must be large enough to accommodate
that many nodes. However, in a realistic system, only very few of those nodes will
be in use at any one time, and they are unlikely to have contiguous addresses. In

4.6. REQUEST AND ALLOCATION 39

the worst case, every frame-size part of resource space will contain at most one
node, and kernel memory utilization will drop to an unacceptable U(V WU �YXYZ\[^]`_ba%c .

Therefore, we decided to use static binding only for the page and node tables.
Because of the hardware-dictated page table format on IA-32, these data struc-
tures must be allocated with frame granularity anyway, so fragmentation cannot
be prevented. For the mapping database, however, we used dynamic binding and
a simple slab allocator to distribute new nodes to existing frames.

Like in any dynamic binding scheme, we also had to decide where to store the
bindings between existing nodes and their addresses. In order to avoid the need
for additional metadata, we use pointer swizzling, i.e. we replace all references to
a preempted node with its address. Thus, the address of a preempted map node
can be found by looking it up in the node table.

UTCBs already have addresses in the original system. These addresses are
located in a special region of virtual address space, the UTCB area, which is
considered to be part of resource space. KTCBs are not subjected to the paging
scheme at this time (see Section 4.7.5); instead, their allocation is controlled with
the ThreadControl system call.

4.6 Request and allocation

When the kernel detects that a principal needs additional kernel metadata to com-
plete an operation, it must request the necessary memory from a user-level re-
source manager. In L4, this is accomplished by raising a page fault in the resource
area of the faulting task, which is then handled by the corresponding pager. The
faulting thread executes the following algorithm:

suspend faulting operation
determine fault address
find responsible pager
repeat

send page fault message to pager
wait for reply
check supplied mappings

until mapping acceptable
import kernel objects from mapping
resume faulting operation

In this section, we describe the individual steps of this algorithm in more detail.
We also discuss security and safety issues, and how these are resolved in our
system.

40 CHAPTER 4. APPLICATION TO L4

4.6.1 Sending the request
In order to request a missing metadata object � , the kernel must first determine the
virtual address

!?d
at which to raise the fault, i.e. the address where � is located

in the resource area. If static placement is used, this can be achieved simply by
using the placement function

'
to compute

!#d � '�	 ��� . In the case of dynamic
placement, the address may be stored in another metadata object2. If this object is
not present, it must be requested first.

Once the address has been established, the kernel must choose a pager to han-
dle the request. There are many possible choices, for example:

� A global pager that provides kernel memory to all principals

� The standard pager of the faulting principal

� A special k-pager that provides kernel memory to the faulting principal

Using a single global pager is the simplest solution; however, we believe that
this would only be a small improvement over having a built-in kernel policy. The
second scheme is more restrictive than the third because it does not offer a sim-
ple way to manage user and kernel memory in separate tasks. Nevertheless, we
decided to use the second scheme because we wanted to demonstrate that it is
sufficient; the third scheme is an obvious extension and can be added where the
additional flexibility is required.

After the kernel has identified the pager, it suspends the faulting operation and
synthesizes a page fault message on behalf of the faulting thread. This message
is sent via synchronous IPC, so the faulting thread may have to wait until the
manager becomes ready to receive. After the message has been delivered, the
thread waits until the manager responds by mapping the requested resource.

4.6.2 Checking the allocation
Once the request has been sent to the pager, the faulting thread waits for a re-
source allocation, i.e. for a reply message containing one or multiple map ele-
ments. However, not all resources can be accepted in this state. Obviously, the
faulting thread should accept a memory frame if all of the following conditions
hold:

1. The frame is supplied by its current pager

2. It backs the region in which the fault occurred
2The address is only stored if the object exists but has been preempted; however, unless the

kernel knows that the object does not exist, it must check the address anyway.

4.6. REQUEST AND ALLOCATION 41

3. The pager grants read and write privileges on the frame

For security reasons, the thread should never accept kernel memory from third-
party threads because they could later preempt the resources and access the meta-
data that is exported in them. If the third condition would be omitted, memory
could be mapped read-only to the kernel, e.g. to implement copy-on-write shar-
ing; however, the kernel would then have to enforce the write protection, which
complicates the implementation and exceeds the scope of our experiment. We
consider this future work.

If the second condition is not mandatory, pagers can use prefetching to supply
resources that are likely to be needed in the future; however, principals must then
have complete trust in their managers because they are free to prefetch critical
metadata, e.g. TCBs. The equivalent problem for user memory can be solved by
using a region mapper, a pager thread which acts as a proxy for page faults [2, 17];
however, this approach does not work very well for kernel memory because the
region mapper would depend on the same resources as its clients. Therefore, we
decided to keep the second condition.

In a system that supports memory-mapped I/O, the kernel should also check
whether the supplied frame is part of main memory. Otherwise, an attacker could
use device memory to circumvent access restrictions on kernel metadata.

4.6.3 Accepting a resource
When the kernel decides to accept a certain frame for use as kernel memory, it
must first ensure that the frame cannot be accessed from user level, e.g. by remov-
ing it from all page tables and invalidating all relevant translations in the TLB.
This is necessary to maintain protection, but it is also a precondition for the fol-
lowing steps because it prevents race conditions. On an SMP system, these race
conditions could lead to a Time-of-Check, Time-of-Use (TOCTOU) vulnerability.

Once the kernel has exclusive access to the frame, it must check its contents
for exported kernel objects and re-import them where necessary. This import may
fail for various reasons, e.g. when inconsistencies are detected or an invalid object
is found. In this case, the kernel has multiple options:

� It can discard the frame and raise an error,

� It can discard the frame and re-send the page fault,

� It can postpone the import and proceed with the next object, or

� It can silently discard the faulty object and proceed

42 CHAPTER 4. APPLICATION TO L4

In cases where the problem clearly results from tampering, the kernel is prob-
ably under attack and should choose one of the first two options. If the object is
not essential (i.e. not the cause of the original fault) and the problem is likely to be
caused by missing metadata, the third option is applicable. In all other cases, the
kernel should act in dubio pro reo and assume that the problem is due to changes
in kernel state while the object was unavailable; thus, it should choose the fourth
option.

Additionally, the kernel must store both the fact that the frame is allocated for
kernel metadata and its virtual address in the resource area. The former is neces-
sary to prevent the frame from being allocated twice, and to trigger the export of
the metadata when it is reclaimed, whereas the latter is needed for localization3.
Where static binding is used, the virtual address can also serve as a type identifier,
e.g. to distinguish page tables from node tables.

In our experiment, we used a frame table for this purpose. The frame table has
one entry for each physical page frame in the system. It holds virtual addresses;
frames currently allocated to user level are labeled with an invalid address. Since
the size of the frame table does not change at runtime, it can be preallocated during
startup and need not be subjected to the paging scheme.

4.6.4 Deadlock avoidance
In the original L4 API, many operations were explicitly or implicitly defined not to
cause page faults; for example, thread switches or message transfers with untyped
elements were guaranteed to succeed. This is different in our system, where a
thread may lack almost any metadata, e.g. a page table or even one of its TCBs.
Since page faults always block one or multiple threads, care must be taken to
avoid deadlocks and to resolve them where they do occur.

Fortunately, it is possible to avoid many deadlocks by arranging the pagers in
a hierarchy. In such a system, page faults are always escalated to the next level,
and a circular wait situation involving multiple pagers cannot occur. However,
deadlock is still possible if a page fault is raised while a pager is blocked by one
of its clients, e.g. during IPC (see Figure 4.4). This cannot be avoided by design
because the pager must use IPC to receive page fault messages, and to send a
response.

It is possible to design the kernel in a way that allows at least the request to be
sent without additional resources, i.e. with the KTCB only4. However, the client

3The threadID of the owner need not be stored because it can either be inferred from the
contents of the page – for example, the owner of a map node can be determined from the node
table link – or is irrelevant because the metadata, e.g. a page table, is discarded anyway.

4Clearly, the thread must have caused the fault somehow; therefore, it must already be known
to the kernel, i.e. its KTCB must be present.

4.6. REQUEST AND ALLOCATION 43

Resource
fault Resource

fault

Map IPC

Resource
fault

Page fault

Preemption

Unmap

Yield

BA C

Map IPC

Map IPC
(buffered)

Resource
fault

Page fault

Map IPC

Preemption

Unmap

Yield

BA C BA C

Page fault

Preemption

Unmap

Yield

Map IPC

Page fault

Preemption

Unmap

Yield

BA C

Map IPC
(failed)

Map IPC

Page fault

(blocked)

Hand−off

Hand−off

(a) (d)(c)(b)

Figure 4.4: Deadlock caused by a resource fault (a) and different resolution tech-
niques: Buffering (b), multi-threaded pager (c), abort and retry (d).

may require resources to receive the reply; for example, a page table can only be
accepted if the page directory is already present. If another page fault is raised in
this situation, deadlock occurs immediately.

In our system, we use fault ordering to avoid this problem whenever possible.
If the kernel detects that it needs multiple resources

7 � $ 73e $ _3_3_ $ 7�f to complete an
operation, it chooses an order

	18 � $ 8�e $ _3_�_ $ 8Cf � such that
7�gAh

does not depend on any7igkj
with lnmpo . Such an order always exists in our system because the resources

form a hierarchy and therefore no circular dependencies can exist. The kernel then
requests the resources in that order. Thus, deadlock can be avoided.

4.6.5 Deadlock resolution
Even when fault ordering is used, deadlock can occur due to third-party actions.
Consider the example in Figure 4.4, where client q requests a new page table
from its pager, r . While the request is being handled by r , a higher-level pagers

revokes q ’s page directory. r cannot know this because when the message was
delivered, the page directory was still available. Therefore it tries to supply a page
table to q as requested, which leads to a deadlock situation.

Avoiding this problem by system design would require a disproportionate ef-
fort; basically, kernel memory would have to be pinned for the entire lifetime of
its owner. Therefore, the situation must either be prevented or resolved when it
occurs. There are several possible approaches, for example:

1. Buffering: The kernel accepts the useless resource on behalf of the client
and keeps it in an internal buffer while the second fault is handled.

2. Multi-threaded pager: The pager uses different threads for receiving faults
and sending responses; hence, its receiver thread never blocks.

44 CHAPTER 4. APPLICATION TO L4

3. Abort and retry: The deadlock is detected and resolved by aborting the
IPC and delivering an error code to the pager. The client retries, i.e. it
restarts the page fault handler. Fault ordering is used to avoid a second
deadlock.

The buffering approach requires additional metadata to store waiting resources
and introduces various special cases into the kernel. Multi-threaded pagers require
an additional IPC5 to do the hand-off; also, even the top-level pager ��� would have
to be multi-threaded, and it is not easy to determine how many threads it would
need.

Aborting the IPC seems dangerous because there is a possibility for starva-
tion. However, the pager can detect this situation from the error code and then
take adequate measures, e.g. resolve the second fault immediately. Therefore, we
decided to use the third approach.

4.6.6 Faults during system calls
The main responsibility of the L4 microkernel is to maintain protection, i.e. to
control the interaction between tasks. For this purpose, it offers several system
calls that can be used by sufficiently privileged tasks to interact with one another.
This interaction always involves resources; therefore, the kernel must be able to
deal with a situation where either the caller or one of the affected tasks lacks a
necessary resource.

This situation is different from an ordinary page fault in that it can involve
multiple principals. If the standard page fault algorithm is applied, all of these
principals must be suspended until the fault is resolved. Thus, if a malicious
task colludes with its pager and prevents it from handling the fault, it can block
the other tasks indefinitely. Therefore, all system calls must be checked for this
vulnerability, and measures must be taken to remove it where it occurs.

The L4 Version 4 API defines twelve system calls. Four of these calls, Kernel-
Interface, SystemClock, ProcessorControl and MemoryControl,
involve only global metadata, which can be preallocated during startup. Two oth-
ers, ExchangeRegisters and Lipc, can only be used on threads in the same
task, which cannot be protected from each other anyway. The remaining six sys-
tem calls can involve multiple tasks and thus require closer inspection.

The ThreadSwitch call can be used to yield the CPU, or to switch6 to a

5Unfortunately, using a lazy thread switch [38] does not help much because the worker threads
never reply to the receiver thread

6A similar argument can be applied to ordinary context switches, which occur e.g. when a
higher-priority thread is unblocked, or when the current time slice expires. These switches can be
thought of as implicit calls to ThreadSwitch.

4.6. REQUEST AND ALLOCATION 45

specific thread 5 . This can cause page faults if 5 lacks essential resources such as
its address space, which is required for execution. However, as long as 5 ’s KTCB
is present, the page faults can be raised in the target context, and the caller is not
blocked. Since KTCBs are not paged in our experiment, this is always possible,
and the problem cannot occur.

The Unmap call is used to revoke memory mappings. In order to find tran-
sitively derived mappings, the kernel may need to traverse a subtree of the map-
ping database, which in principle could lead to page faults when preempted nodes
are encountered. In our system, this problem is prevented by eagerly disabling
mappings when their map node is preempted or disconnected from the main tree;
therefore, preempted nodes can be safely skipped during Unmap (see also Section
4.7.3).

The IPC call already contains a timeout mechanism to handle preempted re-
sources. In the original API, this is needed when a page fault occurs during mes-
sage transfer; both sender and receiver can define a transfer timeout to specify how
long they are willing to wait for the page fault to be resolved. This mechanism
can easily be extended to resource faults.

For the remaining three system calls, ThreadControl, SpaceControl
and Schedule, timeouts cannot be used because these calls must never fail.
ThreadControl, for example, is used to delete threads; if a malicious task
could reliably deflect this call, there would be no way to remove it from the sys-
tem. Furthermore, the first two calls can only be executed by a privileged system
task; if the calls were allowed to block, this task would be vulnerable to Denial-
of-Service attacks.

In our system, we avoid this problem by moving all relevant metadata to the
KTCB, which is not paged; therefore, the three calls can never raise a page fault.
We are fully aware of the fact that this can only be a temporary solution. However,
we believe that the problem is due to structural issues in the API, and that it can
only be thoroughly solved by removing those issues. Section 4.7.5 discusses this
problem in more detail.

4.6.7 Nested faults
A nested fault is a page fault that occurs while another page fault is being handled.
There are two ways to handle a nested fault: One is to handle it instead of the
original fault, the other is to stack it on top, i.e. to suspend the original fault
while the nested fault is being handled. When faults are stacked, it is important to
determine the maximum nesting depth and to allocate sufficient space (e.g. on the
kernel stack) to store the corresponding contexts.

In our system, faults are never stacked, and each thread is allowed to request
only one memory resource (user or kernel memory) at a time. If a nested fault

46 CHAPTER 4. APPLICATION TO L4

occurs, the handling of the original fault is aborted. This may seem dangerous
because information about the original fault is lost; however, if its cause persists,
the fault will reappear once the faulting operation is resumed. Still, the work
performed to handle the original fault is lost; yet, we believe that this situation
occurs infrequently when fault ordering (Section 4.6.4) is used.

Therefore, the kernel only needs to be able to store two contexts: One for the
faulting operation and one for the page fault handler. If the page fault handling
code is short, it can be executed non-preemptively, and thus the second context
can be very small; basically, only the address of the requested resource is needed.
If separate k-pagers are used (Section 4.6.1), resource faults can be stacked onto
user page faults, and the maximum nesting level rises to three.

Special care must be taken to prevent infinite nesting, which can occur when
circular dependencies exist between resources. A principal that requests one of
those resources would perpetually cause resource faults and could never make
any progress. Hence, circular dependencies must be avoided.

In our system, map is the only primitive where such a dependency could exist.
Specifically, if mapping memory to the kernel would require a map node, a fault
that is caused by a lack of map nodes could never be handled. Fortunately, since
the kernel only accepts physical memory, the corresponding information can be
stored in the frame table, and a map node is not required.

4.7 External Representation
In order to allow for preemption of kernel memory, it must be possible to safely
export kernel metadata to user level. In our scheme, this is done by converting
the metadata into an external representation. The resulting state can be safely
re-imported into the kernel once the memory is restored.

In Section 3.2.4, we already defined requirements for such an external repre-
sentation, and Section 3.4 presented various conversion techniques. In this sec-
tion, we apply these techniques to each kernel data structure in L4.

4.7.1 Page tables
Page tables define the translation from virtual to physical addresses. On IA-32, the
architecture we chose for our experiment, the CPU uses a hard-wired algorithm
to parse page tables; therefore, it is mandatory to use the format that is defined by
the hardware.

IA-32 page tables have two levels. The first level consists of a single page
frame, the page directory, which contains 1,024 word-size entries. Each of these
entries corresponds directly to a 4MB region in the 4GB virtual address space and

4.7. EXTERNAL REPRESENTATION 47

can either directly specify a translation (a so-called superpage) or point to another
frame, a page table. Similarly, a page table has 1,024 entries, each of which
specifies a translation for a 4kB region in virtual address space. Translations may
be invalid; in this case, an attempt to access the corresponding region causes a
page fault.

In addition to the actual translation, i.e. the mapping from virtual to physical
address, a page table entry also contains various control bits, e.g. for privileges
and cache behavior, and two status bits: One to indicate that the page has been
accessed, the other to indicate that the content has been modified. The status bits
are updated by the hardware.

External representation

With the exception of the status bits, page tables contain only redundant informa-
tion; their entire state is also stored in the mapping database. For example, the
physical address of a page can be found by locating the corresponding map node
and tracing its parents back to ��� , which has a direct virtual-to-physical mapping.
Hence, page tables are derived data structures, which makes them ideal candidates
for the discard and retrieve technique (Section 3.4.5).

In order to successfully apply this technique, we must be able to store the
information in the status bits elsewhere. However, only two bits per entry are
required, and these are easily stored in the corresponding map node, which can
be located using the node directory. Of course, both the map node and the node
directory must be present to do this; however, when either of them is preempted,
the page table entry must be invalidated anyway, which causes the bits to be saved.

Therefore, we chose to discard the contents of preempted page tables, and
to retrieve the corresponding state from the mapping database when it is needed
again. Thus, the external representation of a page table entry is a constant, e.g.
zero.

Efficiency

Because the Discard and Retrieve technique throws away kernel state, it is impor-
tant to show that not too much work is wasted, i.e. that reconstructing the state is
not prohibitively expensive.

In order to retrieve a missing translation, we use the node directory to look up
the map node for the corresponding region. We then follow the parent link in the
map node to trace the mapping back to ��� , or to an address space that already has
the translation – whichever comes first. If ��� is reached, the physical and virtual
address of the last map node are equal, and the correct translation can easily be
derived; otherwise, the translation is simply copied from the other address space.

48 CHAPTER 4. APPLICATION TO L4

To further reduce the necessary effort, we use lazy evaluation. When a page
table is restored, it is filled with invalid translations; these are then replaced with
the correct values when a page fault occurs. Thus, the above algorithm need not
be executed for all valid entries, but only for the current working set.

Safety

As the external representation is constant, an attacker cannot gain any information
from it. Also, since the external representation is overwritten when it is restored,
modifying it does not have any effect.

4.7.2 Node tables

Node tables define a mapping from virtual memory regions to map nodes. For
every virtual address, they can be used to either locate the map node that backs
this address, or to establish that such a node does not exist. If the node exists but
has been preempted, the node table contains its address in resource space instead
of a direct reference. This information is necessary for sending a resource fault; it
cannot be determined otherwise because dynamic binding is used for map nodes
(see also Section 4.5.3).

Since node tables are ’shadow’ data structures to page tables, they also share
the same two-level structure. The first level consists of a single memory frame, the
node directory, which can contain links to second-level node tables. Each frame
consists of 1,024 entries that are in one of the following states:

� Node reference: The entry contains a direct reference to a map node, which
is located in kernel memory.

� Node address: The entry contains an address in resource space, which can
be used to send a resource fault for the node.

� Link: The entry contains a direct reference to a node table (node directory
only)

� Invalid: The entry contains a well-known value to indicate that it does not
hold any of the above.

The resource addresses are obtained by pointer swizzling when the corre-
sponding map node is preempted. Once the map node is restored, they are ea-
gerly replaced with direct references again. Therefore, it the kernel encounters a
resource address during a lookup, there are two possible cases:

4.7. EXTERNAL REPRESENTATION 49

1. If the region in the resource area that contains the address is currently not
backed with kernel memory, the kernel raises a resource fault in that area
and retries after the corresponding page has been restored.

2. If the region is already backed with kernel memory, the kernel checks whether
it contains the correct map node at the specified address. This map node may
still be in external representation and may have to be imported first. If the
node has a mapping for the correct memory region, the resource address is
replaced with a direct reference; otherwise, the address is invalid, and the
entry is reset to the Invalid state.

External representation

Together with the mapping database, node tables form a large composite data
structure which is connected by references. As it is entirely infeasible to export
this data structure as a whole, we apply the Partial Preemption technique (Sec-
tion 3.4.2) and use pointer swizzling to localize all references.

Node table entries can be exported directly if they are either in the Invalid
state or contain a resource address. Pointer swizzling is applied to direct node
references; the result is a resource address which is local to the principal’s address
space can be exported without further modification. Because static binding is used
for node tables, entries in the Link state need not be exported and can be reset to
the Invalid state.

Therefore, a node table in external representation consists only of resource
addresses and invalid entries. If the entire data structure is preempted, the result
is a tree in the local resource area (see Figure 4.5).

Efficiency

In order to export a node table, each entry must be checked; links must be replaced
with the well-known value for invalid entries, and node references must be con-
verted to resource addresses. The latter requires only a lookup in the frame table
(to determine the virtual address of the page) and a mask-and-set operation.

Importing node tables also requires inspection of each entry; however, the
kernel only needs to ensure that all entries are either invalid or point to the resource
area and are properly aligned. Link entries in the node directory are restored
automatically when the kernel imports the corresponding node tables; resource
addresses are converted to direct references when they are accessed, using the
above algorithm.

50 CHAPTER 4. APPLICATION TO L4

(c)

(b)

(a)

User space Resource space Kernel space

Figure 4.5: Node table and referenced map nodes in the kernel (a), partially pre-
empted (b), and fully preempted (c).

Safety

The external representation is safe because all values are fully localized to the
resource area of the principal. No kernel addresses are exported. Therefore, only
the following attacks need to be considered:

� Forging references to non-existent map nodes. This will be detected when
the kernel attempts to dereference them, and they will be replaced with In-
valid entries.

� Re-targeting references to different map nodes. This equals to intra-address
space granting, which is irrelevant for protection. Principals with more than
one thread can perform this operation anyway.

� Replacing references with invalid entries. This equals to a Flush operation
(i.e. an unmap in the local address space), which the principal could have
done anyway.

� Inserting misaligned references, or references outside the resource area.
These can be detected during import and replaced with invalid entries.

� Inserting references to other data structures in the resource area, e.g. to
TCBs. This can be detected if part of the resource area is dedicated to
map nodes; references outside this area can then be discarded.

� Establishing a circular reference. This is impossible because Link entries
are neither exported nor imported.

4.7. EXTERNAL REPRESENTATION 51

log2 size − r xbase wlog2 size − r xbase w

saunusednode directory

parent cap node (phys)

first child cap node (phys)

parent cap node (virt)

first child cap node (virt)

space identifier for parent

(a) Internal representation (b) External representation

Figure 4.6: Map node

4.7.3 Mapping database
The mapping database is a tree-like data structure that keeps track of all memory
mappings in the system. It is necessary because in L4, memory mappings are
recursively derived from other memory mappings; therefore, when a mapping is
revoked, all derived mappings must be found and revoked as well.

A mapping always exists between two regions, a source region and a target
region. This fact is reflected in the structure of the mapping database, where the
two regions are represented by different node types, cap nodes and map nodes
(see also Section 4.3.1). As every mapping is derived from exactly one other
mapping, every map node has exactly one parent cap node. However, different
mappings may share the same parent mapping, and thus a single map node may
have multiple child cap nodes (see Figure 4.2).

The map node we used in our experiment (see Figure 4.6) contains the follow-
ing fields:

� An uplink to the parent cap node, i.e. the cap node that describes the source
region of the mapping,

� A downlink to the first child cap node, if it exists. Such a node describes a
mapping that is directly derived from the parent mapping,

� The base and size of the target region in the virtual address space,

� An access bit cache, which is used to store access information from pre-
empted page tables (see Section 4.7.1),

� A pointer to the node directory of the address space which holds the map-
ping, and

� Several control bits, which are used internally by the kernel.

The corresponding cap node (see Figure 4.7) has the following fields:

� An uplink to the parent map node, i.e. the node that represents the mapping
from which this mapping is derived,

52 CHAPTER 4. APPLICATION TO L4

−log2 size r xbase w

s

log2 size r xbase w

parent map node (phys)

child map node (phys)

next peer cap node (phys)

parent map node (virt)

child map node (virt)

next peer cap node (virt)

(a) Internal representation (b) External representation

−

Figure 4.7: Cap node

� A downlink to the child map node, which describes the target region,

� The base and size of the source region relative to the parent mapping, which
can be used to derive smaller mappings from larger ones;

� The maximum privileges conveyed by the mapping (the effective privileges
also depend on the current privileges of the parent),

� A sibling pointer to the next cap node derived from the same map node, and

� A control bit which is used internally by the kernel.

In this implementation, every map node is associated with exactly one cap
node. Hence, it is not possible to construct a large mapping from multiple smaller
ones; if such a mapping is attempted by the user, multiple map nodes must be
used. This restriction applies to every L4 implementation known to the author;
since it is not relevant for our experiment, we do not address it here.

The subtree property

The mapping database is a large composite data structure; exporting it as a whole
would be costly and ineffective. Therefore, it is advisable to use a more fine-grain
scheme such as Partial Preemption (Section 3.4.2), which allows pagers to operate
on small subsets of the database, down to individual map nodes. However, the fact
that the mapping database is used for revocation makes it dangerous to apply this
scheme directly.

Consider the following scenario: Pager ��� has mapped a page frame to B,
who maps it on to a subsystem that consists of C, D and E (Figure 4.8). Assume C
colludes with its pager B, who preempts the region of kernel memory that contains
the association between B and C. As a result, the subtree below C is disconnected
from the database and cannot be reached from B any more. Therefore, when ���
decides to revoke the page frame, the kernel can only locate the mapping in A’s
and B’s address spaces; the other mappings will remain unaffected.

4.7. EXTERNAL REPRESENTATION 53

σ0

A

X

C

D E

B

σ0 σ0

A

X

C

D E

B A

X

C

D E

B

Figure 4.8: Detached subtree in the mapping database. In the first step, B preempts
the mapping to C. If now �.� attempts to revoke permissions on X, the kernel
cannot reach the subsystem below C any more.

Clearly, a scheme that allows subsystems to ’hijack’ memory frames would
compromise protection. Therefore, the kernel must make sure that it can reach all
effective mappings in the system, i.e. the following subtree property must hold for
the mapping database:

While the root node of a subtree in the mapping database is pre-
empted, the mappings in that subtree must not convey any privileges.

If this property holds, the kernel can safely skip preempted nodes in the map-
ping database when it encounters them during unmap because even if a discon-
nected subtree existed below one of these nodes, it cannot convey privileges any
more, and there is nothing to revoke.

Cascading unmap; page fault storms

One possible way to enforce the subtree property is to simply revoke mappings
when they are preempted. Because unmap is recursive, the corresponding sub-
trees in the mapping database disappear entirely, and the subtree property holds.
Although this operation discards a lot of state, it is safe in L4 because pagers
must always consider the possibility that a higher-level pager revokes one of their
mappings; therefore, they must be prepared to handle page faults even on map-
pings they did not revoke themselves. Thus, a subtree that is destroyed during
preemption can always be reestablished with page faults.

However, as map nodes are relatively small, a single frame of kernel memory
can contain many of them (up to 1,024 in the worst case). If such a frame is pre-
empted, all of the corresponding subtrees would have to be destroyed; later, an
equivalent number of page faults would be necessary to restore them. Because
pagers and their clients usually reside in different address spaces, this would re-
quire many expensive context switches.

54 CHAPTER 4. APPLICATION TO L4

Moreover, some of the affected mappings could back other frames of kernel
memory, which might e.g. contain other map nodes. For the reasons stated above,
these mappings would have to be revoked also, resulting in a cascade that can
affect thousands of mappings, possibly the entire system; the subsequent ’page
fault storm’ can then be very expensive. For a pager, there is usually no way
to tell a priori whether this will happen for a particular page of kernel memory;
therefore, it is difficult to find a sensible policy.

Persistent mappings

Because of the subtree property, there is no easy way to avoid revoking all the
mappings in a preempted subtree. However, the subsequent page fault storm is
much more expensive (due to the many context switches), and there are two simple
and effective techniques to reduce this cost:

1. Exporting map nodes: If map nodes are exported rather than discarded, it
is possible to restore many of them with a single resource fault.

2. Keeping disconnected subtrees: Although they do not convey any privi-
leges, these subtrees contain many ’dormant’ mappings that can easily be
restored once the root node is reconnected.

With these two techniques in place, it is possible to restore a preempted page of
map nodes with a single resource fault. Ideally, the resource fault is handled before
the preempted subtrees can cause any user page faults; in this case, the nodes in
the page are re-imported and reconnected to their dormant subtrees – resulting
in exactly the same situation as before the preemption. In a more realistic case,
some mappings will be restored before the reconnection and must be replaced
afterwards; however, this should still be far less expensive than raising page faults
for each of the remaining mappings.

The disadvantage of this solution is that it is inconsistent with the existing
L4 mapping semantics. Consider the scenario in Figure 4.9 where two memory
frames, X and Y, have been mapped to several tasks. If B removes the mapping
to C, X will also disappear from the virtual address spaces of D and E. Assume
C now takes a page fault that causes B to establish a mapping to Y in the same
location. In the current L4 model, D and E do not have access to this mapping and
must send page faults to C; with our proposed changes, Y will appear in all three
address spaces at the same time, and no further page faults will happen.

One possible solution is to treat the classical unmap primitive differently from
the preemption of map and cap nodes. Hence, if B removed the mapping with the
unmap primitive, the mappings D-E and D-F would be revoked as well, whereas
if B simply preempted a map node, the mappings would remain ’dormant’ and

4.7. EXTERNAL REPRESENTATION 55

σ0 σ0

σ0 σ0

σ0 σ0

σ0 σ0

σ0 σ0

A

X Y

C

D E

B B F

G

A

X Y

B B F

G

A

X Y

C

D E

B B F

G

A

X Y

C

B B F

G

A

X Y

C

D E

B B F

G

Figure 4.9: Difference between recursive unmap (above) and persistent mapping
(below). In both cases, B first unmaps frame X and then maps frame Y to the
same location.

could be reestablished. Both cases would look the same to D, yet they would have
to be handled differently, which would require an extra protocol between B and D.

However, we think that such a distinction is unnecessary and that the modified
semantics can be applied to unmap as well. We argue that the behavior of the
overall system is not changed, because most of the ’dormant’ mappings would
have been reestablished in the current model anyway.

Consider a pager �.t that implements a policy u on the memory it provides.
This policy will be consulted only at certain points in time, the decision points.
For example, if �.t implements LRU, it will need to perform page aging at regular
intervals; if it implements quotas, it will have to check them whenever a client
requests additional resources.

However, the decision points of different pagers do not normally coincide.
When, for example, �.t is paged by another pager ��v which implements paged
virtual memory, ��v may choose to revoke and swap out a page at any point in
time. Now, if one of �.t ’s clients needs that page, ��t will see a page fault on a
page it has already allocated. We do not see any reason why �Pt should consult
its policy at this point; instead, it will probably remap the same page again. With
persistent mappings, the result would have been the same, except that �Pt would
not have been involved.

For this reason, and because it reduces the side-effects of map node preemp-
tion, we decided to implement persistent mappings in our experimental system.
This leads to the following change in the semantics of map and unmap:

56 CHAPTER 4. APPLICATION TO L4

Old semantics New semantics

map

Transfers a memory re-
gion. The receiver is given
access to all resources that
are present in the source
region when the mapping
is received

Links two memory re-
gions. The receiver is
given access to all re-
sources that are present in
the source region while the
mapping exists

unmap

Removes all directly de-
rived mappings from a
memory region. All in-
directly derived mappings
are revoked

Removes all directly de-
rived mappings from a
memory region. All in-
directly derived mappings
are deactivated

In the mapping database, unmapping a map node � does no longer remove
the entire subtree below � , but only the cap nodes that are direct children of � .
The map node � itself is only removed when the mapping is flushed, i.e. removed
from the principal’s address space as well.

External representation

In order to export the contents of the mapping database, we apply a combination
of multiple techniques. As the mapping database is shared by all principals in the
system, it inevitably contains some inter-domain connections, namely between
cap nodes and their associated map nodes. Because such a connection can exist
between principals that have only limited trust in each other, we use the Splitting
technique to export one half of the connection to each of them.

The Splitting technique requires principal identifiers to implement the cross-
domain references. In the current L4 Version 4 API, however, the principals in
question (address spaces) do not have explicit identifiers; they are named implic-
itly by the ID of a thread they contain. Although this is not unproblematic (see
Section 5.3.2), we adopt this scheme for our experiment. When an address space
identifier is needed, the kernel randomly chooses the ID of a thread in that address
space.

The remaining connections (between a map node and its first child cap node,
or between a cap node and its next sibling) are intra-domain and can therefore be
exported with Partial Preemption. Most of the actual contents in both nodes can
either be exported unmodified or simply discarded.

More specifically, the individual fields of a map node are exported in the fol-
lowing way:

4.7. EXTERNAL REPRESENTATION 57

� The uplink to the parent cap node may cross a domain boundary; therefore
it is represented by the threadID of the corresponding principal and a virtual
address in the resource area of that principal.

� The downlink to the first child cap node is always local; thus, it is sufficient
to convert it into a virtual address in the resource area.

� Both base and size are local to the principal’s address space and can be
exported unmodified.

� The access bit cache is exported unmodified because it is irrelevant for pro-
tection.

� The node directory reference always points to the node directory of the prin-
cipal to which the node is exported; therefore, it can be discarded and later
restored.

� The control bits can be regenerated by the kernel; thus, they can be dis-
carded.

Note that, although the external representation has an additional field (the
threadID of the principal that owns the parent node), the Monotony requirement
is not violated because the discarded and unused parts yield enough free space.

The contents of a cap node are exported in the following way:

� The uplink to the parent map node and the sibling pointer are local and can
be converted to virtual addresses.

� The downlink could actually be discarded because due to the subtree prop-
erty, this link is never traversed downwards while the node is preempted.
However, the threadID of the corresponding principal is needed for valida-
tion.

� Both base and size are local to the source region and can be exported un-
modified.

� The maximum privileges are exported unmodified because the principal can
gain nothing by raising the maximum beyond its own privileges.

� The control bits can be regenerated and are discarded.

It may be surprising that the virtual address part of the downlink can simply
be discarded. However, consider that the downlink is only needed during unmap.
If it is virtual, this means that the corresponding subtree is either preempted or

58 CHAPTER 4. APPLICATION TO L4

has been freshly imported; in either case, the subtree property guarantees that it
does not convey any privileges, and unmap can simply skip it. As soon as the first
dormant mapping is touched, the page fault handler uses the uplinks to walk the
tree in the reverse direction, restoring all downlinks to direct references along the
way.

Efficiency

In order to export a page of map and cap nodes, each live node must be modified.
Discarded fields must be invalidated, e.g. by overwriting them with a constant
value, and references must be localized, i.e. physical addresses must be replaced
with addresses in the resource area. For map node uplinks, the threadID of the
other principal must also be determined and stored. Additionally, the backlink
that is associated with each reference must be localized in a similar fashion.

Converting a physical forward link to a virtual address requires a lookup in
the frame table; for backlinks, the virtual address is easily determined from the
address of the page that is being exported. In order to find the threadID for a map
node uplink, the kernel follows the link to the parent cap node and then proceeds
to the next map node. This node contains a reference to a node directory, which
in turn has a reference to a KTCB in the corresponding address space. The global
threadID in this TCB is used7.

Importing a page of map and/or cap nodes does not require any immediate
work; instead, the nodes can be imported lazily when they are first used. To
import an individual node, the kernel must convert the virtual reference back into
a physical pointer, which requires a node table lookup; it must also regenerate the
control bits and, if a map node is being imported, insert a reference to the current
node directory. If any of the previous steps fails, the kernel must invalidate the
node. Sanity checks for the exported values (base, size, and privileges of the
mapping) are not required because they are relative to the corresponding values in
the parent node.

Safety

The base field in a map node specifies the offset where the mapping appears in the
recipient’s address space. It is safe to export this value to the recipient because he
can easily modify it by granting the mapping to another thread in the same address
space. Invalid values (e.g. offsets outside of the user address space) can easily be
detected during the import.

7If the thread whose ID is chosen here is migrated later, all map nodes containing this ID are
broken and cannot be re-imported (see Section 5.3.2).

4.7. EXTERNAL REPRESENTATION 59

The size field in a map node specifies the size of the mapping in the recipient’s
address space. This value can be safely exported to the recipient because it is
limited by the size of the mapping on the sender side, i.e. the recipient can gain
nothing by increasing it beyond that limit. By decreasing this value, he can only
reduce his privileges because he loses access to part of the mapping.

The access bit cache field is safe to export because the recipient can control
it anyway (by accessing the mapping). Theoretically, a malicious principal could
try to hide the fact that it has accessed a page by resetting this value. If this is a
problem, the bits can be transferred to the parent mapping upon preemption.

The base and size field in a cap node specify which part of the sender’s address
space is accessible to the recipient of the mapping. By modifying the base address,
the sender can change the location of this part. For the recipient, this means that
the contents of the mapped region can suddenly change; however, the sender can
achieve the same simply by writing to the region. By decreasing the size, the
sender can make part of the mapping disappear in the recipient’s address space;
however, it can also do this by invoking the unmap primitive. Increasing the size
does not have any effect because the size field is replicated in the recipient’s map
node, and the effective size of the mapping is determined by the minimum of the
two.

The maximum privileges field in a cap node is safe to export because it only
specifies an upper limit; thus, the sender cannot elevate its privileges by increasing
this value. Decreasing it effectively revokes privileges from the recipient of the
mapping, which can also be achieved with the unmap primitive.

The cross-domain references in map and cap nodes are safe to export because
they are always paired, and the two parts are always controlled by different prin-
cipals (except for intra-domain mappings, which are not relevant for protection
anyway). An individual principal can gain nothing by modifying such a reference
because the mapping is not effective unless the two parts match.

4.7.4 User thread control blocks
The user thread control block (UTCB) stores the user-accessible part of a thread
context, including a message buffer and various Thread Control Registers (TCRs),
which are considered a logical extension of the thread’s register set. Some TCRs
are used by the kernel, e.g. to deliver error codes, while others are controlled by
the thread itself, e.g. to specify timeouts.

Unlike the other data structures discussed in this section, UTCBs do not con-
tain protected kernel state; in fact, the API specifies that they can be freely ac-
cessed from user level, just like ordinary registers. Hence, it is unnecessary to
take any special action during export because each thread can see the full contents
of its UTCB anyway; also, the values need not be checked during import because

60 CHAPTER 4. APPLICATION TO L4

the threads can write them at any time, and therefore the kernel must check them
on every use.

4.7.5 Kernel thread control blocks
Kernel thread control blocks (KTCBs) are used to hold the protected part of a
thread context, such as scheduling information, the current status of the thread, or
its presence and position in various internal queues.

In our experiment, we did not attempt to page KTCBs because this would
have required significant changes to the L4 API, which is beyond the scope of
this work8. For example, the kernel is currently specified to contain an internal,
priority-based scheduler, and therefore the KTCB contains scheduler-related in-
formation. If this information were preempted, the kernel would lose knowledge
of the very existence of the corresponding thread, and thus would not generate
page faults unless some system call was invoked on that thread. Also, the thread’s
association with its pager is currently kept in the KTCB; without this information,
the kernel cannot even determine where to send the page fault.

As the L4 Version 4 API has been designed without a particular focus on ker-
nel memory management, it is not surprising that these problems exist. However,
we believe that some changes to the API, e.g. with respect to the scheduling model
and the thread naming scheme, are sufficient to solve them. Our group is currently
working on these changes, and we are confident that we can eventually page the
entire kernel state, including KTCBs.

In the remainder of this section, we analyze the contents of the KTCB and
provide suggestions how each item could be exported.

Register contents

On IA-32, the basic register context of a thread consists of the instruction pointer
(EIP), the stack pointer (ESP), seven general purpose registers (EAX-EDX, ESI,
EDI, EBP) and a status word (EFLAGS). The FPU and SSE units are both equipped
with additional registers, but these need only be saved when the thread actually
uses those units.

As the entire register context is freely accessible to the thread, it can be ex-
ported unmodified. With the exception of some bits in the EFLAGS register9,

8Even with this restriction, it is possible to implement a comprehensive resource management
scheme because KTCBs are only allocated during ThreadControl, which is a privileged sys-
tem call that can only be invoked by special tasks in the trusted computing base

9In addition to the usual status bits, the EFLAGS register also holds the I/O privilege level
(IOPL) and several system flags, which must not be written by application programs. See Section
3.4.4 of the IA-32 Manual [23] for further details.

4.7. EXTERNAL REPRESENTATION 61

validation is not required either. However, since the FPU and SSE contexts are
rather large, we suggest that these be allocated on first use, rather than during
thread creation. They can then be paged separately, although this means that a
thread can take a resource fault just from accessing an FPU register.

Thread status

The status of a preempted thread indicates the operation the thread was executing
when it was preempted (e.g. running in user level or performing a system call), as
well as the status of that operation (e.g. blocked by another thread).

All previous L4 implementations known to the author use a per-thread ker-
nel stack in each KTCB, along with some dedicated fields, to store this informa-
tion. The resulting programming model is convenient because each kernel stack
contains activation frames from all kernel functions the corresponding thread has
called; thus, a kernel-level thread switch is essentially a stack switch. However,
the stack content is very sensitive because it is interspersed with return addresses
and local variables; therefore, it must not be exported directly.

Fortunately, in many kernels, the number of preemption points is quite small; it
is therefore sufficient to export a continuation, i.e. a brief summary of the respec-
tive situation, to user level. The continuation need not contain constant values,
such as return addresses, or values that can be obtained elsewhere. If necessary,
the exact contents of the kernel stack can later be restored from the continuation.

Scheduling information

According to the Version 4 API, the kernel must contain an internal round-robin
scheduler with a fixed priority scheme. Therefore, the KTCB contains the current
priority of the thread, the length of its current and remaining timeslice, and its
total time quantum.

This information is difficult to export because it cannot be validated. Unlike
memory mappings, which are always relative to the parent mapping, priorities and
time periods are absolute and can easily be forged.

One possibility would be to use Cryptographic Sealing; however, as the range
of these fields is quite small, the kernel might become vulnerable to dictionary
attacks. Another solution is to move to a hierarchical scheduling model in which
a data structure similar to the mapping database would be used to convey time
and priority. Finally, it might be possible to move the entire scheduler to user
level, and to replace it with a simple dispatching mechanism; in this scenario,
scheduling metadata could be restored by user-level schedulers (e.g. using ’time
faults’).

62 CHAPTER 4. APPLICATION TO L4

Address space affiliation

Kernel TCBs contain a reference to the address space in which the thread currently
executes. In principle, this reference should be discardable because we chose tasks
as principals; KTCBs should be implicitly associated with the address space of the
task that requests them. However, tasks are not first-class objects in L4, and thus
page fault messages must actually be sent by threads; therefore, this reference
must be exported anyway.

This problem is complicated by the fact that address spaces, being second-
class objects, cannot be named directly; in space-related system calls such as
SpaceControl, they are referenced by the ID of a thread that executes in them.
Therefore it is impossible to simply export a name, even if the kernel could some-
how validate it to prevent forgery.

We believe that this problem should be solved by promoting address spaces to
first-class objects (see Section 5.3.2).

Global ThreadIDs

In addition to the global ID that is part of each thread’s context, KTCBs also con-
tain threadIDs as references to other threads, e.g. to identify their pager, exception
handler, or partner in an IPC. Because these IDs have a system-global scope, they
can easily be forged by guessing.

We believe that this can be accomplished by replacing global threadIDs with
a local naming scheme. Such a scheme is currently being discussed by the L4
community.

Timeouts

The IPC system call allows various timeouts to be specified by the user; for ex-
ample, threads can specify how long they are willing to wait for their partner to
become ready, or for the message transfer to complete. Each thread can have at
most one active timeout at any point in time; this information is also stored in the
KTCB.

Exporting timeouts is not difficult (they can be fully controlled by the respec-
tive thread anyway), but it is not obvious what the semantics should be when a
preempted timeout expires. If an immediate effect is desired, then the kernel must
either retain enough information to detect it, which obviously requires some ker-
nel memory, or notify some user-level entity, for example the thread’s scheduler.
This entity can then ensure that the timeout is re-imported before it expires.

We believe, however, that it is sufficient to make the timeout effective when
the respective KTCB is re-imported. The only case where this actually makes a

4.7. EXTERNAL REPRESENTATION 63

difference is when the thread uses the timeout to enforce some guaranteed timing
behavior, e.g. in a real-time application. In this case, the thread must negotiate a
pinning contract [37] with its pager anyway, and it should be easy to extend this
contract to the KTCB.

Run queue affiliation

All runnable KTCBs are part of an internal queue, the run queue, which is con-
sulted by the dispatcher when a time slice expires and a context switch to the next
thread must be performed. This affiliation is important for two reasons: First, the
fact that the thread exists and is running must be preserved, because otherwise the
thread will never be chosen by the dispatcher and can run only if another thread
switches to it. Second, the position of the thread in the queue must be preserved
to maintain fairness10; if multiple threads are runnable at the same priority, each
of them should be dispatched with the same frequency.

With a hierarchical scheduling model, the first aspect (presence) can easily be
exported. The second aspect (position) could be represented either by the ID of
the ’next’ thread or by the point in time when the thread was last executed; both
values would have to be protected against tampering because they are difficult to
validate.

Another option would be to use a central, trusted pager for the run queue, but
this would compromise the distributed design of our paging scheme; for example,
pagers would no longer be able to obtain a complete ’snapshot’ of the subsystems
they manage.

Finally, the run queue could be managed completely by user-level schedulers
that rely on the kernel only for performing context switches. It remains to be seen
whether such a scheme can be implemented with acceptable performance.

Send queue affiliation

Since the IPC mechanism in L4 is synchronous, a thread that is trying to send
a message to another thread may be blocked if the other thread is not ready to
receive. In this case, its KTCB is placed in the send queue of the target thread.
Whenever a thread performs a receive operation, the kernel checks its send queue
for waiting threads and, if applicable, wakes the first one.

Again, both the fact that a KTCB is part of a send queue and its position in
that queue must be preserved; the latter is necessary to prevent starvation. The
first aspect can be represented by the ID of the owner of the queue, which is safe

10Apart from mentioning time slices and priorities, the current L4 specification does not give
any details on scheduling behavior. Thus, fairness is not explicitly required; however, we consider
this an important feature.

64 CHAPTER 4. APPLICATION TO L4

Structure Field Technique used
Page Tables Physical Address Discarded, retrieved from mapping DB

Control bits Discarded, regenerated
Status bits Saved to map node

Node Tables References Localized with pointer swizzling
Map Node Uplink Converted to threadID, virtual address

Downlink Localized with pointer swizzling
Base + Size Not modified
Access Cache Not modified
Node Dir Ref Discarded, regenerated
Control bits Discarded, regenerated

Cap Node Uplink Localized with pointer swizzling
Sibling Pointer Localized with pointer swizzling
Downlink Converted to threadID
Base + Size Not modified
Max Privileges Not modified
Control bits Discarded, regenerated

User TCB All fields Not modified
Kernel TCB All fields Not pageable

Table 4.1: Techniques used to export L4 kernel data structures

to export because the thread possessed it when it invoked the send operation. The
second aspect can, again, be exported as a ’next’ pointer or as the point in time
where the send operation was invoked. Note that the ordering of the send queue
may also depend on the priorities of the waiting threads, and that the position
information may only be relevant within a particular priority level.

Care must be taken that the presence of preempted KTCBs in a send queue
does not block other threads, because otherwise a malicious client could run a
denial-of-service attack against a server by sending to it and then having its own
KTCB preempted. To avoid this, we suggest that preempted KTCBs be skipped;
however, the resource fault should be triggered anyway to ensure that the pre-
empted thread gets a chance to complete its send operation.

4.7.6 Summary

Table 4.1 once again summarizes the L4 kernel data structures and the techniques
we used to export the individual fields.

4.8. PREEMPTION AND REVALIDATION 65

4.8 Preemption and revalidation

In our system, it is possible to gracefully decrease the allocation of kernel memory
of any principal; this is done by preempting pages that have been allocated to the
kernel. Once a preemption is triggered, the kernel performs the following steps:

1. It determines the type of metadata that is stored in the page, e.g. by consult-
ing the frame table,

2. It converts the metadata to external representation, and

3. It restores user-level access to the page

The process of finding the external representation has already been described
in the previous section; here, we discuss other related issues, e.g. by which events
preemption can be triggered, and which resources are affected.

4.8.1 Trigger events

Obviously, preemption must occur when the kpager – or any higher-level pager –
invokes unmap on a frame that has been previously allocated to the kernel. How-
ever, for security reasons, the kernel must also consider a page preempted when
the page is merely accessed from user level.

Consider a system where a pager �w� backs another pager, � e , who in turn pro-
vides read/write memory regions to its clients. In an ordinary L4 system, � e can
rely on the fact that nothing its clients could do will ever affect its own privileges.
Therefore, it need only be prepared to handle page faults that are caused by ��� ; if
it has negotiated a pinning contract with �w� , it can be certain that no page faults
will happen.

In our system, however, a client can use part of its region as kernel memory,
which makes the corresponding frames disappear from all other address spaces,
including � e . Of course, � e can still avoid unexpected page faults by unmapping
each page before accessing it, and by remapping it afterwards; however, this is
slow, cumbersome and also completely superfluous, since logically, � e still has
read and write privileges on its pages. Instead, we chose to preserve the original
semantics by transparently preempting kernel memory that is being accessed from
user level.

Note that pagers can use this scheme to perform simple system calls on their
clients; for example, a loader could write to the TCB of a new task to initialize its
instruction pointer.

66 CHAPTER 4. APPLICATION TO L4

4.8.2 Inter-resource dependencies

The sum of all kernel metadata can essentially be thought of as a huge directed
graph, which is connected by references in individual metadata instances. Care
must be taken that preemptions do not partition this graph; otherwise parts of it
may become orphaned, and the kernel must take countermeasures, e.g. perform
garbage collection.

For this reason, there are some intrinsic dependencies between different kernel
resources, which are summarized in the following table:

Resource Depends on
Page directory Node directory
Page table Page directory
Page table entry Page table, Map node
Node directory —
Node table Node directory
Node table entry Node table, Map node
KTCB Node directory
UTCB KTCB
Map node Node table entry
Cap node Map node

The dependency relation is transitive. Since tasks were chosen as principals,
all resources have a direct or indirect dependency on the node directory, which
ultimately represents a task in our system.

Obviously, page and node tables depend on the respective directories because
they cannot be located without it. Map nodes do not depend on node table entries
conceptually; however, without this restriction, re-importing node tables would be
difficult because the referenced map nodes could still be in the kernel, but there
would be no way to locate them, except by scanning the entire mapping database.

4.8.3 Cyclic dependencies

Because of the inter-resource dependencies, a single preemption event may lead to
multiple pages actually being exported. Hence, if the dependency graph contains
a cycle, the kernel might be deadlocked or caught in an infinite loop.

With the exception of the mapping database, all kernel metadata has a strictly
hierarchical structure which does not allow for cycles. However, map nodes can
indirectly back other parts of the mapping database and thus other map nodes,
and therefore a cycle is possible. Such a cycle cannot be formed with map alone

4.8. PREEMPTION AND REVALIDATION 67

because there is a strict temporal ordering (a page must be mapped to the ker-
nel before it can back other mappings); however, cycles can occur if the grant
primitive is used.

Consider a system in which a page
'

is mapped from a task
s

to another
task r , who chooses to map it as kernel memory to q , for use in the mapping
database. Assume

s
now grants

'
to q . If q now revokes the new mapping, the

derived mapping in r must also be revoked, which in turn revokes it from q , and
so on.

One possible solution to this problem is to conceptually reduce
'

to ordinary
memory before starting to export its contents. Hence, the kernel will not attempt
another export when it encounters

'
again.

4.8.4 Pages with mixed content
Some metadata has a finer granularity than memory frames; in Section 4.5.3, we
already mentioned that we collect several instances in each frame using a simple
slab allocator [6]. However, in order to export this metadata correctly, the kernel
must be able to detect whether each slab is in use or not, and to determine the
correct data type.

The first problem is easily solved by marking empty slabs with a well-known
pattern that is different from all valid metadata instances11 (e.g. all zeroes). The
second problem can be avoided if a) the kernel never co-locates objects of different
types in the same page and b) the one type can be determined by other means, e.g.
from the offset of the page in the resource area.

In our system, this solution is applicable for all kernel objects except for the
map and cap nodes, which are co-located to reduce fragmentation. Hence, a single
page of kernel memory can contain both node types. To allow the kernel to distin-
guish between the two, both nodes contain a special bit at a fixed offset, which is
always set in a map node and always clear in a cap node. Empty nodes can easily
be identified because all of their bits are zero.

11Obviously, such a pattern does not exist if all possible values correspond to a valid instance.
In practice, however, a suitable pattern can usually be found, e.g. by breaking an alignment restric-
tion.

68 CHAPTER 4. APPLICATION TO L4

Chapter 5

Analysis

In the previous section, we described the details of an experimental system in
which our scheme for managing kernel memory was applied to the L4 micro-
kernel. Now we discuss this system at a more general level, e.g. with respect to
protection and security. We also analyze the differences between our system and
the original L4 model, and we make various suggestions for future revisions of
the L4 API.

5.1 Protection and security

One important goal of this work is to show that kernel memory can be managed at
user level without weakening protection. Unfortunately, we are unable to provide
a formal proof; to our knowledge, such a proof has never been attempted, not even
for microkernels. Instead, we examine a number of typical attacks and show that
they cannot be successful in our system.

When considering potential attacks, we use the system shown in Figure 5.1 as
a reference. In this figure, threads are represented as circles, and address space
boundaries are denoted by rectangles. The arrows indicate pager-client relation-
ships. For example, the threads B, C and D reside in one address space; B pages
its clients C and D and is itself paged by A.

We assume that the root pager ��� is part of the trusted computing base and
cannot be compromised. However, an attacker may be able to control several sub-
systems (the shaded regions, i.e. the threads B-D and G), including the respective
pagers (B and G). Some of the malicious pagers may collude with their clients (B
with C and D) or other malicious pagers (B with G), while others may be able to
gain control over other, well-behaving subsystems (G over H).

In order to maintain protection, the kernel must ensure the following:

70 CHAPTER 5. ANALYSIS

xyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyxxyxyxyxyxyxyxyx

zyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyzzyzyzyzyzyzyzyz

{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{{y{y{y{y{y{y{y{

|y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y||y|y|y|y|y|y|y|
A

B

C D

E

F

G

H

Figure 5.1: Reference model. The arrows indicate pager/client relationships;
shaded parts are controlled by the attacker.

� Malicious clients must not be able to affect their pagers; for example, A
must be protected from B.

� Malicious subsystems must not be able to affect other, independent subsys-
tems; for example, E and F must be protected from G.

� Malicious servers must not be able to affect their clients, except by denial
of service. For example, if E uses a service provided by B, then B must not
be able to exert any control over E beyond that service.

However, the kernel cannot protect subsystems that obtain kernel memory
from a malicious pager. In existing L4 systems, this restriction already applies to
program code, since a pager that can control the code executed by its client can
effectively do anything that client could do itself. Hence, the L4 protection model
is not significantly weakened; clients can ensure their safety by obtaining their
kernel memory from a trusted pager.

In the following, we distinguish between two classes of attacks: metadata-
based attacks rely on the pager’s ability to access the kernel metadata of its clients,
while page-fault-based attacks exploit the fact that a pager can raise resource
faults by unmapping pages of kernel memory.

5.1.1 Metadata-based attacks
A pager that provides kernel memory to a client can, by preempting that memory
from the kernel, gain access to the contents in their external representation. It can
then freely examine, modify, forge, copy, permute, invalidate or destroy the data
in such a page. Afterwards, when the corresponding resource fault is raised, it can

5.1. PROTECTION AND SECURITY 71

return the page to the kernel, where the contents are converted back to internal
state.

Examining metadata

By examining a page that is exported vacant, i.e. a page directory or page table, the
pager cannot gain anything. UTCBs are safe because they can be freely accessed
by the client and therefore the pager could also examine them by modifying the
client’s code. The remaining state, node tables and the mapping database, convey
information about the layout of the client’s address space, including mappings
provided by other pagers.

Most of this state, i.e. size and position of the mapping, refers only to the
client and is therefore readily available to the pager. For mappings provided by
another pager, some information can be gathered, namely the threadID of the other
pager and the position of a cap node in its address space. Similarly, for mappings
provided to clients, the threadID of the recipient can be determined. However, this
information is mostly useless.

Modifying metadata

By modifying or forging metadata, neither the pager nor its clients can obtain
elevated privileges because the external representation is safe (see Section 4.7).
For example, neither B nor D can, by editing the exported part of the mapping
database, change the privileges or the source area of existing mappings from A
because they can only affect the map node; this is checked by the kernel against
the corresponding cap node, which is controlled by A. For similar reasons, they
cannot obtain new mappings either, e.g. from E, because the forged map node
would have to contain a reference to a matching cap node in E’s address space.
Guessing a reference to an existing cap node, e.g. from a mapping E has provided
to F, does not help because that cap node would contain F’s threadID.

However, two malicious subsystems (e.g. B and G) could forge a matching pair
of map and cap nodes if they know each other’s threadID, and thereby establish
a mapping without using IPC. This is not directly relevant for protection because
the new mapping can be derived only from resources already present in either B’s
or G’s address space; however, it can be used to circumvent IPC-based control
mechanisms such as Clans and Chiefs [31] or IPC redirection [24] when they are
used to monitor or to restrict communication [25].

This problem could be solved by handling re-imported mappings as if they
were established using IPC, i.e. by submitting them to the monitor for inspection.
Another option would be to replace the system-global threadIDs with a local nam-
ing scheme. In such a scheme, two principals that are not allowed to communicate

72 CHAPTER 5. ANALYSIS

directly would not even have a name for each other; thus, there would be no way
they could forge a valid reference pair.

Copying metadata

In another potential attack, the pager copies a valid piece of kernel metadata to its
own address space for later use; for example, if D has obtained a mapping from E,
B could try to save the corresponding map node to recapture the mapping when E
revokes it. This is called a replay attack and is a classical threat to cryptographic
schemes. In contrast to forging, the attacker is presumed to already have access to
a valid, albeit stale instance of metadata, which can be a considerable advantage
e.g. if the scheme is protected by sparsity.

In our system, validation is used to detect stale references. Therefore, copying
metadata is no more dangerous than forging or modifying.

Permuting metadata

Since pagers usually provide more than one page of kernel memory to their clients,
they can preempt multiple pages and remap them in a different permutation. A
malicious pager can swap pages from different clients, pages containing different
data types, different instances of the same data type, and even data structures
within the same page.

This attack is very similar to the modification attack. If a pager preempts two
pages } and ~ , it can, instead of mapping } in place of ~ , simply copy the contents
from } to ~ and vice versa. Neither the pager nor the clients can use this to increase
their privileges because kernel metadata is always interpreted in the context of the
client on whose behalf it is imported; hence, if the client did not have access to a
resource before, it cannot gain it by importing the metadata of another client.

Consider the following example: A maps a memory object to C, and B pre-
empts the page that holds the corresponding map node. The external form of the
map node will then contain A’s threadID and the virtual address of the correspond-
ing cap node in A’s address space. Now B attempts to remap the map node to D.
During import, the kernel uses the reference in the map node to look up the cap
node and checks if the two nodes match. However, since the cap node contains
C’s threadID, this is not the case and the kernel discards the mapping.

Protection can neither be compromised by swapping kernel objects of different
types, e.g. by mapping a page of cap nodes instead of a node table. Since the
kernel raises resource faults for a specific type, it assumes metadata of this type is
supplied in return1. Therefore, metadata of a different type will be considered an

1This is safe to assume even if the pager has no concept of kernel data types, since the kernel
identifies the requested metadata by the virtual address of the page fault.

5.1. PROTECTION AND SECURITY 73

invalid instance of the expected type and is subsequently discarded.
By swapping data structures of the same type, the attacker can exchange the

user-visible state of two threads (by swapping UTCBs) or change the virtual ad-
dresses of mappings in its address space (by swapping node tables or map nodes).
However, these operations can also be carried out using standard kernel primitives;
therefore this does not constitute a security problem.

If metadata is permuted in external form, the physical address of individual
instances of kernel metadata changes. This is not a security problem if the kernel
does not retain any physical pointers to the metadata after it is exported (there is
no reason to).

Invalidating or destroying metadata

If the attacker has access to the external form of a kernel object, it can damage
it or remove it entirely. In both cases, the object cannot be re-imported, and the
kernel must discontinue any services for which this object was required.

Obviously, this is not a security problem if the services in question are pro-
vided to the attacker, or to one of its clients. This is true for all the metadata we
exported in our experiment, except for cap nodes. By destroying a cap node, the
pager can effectively revoke the mapping that is conveyed by that node. However,
if that mapping was also provided by the pager, it can achieve the same effect by
invoking the unmap primitive; if the mapping was provided by another pager and
only forwarded by the client, the pager can easily force the client to perform the
unmap for him, e.g. by replacing one of its code pages.

Inferring kernel internals

By inspection of exported kernel metadata, an attacker might be able to draw
certain conclusions about the protected internal state of the kernel. For example,
assume UTCBs are allocated with a global placement scheme, i.e. two different
UTCBs are never placed at the same location in the resource area, even if they
reside in different address spaces. In this case, the attacker may be able to estimate
the total number of threads in the system by creating a thread and observing the
location of its UTCB. In our experiment, this is not possible because the resource
areas in different address spaces are completely independent from each other.

Also, an attacker can, by observing metadata and its development over time,
infer some of the policies used by the kernel. For example, by checking the map-
ping database periodically, the attacker may be able to determine the strategy used
to allocate new map or cap nodes. This information might be helpful in an attack.

74 CHAPTER 5. ANALYSIS

5.1.2 Page-fault-based attacks

A kpager receives resource faults from its clients. It can respond to these faults
by sending a mapping, or it can choose not to respond. A kpager that already
provides memory to the kernel can also induce resource faults in its clients by
unmapping that memory at any time.

Page hijacking

Since the kernel runs in supervisor mode, it has full access to all physical memory;
in particular, it can write pages that are mapped read-only in user level. Therefore,
a kpager could try to circumvent access restrictions by mapping its memory to the
kernel.

Consider the following scenario: A maps a code page read-only to both B
and E. Now B provokes a resource fault in one of its clients, e.g. in D, and maps
the code page in response. If the kernel permits this, it will protect the page and
attempt to convert the contents into kernel metadata; subsequent accesses in E will
then preempt the page and cause the metadata to be exported again.

Since the original content – a page of code – is extremely unlikely to coincide
with a valid instance of metadata, the kernel must, in most cases, partially discard
it; also, the metadata might change while in the kernel. Thus, the re-exported
content will differ from the original, and B has effectively modified a read-only
page.

However, this attack is not possible in our system because in response to a
resource fault, the kernel only accepts mappings that convey at least read and write
privileges. In this case, giving the page to the kernel is unproblematic because the
attacker can destroy the content of the page also by overwriting it directly.

Withholding metadata

By design, the kernel does not impose any deadlines for handling kernel page
faults; hence, a kpager may delay its answer indefinitely or even not reply at all,
e.g. because the client has exceeded its allocation. While this inevitably blocks
the client requesting the metadata, other, independent subsystems must remain
unaffected.

An attack based on withholding metadata can only be effective for metadata
whose in-kernel representation contains references to resources held by other prin-
cipals. Therefore, page and node tables need not be considered since they are local
data structures used exclusively by the respective principal.

UTCBs contain two threadIDs which designate the pager and the exception
handler of the thread. When the thread takes a page fault or an exception, these

5.2. DIFFERENCES TO L4 75

threadIDs are used to send a message to the respective handler. In those situations,
however, the faulting thread depends on the handler thread to resolve the fault;
even if the reference is valid, the handler can easily block the thread by not sending
a response.

The mapping database contains many cross-principal references; an attacker
can revoke part of it, which causes some references to be disconnected. This
could be a problem during unmap, when the kernel must traverse a subtree of the
mapping database in order to find all transitively derived mappings, starting from
the mapping that is being revoked. However, the subtree property (Section 4.7.3)
guarantees that active mappings can only exist in the part of the mapping database
that is connected to the original mapping in ��� ; therefore, the kernel need not raise
any page faults during unmap, and the requestor is never blocked.

Note that withholding metadata will be a far more important problem in future
systems where queues, e.g. the send and ready queues, are exported from the
KTCB. In such a system, care must be taken to allow the kernel to parse these
queues even if some of its members are preempted; see Section 4.7.5 for further
discussion.

Flooding

A malicious client can perform a classical denial-of-service attack against its
pager by continuously preempting some of its kernel memory and thus flooding
the pager with a large number of resource faults.

This attack is similar to a flooding attack based on ordinary memory and can
be handled in the same way, e.g. by counting page faults and throttling clients
that cause an excessive amount. However, resource faults are considerably more
expensive than ordinary page faults since the kernel must re-import the metadata
in the page. Therefore, it is important to internally account this operation to the
faulting principal, e.g. by using its time slice rather than that of the pager.

5.2 Differences to L4

By introducing our scheme for kernel memory management into L4, we have
changed several aspects of the original L4 model [30]. Most of these aspects have
already been briefly mentioned in previous sections. In the following section, we
explain the changes in more detail and describe their consequences.

76 CHAPTER 5. ANALYSIS

5.2.1 Resource faults
In the original L4 model, page faults can only occur in user space, i.e. in the user-
accessible part of virtual address space, as a result of a thread’s reading, writing or
executing the contents of a page, or during IPC. Furthermore, the UTCB area and
the Kernel Interface Page (KIP) are exempt from page faults since these objects
are provided by the kernel and are backed with kernel memory.

In our system, the first exception does not hold any more, since UTCBs are
now provided by user-level pagers. Additionally, page faults may now also occur
in the resource area, where page tables, node tables and the mapping database are
located.

Reading, writing and executing can still trigger page faults, but they are no
longer limited to non-existent mappings; page faults may now also be used to
request missing page tables, node tables or map nodes.

All page faults that could happen during IPC in the original system are still
possible; however, some additional faults can now occur. The L4 API [30] classi-
fies these faults in three categories:

� Pre-send page faults happen in the sender’s context before the message
transfer has started, without involving the receiver thread;

� Post-receive page faults happen in the receiver’s context after the message
has been transferred, without involving the sender thread;

� Transfer page faults happen while a message is being transferred and in-
volve both sender and receiver.

The additional faults are caused by accesses to resources that either the sender
or the receiver requires to complete IPC but does not currently hold:

Sender Receiver
UTCB Pre-send Xfer
Page directory – –
Page table – –
Node directory Xfer Xfer
Node table Xfer Xfer
Map node – Xfer
Cap node Xfer –

Faults in the receiver can cause a deadlock, which is resolved by aborting the
IPC (see Section 4.6.5). Since the pager must be able to detect this, a new error
code is required.

5.2. DIFFERENCES TO L4 77

Furthermore, resource faults can now occur during certain system calls that
were previously defined not to raise any faults, namely the ExchangeRegisters
and Unmap primitives. ExchangeRegisters needs access to the UTCB of the
destination thread, which may not be available; Unmap needs to update or remove
the map and cap nodes of the mappings that are being revoked2.

5.2.2 Persistent mappings

In the original system, the unmap primitive recursively revokes all derived map-
pings; this involves erasing the corresponding subtree in the mapping database.
We avoid this behavior in our system because it can lead to a cascading effect (see
Section 4.7.3). Instead, only directly derived mappings are revoked; the remain-
ing, transitively derived mappings are deactivated and remain dormant until the
respective subtree in the mapping database is reconnected to the main tree.

This substantially changes the semantics of the map primitive. Previously,
map conveyed privileges only on mappings that existed at the time when map
was invoked. With the above change, however, map effectively ’links’ two regions
in the sender’s and receiver’s virtual address spaces; therefore it can also convey
privileges on mappings the sender acquires after the mapping was established.
Moreover, this does not only affect the direct receiver of the mapping, but all
transitively derived mappings as well. See Section 4.7.3 for further details.

5.2.3 Extended pager privileges

In the original system, the influence a pager can exert on its clients is limited to the
memory regions it provides. It can modify the contents of those regions or unmap
them; however, it cannot directly influence regions provided by other pagers.

In our system, the kpager has access to map and cap nodes, UTCBs, and the
node table. Therefore, it can freely edit the entire address spaces of its clients, e.g.
by removing or permuting mappings. If it has access to other spaces, it can even
install new mappings by forging a matching pair of map and cap nodes.

However, any of the above operations could obviously be performed by the
client itself. Even in the original system, a pager that provides code segments to
the client has similar powers, since it can modify the code and thus force the client
to act as its proxy. Hence, kpagers require a trust level similar to that of a code
pager.

2Due to the subtree property (Section 4.7.3), access to map or cap nodes in other address spaces
is not required

78 CHAPTER 5. ANALYSIS

5.2.4 Role of ���
The original L4 model includes a trusted kernel pager, ��� , that is intended to
provide orthogonal persistence [33, 48]. This pager has read/write access to the
KTCBs, which it can use to obtain consistent snapshots of the entire system.

In our system, �P� is obsolete as soon as we succeed in exporting the entire
contents of the KTCB to user level. Its role can be taken over by ordinary pagers,
who can implement orthogonal persistence for their own subsystems. This scheme
is considerably more flexible, since it is not centralized and the respective pagers
do not need to be trusted by the kernel.

5.3 Lessons learned

The L4 Version 4 API in general, and its virtual memory model in particular, have
turned out to be an excellent platform on which to implement kernel memory
management. Yet, our work with the API has sparked some ideas for further
improvement.

5.3.1 No global identifiers

On the one hand, some resources in L4 are fully virtualized. One example is mem-
ory, where mapping can be used to associate a virtual memory address with almost
any physical memory address. On the other hand, however, some resources are
global to the entire system, notably thread identifiers and priorities. ThreadIDs,
for example, are valid for every principal in the system.

In our experience, global identifiers are a major obstacle when exporting ker-
nel state to user level because they are easy to guess and hard to validate.

For example, a thread can easily guess a higher priority than its own (a lower
integer number) and, by colluding with its pager, it can install this priority in its
own TCB. Similarly, it can guess and install a larger time slice (a higher integer
number). Because these attributes are not conveyed hierarchically like memory
access privileges, they cannot be validated easily. This is the reason why we were
unable to export the full content of the KTCB in our experiment.

From personal communication, we know that a revised naming scheme for
threads is already being developed in the L4 community. We hope that, addition-
ally, the scheduling model will be virtualized or replaced.

5.3. LESSONS LEARNED 79

5.3.2 Address spaces as first-class objects
In the current version of the API, address spaces are, in a way, second-class citi-
zens. Since they have visible properties (the KIP and UTCB area, which can be
read and written with the SpaceControl system call), they clearly constitute a
core abstraction. Yet, they do not have proper names; they are named indirectly
by the ID of an arbitrary thread that is executing in the designated space.

This naming scheme is awkward for user-level applications since they must
explicitly ensure that their names remain valid. Otherwise, the thread whose ID
is used as a name might accidentally be migrated out of the designated space, and
further system calls using that name might have unforeseen consequences.

Moreover, exporting this kind of name to user level can cause consistency
problems. In our system, address spaces are used as principals, so there is often a
need for naming a particular principal, e.g. in map and cap nodes. However, if a
thread migrates while its threadID is used as principal identifier in some external
state, that state cannot be re-imported into the kernel. Due to validation, this is not
a security problem; however, the corresponding kernel state is lost.

These problems can easily be solved by promoting address spaces to first-class
abstractions, and by giving them proper names.

5.3.3 Symmetric API
Some of the system calls in the current API are asymmetric because they contain
special cases for some threads or tasks:

� The privileged system calls SpaceControl and ThreadControl can
only be invoked by a few special tasks3.

� The mapping feature works only if the recipient of the mapping resides in a
different address space.

Both asymmetries have turned out to be major obstacles for application de-
signers. The mapping asymmetry, for example, has forced LU Linux developers to
include the infamous ping-pong task. The sole purpose of this task is to reflect
any mapping it receives; this is necessary to implement the vm_remap primitive,
which relocates a memory region within an address space.

However, these restrictions exist mainly in order to prevent malicious tasks
from consuming large amounts of kernel memory4. With our scheme, however,

3The use of privileged system calls is restricted to the initial servers, i.e. the ones created by
the kernel at boot time (�9� , �E� and the root server).

4The other reason why these restrictions exist is that the global threadID namespace must be
managed by a trusted entity. If global IDs are removed, this becomes a nonproblem.

80 CHAPTER 5. ANALYSIS

it is possible to account kernel memory usage to individual tasks; hence there is
no reason any more why ordinary tasks should be barred from creating threads or
mappings as they please. The above two asymmetries can thus be removed.

Chapter 6

Implementation

We have implemented the scheme described in the previous two chapters in an
experimental microkernel, L4/Strawberry. The following chapter describes de-
tails of our implementation and reports our experiences. Also, it contains a short
performance evaluation.

6.1 Goals
Like many operating system kernels, existing L4 implementations implicitly as-
sume that kernel metadata is available when it is accessed. In our scheme, how-
ever, all variable-size kernel metadata is pageable, and the kernel must be prepared
to handle a fault on virtually every metadata access. We believed this would re-
quire nontrivial changes to the internal design of the kernel. Therefore, we decided
to validate our approach by attempting a ’real’ implementation. Our objectives for
this experiment were the following:

� Establish that the scheme works in a realistic setting. Our goal was to be
able to run a large application on top of the experimental kernel.

� Explore implications on kernel design. Our goal was to compare our exper-
imental kernel to existing implementations, and to identify any secondary
changes that our scheme might require.

� Evaluate the effect on performance. Our goal was to keep the additional
overhead on important kernel primitives below 5%, and to determine the
effective cost for a simple user-level allocation policy, e.g. Quota.

We did not investigate which policies are best suited for managing kernel
memory. Virtual memory management is a well-understood problem, although

82 CHAPTER 6. IMPLEMENTATION

the issues are slightly more complicated for kernel memory because of the inter-
resource dependencies and the higher preemption cost; we consider this future
work. We also did not demonstrate that our scheme can be used to prevent
Denial-of-Service attacks, or to enforce subsystem isolation. Related work [49]
has shown that this is feasible with relatively simple policies like Quota, which
can obviously be implemented in our system.

6.2 L4/Strawberry

At the time we started our experiment, an implementation of the L4 Version 4
API was already being developed in our group. Our original plan was to adapt
this kernel to support our modified API (Section 5.2). However, we quickly found
that this was infeasible. The existing kernel allocated its metadata from an in-
kernel memory pool, and it was assumed throughout the code that this metadata
could be accessed at any time, and without page faults. To change this behavior,
we would have had to identify all of these assumptions and reimplement most of
the corresponding code. Since microkernels are generally small, we decided that
it would probably be easier to start from scratch.

Our new kernel is called L4/Strawberry1. It implements the basic L4 Version 4
API for the Intel IA-32 architecture and is binary compatible with the existing im-
plementation. Thus, we were able to reuse most of the framework (bootloader,
IDL compiler, initial servers) and run existing applications with only small modi-
fications. Advanced features like SMP or Small Address Spaces are not supported.

The kernel consists of 5.860 lines of C code, 37 lines of IA-32 assembler code,
and another 2.233 lines of C code for an optional kernel debugger. It is stable and
complete enough to run LU Linux [22], a variant of Linux 2.4 that runs as a user-
level application on top of L4 microkernels. Since the original LU Linux does not
support resource faults, we had to modify its internal pagers (a 119 lines patch).
Afterwards, we were able to boot a standard Debian distribution.

The kernel sources have been released under the GNU General Public License;
they are available for download at http://www.l4ka.org/.

1L4 implementations are traditionally named after nuts. Many people have asked why we
did not use this scheme for our kernel. In fact, however, the red fruit grown by the cultivated
strawberry (fragaria � ananassa) is technically an enlarged pulpy receptacle; the actual fruit are
the tiny achenes, each of which houses a single seed. Hence, strawberries are nuts and not berries –
at least in the botanical sense.

6.3. KERNEL DESIGN 83

6.3 Kernel design
In order to support pageable kernel metadata, we had to make some design choices
that differ substantially from the classic L4 design as described in [34].

6.3.1 Continuations
The probably most striking difference between our kernel and existing implemen-
tations lies in the execution model, i.e. in the way blocking and preemption are
handled. There have been two contrasting approaches to this problem: Many
monolithic kernels such as BSD, Linux, and Windows NT implement the process
model, where each thread has its own kernel stack; when the thread is not running,
most of its state is implicitly encoded in this stack. In the interrupt model, which
has been used e.g. in V [8], QNX [21], and Fluke [16], the kernel uses only one
kernel stack per processor. Threads are required to record their state in an explicit
kernel object, a continuation, before blocking.

Traditionally, L4 implementations have used the process model, i.e. per-thread
kernel stacks. However, as described in Section 4.7.5, the contents of this kernel
stack are difficult to export to user level. Therefore we decided to use continua-
tions, and to build an interrupt-style kernel.

For the kernel designer, the interrupt model has two major disadvantages.
First, it requires more programming effort because in contrast to the process
model, a context switch is not equivalent to a simple stack switch; instead, ex-
plicit code is required to transfer state to and from the continuation. Second, it
imposes constraints on when a kernel-level thread can block. For example, care
must be taken that threads cannot be preempted by unexpected events, e.g. by a
hardware interrupt or by taking a page fault while in the kernel.

However, we were surprised to find that the interrupt model also has consider-
able advantages:

� It requires less kernel memory, since the continuations are much smaller
than kernel stacks. Process-style L4 kernels for the IA-32 typically use 1kB
TCBs, while our kernel only needs 176 bytes.

� It reduces the stack-related cache and TLB working set of the kernel.
This is especially important since stack content is frequently modified and
must be written back to main memory afterwards, even though it may al-
ready be obsolete. Also, the single per-processor stack is more likely to
remain in the cache between subsequent kernel invocations.

� It simplifies thread management, since all of the thread’s state is explicit.
There is no need to examine its stack, whose layout may change between

84 CHAPTER 6. IMPLEMENTATION

platforms, compiler versions, or even different kernel configurations.

� It enables further optimization, since a thread can, by inspecting the con-
tinuation, easily find out what another thread will do when activated. Thus,
it is possible in many cases to avoid using the continuation altogether.

Our findings are similar to the ones reported by Draves et al. [13]. By changing
the execution model in Mach 3.0 from process-style to a hybrid model, they were
able to speed up cross-domain RPC by 14% and to reduce the kernel space per
thread by 85%. Certain operations even ran 60% faster.

6.3.2 Reference checking

Because our kernel is purely interrupt-style, we must avoid page faults in the
kernel. Fortunately, the L4 API does not require the kernel to touch any user-
backed objects2 except during IPC, and even then only while copying strings.
Thus, page faults can only happen a) during IPC and b) when first accessing an
instance of kernel metadata.

Our kernel avoids the first type of page fault – during IPC string transfer – by
eagerly checking how much of the string and the corresponding buffer is currently
mapped. This part is then safe to copy; afterwards, a page fault message is syn-
thesized if necessary. Although this requires the kernel to parse the page tables,
the performance penalty is small because the physical addresses become available
as a side effect. The kernel can use these addresses to bypass the traditional Copy
Window technique [32] and copy the string directly using physical addresses.

The second type of page fault can be prevented by checking references before
using them. References to non-existent or preempted resources have a special
value that can be easily detected. When this value is encountered, the kernel leaves
the fast path, saves a continuation, and synthesizes a resource fault on behalf of
the corresponding principal.

The performance penalty incurred by reference checking is usually small.
However, it can be considerable where a short, frequent operation requires many
of those checks. We optimize these operations for the common case (all resources
available) by adding a hazard field to the TCB. This field contains one bit for ev-
ery resource, which is set when the resource is not available. On the fast path, the
kernel checks the hazard field for the expected value (zero) and branches to the
slow path if the check fails. With this optimization, only one simple check needs
to be added to the IPC fast path.

2Although UTCBs are fully accessible from user space, they are actually kernel objects.

6.4. PERFORMANCE 85

6.3.3 Preemption points

The interrupt model also complicates the handling of hardware interrupts. If an
interruption occurs at a point where no consistent state is available, the kernel
must perform recovery, e.g. by rolling the thread back or forward to the nearest
continuation.

We avoid this problem by disabling interrupts in kernel mode. Instead, we add
preemption points to potentially long-running operations such as Unmap and IPC.
At each preemption point, the kernel checks whether an interrupt has occurred; if
necessary, it writes a continuation and is then ready to perform a clean switch to
the interrupt handler.

This method obviously increases interrupt latency. However, the latency is
bounded by the maximum distance between adjacent preemption points and can
thus be reduced by placing the preemption points densely and uniformly.

6.3.4 Physical mapping

In order to store metadata in memory frames supplied from user level, the kernel
must have the frames mapped somewhere in its virtual address space. However,
if these mappings are established separately for each 4kB frame, the kernel needs
additional page tables. These meta-page-tables constitute yet another kernel re-
source that must be managed and allocated from the user-level resource manager.

Our experimental kernel avoids this problem by accessing kernel resources by
their physical address. For this purpose, it keeps an internal linear mapping of all
physical memory. Thus, all memory frames that can potentially be supplied as
kernel resources are accessible a priori.

This approach has two advantages: First, the internal mapping can be com-
posed of 4MB superpages and thus avoids separate TLB entries for each kernel
resource, and second, the mapping is also useful during IPC string transfer (see
Section 6.3.2). The disadvantage is that it limits the amount of physical memory
that can be used (1GB in our experimental kernel) because the physical mapping
must fit entirely into the virtual address space. Obviously, this problem disappears
in 64bit systems.

6.4 Performance
In this section, we present a short performance evaluation of our experimental
microkernel. Specifically, we examine kernel memory usage, the overhead for
a simple user-level allocation policy, and the impact our scheme has on the IPC
path, a critical fast path within the kernel.

86 CHAPTER 6. IMPLEMENTATION

For our benchmarks, we used a dual Pentium II/400 system with 192 MB of
main memory and a current version of L4/Strawberry. For all timing benchmarks,
the kernel debugger and all runtime checks were disabled. Note that the exper-
imental microkernel does not have multiprocessor support, and thus the second
CPU remained unused.

In addition to our own benchmarking applications, we used a development ver-
sion of LU Linux 2.4.20, which we had to modify slightly in order to add resource
fault handling. No other modifications were made.

6.4.1 Kernel memory usage

In order to determine the amount of kernel memory used by typical applications,
we booted a Debian distribution on top of LU Linux. After opening an emacs
session and starting a compile job, we entered the L4/Strawberry kernel debugger
to obtain a snapshot of the current memory usage (see Figure 6.1).

For every address space in the system, we determined the number of threads
it contains, the amount of user memory mapped to it, and the size of the corre-
sponding metadata. Since the metadata is allocated with frame granularity, the
table shows the number of 4kB frames for each metadata type (page tables, node
tables, nodes in the mapping database, and UTCBs). For comparison, it also gives
the total size of the allocation in kilobytes.

We found that a typical application consumes approximately 48kB of kernel
memory, which is nonnegligible when compared to typical resident set sizes of
around 100kB. Surprisingly, however, the numbers do not vary much between
small and large applications. This suggests a high degree of internal fragmenta-
tion, and a closer inspection is warranted.

The minimum kernel memory consumption of an LU Linux task is as follows:

1. One page directory (P) and the corresponding node directory (N)

2. Four page tables (P), one each for code region, library region, UTCB area
and KIP area, and an equal amount of node tables (N)

3. One page for map and cap nodes (M)

4. One page for user TCBs (U)

The page and node tables are sparsely populated. For a resident set of 100kB,
only 25 of the 4,096 entries (0.6%) are used, and thus the resident set can be
increased drastically without a need for additional tables. Similarly, a UTCB
frame can accommodate eight threads, and one frame in the mapping database

6.4. PERFORMANCE 87

Space Application Threads Resident #P #N #M #U Metadata
30.1 �)� 1 131.080k 3 1 8 1 52k
32.1 LU Linux 19 129.804k 5 5 8 3 84k

214.2 pingpong 2 20k 4 4 1 1 40k
216.2 init 2 76k 5 5 1 1 48k
218.2 bash 2 52k 5 5 2 1 52k
21a.2 bash 2 392k 5 5 2 1 52k
21c.2 getty 2 80k 5 5 1 1 48k
21e.2 syslogd 2 152k 5 5 1 1 48k
220.2 portmap 2 96k 5 5 1 1 48k
222.2 klogd 2 108k 5 5 1 1 48k
224.2 rpc.statd 2 108k 5 5 1 1 48k
226.2 gpm 2 96k 5 5 1 1 48k
228.2 inetd 2 100k 5 5 1 1 48k
22a.2 lpd 2 112k 5 5 1 1 48k
22c.2 smbd 2 260k 5 5 1 1 48k
22e.2 rpc.nfsd 2 272k 5 5 1 1 48k
230.2 rpc.mountd 2 284k 5 5 1 1 48k
232.2 cron 2 140k 5 5 1 1 48k
234.2 getty 2 80k 5 5 1 1 48k
236.2 getty 2 80k 5 5 1 1 48k
238.2 getty 2 80k 5 5 1 1 48k
23a.2 cc 2 164k 5 5 1 1 48k
23e.2 emacs 2 2.700k 5 5 4 1 60k

Figure 6.1: Kernel memory consumption under LU Linux. Table shows resident set
size, number of pages used for page tables (P), node tables (N), mapping database
(M), user TCBs (U), and total kernel memory usage.

88 CHAPTER 6. IMPLEMENTATION

can hold up to 256 map or cap nodes, which is sufficient to map a 1MB resident
set.

However, little of this fragmentation is actually caused by our memory man-
agement scheme. In the case of page and node tables, the layout is fixed by the
IA-32 hardware, and the fragmentation in the UTCB pages is inherent because
the API does not allow UTCBs to be visible in other address spaces. Thus, the
effective overhead of our scheme amounts to only 1.5 frames (6kB) per address
space. One frame is needed for the node directory, and half a frame is typically
wasted because map and cap nodes are stored in private memory rather than in a
central pool.

We conclude that a) there is enough per-task metadata to justify the effort of
controlling its allocation, and that b) the spatial overhead induced by our scheme
is sufficiently low.

6.4.2 Policy overhead
In order to determine the temporal overhead for a simple user-level allocation
policy, we first measured the time required to handle a resource fault. To this end,
we modified our kernel to support an optional in-kernel memory pool. When this
pool is in use, the kernel acts like a conventional L4 kernel and does not generate
any resource faults.

Then we ran a simple test application that caused a page fault in a previously
untouched memory region. This memory region was chosen so that the corre-
sponding page and node table could not be present and had to be requested from
the manager, which implemented a simple Quota policy. Thus, with resource
faults enabled, the following happened:

1. The task requested a new node table

2. The task requested the 4kB page that was touched

3. The task requested a new page table

With the in-kernel memory pool, only the second fault was generated because
the translation tables were allocated internally.

In-kernel allocator 1 fault 18,091 cycles (� 100)
User-level allocator 3 faults 21,454 cycles (� 100)

Figure 6.2: Cycles required to handle a triple resource fault.

We then used the performance counters of the Pentium II to measure the cy-
cles required in both cases (Figure 6.2). The difference of approximately 3,363

6.4. PERFORMANCE 89

Pentium II/400 Pentium III/800
Pistachio Strawberry Pistachio Strawberry

Intra address space 184 cycles 148 cycles 181 cycles 145 cycles
Cross address space 426 cycles 328 cycles 363 cycles 328 cycles

Figure 6.3: IPC cost on two different machines.

cycles is explained by the additional overhead for generating two fault IPCs, ex-
ecuting the user-level fault handler twice, and crossing the user-kernel boundary
four times. This indicates an effective overhead of 1,700 cycles per resource fault
on this machine.

In the previous section, we demonstrated that a typical LU Linux task consumes
around 48kB of metadata. This is equivalent to 12 frames. We estimate that
requesting these frames from a user-level manager causes an additional one-time
overhead of S&��M#S%$"�]%] ���] $(�]%] cycles or �#S3� s, which we consider acceptable,
especially given that our microkernel is completely unoptimized.

6.4.3 Fast path overhead

The use of our scheme causes nontrivial changes in the kernel. Specifically, ad-
ditional checks may have to be added to ensure that metadata is available, and
important data structures may have to be changed. These changes come at a cer-
tain cost in terms of performance, particularly if they affect a fast path inside the
kernel. Thus, one important goal of our implementation effort was to demonstrate
that this cost is reasonable.

The most important fast path in an L4 microkernel is the IPC system call,
which has traditionally been used as a performance metric in the L4 commu-
nity [22, 32, 38]. Hence, we decided to use this system call in our evaluation.

For measurement, we used the canonical pingpong benchmark, which has
been used with most of the recent L4 implementations. The benchmark creates
two threads that continuously send tiny IPC messages back and forth, using the
simplest possible set of parameters. With the CPU cycle counter, the time for
a series of eight round trips is measured; the result is used to estimate the time
required for a single IPC.

We had to make small modifications to the benchmark application in order
to add support for resource faults; none of them affected the actual measurement
process. Afterwards, we ran identical binaries on both L4/Strawberry (our exper-
imental kernel) and L4/Pistachio, a previous implementation of the L4 Version
4 API. To preclude hardware effects, we used two different machines: The dual
Pentium II/400 mentioned above and a dual Pentium III/800.

90 CHAPTER 6. IMPLEMENTATION

Figure 6.3 shows the results. Surprisingly, L4/Strawberry performed about
20% better than L4/Pistachio in most cases.

While these results are certainly encouraging, they must be interpreted with
care. They obviously do not indicate that kernels with resource management are
generally faster than those without, since our experimental kernel undoubtedly
contains additional checks that exist for the sole purpose of resource management.
We suspect that the difference is due to structural differences between the two ker-
nels, especially with respect to the execution model; this would confirm the results
in [13], but contradict findings in [32]. This issue needs further investigation.

However, these results do indicate that the overhead caused by resource man-
agement cannot be dramatic. A more exact, quantitative analysis could be done
with a microkernel that has resource management as a configuration option; how-
ever, building such a kernel is not a goal of this work and is certainly beyond its
scope.

Chapter 7

Conclusions and Future Work

The objective of this thesis is to address limitations and deficiencies in existing
schemes for kernel memory management. The thesis argues that these limitations
can be overcome by implementing the management policy outside of the kernel.
For this purpose, it introduces a kernel mechanism that securely exports control
over kernel memory resources to user level.

7.1 Limitations in existing schemes
Previous schemes for kernel memory management suffer from at least one of the
following four weaknesses:

� They do not offer predictable control over all variable-size kernel state,

� They do not fully isolate subsystems and thus cannot be used to prevent
Denial-of-Service attacks,

� They do not allow an allocation of kernel memory to be decreased grace-
fully and without damaging the principal, or

� They do not permit untrusted subsystems to profit from their own custom
management policy.

7.2 Contributions of this thesis
This thesis introduces a kernel mechanism that addresses all of the above limita-
tions. By applying the concept of paged virtual memory to the kernel, we obtain a
scheme in which user-level applications can page their own metadata. The meta-
data is logically part of the application’s address space and can be backed with

92 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

ordinary memory. All of this memory can be preempted at any time; the corre-
sponding metadata is exported to user level in a safe representation and can later
be re-imported by the kernel.

7.3 Future Work
The work described in this thesis can serve as a starting point from which new
management policies for kernel memory can be explored. We believe that many
existing virtual memory management policies, such as LRU or Working Set, can
easily be adapted to kernel memory, although the higher preemption cost and
the inter-resource dependencies must be considered carefully and may require
changes in some cases.

Our scheme gives user-level applications an unprecedented level of control
over kernel memory, which could be exploited in many ways. For example, it
allows applications to control the physical placement of kernel metadata. This
could be used to implement cache coloring [28] and thus increase predictability
in real-time applications, or to improve locality in SMP systems.

In our system, managers have access to the entire state of the subsystems they
control, including kernel metadata. This could be used to implement persistence
at user level. Since managers do not have to be trusted by the kernel, the resulting
system would be very flexible, allowing different persistence policies to co-exist
and new policies to be introduced dynamically.

Finally, the fact that our scheme allows kernel metadata to be edited from user
level could be used to simplify and optimize the kernel API. For example, system
calls that only serve to manipulate kernel state could be omitted entirely; complex
operations, such as loading a new application, might be performed at user level
and without invoking any kernel primitives. This could increase system efficiency
and further decrease the complexity of the kernel.

Bibliography

[1] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. In Proceedings
of the fourth international conference on Architectural support for programming languages
and operating systems, pages 96–107. ACM Press, Apr 1991.

[2] Mohit Aron, Yoonho Park, Trent Jaeger, Jochen Liedtke, Kevin Elphinstone, and Luke
Deller. The SawMill framework for virtual memory diversity. In Proceedings of the sixth
Australasian Computer Systems Architecture Conference, pages 3–10. IEEE Computer So-
ciety Press, Jan 2001.

[3] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers: A new facility for
resource management in server systems. In Proceedings of the third symposium on Operating
systems design and implementation, pages 45–58. USENIX Association, Feb 1999.

[4] Brian N. Bershad, Craig Chambers, Susan Eggers, Chris Maeda, Dylan McNamee, Prze-
myslaw Pardyak, Stefan Savage, and Emin Gün Sirer. SPIN: An extensible microkernel for
application-specific operating system services. In Proceedings of the sixth ACM SIGOPS
European workshop, pages 68–71. ACM Press, 1994.

[5] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc Fiuczynski,
David Becker, Susan Eggers, and Craig Chambers. Extensibility, safety and performance in
the SPIN operating system. In Proceedings of the fifteenth ACM Symposium on Operating
systems principles, pages 267–284. ACM Press, Dec 1995.

[6] Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator. In Proceed-
ings of the USENIX Summer Technical Conference, pages 87–98, Jun 1994.

[7] Christian Ceelen. Implementation of an orthogonally persistent L4 � -kernel based system.
Study thesis, University of Karlsruhe, Feb 2002.

[8] David R. Cheriton. The V distributed system. Communications of the ACM, 31(3):314–333,
1988. ISSN 0001-0782.

[9] David R. Cheriton and Kenneth J. Duda. A caching model of operating system kernel func-
tionality. In Proceedings of the sixth ACM SIGOPS European workshop, pages 88–91. ACM
Press, 1994.

[10] David R. Cheriton and Kenneth J. Duda. Logged virtual memory. In Proceedings of the
fifteenth ACM Symposium on Operating systems principles, pages 26–38. ACM Press, Dec
1995.

94 BIBLIOGRAPHY

[11] Alan Dearle, Rex di Bona, James Farrow, Frans Hensken, Anders Lindström, John Rosen-
berg, and Francis Vaughan. Grasshopper: An orthogonally persistent operating system.
Computing Systems, 7(3):289–312, 1994.

[12] Alan Dearle and David Hulse. Operating system support for persistent systems: Past, present,
future. Software - Practice and Experience, 30(4):295–324, 2000.

[13] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean. Using con-
tinuations to implement thread management and communication in operating systems. In
Proceedings of the thirteenth ACM Symposium on Operating systems principles, pages 122–
136. ACM Press, 1991.

[14] Yasuhiro Endo, James Gwertzman, Margo Seltzer, Christopher Small, Keith A. Smith, and
Diane Tang. VINO: The 1994 fall harvest. Technical Report TR-34-94, Harvard Computer
Center for Research in Computing Technology, 1994.

[15] Dawson R. Engler, Sandeep K. Gupta, and M. Frans Kaashoek. AVM: Application-level
virtual memory. In Proceedings of the fifth Workshop on Hot Topics in Operating Systems,
pages 72–77, May 1995.

[16] Bryan Ford, Mike Hibler, Jay Lepreau, Roland McGrath, and Patrick Tullmann. Interface
and execution models in the Fluke kernel. In Proceedings of the third symposium on Oper-
ating systems design and implementation, pages 101–115. USENIX Association, 1999.

[17] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin Elphinstone, Volkmar Uh-
lig, Jonathan E. Tidswell, Luke Deller, and Lars Reuther. The SawMill multiserver approach.
In 9th SIGOPS European Workshop, Kolding, Denmark, Sep 2000.

[18] Andreas Haeberlen. User level management of L4 kernel memory. In Proceedings of the
Second International Workshop on Microkernel-Based Systems, Lake Louise, Canada, Oct
2001.

[19] Steven M. Hand. Self-paging in the Nemesis operating system. In Proceedings of the third
symposium on Operating systems design and implementation, pages 73–86. USENIX Asso-
ciation, Feb 1999.

[20] Kieran Harty and David R. Cheriton. Application-controlled physical memory using exter-
nal page-cache management. In Proceedings of the fifth international conference on Archi-
tectural support for programming languages and operating systems, pages 187–197. ACM
Press, Oct 1992.

[21] Dan Hildebrand. An architectural overview of QNX. In Proceedings of the USENIX Work-
shop on Microkernels and Other Kernel Architectures, pages 113–126, Apr 1992.

[22] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, and Sebastian Schönberg. The perfor-
mance of � -kernel-based systems. In Proceedings of the 16th ACM Symposium on Operating
Systems Principles, pages 66–77. ACM Press, Oct 1997.

[23] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual, Volume 1. Order
No. 245470-007.

BIBLIOGRAPHY 95

[24] Trent Jaeger, Kevin Elphinstone, Jochen Liedtke, Vsevolod Panteleenko, and Yoonho Park.
Flexible access control using IPC redirection. In Proceedings of the seventh Workshop on
Hot Topics in Operating Systems, Mar 1999.

[25] Trent Jaeger, Jonathan E. Tidswell, Alain Gefflaut, Yoonho Park, Jochen Liedtke, and Kevin
Elphinstone. Synchronous IPC over transparent monitors. In 9th SIGOPS European Work-
shop, Sep 2000.

[26] The K42 Team. Memory management in K42. White paper, IBM T.J. Watson Research
Center, Aug 2002. URL http://www.research.ibm.com/K42/.

[27] John P. Kearns and Samuel DeFazio. Diversity in database reference behaviour. Performance
Evaluation Review, 17(1):11–19, May 1989.

[28] Richard E. Kessler and Mark D. Hill. Page placement algorithms for large real-indexed
caches. ACM Transactions on Computer Systems (TOCS), 10(4):338–359, Nov 1992.

[29] Keith Krueger, David Loftesness, Amin Vahdat, and Thomas Anderson. Tools for the devel-
opment of application-specific virtual memory management. In Proceedings of the eighth
annual conference on Object-oriented programming systems, languages, and applications,
pages 48–64. ACM Press, 1993.

[30] The L4Ka Team. L4 experimental kernel reference manual, version X.2. URL
http://www.l4ka.org. Feb 2002.

[31] Jochen Liedtke. Clans & chiefs. Architektur von Rechensystemen, Mar 1992.

[32] Jochen Liedtke. Improving IPC by kernel design. In Proceedings of the fourteenth ACM
Symposium on Operating systems principles, pages 175–188. ACM Press, Dec 1993.

[33] Jochen Liedtke. A persistent system in real use: Experiences of the first 13 years. In Proceed-
ings of the International Workshop on Object-Orientation in Operating Systems (IWOOOS),
Dec 1993.

[34] Jochen Liedtke. On � -kernel construction. In Proceedings of the fifteenth ACM Symposium
on Operating systems principles. ACM Press, Dec 1995.

[35] Jochen Liedtke. Toward real microkernels. Communications of the ACM, 39(9), Sep 1996.

[36] Jochen Liedtke, Nayeem Islam, and Trent Jaeger. Preventing denial-of-service attacks on a� -kernel for WebOSes. In Proceedings of the sixth Workshop on Hot Topics in Operating
Systems, May 1997.

[37] Jochen Liedtke, Volkmar Uhlig, Kevin Elphinstone, Trent Jaeger, and Yoonho Park. How
to schedule unlimited memory pinning of untrusted processes or provisional ideas about
service-neutrality. In Proceedings of the seventh Workshop on Hot Topics in Operating Sys-
tems, pages 153–159, Mar 1999.

[38] Jochen Liedtke and Horst Wenske. Lazy process switching. In Proceedings of the eighth
Workshop on Hot Topics in Operating Systems, pages 15–18, May 2001.

http://www.research.ibm.com/K42/
http://www.l4ka.org

96 BIBLIOGRAPHY

[39] Dylan McNamee and Katherine Armstrong. Extending the Mach external pager interface to
accommodate user-level page replacement policies. Technical Report TR-90-09-05, Depart-
ment of Computer Science and Engineering, University of Washington, 1990.

[40] David Mosberger and Larry L. Peterson. Making paths explicit in the Scout operating sys-
tem. In Proceedings of the second symposium on Operating systems design and implemen-
tation, pages 153–167. ACM Press, Oct 1996.

[41] J. E. B. Moss. Working with persistent objects: To swizzle or not to swizzle. IEEE Transac-
tions on Software Engineering, 18(8):657–673, Aug 1992.

[42] Richard Rashid, Avadis Tevavian Jr., Michael Young, David Golub, Robert Baron, David
Black, William J. Bolosky, and Jonathan Chew. Machine-independent virtual memory man-
agement for paged uniprocessor and multiprocessor architectures. IEEE Transactions on
Computers, 37(8), Aug 1988.

[43] John Reumann, Ashish Mehra, Kang G. Shin, and Dilip Kandlur. Virtual services: A new
abstraction for server consolidation. In Proceedings of the 2000 USENIX Annual Technical
Conference, Jun 2000.

[44] Rik van Riel. Page replacement in Linux 2.4 memory management. In Proceedings of the
2001 USENIX Annual Technical Conference, Jun 2001.

[45] Mahadev Satyanarayanan, Harry H. Mashburn, Puneet Kumar, David C. Steere, and James J.
Kistler. Lightweight recoverable virtual memory. ACM Transactions on Computer Systems,
12(1), Feb 1994.

[46] Jonathan S. Shapiro, David J. Farber, and Jonathan M. Smith. State caching in the EROS
kernel. In Proceedings of the 7th International Workshop on Persistent Object Systems, pages
88–100, 1996.

[47] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast capability
system. In Proceedings of the seventeenth ACM Symposium on Operating systems principles,
pages 170–185. ACM Press, Dec 1999.

[48] Espen Skoglund, Christian Ceelen, and Jochen Liedtke. Transparent orthogonal checkpoint-
ing through user-level pagers. In Proceedings of the 9th International Workshop on Persistent
Object Systems (POS9), Sep 2000.

[49] Oliver Spatscheck and Larry L. Peterson. Defending against denial of service attacks in
Scout. In Proceedings of the third symposium on Operating systems design and implemen-
tation, pages 59–72. USENIX Association, Feb 1999.

[50] Michael Stonebraker. Operating system support for database management. Communications
of the ACM, 24(7):412–418, Jul 1981.

[51] Sun Microsystems Inc. Solaris resource manager 1.0. White paper, Palo Alto, California.
URL http://www.sun.com/software/white-papers/wp-srm/.

[52] Cristan Szmajda. Calypso: A portable translation layer. In 2nd International Workshop on
Microkernel Based Systems, Sep 2001.

http://www.sun.com/software/white-papers/wp-srm/

BIBLIOGRAPHY 97

[53] Patrick Tullmann, Jay Lepreau, Bryan Ford, and Mike Hibler. User-level checkpointing
through exportable kernel state. In Proceedings of the Fifth International Workshop on Ob-
ject Orientation in Operating Systems, Seattle, WA, Oct 1996. IEEE.

	Introduction
	Problem statement
	Approach

	Related Work
	Kernel memory management
	Static in-kernel policy
	Extensible kernels
	State caching
	User-level managers

	Exporting kernel state to user level
	Summary

	Paging the Kernel
	Requirements
	Proposed scheme
	Resource space
	Notification
	Allocation and deallocation
	External representation

	Analysis
	Techniques for exporting metadata
	Localization
	Partial preemption
	Splitting
	Export unmodified
	Discard and retrieve
	Cryptographic sealing

	Application to L4
	The L4 microkernel
	Overview
	Data structures
	The mapping database
	The node table

	Accounting
	Principals
	Sharing

	Placement
	Scope
	Transparency
	Binding

	Request and allocation
	Sending the request
	Checking the allocation
	Accepting a resource
	Deadlock avoidance
	Deadlock resolution
	Faults during system calls
	Nested faults

	External Representation
	Page tables
	Node tables
	Mapping database
	User thread control blocks
	Kernel thread control blocks
	Summary

	Preemption and revalidation
	Trigger events
	Inter-resource dependencies
	Cyclic dependencies
	Pages with mixed content

	Analysis
	Protection and security
	Metadata-based attacks
	Page-fault-based attacks

	Differences to L4
	Resource faults
	Persistent mappings
	Extended pager privileges
	Role of 1

	Lessons learned
	No global identifiers
	Address spaces as first-class objects
	Symmetric API

	Implementation
	Goals
	L4/Strawberry
	Kernel design
	Continuations
	Reference checking
	Preemption points
	Physical mapping

	Performance
	Kernel memory usage
	Policy overhead
	Fast path overhead

	Conclusions and Future Work
	Limitations in existing schemes
	Contributions of this thesis
	Future Work

