

 1

Multi-Architecture
Operating Systems

Ovidiu Dobre

Diplomarbeit

Verantwortlicher Betreuer: Prof. Dr. Alfred Schmitt
Betreuende Mitarbeiter: Dipl.-Inf. Espen Skoglund

4 October 2004

Universität Karlsruhe (TH)

Institut für
Betriebs- und Dialogsysteme
Lehrstuhl Systemarchitektur

 2

 3

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources
have been used.

Karlsruhe, den 4. October 2004

Ovidiu Dobre

 4

 5

Abstract

 Requirements for high-performance computing have led hardware
designers to construct multiprocessor systems using different processor
architectures and thus providing best computing performance for a specific
computing problem. The integration of different processor architectures is also
employed in processor designs to offer compatibility for today’s mainstream
processor architectures. Examples are the Itanium and the AMD-64 processors
which offer compatibility for the IA-32 architecture. This trend in hardware
technology needs to be supported by advances in software technology.

This thesis will attempt to provide design solutions for operating systems
in tightly-coupled heterogeneous systems. The case study of an Itanium-based
system will provide an answer concerning the suitability of the theoretical
solution.

 6

Acknowledgments

I would like to thank my supervisor Espen Skoglund for his expertise and
patient support which made this work possible. In addition, I am thankful to all
members of the System Architecture Group which constantly supported me all
this time: Uwe Dannowski, Jens Doll, Sebastian Biemüller, Volkmar Uhlig,
Joshua LeVasseur, Gerd Liefländer, Daniel Kirchner, Stefan Götz, Ulf Vatter,
Christian Ceelen and Jan Stöß.

 7

Contents

1 Introduction... 9
1.1 Background ... 9

1.1.1 The case for heterogeneous computing.. 9
1.1.2 Architectural compatibility ...10

1.2 Motivation and problem definition...10
1.3 Approach.. 11
1.4 Construction of the thesis..12

2 Related Work ..13
2.1 RACE: Heterogeneous Multicomputer System13
2.2 InterWeave: Shared State for Heterogeneous Distributed Systems......14
2.3 IA-32 support in IA-64 Linux ...16

3 Design of Multi-Architecture Operating Systems (MA/OS)18
3.1 Computing systems ...18
3.2 SPMA computing systems ... 20
3.3 MPMA computing systems ...21
3.4 Design models .. 23
3.5 User-level support for heterogeneity ... 24
3.6 Native and Secondary Architectures ... 25

3.6.1 Functional interface vs. Shared data..27
3.6.2 User-level vs. Kernel-level emulation... 30
3.6.3 Top vs. Bottom Design ...31

3.7 Equal opportunity .. 33
3.7.1 Global data structures.. 34
3.7.2 Coherency mechanism ...37

3.8 Design framework of a MA/OS...41

 8

4 Case study of a MA/OS: L4 and Itanium.................................... 42
4.1 Motivation .. 42
4.2 Description of the experimental approach .. 42
4.3 Support for IA-32 in Itanium processor.. 43

4.3.1 Support at IA-64 ISA Level ... 44
4.3.2 Support at Processor Level ... 46

4.4 Horizontal design: IA-32 emulation layer on an IA-64 kernel 50
4.4.1 IA-32 Emulation Layer...51
4.4.2 IA-32 Exception Handling .. 53
4.4.3 IA-32 Memory Segmentation ... 54
4.4.4 Transition between IA-32 and IA-64...55

4.5 Vertical design: L4Ka::Pistachio...57
4.6 Co-design process of the MA/OS... 58

4.6.1 IA-32 emulation layer in Pistachio IA-64 59
4.6.2 IA-32 Exception Handling in Pistachio IA-64............................ 68
4.6.3 IA-32 Memory Segmentation in Pistachio IA-64....................... 69
4.6.4 Transition between IA-32 and IA-64 in Pistachio IA-64 69

5 Evaluation of the implementation .. 70
5.1 Evaluation of design requirements .. 70
5.2 Performance of IA-32 threads .. 71

6 Analysis ..77
6.1 Functionality vs. Performance ..77
6.2 The microkernel approach... 78
6.3 Linux based MA/OS..79

7 Conclusions and Future Work.. 80
7.1 Summary... 80
7.2 Achievements ..81
7.3 Future work ...81

8 Bibliography .. 82

 9

Chapter 1

Introduction

 This chapter presents the topic of this thesis. A background of the research
area together with the considered approach is given.

1.1 Background

1.1.1 The case for heterogeneous computing

The computer industry today shows an increasing technological trend
towards the construction of heterogeneous computing systems. These computing
systems are composed of multiple, independent but cooperating processor cores.

The main reason for constructing heterogeneous computing system is the
fact that no microprocessor architecture has yet been proven efficient for the
large diversity of computing problems. Applications may have different
processing requirements which may imply support of different computing models
ranging from simple additions to vector operations, floating point multiplications
and signal-processing. Current trends in hardware technology provide either
general-purpose processors which perform acceptably for a large scale of
computing models or specialized processor architectures which are tuned to solve
a specific computing problem. For a given computing problem, the processing
throughput of general-purpose processors may fail drastically in face of
specialized processors, designed to provide a maximum computing performance
for a specific processing requirement. Therefore, to achieve a maximum
throughput for an application requiring support of different computing models,
computing systems often integrate different specialized processors. Each
specialized processor in the system receives workload according to its computing
model, while the results are gathered to provide a global solution.

These computing systems are built today from a collection of workstations
connected over a high-speed network. This simplicity of interconnection of
different processor architectures is practically the driving force in constructing
this type of computing systems. However, this simplicity of construction doesn’t
always meet system requirements like reduced size, power consumption and cost.
Such system requirements are found in embedded system applications, which
extensively use the computing performance of heterogeneous computing [1]. In
this case, the simple interconnection of a collection of workstations doesn’t
provide a viable solution and a better integration of different processor
architectures is required. This integration eventually leads to tightly-coupled
computing systems having different processor architectures sharing a main
memory.

 10

1.1.2 Architectural compatibility

A second reason for designing heterogeneous computing systems is simply

to offer system compatibility with certain processor architectures. The integration
of different processor architectures is not intended to provide better processing
throughput, but it is intended to offer either backward compatibly for a certain
processor architecture or an integration bridge with existing computing systems.
A direct applicability of this approach is illustrated today by the passage from 32
to 64 bit computing systems. Processor architectures like IA-64 and AMD-64
integrate backward support for the IA-32 architecture in order to smooth out the
passage to the new processor architecture. Applications developed for IA-32 will
be able to run unmodified on both IA-64 and AMD-64 architectures. If we see the
first reason for designing heterogeneous operating systems as being related to
performance, this second reason is strictly related to functionality. In both cases,
multiple processor architectures are required to access a shared main memory.

1.2 Motivation and problem definition

Current approaches for heterogeneous systems employ middleware
architectures and virtual machines, which are user-level layers attempting to
provide a uniform view of heterogeneous computing resources distributed over
all computing nodes. These solutions for heterogeneous computing are
extensively used in loosely-coupled systems, but their applicability for tightly-
coupled heterogeneous systems is questionable. First, the user-level middleware
introduces performance penalties for high-performance computing. In tightly-
coupled systems, the presence of shared memory enables kernel-level
mechanisms for communication over architectural heterogeneity, which could
provide better performance results than the user-level approach. Secondly, there
is a functional requirement concerning processors integrating multiple
architectures: user-level binaries should be able to exploit any of the underlying
processor architectures. In the latter case, the operating system must offer user-
level support for any processor architecture. As such, the solution strictly
depends on kernel-level mechanisms. Designing such an operating system is the
goal of this thesis:

Provide design solutions for operating systems in tightly-coupled
computing systems exhibiting heterogeneous processor architectures.

 11

This problem definition reveals some issues which will directly influence
the design of such an operating system:

1. The nature of the computing system: could either be represented by a

single processor with multiple architectural states or by multiprocessor systems
with heterogeneous processor architectures.

2. Heterogeneity of processor architectures: is represented by the

incompatibility of binary code and data type representation.

1.3 Approach

The design of an operating system is highly influenced by the nature of the
computing system. A complete study of the targeted computing context will
therefore be undertaken. Each system configuration may require different design
approaches.

Another important element in the design is providing solutions to
incompatibles introduced by the architectural heterogeneity of the system. The
binary incompatibility radically influences the way in which the kernel can be
constructed. That is, one kernel image can usually not execute on different
processor architectures, so the kernel must be tailored for each processor
architecture. In addition to binary incompatibility, the presence of different data
representations constitutes an obstacle for communication across different
processor architectures. Therefore, the design should also provide a solution for
communication in a heterogeneous environment.
 The design approach requires a case study for performance and functional
analysis. We will use as such the Itanium processor to provide experimental
results. Itanium natively supports the IA-64 architecture together with the IA-32
architecture, and therefore constitutes a viable example of a heterogeneous
computing system. This experimental approach will provide answers concerning
the suitability of the theoretical solution.

 12

1.4 Construction of the thesis

The rest of the thesis is organized as follows:

Chapter 2 - Discusses some of the main research trends in the field of the

heterogeneous computing and their possible implications on the
topic of this thesis.

Chapter 3 - Presents the proposed solution. This solution will focus on

providing multiple design models, each with different applicability
levels depending on the nature of the computing system. This
proposed solution is only a theoretical approach without an
experimental evaluation.

Chapter 4 - Discusses a case study of the proposed solution: Itanium

processor (IA-64 and IA-32) and L4 microkernel. The design of the
operating system will be based on a design model which shows
better applicability for this specific case study.

Chapter 5 – Presents the experimental evaluation of the operating

system design discussed in the previous chapter.

Chapter 6 - Analyzes the suitability of the theoretical solution with

respect to the experimental results.

Chapter 7 - Gives a recapitulation of the main issues discussed in this

thesis: motivation, proposed solution and experimental results. A
final conclusion is drawn concerning the research topic of this
thesis and directions for future work are proposed.

 13

Chapter 2

Related Work

This chapter gives an overview of the main approaches in heterogeneous
computing systems. The focus is set on two architectures which define the
current trends in heterogeneous computing: the RACE architecture which
provides a solution (hardware and software) for scalable heterogeneous
computing systems and InterWeave, a middleware for shared state in distributed
heterogeneous systems. Both architectures are based on multicomputer systems.
An addition, this chapter presents an example of an operating system (IA-64
Linux) supporting binaries of two processor architectures, IA-32 and IA-64.

2.1 RACE: Heterogeneous Multicomputer System

 The RACE architecture [2] delivers a complete hardware-software solution
for heterogeneous multicomputer systems.
 The hardware approach of RACE is not as relevant as the software
approach for the research topic of this thesis, but it deserves at least an overview,
mainly for its remarkable architecture in terms of modularity and scalability. The
hardware architecture of RACE is composed of computing nodes, I/O nodes and
connection fabric (connecting the nodes of the system either through bus
architecture or switching network). Each computing node is composed of one or
more processors of the same architecture, local DRAM memory and an ASIC1
providing a DMA controller (offering access at local memory to any other
computing nodes) and address mapping logic (enabling the local processors to
access any DRAM location in any remote computing node). Different computing
nodes can have different architectures. In short, the hardware architecture is
represented by heterogeneous computing nodes with local physical memory and
a mechanism for memory access at any physical memory from any computing
node in the system. Every memory location in the system can be accessed by any
processor in the system, so a cache coherency problem could be raised. The
problem of cache coherency has an efficient solution in this case due to physical
distribution of memory: a computing node is concerned by cache coherency only
in relationship with its own local memory. Whenever a processor either reads or
writes data from/into a remote memory, each local processor sharing that
memory invalidates the cache entry corresponding to the accessed data. This
mechanism reduces drastically the amount of traffic for “snooping” memory

1 Application-Specific Integrated Circuit

 14

addresses, as a processor has to watch only the local memory bus which is
composed from a reduced number for processors (till three processors)
comparing with the entire computing system. This solution for cache coherency
provides data coherency for hardware-shared memory (accesses on same
physical memory location), but it doesn’t solve software-shared memory
coherency (information replicated on multiple computing nodes on different
physical memories). The software-shared memory problem requires a software
approach due to complexity of “bookkeeping” at hardware level of all the memory
transactions on different computer nodes. Moreover, a software approach is
better suited in this case as it can exploit the specific requirements of an
application in terms of software-shared memory. The software approach for data
coherency is usually implemented by a middleware layer.
 The question now concerns how the software architecture of RACE couples
with the hardware architecture. The solution proposed by RACE is largely
influenced by the modularity of the hardware architecture: each processor has its
own single-processor operating system, completely independently from any other
operating system running on remote computing nodes. This approach allows
removal or insertion of computing nodes with no effect at kernel level for already
existing operating system instances. As such, the kernel is not required to provide
support for heterogeneous computing. Threads running on different computing
nodes are independent, each having its own address space. There is however a
mechanism implemented on top of this operating system which transparently
handles the communication among computing nodes and the access on physical
memory located on remote computing nodes. This mechanism enables software
shared memory among remote threads.
 This software approach is the result of modularity of the hardware
architecture which enforces modularity at operating software level. The physical
distribution of the memory makes practically impossible to achieve a tightly-
coupled operating system. The only suitable solution for this hardware design is a
single-processor operating system per computing node with a user-level
mechanism for inter-processor communication.

In conclusion, the RACE architecture provides a good design model of
user-level support for heterogeneous computing.

2.2 InterWeave: Shared State for Heterogeneous Distributed
Systems

 InterWeave is a middleware architecture for distributed shared state [3].
This architecture is designed to provide a distributed shared state in systems
ranging from tightly coupled multiprocessor system to distributed heterogeneous
systems spread around different geographical locations.
 As an alternative to message passing, InterWeave allows processes to
share memory regions of their own address space across heterogeneous
distributed computing nodes. This facility enables processes to share information

 15

replicated around multiple locations with different data type representations. The
shared information has a static structure (the structure of a replica doesn’t
change upon creation), but its content can change over time. All mechanisms for
providing data coherency among replicas are provided by the middleware. The
coherency mechanism is based on the server-client model. Servers manage a
persistent copy of the replicated data and provide this data whenever a client
requests it. Each time a client is started and connects to the server, a copy of the
data is sent by the server to the client. Whenever a client updates its local copy of
shared data, these updates are forwarded to the server which takes care of
updating its persistent copy of the replicated data. Any request following an
update will receive data which reflects the current distributed state. The
applicability of the centralized model is based on communication scalability
between server and clients (to avoid a bottleneck by increasing number of
clients), communication reliability (to avoid transmission of erroneous data) and
server reliability (to avoid crashes which will bring the entire system down). This
coherency model has different variations ranging from full coherency (always
obtain the most recent version of data) to relaxed coherency (which accepts a
difference between the delivered version and the persistent copy managed by the
server, either considering a time difference of the local copy or a percentage of
information out-of-date). An important aspect for this centralized coherency
model is the connection scalability: when having many accesses on global shared
data, low connection scalability may transform the server in a bottleneck. This
risk increases its chances when the targeted coherency model is full coherency
and each access on global shared data needs to be confirmed by the server.
 One important issue for a coherency mechanism is the protocol for
delivering updates between clients and the server. InterWeave offers two
concepts: polling and notifications. With pooling, the client regularly requests
updates from the server. With notifications, the server has an active role of
informing the client whenever an update on the client’s data is required. Another
aspect of the update protocol is the granularity of the data to be updated and
transferred: transfer only the modified regions of shared data or transfer the
entire shared data. The choice for a certain approach depends on the size of the
update compared to the size of the shared data and the frequency at which
updates are performed.
 In addition to coherency mechanisms among distributed replicas, the
InterWeave middleware provide mechanisms for exchanging data between
computing nodes with heterogeneous data formats. The model proposed by
InterWeave for exchanging data with heterogeneous representations is the model
offered by all classical middleware systems like CORBA or .Net: conversion of
data types from machine-specific format to a generic InterWeave format (“the
wire format”). This generic format serves as exchange format between clients and
the server (Figure 2.1). Another issue introduced by heterogeneity of data types is
the usage of pointers on non-atomically shared data. Pointers to data types
typically vary according to the size of data type representation (e.g. pointing to
the next machine word value from a vector increases the pointer location with 4
bytes on 32 bit architectures and with 8 bytes on 64 bit architectures). Again this
issue is solved by InterWeave by providing the concept of machine-independent

 16

pointers (MIP). To achieve independency from data type representations
(especially data type sizes), the pointers are always handed out with direct
reference to the addressed data type (e.g. a pointer to the third element of a word
vector is handed out literally as the address of the vector + 2 words, instead of
expressing the pointer in the equivalent number of bytes). Thus, pointers are no
longer dependent on the size in bytes of each data type representation, but the
measurement unit is the data type itself. Data updates exchanged between clients
and server are therefore using Machine Independent Pointers.

2.3 IA-32 support in IA-64 Linux

 Linux IA-64 [4] is an example of an operating system offering support for
two processor architectures: IA-32 and IA-64. This support is based on the
Itanium’s capability to execute both the IA-32 and the IA-64 instruction set.
While the support for IA-64 user-level binaries is natively offered by the kernel,
the Linux system interface for IA-32 user-level binaries is emulated based on the
native implementation in IA-64. The Linux system interface is represented by a
collection of systems calls. The main issue is the incompatibility in data
representation between IA-32 and IA-64 arguments. For system calls which show
no data incompatibility between IA-32 and IA-64, the IA-32 emulated interface is
represented by a thin system layer which simply passes the arguments between
the IA-32 thread and the IA-64 system call handler. In this case, the IA-32 system
calls employ the IA-64 implementation. However, for system calls raising data
incompatibility issues, IA-64 Linux provides different system call handlers for IA-
32 and IA-64. This approach leverages an important amount of work for the IA-

Wire
format

Local
format

Wire
format

Wire
format

S

C C

Replicated
Data

Persistent
Data

Local
format

Replicated
Data

Figure 2.1: InterWeave model for distributed shared state

 17

32 emulated interface. In addition to system call interface, the IA-32 support
includes additional mechanisms: IA-32 memory model, IA-32 absolute file
system paths, IA-32 signal delivering, management of the I/O port space,
preservation of IA-32 architectural registers.
 In conclusion, IA-64 Linux provides an IA-32 execution environment
which enables execution of heterogeneous applications composed of IA-32 and
IA-64 binaries.

 18

Chapter 3

Design of Multi-Architecture Operating
Systems (MA/OS)

This chapter discusses the guidelines for designing a Multi-Architecture
Operating System. We first study the nature of the computing systems requiring a
MA/OS. Each of these computing systems will represent a base of discussion for
the main design models of a MA/OS. In addition, a general approach for
constructing this type of operating systems will be presented.

3.1 Computing systems

The first issue in designing an operating system is finding the targeted
computing system. According to Flynn’s classification [5], computer systems can
be divided in four classes based on the number of instruction and data streams.
The classification doesn’t take the processor architecture into consideration.
However, heterogeneous systems can generally fit in the case of MIMD (Multiple
Instruction/Multiple Data Streams), as they exhibit multiple instruction streams
with associated data streams due to architectural heterogeneity.

A classification of computer systems which does take the processor
architecture into consideration was proposed in [6] and it constitutes a result
from the field of heterogeneous computing. The classification of heterogeneous
systems is based on two orthogonal concepts: the number of execution modes
and the number of execution models. The execution mode is related to the type of
parallelism supported by the machine (e.g. vector, SIMD, MIMD). This concept is
independent of the execution model, which refers either to different architectural
states of the machine or to different performance levels (e.g. different clock
rates). We will concentrate on the number of architectural states exhibited by the
computing system, as the incompatibilities between different architectural states
influence directly the design of the kernel. As such, the classification provides two
categories which fit to our targeted computing system: Single Execution
Mode/Multiple Machine Model (SEMM) and Multiple Execution Mode/Multiple
Machine Model (MEMM) with the remark that the interest on machine model is
strictly related to heterogeneity of architectural states and not to the performance
within the same architectural family.

However, from the point of view of an MA/OS, there exists an additional
criterion which is not taken in consideration in any of these classifications: the
number of architectural states per processor. This criterion has an important

 19

impact on designing an MA/OS. We therefore propose a classification that takes
into account the number of computing nodes (labeled as processors) and the
number of architectural states. These two criteria are orthogonal: a processor
can have multiple architectural states, while an architectural state can be
supported on multiple processors. Based on these two criteria, computing
systems can be classified in four classes:

1. SPSA (Single Processor/Single Architecture): a mono-processor system
2. SPMA (Single Processor/Multi-Architecture): a mono-processor with

multiple architectural states (e.g. Itanium, AMD-64)
3. MPSA (Multi-Processor/Single Architecture): a system composed of

multiple processors with the same architecture (e.g. current SMP or
homogeneous distributed systems)

4. MPMA (Multi-Processor/Multi-Architecture): a system composed of
multiple processors exhibiting multiple architectural states

A MA/OS is exclusively related to multiple architectural states, so only two

classes of the above classification are concerned: SPMA and MPMA. As such,
there exist two types of MA/OS: SPMA/OS and MPMA/OS (Figure 3.1). In the
case of MPMA systems, the focus of MA/OS is related to tightly-coupled systems
as described in section 1.2.

The reason for choosing the number of architectural states per processor
as a criterion is related to the parallelism in execution of the different
architectural states. A processor with multiple architectural states can execute in
only one architectural state at the time. This type of systems exhibit temporal
heterogeneity: at one single point in time, only one type of architectural state is
present in the system. In contrast with SPMA systems, the MPMA systems
exhibit spatial heterogeneity, as multiple processors with different architectures
execute in parallel (Figure 3.2). As a consequence, each of these classes of MA/OS
introduce different design issues to tackle: temporal heterogeneity may imply
that the architectural state of the kernel changes with time, while the spatial
heterogeneity may assume that multiple kernel instances with different
architectures execute in parallel and share global structures.

MA/OS

SPMA/OS MPMA/OS

Figure 3.1: Classification of MA/OS

 20

3.2 SPMA computing systems

The first computing system in the area of an MA/OS is the “Single
Processor/Multi-Architecture” (SPMA) system. The SPMA system refers to a
family of processors designed to offer more than one type of architectural
support. This type of processors may be considered as a composition of logical
processor cores, each logical core having its own architectural state, but sharing
some of the processor’s resources like the instruction and data bus or the cache
memory. Yet, from all the logical cores, only one logical core is capable to access
the shared processor resources at any single point in time. Examples of these
processors are the Itanium and the AMD-64 which support two architectural
states: IA-32 and IA-64.

The set of solutions to answer the requirement of architectural
heterogeneity for user-level applicability can be divided into two classes, one
class employing a single architectural state at kernel level, while the other class
integrating the architectural heterogeneity at kernel level. Each of these
approaches has its advantages and disadvantages, so the choice for a specific
design model is influenced by other design requirements.

The first solution for designing a SPMA/OS employs a single architectural
state at kernel level and it is based on current designs in single-processor
systems. The kernel is developed for a single architectural state which generates a
single kernel binary image. The user-level applications built for the kernel’s
architectural state will be able to directly invoke the operating system services.
The missing piece from the puzzle is how to couple architectural heterogeneity at
user-level with single architectural state at kernel level. Even if a user-level
application was built for a different architectural state than the kernel’s
architecture, this application still needs to perform kernel requests. Therefore,
the missing piece is a mechanism for communication across architectural
heterogeneity between the kernel at one side and the user-level application at the
other side. This mechanism is the only issue of this design. As an overview of this
solution, one may notice that one architectural state has a higher degree of
importance than all others as it defines the kernel’s architectural state. All other
architectural states are only supported at user-level. As any request for a kernel
service is accomplished in one single architectural state of the system, this

SpaceSpace

Time Time

Arch1 Arch2

a) Temporal heterogeneity b) Spatial heterogeneity

Figure 3.2: Types of architectural heterogeneity in MA/OS

Arch1

Arch2

 21

solution could also be modeled as a master-client approach: the kernel’s
architectural state is the master architecture while all other architectures are
client architectures. The master architecture provides services in behalf of client
architectures. From the point of view of the operating system, the master
architecture performs all critical operations (e.g. kernel’s system calls, exception
handling) while client architectures serve only to execute non-critical operations
(e.g. user-level binaries). From the user’s perspective, this design approach could
be regarded as native and secondary architectures.

The second design approach for a SPMA/OS employs architectural
heterogeneity at kernel level. This design approach raises an important issue as
any single machine binary cannot execute on multiple architectural states due to
binary incompatibility. Therefore the binary code of the kernel has to be split up
between architectural states. One acceptable solution is to provide a
homogeneous kernel structure in term of architectural state and to implement
this kernel structure for multiple architectural states. In this way, the binary
incompatibility is solved by providing a kernel instance per each architectural
state exhibited by the processor. Each kernel instance can provide kernel services
to user-level applications built for the same architectural state. This design
approach apparently solves the initial issue: provide architectural heterogeneity
at user-level. Each user-level application can request kernel services as the
operating system provides a kernel instance built for each architectural state
exhibited by the system. The question now is how to construct such a single
operating system image based on a set of architectural-dependent kernel
instances. Looking at the first design approach of a SPMA/OS, the design issue
was the interface point between the user’s requirement for architectural
heterogeneity and the kernel approach for single architectural state. The main
issue of the second design approach is the interface at kernel level among
multiple kernel instances. The second design approach can be labeled as an equal
opportunity model: critical operations for the operating system can be performed
in any architectural state by the appropriate kernel instance.

In conclusion, there are two main design approaches for SMPA operating
systems. Both approaches still have an internal issue which will be discussed
further in this chapter.

3.3 MPMA computing systems

 The second computing system in the area of MA/OS is the “Multi-
Processor/Multi-Architecture” (MPMA) system. The term “MPMA” refers to
multi-processor systems composed of processors with heterogeneous
architectures connected through a system bus and sharing the main memory.
Processors in such a hardware configuration are able to perform concurrent
accesses on main memory which generate data coherency issues at cache level
and require in addition exclusion mechanisms on shared data structures. These
issues are the main research topic of SMP (Symmetric MultiProcessor) systems
and solutions are either provided at hardware level (cache coherency protocols)

 22

or at kernel level (exclusion mechanisms on shared data structures). The defining
property of SMP systems is the homogeneous architecture of internal processors.
This approach allows a smooth hardware coupling of processors on the shared
memory bus and provides the ability of running the same kernel image on all
processors based on same architectural state. The MPMA systems introduce an
important difference with SMP systems in tightly-coupled multiprocessor
systems, namely the architectural heterogeneity of processors sharing the main
memory. These computing systems are labeled as exhibiting spatial heterogeneity
(Figure 3.3).

As for SPMA/OS, the essential design requirement for such an operating

system is to provide architectural heterogeneity for user-level applications. In
other words, the operating system must provide the capability to develop
applications which exploit the architectural heterogeneity of the underlying
system (e.g. run threads of a given task on different processor architectures
depending on their computational requirements).
 The first design approach found for SMPA operating systems we labeled as
native and secondary architectures: a single architecture serves for kernel
implementation, while all other architectures are only supported at user-level.
This approach doesn’t fit well with the execution parallelism of MPMA systems.
Translated to MPMA systems, this design approach defines a certain processor
(master processor) which runs the kernel of the operating system, while all other
processors (client processors) are supposed to run only user-level binaries. Of
course, the interaction between the user-level binaries and the kernel cannot
longer be treated through an architectural switch, since it basically requires
passing a request from one processor (running the user-level binary) to another
processor (running the kernel).
 The second design approach suitable for SPMA systems was labeled as
equal opportunities: there is a different kernel instance per each architectural
state. At first sight, this design approach is more suitable for MPMA systems than
the previous one as the spatial heterogeneity of the kernel fits with the spatial
heterogeneity of the computing system. Therefore, each processor runs its own
kernel image and user-level binaries running on top of these kernel instances can
simply access the kernel services without the problem of architectural

Processor
Arch 2

System Bus

Figure 3.3: Architecture of a MPMA system

Processor
Arch 1 Main

Memory Cache Cache

 23

heterogeneity or the need for an inter-processor communication. The design
issues don’t stop here as the user-level applications should be able to take
advantage of the architectural heterogeneity of the systems. If there is no
mechanism for interaction between the kernel instances, the user-level
applications will only be mono-architectural, without possibility of solving
problems requiring heterogeneous computing. Two solutions providing support
for inter-kernel cooperation can be envisaged: a user-level approach and a
kernel-level approach. The former approach employs middleware architectures: a
user-level layer providing cooperation between heterogeneous applications. A
kernel instance can have no or limited knowledge of the existence of other kernel
instances. As a consequence, the kernel instances are practically independent one
from another and thus they are not required to obey the same design structure.
The latter approach requires implementing the inter-kernel cooperation at kernel
level. This solution is suitable when the operating system should provide
transparency for any architectural state. In addition, this approach is probably
more challenging than the former one in terms of kernel design as it requires
synchronization and coherency mechanism to achieve cooperation at kernel level.

3.4 Design models

 The SPMA and MPMA systems show the same design models for the
kernel structure. These design approaches could be divided in three classes:

1. User-level support for heterogeneity:
Each architectural state has its own kernel instance independent from
each other; support for architectural heterogeneity is implemented at user-
level

2. Native and secondary architectures:
 A single architectural state is considered for the kernel design; support for

architectural heterogeneity is implemented at kernel-level

3. Equal opportunity
 Each architectural state has its own kernel instance, while sharing a global

state; support for architectural heterogeneity is implemented at kernel-
level

 These classes show different approaches in designing a MA/OS. The
essential requirement is support for architectural heterogeneity for user-level
applications. This requirement could be fulfilled either by taking into account the
architectural heterogeneity of the system at kernel level (design 2 and 3) or by
implementing this support at user level (design 1). The latter case has a limited
influence on the kernel’s design. The next sections will elaborate on these design
approaches.

 24

3.5 User-level support for heterogeneity

 In this design approach, the kernel has no responsibility in offering
support for architectural heterogeneity, so any of the classical concepts in single-
processor operating systems may apply. The support for architectural
heterogeneity is left for implementation at user level. This approach applies only
to multiprocessor systems (MPMA) where each processor is running its own
kernel image. In SPMA systems, due to temporal heterogeneity, the kernel’s
support is always required for switching the architectural state of the processor
and activating another kernel instance. For these systems, support for
architectural heterogeneity exclusively at user level cannot be achieved.
 The user-level support offers the mechanisms to access the services of
another kernel instance running on another processor. Each kernel instance has a
User-level System Interface (USI) which publishes the interface of the local
kernel. The USIs communicate with one another to provide a global system image
(Figure 3.4).

There is no requirement on having identical design structures for the
kernel instances. The only requirement is having each USI exposing a generic
system interface accepted by all USIs in the system.

An example of collaboration between USIs is presented in Figure 3.5.

Kernel
Arch 2

Kernel
Arch 1

USI Arch1 USI Arch2

Heterogeneous Computing Application

Figure 3.4: User-level support for heterogeneity

User-level
System

Interface

Application Level

Kernel Level

 25

 This design approach has the advantage of simplicity: the kernel design is
not affected by architectural heterogeneity. There are although limitations
introduced by this design concerning the nature of a task itself. Threads of a task
should be able to share kernel objects like file descriptors or IPC objects and most
important of all, the same virtual address space. As there is no cooperation at
kernel level between the kernel instances, threads running on different
processors have no possibility to share kernel objects. The only object they are
able to share is the physical memory, with mechanisms for synchronization
implemented at user level. However, an application may still require coherent (or
semi coherent) virtual address spaces across all processors.

3.6 Native and Secondary Architectures

This design approach requires the kernel’s support in order to offer
architectural heterogeneity for user-level applications. As described earlier, the
native architecture is the kernel’s architectural state, while all other architectures
are labeled as secondary architectures. This design approach has a direct
applicability for current processor architectures exhibiting multiple architectural
states (e.g. Itanium family). These processors have a native architecture which
provides a maximum computing performance and usage of processor resources,
while other architectures are supported only for backward compatibility and do
not perform as well as the native architecture. For performance reasons, it is
therefore preferable to have the kernel built for the native architecture.
Moreover, the secondary architectures are used only on temporary basis, so
developing a kernel instance for each secondary architecture is not justifiable.

Conversion of
arguments and request

for thread creation

Create thread

Kernel
Arch 2

Kernel
Arch 1

USI Arch1 USI Arch2

Application

Figure 3.5: Creating a thread on a different architecture

Create thread
on Arch 2

 26

This design approach provides a mechanism to couple the user-level need for
heterogeneity with the native architecture of the kernel while avoiding the
requirement for a kernel instance per each architectural state. This mechanism
for supporting a secondary architecture can be labeled as an emulation layer
(Figure 3.6). The term “emulation” doesn’t refer here to instruction set emulation
as the processor is capable of executing the instruction set of secondary
architectures. Instead, the term “emulation” refers here to system interface
emulation: each secondary architecture receives a system interface according to
own architectural specifications. These system interfaces are not natively
supported by the kernel, so they have to be emulated based on the kernel’s native
interface. Basically, this emulation mechanism implements a conversion process
between each secondary architectural interface and the kernel’s native interface.
Due to the intermediary mechanism for accessing the kernel’s services, the
binaries implemented for the secondary architectures will often suffer a
performance overhead compared to binaries for the native architecture.

There are different design criteria which must be taken in consideration

when constructing an emulation layer:

1. communication protocol between the kernel and user-level binaries:

functional interface vs. shared data
1. location at operating system level:

user-level vs. kernel-level emulation
2. location in the execution stack of a system call:

top vs. bottom design

 These criteria influence both the kernel design and the operating system
performance. The kernel design is directly influenced by the location of the
emulation layer. On SPMA systems, the emulation layers could be integrated at
kernel level. However, this approach doesn’t apply to MPMA systems where the
parallelism in execution of each architectural state requires parallelism in
execution of the emulation layers and the kernel. Basically, each user-level binary
running on a different processor should either rely on the kernel (when running
on the native architecture) or on an emulation layer (when running on a

Kernel
(native)

Emulation
Layer

Figure 3.6: Native and secondary architectures

Thread
(non native)

Thread
(native)

Kernel level

User level

 27

secondary architecture). Therefore, the MPMA systems accept only user-level
emulation layers with a “spatial” decoupling from the kernel. When integrated at
kernel level in SPMA systems, an emulation layer may take into consideration
another design criterion: whether the native kernel should be aware of the
presence of the emulation layer or not. In the former approach, the emulation
layer sits on top of the kernel proper and filters communication between user-
level binary and the kernel without the kernel noticing its presence. In the latter
approach, the kernel has to acknowledge the presence of the emulation layer and
to invoke its mechanisms when communicating with user-level binaries of
secondary architectures. Another criterion which may influence the design
approach for an emulation layer is whether the communication between user-
level binaries and the emulation layer is synchronous (functional interface) or
asynchronous (shared memory). The advantages and disadvantages of these
strategies are discussed further in the following section. However, there is no
ideal design model for such an emulation layer and the choices for specific
strategies are depending on specific design requirements for the operating
system.

3.6.1 Functional interface vs. Shared data

This criterion refers to the nature of the communication protocol between
the user-level binaries and the kernel. The communication protocol depends
strictly on the specific system interface according to each architectural state. Even
if the kernel provides its own native interface, system interfaces for other
architectural states may have different specifications concerning the
communication protocol. Commonly speaking, each architectural state should
have structurally the same system interface as the native kernel if they rely on the
same kernel architecture. However, this might not be always the case and the
emulation layer should consider the appropriate communication protocol in
relationship with user-level binaries.

Generally speaking, the system interface may either be composed of a
functional interface (system call interface) or shared kernel-user data
structures. Each of these communication strategies has its own advantages and
disadvantages.

 1. The functional interface is the most commonly-used strategy for
user-kernel communication in kernel design. The functional interface is
composed by a collection of system calls. The interface of each system call is
defined through a list of parameters to be provided by the user-level binary and a
list of result parameters to be returned by the system call function. Both types of
parameters could be provided either through the memory stack or the register
file. In addition to passing on the system call parameters, the emulation layer
must also provide a conversion mechanism between the user’s data type
representation and the kernel’s data type representation. This mechanism must
be integrated in the emulation layer since both partners (the user-level binary

 28

and the kernel) interact with the system interface according to their own data
type representation (Figure 3.7).

The access to arguments passed via memory stack doesn’t constitute an
issue as the kernel has access to any user-defined virtual address space. The
emulation layer simply reads the arguments from their stack location, converts
them to the kernel’s format and invokes the native system call. For arguments
passed via register file, however, the working registers of a secondary architecture
may not be the same as the working registers of the native architecture. The
solution therefore requires reading the arguments from the original register
location, performing the data type conversion of their contents and then writing
the arguments to the register locations defined in the native system call interface.
This approach allows transparency between the user-level binaries and the
kernel, both at data type representation and argument location.

2. The second approach to user-kernel communication is represented by

shared kernel-user data structures. Even not as common as the functional
interface, this communication strategy finds its place in kernels where a faster
way to access kernel data structures from the user level is required without
blocking its execution (as imposed by a synchronous invocation of a system call).
The architectural heterogeneity raises the question concerning the usage of the
shared memory. Direct access on shared data requires every binary having the
same data representation. Writing shared data according to different data
representations destroys the internal coherency. This shared data will eventually
make no sense for anyone trying to read it. Two main approaches for
implementing shared data in heterogeneous environments can be envisaged. In
the first approach, data is stored according to a generic data representation and
both the user-level binary and the kernel access the shared data through an
interface which provides data conversion mechanisms. The second approach for

System call
(native)

Stack
Segment

Emulation
layer

Register
stack

Binary
(non native)

Figure 3.7: Communication over functional interface

 29

shared data in heterogeneous environments is the usage of replicated data
managed by a coherency mechanism. In this approach, the user-level binary
accesses its copy of the shared data according to its own data type representation,
while the kernel accesses its own copy. The coherency mechanism should assure
that the two copies remain identical in terms of information content. Physical
shared data (access on the same memory location) is replaced therefore by
logical shared data (the same data is replicated at different memory locations)
(Figure 3.8).

The question now concerns the location of the coherency mechanism.

When located in the emulation layer, data coherency among replicas of shared
data can be provided only when the user invokes a system call. This is not always
the case: the user may change the shared data without invoking the kernel, while
the latter may want to use the shared data. There is no access to coherency
mechanism between these two accesses on shared data, so the kernel will access
out-of-date information. In addition, the kernel may itself modify the shared
data, which makes the user’s copy of shared data out-of-date. One solution to this
problem is to perform the coherency mechanism whenever the user thread is
activated by the scheduler (update the user’s replica from the kernel’s replica) or
whenever the thread is deactivated (update the kernel’s replica from the user’s
replica). While the user thread is deactivated, there is no attempt to modify the
user’s replica, so the kernel’s replica will always have up-to-date information.
Moreover, as the user thread is not active, there is no concern if its replica is up-
to-date. The thread is concerned on having a coherent replica only when it starts
to run. Therefore, the coherency mechanism should also be integrated at
scheduler level. This approach is probably the only reliable to provide logical
shared memory, but it reduces the transparency of the emulation layer in
relationship with the kernel: the kernel’s scheduler has to be aware of the
presence of logical shared memory.

Kernel
 (native)

Coherency
mechanism

Thread
(non native)

Figure 3.8: Communication over logical shared memory

Shared data
(native)

Shared data
(non native)

Logical shared memory

 30

Another issue for implementing logical shared memory concerns the
update protocol of replicated copies: full or partial coherency. The general case is
to offer access to the entire content of shared data and thus replicas have to
contain the same information. There are alternatives when there is no need for
full coherency (e.g. the shared memory is composed of multiple buffers and only
of subset of these buffers are required at a certain access on shared data). In such
cases, providing full coherency only induces a performance overhead. Therefore,
a partial coherency mechanism may be implemented, in which coherency is
provided only for those portions of the replicated data required at the moment of
the access.

3.6.2 User-level vs. Kernel-level emulation

The emulation layer may be implemented either as a user-level or as a
kernel- level layer. In the first approach, the emulation layer is a user-level task.
Whenever a user-level binary issues a system call according to a non-native
architecture, the kernel reflects the arguments of the system call out from the
kernel to the user-level emulation task. The emulation task handles argument
conversion according to native interface of the system call and then issues the
native system call. This user-level approach for system interface emulation is also
known as the trampoline mechanism (Figure 3.9) and it has been used
extensively by kernels like Windows 2000 (to emulate MS-DOS system calls), the
Mach microkernel (to emulate UNIX system calls) [7] and the L4 microkernel (to
emulate Linux system calls for L4Linux) [12].

 However, the separation of the emulation layer from the kernel is not
possible without the kernel’s support for implementing a trampoline mechanism.
The trampoline mechanism should be able to recognize the architectural state of
the system call and to forward the system call arguments to the appropriate user-
level emulation task.

32

1User level

Kernel level

Trampoline System call
(native)

Thread
(non native)

Figure 3.9: The trampoline mechanism

Emulation
layer

 31

 A second approach is to integrate the emulation layer in the kernel design
(Figure 3.10). The advantage of this approach is the reduced performance
overhead in invoking a system call according to a non-native architecture as this
approach prevents the overhead of a second kernel entry (in the trampoline
mechanism there is a first kernel entry when issuing the non-native system call
and a second kernel entry when performing the native system call). However, the
user-level emulation has some advantages over the kernel-level emulation in
terms of flexibility (user-level emulation provides a more convenient mechanism
to add or modify a system call interface of a non-native architecture than the
kernel-level emulation) and security (adding more code to the kernel increases
the size of the Trusted Computing Base and introduces the likelihood of system
fatal bugs) [7].

3.6.3 Top vs. Bottom Design

 If deciding to implement the emulation layer at kernel level, the next
question which arise is related to the actual location in the execution stack of the
native system calls: the emulation layer could either be implemented on top of a
system call function (on top of the kernel) or it could be placed at the base of a
system call function (on the bottom of the kernel).

In the first approach, the emulation layer is practically transparent to the
native system call functions and therefore the system call functions don’t require
any modifications. The emulation layer handles all argument conversion on top
of each native system call function, so that no knowledge about architectural
heterogeneity is required at system call level (Figure 3.11).

Kernel level

Emulation
layer

System call
(native)

Thread
(non native)

User level

Figure 3.10: Kernel-level emulation

 32

 The second design approach places the emulation layer on the bottom of
the system call functions. Arguments are no longer translated to the appropriate
data type representation on top of each system call function. Instead, each system
call function invokes the appropriate data conversion mechanism provided by the
emulation layer (Figure 3.12). Therefore, this approach requires a total
integration of the emulation layer in the kernel and practically requires modifying
each system call function. This requirement influences not only the invocation of
non-native system calls, but also the invocation of native system calls. The
performance of native system calls may be affected.

As a guideline, it is preferable to have as much transparency for the
emulation layer as possible in order not to alter the performance of the native
kernel. On the other hand, providing total transparency of the emulation layer in
relationship with the kernel may generate a considerable overhead for the non-
native threads (e.g. may require logical shared data to separate the user’s data
type representation from the kernel’s data type representation). However, the
focus of the kernel design should in general be on the performance of the native
architecture since most of the binaries are probably intended to use the
processor’s native architecture. As a rule of thumb, it is desirable that the
emulation layer doesn’t interact with the normal functioning of the kernel.

Kernel level

User level

Emulation
layer

System call
(native)

Thread
(non native)

Figure 3.11: Emulation layer placed on top of the kernel

Argument
conversion

 33

3.7 Equal opportunity

 The equal opportunity takes a totally different approach from the first two
design models of a MA/OS. This approach takes into consideration the
architectural heterogeneity within the kernel design itself. In other words, this
design approach provides a kernel instance for each architectural state of the
system. Advantages of this approach could be expressed in terms of user-level
performance: the user-level thread is able to directly access the services of a
native kernel without the overhead of either the emulation layer (see section 3.6)
or the user-level system interface (see section 3.5). Comparing with the previous
design approaches, the task of achieving a global system state is performed at
kernel level (Figure 3.13). The question now is how to achieve a global system
state. Each kernel instance has its own kernel structures which should be made
coherent across all kernel instances. Issues to provide a global system state are
related to the inherent distribution of global data structures and the
incompatibility between data type representations across different architectural
states.

Kernel level

User level

Emulation
layer

System call
(native)

Thread
(non native)

Figure 3.12: Emulation layer placed on bottom of the kernel

Argument
conversion

 34

When user threads are utilizing the kernel services, there is considerable

effort to keep a coherent global state, making it likely for the global performance
to decrease. Other factors influencing the global performance are the size of the
global data structures, the number of kernel accesses modifying these global data
structures and the number of kernel instances sharing a global system state.
 When designing a kernel which follows the “equal opportunity” model, one
should therefore focus on:

- the global data structures
- the coherency mechanism for logical shared data

3.7.1 Global data structures

The first criterion influencing the global performance in the Equal

opportunity design is related to amount of global data structures. Global data
structures reflect the global state of the kernel and these data structures directly
influence the coherency mechanism. This mechanism enforces data coherency
whenever an access on global data structures is required. Different strategies
could be provided to assure data coherency, but in all cases the performance of all
these mechanisms is highly influenced by the amount of data to keep coherent.
Therefore, in order to improve the system’s performance one should attempt to
minimize the number and size of global data structures. These data structures are
often related to kernel’s abstractions like threads, address spaces, etc. Minimal
kernels like microkernels should have a smaller amount of work in synchronizing
global data structures due to the minimalism in choosing the kernel’s
abstractions.

Generally speaking, a kernel design for a multiprocessor system employs
local and shared data structures. The global data structures provide multiple
accesses from different locations within the kernel. The concept of shared data

Kernel level

Kernel
 (Arch 1)

Kernel
 (Arch 2)

Figure 3.13: Equal opportunity

Thread
(Arch 1)

Thread
(Arch 2)

Global system state

User level

 35

has a problem fitting in heterogeneous multiprocessor systems due to
incompatibility between data type representations. Two different strategies may
be envisaged for implementing shared data in a MA/OS:

- Global data representation (together with data conversion mechanisms for

accesses according to other data type representations)
- Multiple data representations (together with a coherency mechanism for

implementing logical shared data)

1. Global data representation: A single data representation is selected.
Any data structure with global semantics will be encoded using the global
data representation. Whenever there is an access to global data using
another data representation, a mechanism is invoked to provide the right
data format. This strategy implies direct data access for architectural
states having the global data representation, while accesses having other
data type representations can access the global data only indirectly,
through an interface which provides data conversion. Of course, the
interface access induces a performance overhead for any architectural
state not having the global data representation. The important question is
therefore which data type representation to use as the global one. This
choice could be based on different performance criteria: frequency of
operations on global data structures with a certain data type
representation (e.g. a certain data type representation is dominant),
facility of data conversion between a particular data representation and all
other available data representations (e.g. a certain data type
representation is the extension of all others), etc. After selecting the global
data type representation, data conversion mechanisms from the global to
all other data representations are required. These mechanisms are
embedded in each access interface according to the specific data type
representation handled by the interface.

2. Multiple data representations: This strategy allows direct access to

global data using different data type representations. The key element of
this solution is replication of data. This replication process requires a
suitable coherency mechanism. The data conversion mechanisms between
different data type representations will be integrated in the coherency
mechanism.

 Each data representation strategy has its own advantages and
disadvantages, so the choice is strictly based on specific performance criteria.
Based on these two strategies for implementing shared data in a MA/OS, each
kernel data structure could be associated with one of the following classes:

1. Exclusive resources: This class is represented by resources with no

global semantics. Exclusive resources are represented by local data
structures with no global semantics and by the architectural state (e.g.
registers, trap and fault exceptions, software interrupts). These resources

 36

are employed either with local or with architectural scope and thus they
have no effect on the global state of the MA/OS.

2. Shared resources: Resources from this class have shared access from

multiple locations within the kernel, either with sequential or parallel
access. For sequential access, one must assure that after each access, the
shared structures are left in a consistent state. Concerning the parallel
access, synchronization mechanisms must prevent concurrent access on
the same resource, either by locking resources during access or by
serializing accesses on shared resources.

3. Distributed resources: A distributed resource is a collection of non-

identical resources which may be placed on different locations within the
kernel. A coherency mechanism must guarantee that one particular
resource is only accessible at one location within the kernel. Examples of
distributed resources are global thread identifiers and external interrupts
(interrupts provided by a shared APIC2). The coherency mechanism must
enforce non-replication of these resources.

4. Replicated resources: A replicated resource is a global resource from

which copies are placed in different locations within the kernel. An
example of a replicated resource is the replication of a virtual address
space among parallel kernel instances. In that case, the page tables of each
kernel instance should contain the same information. A coherency
mechanism is required to guarantee the integrity of information across all
copies of a replicated resource.

The classification above shows which resources are concerned by

coherency mechanisms. The exclusive resources don’t influence the global system
state. Resources with global semantics are represented by the shared, distributed
and replicated resources. While the shared resources require only
synchronization mechanisms for concurrent access, the distributed and
replicated resources require a coherency mechanism (Figure 3.14).

A kernel design may require any of these types of global resources. The
amount of the global resources directly influences the performance of the
coherency mechanism. Besides the amount of global structures, the amount of
updates also influences the performance of the coherency mechanism: achieving
data coherency requires keeping track of updates on global data. Different
coherency strategies can be envisaged depending on the use case and on the
nature of the computing system.

2 Advanced Programmable Interrupt Controller

 37

3.7.2 Coherency mechanism

Replicated and distributed data structures along with coherency
mechanisms are key issues of a MA/OS. Whether the MA/OS exhibits temporal
(SPMA) or spatial (MPMA) heterogeneity, it is often the case that the kernel
and/or user-kernel shared structures have to be replicated according to different
data type representations. Replication inevitably requires a coherency
mechanism as a key requirement of a replication process is to guarantee that
replicas reflect the global state of the replicated resource.

A coherency mechanism provides two services:

1. Reading a global data structure delivers data which reflects the global state
2. Updating a global data structure must leave the data in a coherent state

The design of such a mechanism is mainly base on the following criteria:

- type of global resource:
distributed vs. replicated

- location inside the kernel:
centralized in one location vs. distributed in multiple locations

- update strategy on global resources:
push vs. pull protocols

B C D

E E E

Kernel
instance

1

Kernel
instance

2

Kernel
instance

3

Figure 3.14: Global data structures

Distributed
resources

Replicated
resources

Interface

A

Interface Interface

Shared
resource

Access
interface

Direct
access

 38

Resources concerned by coherency mechanisms are either distributed or
replicated and they require a different coherency mechanism:

1. Distribution coherency: This coherency mechanism is related to

distributed resources. As a distributed resource is a collection of non-
identical atomic resources (e.g. global thread identifiers), the coherency
mechanism should ensure that each atomic resource can be used in only
one location of the kernel. Using the same atomic resource in multiple
locations within the kernel will destroy the integrity of the distributed
resource.

2. Replication coherency: This coherency mechanism has to guarantee

that each access on a copy of the replicated resource will issue data which
reflects the global state of the replicated resource.

Even if these types of coherency mechanisms have different purposes

(distribution and replication coherency), the global architecture of such a
mechanism is generally based on two computing models: centralization and
distribution. Therefore, architecturally, coherency mechanisms could classify in
two main classes:

1. Centralized mechanisms: A mechanism from this class is centralized in

one location of the kernel. Considering the case of multiple kernel
instances, the coherency mechanism is handled by a single kernel instance
in behalf of all kernel instances. Whenever a global resource needs to be
accessed and/or updated, the centralized coherency mechanism is
invoked. These mechanisms basically follow the server-client model.

2. Distributed mechanisms: A mechanism of this class is composed of a

collection of sub-mechanisms which are spread in different locations of
the kernel and which cooperate to provide a coherent state for the global
resource. In the case of multiple kernel instances, each kernel instance
may be provided a sub-mechanism as a part of a global coherency
mechanism.

Figure 3.15 shows an overview of these two approaches. Each of these

approaches has its own advantages and disadvantages. The first approach
implements the coherency mechanism in one single location of the kernel and
thus avoids replication of code at multiple locations. The disadvantage of this
approach is due to centralization itself: the centralized location could become a
bottleneck if the number of accesses on global data managed by this coherency
mechanism is relatively high. The second approach solves this problem as
multiple locations of the kernel can accept requests for performing global
coherency. On the other hand, this approach shows also a disadvantage due to
distribution itself: the sub-mechanisms have to cooperate to provide global
coherency. This communication induces a performance overhead in providing
global coherency. In conclusion, the choice between these two architectures

 39

depends on many performance criteria like the amount of accesses on global data
or the overhead of communication intra-kernel.

The distributed mechanism to achieve data coherency introduces another

design element: the level of coherency, either full or lazy. When full coherency is
required, a sub-mechanism propagates an update on the global resource to all
sub-mechanisms, in order to keep coherent data at each instant of time. In the
second approach, lazy coherency, updates are propagated “only when” they are
required. A distributed resource accepts only full coherency as it imposes the
non-replication of its atomic resources at each instant of time. On the other hand,
the requirement for a replicated resource is being able at the moment of the
access to obtain coherent information, although without any requirement
whether all replicas contain identical information at the any instant of time.
Based on these data coherency models, two families of update strategies could be
envisaged:

1. Push protocols: This family of protocols guarantees that at each instant

of time a global resource is kept coherent. Whenever an update on a global
resource has to be performed, this update is communicated to all sub-
mechanisms of the global coherency mechanism. For replicated resources,
this protocol can have two different approaches depending on whether the
replicas are updated by the initiator of the update (direct update) or each
replica is updated by a corresponding owner (indirect update). The first
approach is suitable if the initiator of the update has access to all replicas
and no security barriers exist in accessing them. If this is not the case, the
second approach communicates the update to the owner of the replica.

S

C C
S

S S

C C

C

C

a) Centralized mechanism
 (S – Server, C – Client)

 b) Distributed mechanism
(S – Sub-mechanism, C – Client)

Figure 3.15: Architecture of coherency mechanisms

 40

2. Pull protocols: This family of protocols is suitable only for replicated
resources. These protocols don’t guarantee that at each instant of time all
replicas contain the same information, but instead they provide a
mechanism to achieve coherency whenever the replicated resource is
accessed. Thus, each update is performed only on the local copy and thus
assuring that the local copy has the up-to-date information. Whenever
data is accessed again, information from all replicas is requested to verify
if whether the local copy still has up-to-date information or whether
another copy was in the meanwhile updated. If the local copy contains out-
of-date information, the up-to-date information is requested from another
replica. This protocol has also two approaches depending on whether the
requester accesses directly the other replicas (direct access) or it delegates
the owner of each replica to deliver the information required (indirect
access). In addition, this family of update protocols has another criterion
to take in consideration: the atomicity of the replicated resource. If a
replicated resource is not atomic and the information of the local replica is
not required entirely at the moment of the access, one may choose to
update only the required information in the local copy.

Designing a coherency mechanism is a complex task which should take

into consideration different factors like performance criteria and usage patterns
of different global resources. Figure 3.16 shows a classification of coherency
mechanisms which could be employed to decide on an appropriate design for a
specific coherency issue.

Coherency
mechanisms

Distribution
coherency

Replication
coherency

Centralized
model

Distributed
model

Centralized
model

Distributed
model

Push
protocols

Pull
protocols

Figure 3.16: Classification of coherency mechanisms

 41

3.8 Design framework of a MA/OS

 This chapter discussed three design models for a Multi-Architecture
Operating System: User-level support for heterogeneity, Native and Secondary
architectures, and Equal opportunity. Each of the proposed designs takes a
different approach in providing a global system state: the first design achieves a
global state at user level, the second approach implements this requirement at
the interface between the user and kernel, while the third approach is dedicated
to kernel-level support for global system state. However, one should notice that
proposed design models provide solutions to overcome the heterogeneity of the
computing system, but none of these designs discusses the nature of the kernel
services. In conclusion, the design of a MA/OS has to focus on two different
topics: overcome the heterogeneity of the underlying computing system and
provide operating system services. These two topics are orthogonal: overcoming
the heterogeneity of the system is independent from the services provided by the
kernel. Considering the title of this operating system, MA/OS, the term MA refers
to the heterogeneity, while the term OS refers to kernel services. Each of these
terms corresponds to a different sub-design: the “MA design” could be labeled as
the horizontal design (as the architectural heterogeneity is distributed
horizontally), while the “OS design” could be labeled as the vertical design (as a
kernel structure is built vertically). Each of these sub-designs may have a
different degree of importance in the design process of a MA/OS. However, both
of these sub-designs influence the system’s performance and their synergy and
co-design provide the global design of the MA/OS (Figure 3.17).

Architectural
heterogeneity

Kernel
services

Horizontal
design

Vertical
design

Figure 3.17: Horizontal/ vertical co-design of a MA/OS

 42

Chapter 4

Case study of a MA/OS: L4 and Itanium

 This chapter presents an example on how to design a MA/OS. This case
study is based on the Itanium processor (as a SPMA system) and the L4
microkernel (as the base design for the kernel). This study will attempt to verify
the applicability of design models discussed in the previous chapter. The
operating system design, together with the implementation and the experimental
results will provide a way to effectively analyze the theoretical design model.

4.1 Motivation

 There are reasons to believe that a microkernel architecture as L4 can
deliver best performance for a MA/OS design. This hypothesis is basically based
on the architectural minimalism of a microkernel design which provides a small
amount of system calls and kernel abstractions. As described in the previous
chapter, the design of a MA/OS is composed of two orthogonal sub-designs: the
horizontal design which handles the architectural heterogeneity and the vertical
design which provides the kernel services. The microkernel design constitutes the
vertical design of the MA/OS, while the choice for a horizontal design decides
practically the performance of the global MA/OS. The integration of the
microkernel in a MA/OS design may have an impact on its performance. The
implementation provides an experimental evaluation of the effective performance
of a microkernel based MA/OS.

4.2 Description of the experimental approach

A convenient experimental scenario consists in choosing a SPMA system
(a processor with multiple architectural states). The choice was settled for an
Itanium I processor which exhibits two architectural states, IA-64 and IA-32.
Concerning the horizontal design, the “Native and Secondary Architectures”
represents the most reasonable design for an Itanium-based system. The main
reason for choosing this design is the difference in performance levels offered by
Itanium for its architectural states: the IA-64 performs considerably better
compared with IA-32. Therefore, the kernel of the system should be built on the
native architecture (IA-64), while the IA-32 should be considered as a secondary
architecture. The vertical design will be represented by the L4Ka::Pistachio.

The MA/OS is the synergy between the horizontal and the vertical design.
This synergy requires implementing in the IA-64 version of Pistachio (vertical
design) an emulation layer for IA-32 architectural state (horizontal design). The

 43

general issues for integrating an IA-32 emulation layer in an IA-64 kernel will be
discussed previously from studying the L4Ka::Pistachio design. These general
issues will represent the discussion base for building an IA-32 emulation layer in
Pistachio. The final outcome of this case study will be the experimental analysis
regarding the performance of the MA/OS compared with the original design of
Pistachio. This comparison will help understand how the performance of
microkernel design is influenced by integrating it in a MA/OS and whether the
eventual losses in performance are acceptable enough for constructing such an
operating system.

4.3 Support for IA-32 in Itanium processor

 The first step in the design process of the operating system is an evaluation
of the targeted computing system. Itanium qualifies as a SPMA (Single
Processor/Multi-Architectures) system as it provides two architectural states, IA-
64 and IA-32. The IA-64 is the native architectural state and provides best
performance and usage of processor resources, while IA-32 provides a lower
performance and is able to exploit only a reduced subset of Itanium’s resources
(e.g. registers, address space). An interesting question concerns the reasons for
integrating a second architectural state which doesn’t perform as well as native
architectural state. The IA-64 was intended as a candidate for the next processor
architecture following the today’s mainstream architecture, the IA-32. The IA-64
is definitely a more powerful architecture than the IA-32, but this fact is balanced
by having the IA-32 practically running most of the applications intended for
personal computing. Porting these applications for the new IA-64 architecture
should be primarily justified by economical factors: is this gain in computing
power balanced by the costs in porting these applications? The IA-64 designers
have probably considered this scenario and it was clear that the introduction of
IA-64 will not be such a smooth process. The decision was to integrate backward
compatibility for IA-32 architecture in the new IA-64 architecture. As such, a
migration process from IA-32 to IA-64 could be easily envisaged: first the IA-32
hardware should migrate to IA-64 while running the same IA-32 applications.
Afterwards the applications are incrementally ported to IA-64 as soon as software
distributors decide migrating their products.

 The IA-32 is supported at two levels:

1. IA-64 ISA Level:
Provides a mechanism for switching between IA-32 and IA-64

2. Processor Level:
Provides the hardware implementation of IA-32 architectural state

 44

4.3.1 Support at IA-64 ISA Level

IA-32 and IA-64 have to provide mechanisms for switching the current
architectural state of the processor to IA-64 and respectively to IA-32. These
mechanisms are provided either as instructions for explicit switch or they are
integrated in the processor’s architecture for implicit switch. The latter approach
concerns the automatic switch to IA-64 for performing critical processor
operations as exception handling. As a consequence, the Itanium processor
depends exclusively on the IA-64 architectural state, while the IA-32 is provided
only as a secondary architectural state.

In conclusion, the IA-64 architecture provides two mechanisms for
switching the processor’s architectural state:

1. Explicit switch: Both the IA-64 and IA-32 Instruction Set Architectures
(ISA) were provided special instructions for switching the current
architectural state. In order to perform the architecture switch, an explicit
demand (by issuing these special instructions) has to be performed. The
IA-64 ISA provides natively a special branch instruction (br.ia) which acts
like a regular branch instruction with the difference of changing in
advance the processor architectural state to IA-32 (Figure 4.1). As a result
of switching to IA-32 architectural state, the processor’s register file is
configured according to the IA-32 register layout with the first effect of
limiting the instruction pointer to 32 bit addresses. This implies that the
branch target of this special branch instruction must point inside the first
4 GB of the virtual address space. Considering the switch back to IA-64,
IA-32 ISA was not natively designed with a special instruction for
switching the processor’s architectural state to IA-64 (obviously because at
the time the IA-64 architecture didn’t exist!). With the introduction of IA-
64 architecture and Itanium processors, an instruction for switching from
IA-32 to IA-64 was required, so the original specification of IA-32 ISA was
updated with an IA-64 extension subset (including a special instruction for
switching to IA-64). As the IA-64 extension subset is not defined in the
original IA-32 specification, the x86 processors are not supporting these
instructions. This information is important for software designed to run
on both x86 and IA-64 processors, as the usage of the IA-64 extension
subset induces software incompatibility with the x86 processors.
Considering the architecture switch, the IA-32 ISA is extended with a
branch instruction providing switch mechanism to the IA-64 architectural
state: the JMPE instruction. This instruction acts like a branch instruction,
although changing in advance the processor’s architecture to IA-64 before
modifying the instruction pointer according to the target instruction. This
branch is performed relative to the IA-32 address space layout (with
instruction pointer set on 32 bits) and it requires that the address of the
target instruction will point inside the first 4 GB of virtual address space.
There is no kernel protection for performing the architecture switch: this
mechanism is accessible to both kernel and user level. Despite this fact,

 45

software designers should evaluate both the advantages and disadvantages
of mixing IA-32 and IA-64 binaries. At kernel level, this approach is not
highly recommended, on one hand for performance reasons, but also for
system stability. However, at user level, there are no such
recommendations, but the main argument against this approach would
probably be the incompatibility of the IA-32 software with x86 processors.
The usage of architecture switch at user level will be probably extremely
limited as, on one hand, software packages compiled for x86 processors
don’t use mixed binaries (32 and 64 bit) and on the other hand software
compiled for IA-64 processors are not usually interested in integrating IA-
32 binaries, mainly for performance reasons. Even if for limited usage, this
requirement may exist, so the access to these mechanisms is allowed at
user level (it can although be prevented by explicit kernel control of
processor settings).

2. Implicit switch: A processor operation in Itanium architecture

automatically demands setting the processor’s architectural state to IA-64:
the exception handling. The exception handling for IA-32 and IA-64 is
performed in a unified manner. Whenever an IA-32 thread causes an
exception (e.g. General Protection Fault), the architecture switch is
performed before fetching the interrupt vector (Figure 4.2). As such, the
IA-32 exception will be handled in the native IA-64 architectural state.
Once the exception is handled, the IA-64 interrupt handler may choose to
return the processor’s control to the faulting IA-32 thread by issuing the
Return from Interrupt (rfi) instruction. Whenever this instruction is
issued, the processor’s architectural state is restored to the state which
caused the exception. In the case of an IA-32 faulting thread, the result of
this approach is an implicit switch of the processor’s architectural state to
IA-32.

IA-64 binary

4 GB

0

4 GB

IA-32 binary

IA-32

IA-64

Figure 4.1: Explicit switch between IA-64 and IA-32

µP
mode

JMPE

br.ia

0

 46

Exception
handler

264 B
IA-32 binary

IA-32
Exception

Figure 4.2: Implicit switch between IA-64 and IA-32

IA-32

IA-64

µP
mode

Implicit

rfi
0

4 GB

0

4.3.2 Support at Processor Level

Any architectural state depends on the processor’s support for
implementing its Instruction Set Architecture. In the case of IA-64 processors,
the guiding choice was the backward compatibility with IA-32 binaries. As a
direct consequence, current IA-64 processors (e.g. Itanium family) integrate a
hardware implementation of the IA-32 architecture. Probably this support will
disappear in the years to come if the software environment will be enough mature
for IA-64 (e.g. applications migrated to IA-64, compilers capable of taking
advantage of the IA-64 performance). In the meanwhile, the IA-32 will still be
present in the IA-64 processors. The only concern is how to make the CISC
architecture of IA-32 taking advantage of the underlying VLIW architecture of
IA-64.

The hardware implementation of the IA-32 architectural state on IA-64
processors is composed of three elements: register file, instruction set and
memory layout. This hardware implementation practically produces an IA-32
virtual processor inside the IA-64 processor. The elements of this hardware
implementation are as follows:

1. Register file: The IA-64 processors provide hardware support for the IA-
32 register file by mapping the IA-32 registers on the native IA-64 register
file. All IA-32 registers (general registers, IP, EFLAGS, segment registers,
FPU, MMX and SSE [8]) are mapped on equivalent IA-64 registers. The
IA-32 registers reserve only the lower 32 bits of the 64 bit registers, the
upper half being either sign-extended or zeroed. As the number of the IA-
64 registers is extremely large compared to the IA-32 register file, only a
subset of these registers are used when running in the IA-32 architectural
state (for a complete description of IA-32 register mapping on IA-64
register file see [9], [10]). However, a subset of the IA-64 register file is
shared between the two architectural states, so these registers can be
modified in any of these two architectural states. In order to preserve the

 47

integrity of an architectural state, the shared registers should be saved and
restored when switching between IA-32 and IA-64.

2. Instruction set: The IA-32 instruction set is hardware implemented: any
instruction defined in the IA-32 instruction set can be executed on the
Itanium processor. This capability of executing IA-32 instructions is
activated by a switch to the IA-32 architectural state. Outside this state,
the IA-32 instructions are not recognized as valid instructions. When
running in the IA-32 architectural state, the instruction stream is filtered
by a processor sub-component (the iVE – intel Value Engine) which
translates the IA-32 instructions into IA-64 instructions (Figure 4.3). As a
consequence of this processor design, the IA-32 instructions are executed
as native IA-64 instructions. The performance of the IA-32
implementation depends on the capability of the IA-32 hardware
emulation to take advantage of the native IA-64 architecture. There is an
important conceptual difference between IA-32 and IA-64 as one is
defined as a CISC architecture, while the other is VLIW architecture. The
main requirement of VLIW architecture is to provide dependency-free
instructions in each instruction bundle as no mechanism at hardware level
is provided to detect and prevent these dependencies. This task should be
performed at software level by the VLIW compiler when translating the
high-level code (e.g. C/C++) into IA-64 assembler instructions. For IA-32
instructions, there is no requirement for a dependency-free relation, so the
task of dependency detection and resolution is performed by the IA-32
emulation component (the iVE), which induces a performance overhead
for executing IA-32 instructions. Moreover, the task of translating IA-32
instructions into IA-64 instructions and packing them in bundles is also
time-expensive which inevitably induces slower performances when
running IA-32 instructions on IA-64 processors.

3. Memory layout: The IA-32 memory layout contains conceptual

differences with the IA-64 memory layout and therefore it requires a
special implementation on IA-64 processors. The IA-32 memory layout is

IA-64
instructions IA-32 instructions

IA-64 instructions

iVE (intel Value
Engine)

Translation of
IA-32

instructions

IA-64
Execution

Engine

Figure 4.3: Hardware support for IA-32 ISA

 48

essentially based on two management strategies: segmentation and
paging. The segmentation mechanism was introduced in the x86-family to
offer protection mechanisms between tasks sharing the same address
space. This memory model was extended by the paging mechanism with
introduction of virtual address spaces. The paging mechanism provides at
the same time the management of virtual address spaces (mapping
memory from physical to virtual memory locations), but also protection
mechanisms as each virtual page has access rights. With introduction of
the virtual address spaces, tasks are no longer required to share the same
address space. The virtual address space itself becomes the protection
mechanisms between tasks. However, there is an additional protection
requirement inside a virtual address space: protect the kernel code from
user access. This protection requirement could be fulfilled by associating a
privilege level to each operation on the page (read, write, execute). In this
way, the user access on kernel pages can be prevented by limiting the user
access rights on these pages. This memory model was actually adopted in
the native IA-64 memory model. This approach eliminates the
segmentation mechanism from the initial IA-32 memory model, which
became on the same redundant with the virtual address space mechanism
concerning the task protection and harder to manage than the paging
mechanism. The implementation of the IA-32 memory model on IA-64
processors can rely on the native IA-64 memory model for some
mechanisms like paging, but requires also implementation of specific
mechanisms for the IA-32 memory model like segmentation.

The following IA-32 memory mechanisms can be supported by the
IA-64 memory model:

• The IA-32 memory addressing (e.g. Instruction Pointer, direct

memory addressing): This mechanism is compatible with the IA-64
memory model as memory addresses defined on 32 bits in IA-32 can
be extended to 64 bits by zeroing the upper 32 bits. Therefore, it is
noticeable that the size of the address space is limited to the lower 4 GB
(232 bytes) of the initial 264 byte address space when running in IA-32
architectural state.

• The IA-32 paging mechanism: On IA-32, this mechanism supports

page sizes of 4 KB and 4 MB. This approach is compatible with the IA-
64 memory model as these page sizes are also supported by the IA-64
paging mechanism. Therefore, the IA-32 paging mechanism can fully
rely on the IA-64 memory model (e.g. page tables, page fault handling).

In conclusion, the memory addressing and the paging mechanism

of IA-32 can rely on the equivalent mechanisms of the IA-64 memory
model. However, the conceptual difference between IA-32 and IA-64
memory models is represented by the segmentation. This memory
mechanism cannot be handled natively by the IA-64 memory model and it
requires a special implementation. This implementation should be

 49

IA-32
addresses

IA-64
addresses

Segmentation

(iVE)

Paging
(MMU)

Zero
Extension

(iVE)

Virtual Address
Space (64 bit) Hardware

Address Space

64 bit page
handling

Figure 4.4: Memory addressing in IA-32 and IA-64 modes

provided by the IA-32 emulation component (the iVE) as this hardware
component receives the IA-32 instruction stream. The translation process
of an IA-32 instruction to an IA-64 instruction should convert the memory
addresses of arguments according to the segment layout (Figure 4.4). Any
IA-32 segmentation fault can be acknowledged at this level and triggered
as an exception. However, this segmentation mechanism assumes that the
appropriate segment layout has been setup previously from switching the
processor’s architectural state to IA-32. This task should be performed by
the operating system. The segmentation mechanism induces an additional
performance overhead in translating IA-32 instructions into native IA-64
instructions.

 50

4.4 Horizontal design: IA-32 emulation layer on an IA-64
kernel

The best design approach for an Itanium based operating system is the
“Native and Secondary Architectures” discussed in section 3.6. The IA-64
represents the native architectural state, while the IA-32 architecture can be
considered as the secondary architecture.

This design approach provides an IA-64 kernel which natively performs
IA-64 kernel services and an IA-32 emulation layer which provides emulated IA-
32 kernel services. The IA-32 emulation layer simply establishes a
communication channel between the IA-32 threads and the IA-64 kernel.
Generally speaking, a communication process can be established if the two
partners are “speaking the same language”. This is actually not the case with the
IA-64 kernel and the IA-32 threads: the IA-64 kernel supports only the native IA-
64 kernel interface, while the IA-32 threads access this interface according to the
IA-32 specifications. This communication incompatibility is generated by the
differences in data type representation between the two architectures: on IA-32,
both the long and the pointer occupy 32 bits, while on the IA-64, these data types
are represented on 64 bits. When the arguments required by the communication
protocol involve these two data types, compatibility issues in communication may
appear. As a consequence, the communication channel has to provide a
mechanism to solve any communication issue generated by the incompatibility in
data type representations. This mechanism acts like a translator enabling
communication between “speakers with different languages”. This solution
provides architecture transparency for IA-32 threads: an IA-32 thread cannot
make the difference between running on an IA-32 operating system and running
on an IA-64 operating system.

Besides the interface compatibility with IA-32 threads, the IA-64 kernel
should also provide support for IA-32 faults and traps. This requirement is due to
an implementation aspect of Itanium processors which states that all types of
interrupts will be handled in the native IA-64 mode (see section 4.3.2). Even if a
subset of IA-32 faults and traps are triggered as native IA-64 exceptions (e.g.
page fault), most of the IA-32 exceptions require special handling.

The emulation of the IA-32 system interface and the IA-32 exception
handling are the main issues of the IA-64 kernel support for the IA-32
architectural state. In addition, the kernel has to offer support for the IA-32
memory segmentation (by properly initializing the segment related tables and
registers) and to handle context switches between the IA-32 and the IA-64 user-
level binaries.

 51

4.4.1 IA-32 Emulation Layer

 This mechanism emulates the IA-32 system interface for interaction with
IA-32 threads. As described in section 3.6.1, the system interface is composed of a
functional interface and kernel-user shared data. The functional interface
consists of an orthogonal set of system calls, each system call providing access to
a kernel service. When performing a system call, the user-level binary has to
respect the exact definition of the system call interface. The system call interface
is described in terms of arguments to provide for the system call function and
results to be returned to the user-level binary. Two mechanisms are employed for
exchanging arguments over the system call interface, either using the
architectural registers or the virtual memory layout. The communication over the
register file has the advantage of being much faster than the memory
communication. The advantage of being faster is balanced as everywhere in
computing by the limited size. Even if registers are a faster way for exchanging
arguments, there are cases when their storage capacity cannot hold the entire
stack of arguments required to be exchanged between the user-level binary and
the system call function. In those cases, the memory becomes the only suitable
alternative. The memory has the advantage of being large enough to store
arguments, but on the other side, it provides much slower access to data then
registers and sometimes, due to page faults, it can induce a considerable
performance overhead. The IA-32 emulation layer has the task of adapting both
types of communication: register-based and memory-based (Figure 4.5).

IA-64 arguments

User level
IA-32 arguments

Kernel level

System call
(IA-64)

Binary
(IA-32)

IA-32
Emulation

Layer

Figure 4.5: IA-32 Emulation Layer

Binary
(IA-64)

IA-64 arguments

 52

The main issue of the IA-32 emulation layer is the incompatibility in data

type representation of long and pointer on IA-32 and IA-64. This data
incompatibility requires a data conversion mechanism. This mechanism is
composed of two stages according to the direction of the argument stream
(orientated to/from the system call function):

a. Data conversion of parameters: This stage provides data conversion of IA-

32 arguments to IA-64 arguments according to IA-64 system call
specification. This operation is performed whenever the IA-32 user-level
binary issues a system call and arguments are provided. This data
conversion process usually sets the 32 unused bits in the IA-64 arguments
with default values (e.g. 0 or -1 depending on system call specification)
and leaves unmodified the information provided in the original IA-32
arguments. This data conversion mechanism doesn’t induce any loss of
information. When IA-32 arguments are provided using the register file,
one should also consider the sign extension of 32 bit arguments induced
by transition to IA-64 mode.

b. Data conversion of results: This stage provides data conversion of IA-64

arguments to IA-32 arguments according to IA-32 system call
specification. This operation is performed whenever the IA-64 system call
intends to return the results to the calling IA-32 user-level binary. This
data conversion process may induce loss of information as 32 bits of the
64 bit results will be “cut off” in order to adjust their size according to the
IA-32 system call specification. This loss of information may cause
unwanted effects, like abnormal functioning or even crashing of certain
IA-32 user-level applications. Therefore, special care has to be taken case
by case in order to avoid the loss of information. To achieve this goal, the
32 bits to be cut off should contain no significant information (only default
values). One way to comply with this requirement is to define a receiver-
dependent strategy for arguments: information is contained on 32 bits
when the receiver is an IA-32 thread. As such, data conversion of
arguments to IA-32 specification avoids the loss of information. An
efficient solution to this problem is the “inflation” mechanism: the
information is stored on the least significant 32 bits, while unused 32 bits
are simply initialized with default values (e.g. 0 or -1 based on system call
specification). The “deflation” process will safely retrieve the information
without loss of data (Figure 4.6). However, this approach is not generally
applicable, especially when the sender assumes that receiver is an IA-64
thread. This case is usual for kernel services which assume that the
requester is an IA-64 thread. The only scenario when the “inflation”
mechanism could be applied is the IPC communication between IA-64 and
IA-32 threads.

 53

4.4.2 IA-32 Exception Handling

All exceptions triggered on Itanium processor are serviced in the native
IA-64 mode. As such, exceptions raised during execution of an IA-32 binary
require IA-64 exception handlers. Whenever an IA-32 instruction triggers an
exception, the processor automatically switches from the IA-32 to the IA-64
architectural state (see section 4.3.2). The first step in exception handling is
saving the register context. As described in section 4.3.2, the IA-32 registers
occupy only a subset of the IA-64 register file. Therefore, only this register subset
needs to be preserved during IA-32 exception handling. The next step in
exception handling is activation of the appropriate handler. The IA-32 exceptions
are triggered either as native IA-64 exceptions (e.g. Page Fault which allows
integration of IA-32 page fault handling in IA-64) or as IA-32 exceptions. The
latter case requires special IA-64 exception handlers as described in [9]. Once the
exception is handled, the final step is restoring the register context. If the kernel
decides to return the processor control to the faulting IA-32 thread, the previous
register context should be restored. The switch to the IA-32 architectural state
will be performed automatically by issuing the rfi instruction (Figure 4.7).

Valuable
information

Figure 4.6: The inflation mechanism

Default values
(e.g. 0 or -1)

Kernel level

User level

rfi

IA-32
thread

IA-64
exception
handler

Figure 4.7: IA-32 Exception Handling on IA-64

Fault

IA-64
mode

Save
context

IA-32
mode

Restore
context

 54

4.4.3 IA-32 Memory Segmentation

The memory model of the IA-32 architecture has some conceptual
differences with the IA-64 memory model, namely the segmentation mechanism.
These differences are solved by implementing the IA-32 memory model at
processor level (see section 4.3.2). Therefore, the IA-32 instructions are able to
transparently use the IA-32 memory model on Itanium processors. However, the
support for the IA-32 memory model at hardware level still requires memory
management at kernel level. The kernel should manage the page tables (for
paging mechanism) and the segment tables (for segmentation mechanism). The
page tables are natively managed by the IA-64 kernel in behalf of the IA-32
threads as IA-32 page faults are triggered as IA-64 page faults. On the other
hand, the segmentation is not a native IA-64 memory mechanism, so the IA-64
kernel doesn’t have implemented support for segment tables. However, the IA-32
binaries require a suitable segment layout, so this mechanism has to be
introduced in the IA-64 kernel. This mechanism should properly initialize all
segment selectors (CS, DS, SS, ES, FS, and GS), segment descriptors (CSD, DSD,
SSD, ESD, FSD and GSD) and segment tables (GDT, LDT and TSS) before
activating the IA-32 architectural state. Generally speaking, the segmentation
was introduced in x86 family to provide protection mechanisms between
processes sharing the same address space. When having only one task per virtual
address space, there is no actual need for segment protection. The only protection
concerns the kernel code which may reside in the user address space. The fact
that IA-32 binaries can physically access only the first 4 GB automatically induces
a protection mechanism: the IA-64 kernel can be placed at memory addresses
greater than 4 GB and thus forbidding access on kernel code to any IA-32 user-
level binary. As a consequence, both paging access rights and segmentation
become useless for kernel code protection as the kernel code is not even residing
in the memory region physically accessible to IA-32 user-level binaries. However,
this optimistic approach must provide an answer concerning the location of the
segment tables: this kernel data is required by the IA-32 execution environment
and it must be placed in a memory region below the 4 GB architectural limit. The
first approach is to use the segment protection and to limit the size of the user
segment below the memory area used to store the segment tables (as
implemented in Linux IA-64 [4] - Figure 4.8). An alternative approach is to use
the paging protection for memory pages storing segment tables. These memory
pages will provide access rights only for kernel’s privilege level. As such, a flat
segment model can be implemented, which completely eliminates the need for
segment protection.

 55

4.4.4 Transition between IA-32 and IA-64

The transition between IA-32 and IA-64 requires three phases at kernel
level: architecture switch to target architecture, saving the register context of the
previous architectural state and restoring the register context of current
architectural state. The architecture switch is performed either explicitly by the
kernel (e.g. in IA-32 emulation layer) or automatically by the processor for
exception handling (see section 4.3.2). In both cases, the kernel has to perform
the task of context saving and restoring. This task of register preserving across
architectural switch is required in a variety of execution scenarios: system calls
performed by an IA-32 thread (Figure 4.9), preemption (Figure 4.10) and
activation (Figure 4.11) of IA-32 threads, IA-32 exception handling (Figure 4.7).
All these scenarios can consider the task of context saving and restoring as
regular switches between two threads, even if these particular cases involve
different architectural threads. However, there is an advantage for customizing
the context switch for cases involving IA-32 threads: the IA-32 execution
environment employs only a small subset of the IA-64 register file. From the
point of view of an IA-32 thread, only this subset needs to be saved and restored
(see section 4.3.2). This approach reduces considerably the amount of work for
saving and restoring the register context of an IA-32 thread.

264 B

User
segments

Not accessible
to IA-32 code

4 GB

0

Data

Code

Figure 4.8: Memory layout for IA-32 user-level binaries

Stack

Kernel

GDT, LDT, TSS

 56

Kernel level

User level

Figure 4.9: System call performed by an IA-32 thread

br.ia

IA-32
thread

System
call

jmpe

IA-64
mode

Save
context

IA-32
mode

Restore
context

rfi Kernel level

User level

Figure 4.10: Scheduler preempting an IA-32 thread

Timer
interrupt

IA-64
thread

Scheduler

IA-64
mode

Save
context

Restore
context

IA-32
thread

 57

4.5 Vertical design: L4Ka::Pistachio

 The vertical design defines the kernel services of an MA/OS. The choice for
the L4 microkernel is based on the advantages introduced by the microkernel
technology:

1. minimalism: L4 defines only a few kernel abstractions, a reduced system
call interface and a low amount of global data structures

2. uniform communication interface: any communication process in L4

is conducted over a single communication mechanism, the IPC system call

3. flexibility: the microkernel can be tailored to meet specific requirements

for an operating system

4. portability: providing kernel instances for different architectural states

requires a low amount of code translation due to reduced size of the
kernel’s code

 The L4 microkernel is the most recent approach in microkernel technology
and it provides excellent results in a critical microkernel area like the IPC
mechanism. The message passing is the foundation of microkernel based
operating systems and the performance of this mechanism influences the overall
performance of the operating system.
 For a complete description of L4 system interface and data types, see [11].

Timer
interrupt

Kernel level

User level

Figure 4.11: Scheduler activating an IA-32 thread

IA-64
thread

Scheduler

IA-32
mode

Restore
context

Save
context

IA-32
thread

rfi

 58

4.6 Co-design process of the MA/OS

The design process of a MA/OS requires two orthogonal sub-designs: the
horizontal design which provides a solution to the architectural heterogeneity of
the computing system and the vertical design which provides the kernel services
independent of any architectural state.

The best suitable horizontal design for an Itanium based system is the
“Native and Secondary architectures” (see section 3.6). The main issues of this
design model were discussed previously in this chapter (see section 4.4). These
issues generally apply to any MA/OS build on top of an Itanium based system.

The choice of this experimental approach for a vertical design is the L4
microkernel (see section 4.5). The microkernel technology looks very promising
for designing MA/OSs, mostly due to minimalism in kernel abstractions and
global data structures.

Given the horizontal and the vertical designs, the main question is the way
to couple these two sub-designs. In this case study, the base of the global design
is the L4 microkernel, as it provides the kernel services. The horizontal design
(the IA-32 emulation layer) is only a solution on how to adapt a kernel structure
to comply with the architectural heterogeneity of the computing system.

The global design has some specific requirements which influence the
construction of the operating system:

1. Provide operating system transparency for the IA-32 user-level binaries

The IA-32 user-level binaries are enabled to run on an IA-64 operating
system on “as is” basis, without any adjustments required. The IA-64
kernel has to adapt its system interface to support the IA-32 system
interface.

2. Reduce as possible the performance overhead for IA-64 user-level

binaries
The integration of the IA-32 support in the IA-64 kernel may induce a

performance overhead for native IA-64 binaries. This side effect should be
prevented or minimized as possible. User-level binaries are more likely to
use the IA-64 rather then the IA-32 (for computing performance), so the
performance overhead for IA-64 user-level binaries should be reduced as
possible.

These two requirements have an important influence on the kernel design

and implementation. One direct consequence is the modularity in implementing
the support for IA-32 user-level binaries: a separation of the IA-32 support from
the native IA-64 kernel is less likely to induce a performance overhead for IA-64
user-level binaries. This approach complies with the second requirement of this
design.

The global design must integrate the mechanisms of the horizontal design
into the vertical design while respecting the global design requirements.

 59

4.6.1 IA-32 emulation layer in Pistachio IA-64

Pistachio IA-64 should integrate the IA-32 system interface defined
according to the L4 specifications. The IA-32 system interface defined in L4
microkernel consists of a functional interface (the set of system call interfaces)
and shared user-kernel data structures (the KIP and the UTCB).

Each system call interface is described in terms of arguments to provide
for the system call functions and results to be returned to the calling thread.
These arguments can be provided either through the register file or through
shared user-kernel data (the UTCB). The register file provides a much faster way
to exchange arguments than memory and therefore, they have a higher usage in
the user-kernel communication process. In the case of L4, this method of passing
arguments is employed by all system call functions. However, in spite of the
performance advantage of register communication, there are cases when the
memory storage cannot be avoided, especially when the arguments cannot fit in
the register file. As a point in case, the message to be transmitted through an IPC
system call may be too large to fit in the register file. In this case, the arguments
that cannot fit in registers are written in memory in a reserved memory area,
both user and kernel accessible: the UTCB. Another reason for using the memory
storage for exchanging arguments is fast access on user-configuration data (the
TCR) and on kernel-configuration data (the KIP). Direct access on these data
structures prevents the overhead of a system call for retrieving this information.

In short, the L4 system call interface is defined using the register file and
user-kernel shared data (UTCB and KIP). Both methods of transferring
arguments are architecture specific: the structure of the register file depends on
the CPU architecture, while the UTCB and the KIP contain data types which have
architecture specific representations. As a consequence, the IA-32 system
interface has a different implementation from the IA-64 system interface. The IA-
32 system interface will be integrated in the IA-32 emulation layer.

The first element of the L4 system interface is the functional interface,
composed of a set of system calls. The implementation of a system call is
structurally divided in two stages: the system call stub and the system call
function. The system call function is the stage practically performing the kernel
service, while the system call stub is only the system call interface which handles
the interaction with the outside world (the user-level binaries). The system call
stub handles all issues related to arguments: availability, correctness according to
specification, data conversion. This structural separation of the system call
implementation enables the support for different system call interfaces: a system
call stub will be provided according to the target specification, while the system
call function itself remains unmodified. This approach reduces considerably the
task of an emulation layer. The IA-32 emulation layer has only to provide the IA-
32 system call stubs in order to achieve IA-32 system call compatibility (Figure
4.12).

 60

The IA-32 system call stubs mainly provide a data conversion mechanism

between IA-32 and IA-64 argument specifications.
The first stage of this mechanism is to locate the arguments. The

arguments have architecture-specific locations: in the register file, a register
location on IA-32 may be different than the required location in the IA-64 system
call interface, while in memory, data types are aligned according to a specific data
type representation. The solution for register communication is to access the
register locations either as defined in the IA-32 specification (when receiving
arguments from the IA-32 user-level binary) or according to the IA-64
specification (when receiving arguments from the IA-64 system call function).
Considering the shared memory communication, the shared data structures are
encoded according to the IA-32 data type representation. This approach is a
consequence of the first design requirement to provide operating system
transparency for the IA-32 user-level binaries. The IA-64 system call function can
choose to access the shared memory through a data conversion mechanism.
However, this approach doesn’t comply with the second design requirement:
modification of the kernel access mechanism on shared memory may involve an
important performance overhead for the IA-64 user-level binaries. The best
suitable approach in this case is the usage of logical shared data (see section
3.6.1).
 The second stage of the data conversion mechanism is to provide
argument translation between IA-32 and IA-64 argument formats. Among the
primitive data types, only the long and the pointer have different representations
on IA-32 and IA-64 architectures. In addition to these primitive types, L4
arguments with associated semantics have also different representations on IA-

Kernel level

IA-32
thread

IA-32 System
call stub

System
call

function

User level

IA-64 System
call stub

IA-64
thread

Figure 4.12: Structural composition of a system call

 61

32 and IA-64: thread id, fpage, IPC-related data types (map item, grant item,
string item), schedule-related data types (clock, time).

The data conversion process is performed whenever an IA-32 thread
attempts to communicate with the kernel or with another thread. These
communication scenarios are as follows:

a. IA-32 thread – kernel: This communication process is initiated by the IA-

32 thread, so the emulation layer intervenes to mediate the
communication between the IA-32 thread and the system call function:
the arguments provided by the IA-32 thread are converted into IA-64
arguments and they are delivered to the system call function. In addition,
IA-64 results provided by the system call function are converted according
to IA-32 specification and returned to the IA-32 thread (Figure 4.13). This
latter stage raises most of the questions: the system call function assumes
(as it is normally intended) that the communication partner is an IA-64
thread and thus the results have to be provided according to IA-64
specification. Stepping down the arguments from 64 bit to 32 bit
representation may eventually cause loss of information. Fortunately, the
system call function was invoked from an IA-32 execution context and this
fact may partially solve the data conversion issue: pointers and other
“litigious” data types are issued by the IA-32 thread and therefore the
system function should perform its work biased by the IA-32 context.
However, this “fortuned” scenario cannot be guaranteed as an all-purpose
solution, so the possibility of implementing a correct IA-32 emulation
layer lies only on how kernel designers thought on this inter-architectural
compatibility when specifying the system call interfaces. A suitable
approach to solve the argument compatibility issue is to specify system call
results using only 32 bit information. The L4 system call functions are
either issuing return codes using less than 32 bits (on both IA-32 and IA-
64) or simply providing information concerning the invoking thread (in
the case of an IA-32 thread this information will regard only 32 bits of the
64 bit arguments).

 62

b. IA-32 thread – IA-64 thread: The frequency of this communication case is

limited by the fact that IA-64 thread identifiers cannot always become
accessible to IA-32 threads: as the IA-64 thread identifiers are represented
on 64 bits, stepping down to 32 bit thread identifiers may induce loss of
information and deliver a different thread identifier than the original one.
One way to verify if an IA-32 thread is able to access an IA-64 bit thread
identifier is to perform a thread id conversion test: the thread identifier is
stepped down to 32 bits and then “inflated” to the 64 bit representation
using default values based on specification. If the initial thread identifier
and the resulted one are identical, communication between the IA-64
thread and any IA-32 thread can be established (Figure 4.14).

2. Inflation
1. Data

conversion

64 bit
thread id

32 bit
thread id

64 bit
thread id

3. Should
be identical

Figure 4.14: Thread id conversion test

Kernel level

IA-32
thread

Data
conversion

to IA-64

Data
conversion

to IA-32

System
call

function

User level

Figure 4.13: Communication between an IA-32 thread and the kernel

 63

Once assuring that communication can be established, the IA-32
thread is able to initiate the communication process with the IA-64 thread
without any further concern: the emulation layer “inflates” the IA-32
arguments to IA-64 equivalent arguments and invokes the IPC system call
function. From this point on, there will be no other concern for data
conversion: the receiver is a native IA-64 thread and it receives the results
in the 64 bit format (Figure 4.15).

c. IA-64 thread – IA-32 thread: The frequency of this case is also limited by
the same reason as described previously in IA-32 thread – IA-64 thread
communication: the IA-32 thread should be able to correctly retrieve the
thread identifier of the sender. Even if a wrong thread identifier is
retrieved due to data conversion mechanism, the actual communication
process is not directly disturbed. However, this side effect can influence
further communication processes if the IA-32 thread relies on the sender’s
identifier received during previous communication process. Therefore, the
thread id conversion test should be employed as previously to guarantee
that the IA-64 thread identifier will be correctly received by the IA-32
thread. This communication process is initiated by the IA-64 thread, so no
data conversion is required when providing the arguments to the system
call function. However, a data conversion process is required when
returning the results to the IA-32 thread. In addition, the IA-64 thread
should be aware that results will be stepped down to 32 bits and thus to
provide arguments using only 32 bit information (Figure 4.16).

Kernel level

IA-32
thread

Data
conversion

to IA-64

System
call

function

User level

IA-64
thread

No data
conversion

required

Figure 4.15: An IA-32 thread sending an IPC to an IA-64 thread

 64

d. Between IA-32 threads: This communication scenario raises no particular
issue: arguments are provided using 32 bits and they are returned using a
32 bit representation. Therefore, any loss of information is avoided. The
only possible remark is the overhead induced by the emulation layer: even
if two IA-32 threads are communicating, arguments may still be converted
to 64 bit format in order to be properly acknowledged by the system call
function. In addition, results of the system call function are provided in a
64 bit format, so they have to be stepped down to 32 bits. In consequence,
two data conversion stages are introduced in the execution stack of this
communication process even if they may not be required (Figure 4.17). L4
microkernel provides two IPC implementations: the fast path and the slow
path. The fast path is an optimized IPC mechanism for a specific
communication case. The unnecessary conversion process of IA-32
arguments to IA-64 format may be avoided by offering a specific
implementation of the fast path IPC. However, communication cases
which don’t apply to fast path IPC must use the slow path IPC. In this case,
the IA-32 system call stub invokes an IA-64 system call function which
handles the IPC communication in a generic manner. Arguments will have
to be provided in IA-64 format and results to be converted to IA-32.
Therefore, this approach introduces unnecessary data conversion stages.

Kernel level

IA-32
thread

Data
conversion

to IA-32

System
call

function

User level

IA-64
thread

Figure 4.16: An IA-64 thread sending an IPC to an IA-32 thread

 65

 These communication scenarios show different issues to tackle, starting
from an appropriate system call interface for inter-architectural communication
to the awareness of the architectural state of the communication partner. The L4
microkernel has a suitable system call interface for IA-32 and IA-64 inter-
communication: all IA-64 data types are defined in L4 as an extension of the IA-
32 data types. The only requirement concerns the IA-64 threads: they should be
aware that the communication partner is an IA-32 thread and to provide
communication arguments correctly acknowledgeable by the IA-32 thread.

The entry points of the IA-32 system call stubs have to be made accessible
to the IA-32 user-level binaries. On L4, a thread is capable to access directly the
entry point of a system call by consulting its memory address in the KIP.
Therefore, these system call stubs should be placed at memory locations
accessible to the IA-32 user-level binaries. Considering the IA-32 execution
environment, the memory layout is limited to the first 4 GB of the IA-64 virtual
address space. As a consequence, the system call entry points should be placed in
the memory region below the 4 GB limit. Different approaches for this problem
may be envisaged:

a. Place the kernel below the 4 GB limit, including the IA-32 system call

stubs: However, this approach is not efficient from the point of view of the
IA-32 threads as the IA-64 kernel will occupy some of their address space.
Therefore, the best suitable approach is to place the kernel in the upper
region of the address space and thus freeing up the 4 GB memory space for
IA-32 threads.

Kernel level

IA-32
thread

Data
conversion

to IA-64

System
call

function

User level

IA-32
thread

Figure 4.17: An IPC between two IA-32 threads

Data
conversion

to IA-32

 66

b. Place the IA-32 system call stubs below the 4 GB limit and the kernel
outside the 4 GB limit: This approach solves all the problems met in the
previous scenario. However, it requires placing some of the kernel code
(the IA-32 system call stubs) in the user-accessible memory space. If the
IA-32 system call stubs are linked together with the kernel image, this
binary code should be mapped in the memory region below 4 GB (Figure
4.18).

c. Provide a system call trampoline below 4 GB and place the kernel together

with the IA-32 system call stubs outside the 4 GB limit: In this approach,
the kernel code is placed completely outside the user-accessible memory
space. The trampoline provides indirect entry points for the actual system
call entry points. When a thread invokes a system call, the system call
entry in the trampoline will provide a jump to the actual entry point in the
kernel. This approach solves all problems met in previous scenarios.

 Besides the functional interface, the L4 microkernel provides also shared
data structures for user-kernel communication. The shared structures should be
handled as follows in order to comply with the design requirements:

a. The Kernel Interface Page (KIP): The KIP stores information concerning
the kernel configuration. The user-level binary can read this information
directly from the KIP, but it has no access right to modify this data. As
defined in current L4 specification [11], only one KIP structure is provided
per address space. The structure of the KIP is architecture dependent, so
the IA-64 threads should be able to directly access a KIP structure
represented on 64 bits, while the IA-32 threads should be able to access a
KIP structure on 32 bits. Besides providing the appropriate data type
representation, the IA-32 compliant KIP structure should provide the
system call entry points as defined in the IA-32 system call interface.
When the address space contains only one architectural type of threads
(either IA-32 or IA-64), the kernel can provide only one KIP structure,

0

4 GB

264

Figure 4.18: Mapping of IA-32 system call stubs

Map IA-32 stub code
from kernel to user

accessible area

 67

formatted according to the nature of the threads sharing the address
space. The alternative is represented by the co-existence of different
architectural types of threads in the same address space. In this case, an
IA-64 compliant KIP and an IA-32 compliant KIP have to be provided
(Figure 4.19). In addition, the L4 functional interface should provide an
appropriate system call for setting multiple KIP structures per address
space. A solution is to use the Space Control system call to provide
memory locations for different KIP structures associated with different
space control values. The KIP structure will be formatted according to the
space control value. In addition, the system call providing the KIP address
(Kernel Interface) should deliver the appropriate KIP structure according
to the nature of the calling thread.

b. User-level Thread Control Block (UTCB): This data structure stores
information concerning the thread configuration (TCR) and the
communication arguments for the IPC system call (MRs and BRs). This
shared memory is both kernel and user writable as it serves as a
communication support for exchanging arguments between the user and
kernel. The structure of the UTCB is architecture dependent, involving
“litigious” primitive types (long), but also most of L4 data types. An IA-32
thread should be able to access its UTCB structure according to IA-32
specification in order to guarantee operating system transparency. In the
same time, the IA-64 kernel is constructed to access the UTCB structure
according to native IA-64 specifications. The solution to this
communication problem lies on using logical shared data: two UTCB
structures are provided, an IA-32 compliant structure and an IA-64
compliant structure. The IA-64 kernel is able to access its UTCB structure,
while the IA-32 thread will access the IA-32 compliant UTCB structure.
The missing part is an appropriate coherency mechanism to guarantee

KIP32
IA-32

system
call stub

264

Kernel

SC function

232

Figure 4.19: Coexistence of two KIPs

SC address

KIP64
IA-64

system
call stub

SC address

 68

that these two copies contain the same information. Different strategies
concerning coherency mechanisms were discussed in section 3.7.2 and a
functional design was already presented in section 3.6.1. The basic
approach is to provide data coherency of replicas at
activation/deactivation of an IA-32 thread and at invocation of the IA-32
system call interface (see section 3.6.1 for details). However, this approach
induces a performance overhead in activating/deactivating an IA-32 user-
level thread and performing an IA-32 system call.

This management policy of the shared user-kernel structures complies

with the global design requirements: the IA-32 thread has complete operating
system transparency by having access to data structures (KIP and UTCB)
formatted according to its specification. In addition, this approach prevents any
modification of the kernel access mechanism on shared data and thus complies
with the second design goal: minimize the performance overhead for the IA-64
threads.

4.6.2 IA-32 Exception Handling in Pistachio IA-64

 As described in L4 specification [11], each thread may have an associated
thread which handles at user level the cause of the exception. When a thread
triggers an exception, the kernel exception handler sends an exception IPC to
associated exception thread. The exception IPC has an architectural dependant
format, so the kernel exception handler should verify the nature of the associated
exception thread before sending the exception IPC. An IA-32 thread may have
either an IA-32 or an IA-64 exception thread associated (Figure 4.20). The
default case in L4 exception handling is having no exception thread associated. In
the default case, an IA-32 thread will be halted.

IA-64
exception

format

IA-32
exception

format

Kernel level

User level

IA-32
faulting
thread

Kernel
exception
handler

Figure 4.20: IA-32 Exception Handling in Pistachio IA-64

Fault

IA-32
exception

thread

IA-64
exception

thread

 69

4.6.3 IA-32 Memory Segmentation in Pistachio IA-64

 The kernel must setup the segment tables for the IA-32 threads. This
process is required whenever an IA-32 thread becomes active. Therefore, the task
for setting up the segment registers should be integrated in the scheduler. In
order not to alter the scheduling performance of IA-64 threads, this task should
be implemented in specific IA-32 functions related to resource loading/saving. If
the kernel resides outside the 4 GB limit of the IA-32 address space, the segment
layout can be initialized using the flat segment model.

4.6.4 Transition between IA-32 and IA-64 in Pistachio IA-64

 Different scenarios require transition between these two architectural
states. In all cases, the main requirement is to preserve the register context of a
thread across architecture switch. The IA-32 threads employ only general
purpose registers (see the IA-32 register mapping on IA-64 register file [9]),
while IA-64 threads employ register frames [9] requiring no saving/restoring of
registers during direct invocation of a system call. So, the preservation of the
register context is only related to the general purpose registers employed by the
IA-32 threads. These registers can be modified by the kernel or other thread
activity, so they should be saved and restored according to the IA-32 thread.
Another requirement is to assure that the IA-32 segment layout and other IA-32
architectural registers (EFLAG, FSR, FCR, FIR, and FDR [9]) are in place before
activating the IA-32 thread. Of course, the IA-64 threads are not concerned by
this operation.

 This design process is an example of co-designing of an MA/OS starting
from a horizontal design (Native and Secondary Architectures) and a vertical
design (L4 microkernel). This design leads to an implementation based on the
L4Ka::Pistachio. The evaluation of this experimental approach will be presented
in the following chapter.

 70

Chapter 5

Evaluation of the implementation

 This chapter evaluates the suitability of the MA/OS design based on the
Itanium processor and the L4Ka::Pistachio. We first study the fulfillment of the
design requirements. Once guaranteeing the respect of design requirements, a
performance analysis of the implementation is undertaken to study the suitability
of the theoretical solution.

5.1 Evaluation of design requirements

The main goal of the implementation was to verify that the design issues
were properly tackled and the design requirements were fulfilled. These design
requirements were presented in the section 4.6:

1. The first design requirement was to provide operating system
transparency for the IA-32 user-level binaries. The current
implementation based on L4Ka::Pistachio provides a complete system
interface for the IA-32 user-level binaries:

a. IA-32 system call interface: an IA-32 user-level binary is able to issue
any system call according to the IA-32 specification of the L4
Version X.2 API [11]

b. IA-32 compliant Kernel Interface Page (KIP): The kernel creates a
KIP object formatted according to the IA-32 specification in each
address space containing IA-32 threads.

c. IA-32 compliant User-level Thread Control Block (UTCB): Each IA-
32 thread has a UTCB structure formatted according to the IA-32
specification.

In short, an IA-32 thread is able to interact with the IA-64 kernel exactly
in the same way as interacting with the native IA-32 kernel. The first
design requirement concerning operating system transparency for IA-32
user-level binaries is thus fulfilled.

2. The second design requirement was to reduce as much as possible the
performance overhead for IA-64 user-level binaries. In contrast
with the first requirement, which is a functional criterion, this second
requirement is purely performance driven. The achievement of this design
requirement can be analyzed only through a benchmarking approach
concerning the performance of IA-64 threads. The main performance
criterion in a microkernel design is the IPC performance [13]. The IPC
performance was measured using two benchmarks: the first benchmark

 71

0

200

400

600

800

1000

1200

1400

1600

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Message Registers

C
yc

le
s Without IA-32

With IA-32

uses a standard IA-64 kernel (without IA-32 support), while the second
benchmark is based on an IA-64 kernel with the IA-32 support. Figure 5.1
shows the results of both benchmarks concerning the regular IPC system
call (slow path). The experimental results show no increase of the number
of cycles in the second benchmark comparing with the first benchmark. In
conclusion, the introduction of IA-32 support in the IA-64 Pistachio
microkernel introduces no performance penalties for IA-64 user-level
binaries. This result complies with the second design requirement.

Figure 5.1: IPC performance (IA-64 – slow path)

5.2 Performance of IA-32 threads

The question which raises an important interest concerns the IPC
performance of IA-32 threads. In order to have a better understanding of each of
the factors influencing the IPC performance, two benchmarks were setup: the
first one analyzes the performance of the stub code in invoking the system call
function, while the second benchmark evaluates the cost in performing the
system call function.

The description of each benchmark and their experimental results are as
follows:

1. Performance of the stub code

This benchmark analyses the performance of the IPC system call stub. It
doesn’t involve actually an IPC operation between two threads, but requires only
an evaluation of the cost for preparing the context for issuing the IPC operation.

 72

Kernel level

IA-32
thread

Result
conversion

to IA32

User level

Argument
conversion to

IA64

Enter
kernel

UTCB 64
sync

Save user
context in

local frame

IPC system
call function

Load user
context from
local frame

UTCB 32
sync

Exit
kernel

Figure 5.2: IPC system call stub for IA-32 emulation layer

The IPC system call stub in the IA-32 emulation layer requires the following
phases:

- Entering/exiting the kernel with architecture switch
- Store/restore the thread’s register context
- Data conversion of arguments: eliminate sign extension and thread id

conversion
- Synchronize 32 bit UTCB and 64 bit UTCB

Figure 5.2 shows the architecture of the IPC system call stub for IA-32

threads, while Figure 5.3 shows the experimental evaluation of each phase for an
empty IPC (no message register).

 73

0

200

400

600

800

1000

1200

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Message registers

Figure 5.3: The cost of the IPC system call stub (IA-64 – slow path)

It is noticeable the important overhead in entering/exiting the system call

stub for IA-32 threads. This cost is artificially introduced by the user-level
application: when performing an IPC system call using a user-level library
function, there is a hidden overhead in entering the kernel induces by this user-
level function. The architecture of this library function is roughly the same for
both IA-32 and IA-64 architectures, so the actual overhead is introduced by the
slow performance of the IA-32 architecture. The overhead of the library function
on IA-64 is actually of 80 cycles, while the remaining 40 cycles is the effective
kernel entry/exit. This quantitative result illustrates the slow performance of the
IA-32 architecture on Itanium. The total cost of the IA-32 system call stub is 975
cycles compared with the cost of the IA-64 system call stub of 315 cycles. The
overhead for IA-32 threads is of 660 cycles. However, this result applies only for
an empty IPC. When message registers are provided for IPC transfer, the
overhead for synchronizing the 32 and 64 bit UTCB replicas increases. Figure 5.4
shows the experimental results concerning the cost for synchronizing the UTCB
replicas for an increasing number of message registers.

Figure 5.4: The cost for UTCB synchronization

0

0

195

120

60

240

180

495

0 100 200 300 400 500 600

Argument
conversion

Syncronize
UTCB

Save/restore
registers

Stub entry/exit

IA-32 IPC
IA-64 IPC

 74

When 60 message registers are transferred, the overhead of the IA-32
system call stub increases to 1775 cycles (!).

2. Performance of the system call function

This benchmark evaluates the effective cost of sending a regular IPC

between two IA-32 threads. This cost is mainly induced by:
- the cost of executing the IPC system call function
- the cost for activating and deactivating an IA-32 thread: saving and

restoring the IA-32 architectural registers (segment registers, floating
point control registers, flags registers)

Figure 5.5 shows the execution phases of an IPC operation between two

IA-32 threads, while Figure 5.6 shows the experimental evaluation of each phase.

Save A’s architectural state
Load B’s architectural state

Thread
A

Thread
B

IPC
PRE

IPC
POST

IPC
PRE

IPC
POST

Figure 5.5: IPC operation between two IA-32 threads

Save B’s architectural state
Load A’s architectural state

 75

0

500

1000

1500

2000

2500

3000

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Message Registers

Cy
cl

es IA-64 IPC
IA-32 IPC

0

0

605

155

185

605

0 200 400 600 800

Load
architectural

registers

Save
architectural

registers

IPC function

IA-32 IPC

IA-64 IPC

Figure 5.6: The cost of performing the IPC function (IA-64 – slow path)

 Therefore the overhead for IA-32 threads is induced by the task of
saving/restoring the architectural registers. These registers are stored in the TCB,
so the overhead is introduce by the memories accesses. This experimental
overhead is of 340 cycles.
 In conclusion, the total overhead for performing an empty IPC is of 1000
cycles (660 cycles from the system call stub and 340 cycles from performing the
system call function). The IPC performance for IA-32 threads is thus 2.1 times
slower (!) than the regular IPC (slow path) for IA-64 threads. A complete
overview of the IPC performance for IA-32 and IA-64 threads is illustrated in
Figure 5.7.

Figure 5.7: The IPC performance for IA-32 and IA-64 threads (slow path)

 76

By complying with the second design requirement and avoiding
performance penalties for the IA-64 threads, the entire performance overhead
has been leveraged out on the IA-32 threads. As a consequence, the performance
of the slow path IPC for IA-32 threads is considerably lower compared with the
native IA-64 IPC system call. An optimization is to provide a fast path IPC for
communication between IA-32 threads, which may reduce the performance
overhead. To provide a complete optimization of the IPC communication, an
additional fast path for communication between IA-32 and IA-64 threads should
also be provided. In addition to the IPC system call, all other L4 system calls
suffer the same performance overhead for IA-32 threads. This performance
overhead can be reduced by providing specific IA-32 implementations of each
system call function. This approach is partially taken by Linux IA-64 [4] for
system calls raising data incompatibility issues between IA-32 and IA-64.
However, in the L4 microkernel, the system call functions are the largest part of
the kernel’s code. This approach practically requires rewriting most of the
kernel‘s code. This cost can only be justified by a high-usage of IA-32 user-level
binaries on the Itanium processor.

 77

Chapter 6

Analysis

 This chapter evaluates the suitability of the theoretical design models
discussed in Chapter 3 with respect to the experimental results produced in
Chapter 5.

6.1 Functionality vs. Performance

The case study of the L4 microkernel and the Itanium processor shows a
kernel-level approach for architectural heterogeneity. The IA-64 kernel was
provided with two system interfaces, one for interaction with the IA-64 threads
and the other for interaction with IA-32 threads. The implementation showed no
performance penalties for the IA-64 threads, while the IA-32 threads experienced
an important performance overhead when performing system calls. This
overhead is due to design approach: the IA-64 kernel didn’t modify its internal
functioning for IA-32 threads, but it instead provided an IA-32 interface to
communication with IA-32 threads. This approach leverages an important
overhead on IA-32 threads, while the IA-64 threads are not affected. By
modifying the IA-64 kernel to access data structures according to IA-32
specifications, the global overhead would have been divided between IA-32 and
IA-64 threads. This approach would have reduced the overhead on IA-32 threads
considerably, at the expense of IA-64 threads.

The question is whether is possible to communicate across architectural
heterogeneity without performance overhead. Considering the first kernel design,
native and secondary architectures, user threads of any secondary architecture
will suffer performance penalties when invoking the kernel services for
communication. This fact is mainly due to data conversion mechanisms
performed at interface level between the user thread and the kernel. The second
kernel design, equal opportunity, introduces a kernel instance per each
architectural state. Communication between two architectural-identical threads
can be performed without any overhead, but overhead is introduced when
communicating between two heterogeneous threads: arguments of one thread
are converted by the IPC function according to data representation of the other
thread. In addition, this kernel design implies other requirements which may
introduce important performance penalties: coherency mechanisms for global
data structures at kernel level. In conclusion, each kernel design introduces a
performance overhead for communication across two heterogeneous threads.

A second approach which deserves to be studied is the user-level support
for architectural heterogeneity: support for heterogeneous computing is built on
top of independent kernel instances. An application knows its specific demands
in terms of heterogeneous computing and it may reduce the amount of data

 78

conversion and coherency of global structures to the required functionality.
However, this solution requires user-level mechanisms for synchronization
among user threads without using the kernel’s support. So, there is still no
guarantee that performance will increase in this solution. In addition, this
solution looses an important functional requirement: unmodified usage of
heterogeneous applications. Heterogeneous applications can no longer
communicate transparently by invoking the kernel services. They have to be
aware of the user-level mechanisms.

There are cases when the functionality is more important than computing
performance. Examples include the backward compatibility for a certain
architectural state and unmodified usage of user-level binaries of non-native
architectures (e.g. Itanium and IA-32). In both cases, the user-level binary cannot
adapt its behavior for a different architectural state of the kernel, so the kernel
must provide this support. In both cases, the kernel-level approach is the only
suitable solution to provide the required functionality.

6.2 The microkernel approach

The case study of L4 microkernel on Itanium processor reveals a useful
result: the advantages of microkernel technology in constructing Multi-
Architecture Operating Systems. The microkernel technology shows two native
characteristics which make them particularly attractive: the minimalism and the
uniform communication interface.
 The minimalism is the result of including in the kernel design only the
essential mechanisms to manage the hardware. Less essential services are built
on top of the microkernel and execute in user mode. The other approach to kernel
technology is the monolithic kernels which integrate all operating system services
within the kernel itself. The minimalism of the microkernel technology implies
fewer global data structures compared with monolithic kernels. The low amount
of global data structures is an important requirement for providing heterogeneity
support at kernel level. Each architectural state may have its own kernel instance
and due to the low amount of global data structures, the kernel instances may
cooperate with reduced performance penalties to provide a global system state.
 The second advantage of the microkernel technology is the uniform
communication interface. Any communication process occurs in a microkernel
system through an IPC system call which has the same interface for both kernel
and user-level services. The presence of a unique communication interface is
extremely important for the construction of a MA/OS. All communication across
architectural heterogeneity is performed through this unique communication
interface, so only one mechanism to overcome communication heterogeneity is
required. Therefore, this microkernel advantage of having one single
communication interface is essentially for the construction of a MA/OS.

 79

6.3 Linux based MA/OS

 Constructing a fully fledged MA/OS (e.g. Linux or Windows) for a
heterogeneous multiprocessor system requires:

• porting the kernel for each architectural state in the system
• achieving a cooperation mechanism between parallel-running kernel

instances
The cooperation mechanism involves the global data structures of the

kernel and requires a communication channel at kernel level. However, a
monolithic kernel like Linux shows a high complexity in terms of global data
structures. In addition, Linux doesn’t provide a uniform mechanism for
communication at kernel level. Therefore, the construction of a Multi-
Architecture Operating System based on the Linux kernel cannot be easily
envisaged.

However, the native advantages of the microkernel technology in terms of
minimalism and uniform communication interface offers a simple solution for
constructing a Linux based MA/OS. The microkernel can be easily ported for
each architectural state in the system. The uniform communication interface and
reduced amount of global data structures enable cooperation mechanisms
between microkernel instances. The Linux kernel will be ported to execute on top
of the microkernel instance of one particular architecture. All communication
between the application and the Linux kernel happens via well-defined IPC [12].
The uniform communication interface offered by the underlying microkernel
structure therefore provides the communication support across heterogeneous
architectures (Figure 6.1).
 The microkernel technology offers a communication mechanism with
reduced overhead across different architectural states. This approach enables
construction of Multi-Architecture Operating Systems based on complex
monolithic kernels such as Linux.

Linux
system call

Kernel

Linux
system call

Linux

(arch1)

App
(arch2)

µK
(arch1)

µK
(arch2)

Figure 6.1: Microkernel based MA/OS

App
(arch1)

System
software

User
Applications

 80

Chapter 7

Conclusions and Future Work

7.1 Summary

 The objective of this thesis was to develop theoretical design models for
constructing an operating system capable of managing multiple architectural
states in a tightly-coupled computing system. This design of an operating system
is required mainly in the field of heterogeneous computing with direct
applications in high-performance embedded systems. The main issues in
designing such an operating system are incompatibilities at the binary and data
representation levels between different architectural states.
 The first step in providing a solution for an operating system is a
classification of the targeted computing systems. These computing systems were
divided in two classes: SPMA (Single Processor/Multi-Architecture) and MPMA
(Multi-Processor/Multi-Architecture) systems. Both types of computing systems
show similar design models which can be classified in a unified manner. The
classification follows two main directions: user-level and kernel-level support for
heterogeneity. The user-level support provides independent kernel instances per
architectural state and user-level mechanisms to overcome the heterogeneity of
the computing systems. The kernel-level support has essentially two design
approaches: native and secondary architectures, and equal opportunity. The first
approach places the support for architectural heterogeneity at the interface level
between the kernel and the user. The kernel is constructed for a single
architectural state, while all other system interfaces are “emulated” based on the
native system interface. The second approach, equal opportunities, places the
support for architectural heterogeneity inside the kernel. Due to binary
incompatibility, each architectural state is provided with a kernel instance and all
kernel instances cooperate at kernel-level to provide a global system state.

The theoretical models require practical case studies to evaluate their
suitability to a specific computing problem. However, the complete
implementation of these design models is not an option due to the vast spectrum
of solutions, but also to hardware limitations. Therefore, we focused on one
particular case study: provide an operating system for the Itanium processor
based on the L4 microkernel. The Itanium processor has two architectural states
(IA-32 and IA-64). The best suitable theoretical model for this system is the
“native and secondary architectures”. This design model is integrated in the L4
microkernel, while respecting two design requirements: operating system
transparency for IA-32 user-level binaries and reduced performance overhead for
IA-64 user-level binaries. The implementation of the design shows the respect of
the initial design requirements, but reveals a side effect: an important

 81

performance overhead for IA-32 user-level binaries. Therefore, achieving kernel
support for architectural heterogeneity implies certain performance penalties.

7.2 Achievements

 This thesis focused on defining the field of operating systems designed for
tightly-coupled heterogeneous systems. Specific achievements of this thesis
include:

• The classification of heterogeneous computing systems based on the
number of architectural states in the system and the number of
computing nodes

• Proposition of design solutions for constructing Multi-Architecture

Operating Systems

• Design and implementation of a microkernel based operating system
for the Itanium processor

7.3 Future work

The first issue which needs further investigation is whether the user-
support for architectural heterogeneity may provide better performance results.
The kernel approach can always provide a general-purpose solution to
architectural heterogeneity, but the user-level approach has the advantage of
knowing the specifics of the computing problem and to exploit the architectural
heterogeneity for its specific needs while minimizing the performance penalties
of managing multiple architectural states.

However, case studies can be found where the kernel-level support for
architectural heterogeneity is required. In those cases, an important question
concerns the best suitable design for the kernel services. The advantages of the
microkernel technology over monolithic kernels make them a promising research
direction for developing Multi-Architecture Operating Systems.

 82

Bibliography

[1] Glenn O.Ladd, Jr. Practical issues in heterogeneous processing systems for
military applications. In Proceedings of the 6th Heterogeneous Computing
Workshop, pages 162-169, April 1997

[2] Thomas H.Einstein. Mercury Computer Systems’ Modular Heterogeneous
RACE® Multicomputer. In Proceedings of the 6th Heterogeneous Computing
Workshop, pages 60-71, April 1997

[3] DeQing Chen, Chunqiang Tang, Sandhya Dwarkadas, and Michael L.Scott.
Shared State for Heterogeneous Distributed Systems. December 2002

[4] David Mosberger, and Stephane Eranian. IA-64 Linux kernel: design and
implementation. Prentice Hall PTR, January 2002

[5] Flynn, M.J. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, volume C-21, pages 948-960, September 1972

[6] Ilija Ekmecic, Igor Tartalja, and Veljko Miltutinovic. A survey of
heterogeneous computing: concepts and systems. In Proceedings of IEEE, Vol.
84, No. 8, August 1996

[7] Andrew S. Tanenbaum. Modern operating systems Vol.2. Prentice Hall, Inc.
June 1997

[8] Intel Corporation. IA-32 Intel® Architecture Software Developer’s Manual
Volume 3: System Programming Guide. 2003

[9] Intel Corporation. Intel® Itanium® Architecture Software Developer’s
Manual. Volume 1: Application Architecture. Revision 2.1 October 2002

[10] Intel Corporation. Intel® Itanium® Architecture Software Developer’s
Manual. Volume 2: System Architecture. Revision 2.1 October 2002

[11] System Architecture Group. L4 Kernel Reference Manual Version X.2.
Universität Karlsruhe, June 4 2004.

[12] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The
performance of µ-kernel-based systems. 16th ACM Symposium on Operating
System Principles (SOSP), St. Malo, France, October 1997

[13] J. Liedtke. Improving IPC by kernel design. 14th ACM Symposium on
Operating System Principles (SOSP), Asheville, NC, December 1993

