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Abstract

Power consumption is a crucial characteristic of modern hardware, both for mobile,

battery-driven devices and for high-end servers. Servers are increasingly highly-

integrated in modern data centers and the power density per unit area is rising. This

also induces higher heat densities. Costs for electricity supply and for necessary

cooling equipment are not insignificant anymore. Higher clock speeds and growing

demand for always-on services will intensify this problem even more. Methods to

account and limit power consumption on the application- or task-level for stand-

alone hosts have been successfully adopted. However, those methods lack support

for distributed systems.

This thesis introduces a transparent energy accounting scheme for distributed

systems. The well-known abstraction of resource containers representing resource

principals in a system is extended to global resource containers to allow account-

ing of energy dissipation across system boundaries. With this extension, energy

consumed for the accomplishment of a certain task within a server cluster can be

accounted to a resource container globally. When a server is working on behalf of

a client, the server is bound to that client’s resource container only until its work

for this client is completed. Server and client processes do not have to reside on

the same host for this scheme. Information is sent piggyback with normal IPv6

network traffic, transparently for the applications. This way it is possible to ac-

curately account energy consumption to its originator, even if this originator does

not exist on the same host. Limiting global resource containers and using them for

priority models or thermal management of computer clusters is achievable as well

and presented in this work.

As a prototype implementation a modified Linux kernel running on Intel Pen-

tium 4 CPUs is presented and tested with several experiments that prove its effec-

tiveness.
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Chapter 1

Introduction

This chapter starts off with a short description of the importance of energy account-

ing. It continues with a concise survey of the contents of this work.

1.1 The resource energy

Energy consumption of modern hardware is a crucial characteristic in many en-

vironments. For mobile devices, the importance of energy consumption is obvious.

Those devices need to be operated by batteries and long battery lifetimes (i.e. the

time a mobile device can be used before its battery has to be recharged) are desir-

able. Energy consumption is a concern for stationary devices as well. The high

integration of modern server hardware in data centers with highly-densed form-

factors leads to an increasing power density per unit area (from currently about

500W/m2 to about 3000W/m2 in the future) [3,4]. Accounting and controlling en-

ergy consumption is of growing importance because higher energy consumption

causes higher costs, shorter hardware lifetimes and more waste heat dispersion. To

cope with the latter, costly cooling facilities are needed. The problem with waste

heat is increasing with progressing hardware development and higher integration

factors as well, for this induces higher heat densities that require more efficient

cooling hardware. Furthermore, the growing importance of the Internet has led to

a growing demand for always-on servers and the demand will increase further in

the upcoming years. A forecast for the United States, for instance, predicts that new

data centers being installed by 2005 will add 5 GW to the current power demand.

This is approximately 10% of California’s current power generating capacity [5].
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2 Chapter 1. Introduction

Reducing energy consumption can be achieved by special hardware. Various

low power devices such as central processing units for mobile devices are avail-

able. Apart from actually reducing the total amount of energy consumed, it is

also of high interest to be able to control current power consumption and postpone

energy-intensive tasks to a later time. A system to account and limit energy us-

age of certain tasks as a software-only solution is valuable because no expensive

specialised hardware is necessary.

1.2 The problem with energy accounting

Common operating systems do not offer energy accounting possibilities. Ac-

counting is usually limited to few resources such as CPU time and disk space.

Moreover, resource accounting is focused on processes, which is inappropriate for

certain use-cases. Modern web servers, for instance, are multi-threaded, i.e. a sin-

gle process serves multiple connections using several threads. Threads achieve bet-

ter performance because the costs for context-switching within the operating sys-

tem are reduced. Process centric resource accounting cannot distinguish between

those connections and hence, accounting of single connections becomes impossi-

ble. The underlying problem is that processes are the unit of protection domains

and the resource principals, i.e. the entities to account resource usage to, at the

same time. Banga [6] eliminates this problem by introducingresource containers

as new resource principals and thereby allowing combination of several processes

to one resource principal or several resource principals in one single process.

A resource container implementation that allows accounting of the resource en-

ergy for the Linux operating system by Waitz [7] is available. Resource contain-

ers can be assigned to certain activities, no matter how many activities a process

works for. When a process works for some activity it is bound to the correspond-

ing resource container. When it starts working for another activity this binding is

changed and set to the respective resource container. The implementation detects

client-server-relationships, i.e. a server’s resource binding is reset when it receives

requests from a new client. It is also possible to limit a resource container’s usage

in such a way that a process currently bound to a resource container that is out

of resources needs to wait until new resources become available. This implemen-

tation does not, however, work in distributed systems. Client and server have to

reside on the same host for the implementation to work. This is a major drawback,
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because generally client and server will be working on different hosts, for example

in a computing cluster.

1.3 Contributions of this work

This work describes an operating system concept to transparently account en-

ergy usage in distributed systems. This is achieved by using the resource container

implementation by Waitz, adding a concept to make resource containers globally

available within a server cluster and forwarding resource container identifiers be-

tween clients and servers over the network. Forwarding does not require extra mes-

sages but the information is sent piggyback with normal network traffic via IPv6

connections. The concept is transparent to the applications running on the mod-

ified operating system as well as to other operating systems communicating with

this system. The concept provides a general infrastructure for piggyback messages

and can be used for different messages as well.

Resource containers can also be limited to a certain power consumption per time

interval. When a resource container is out of resources, processes that are currently

bound to this container will be throttled until new resources become available. That

way, certain tasks can be prioritised over others. Thermal management of computer

clusters is possible as well because energy usage data from the resource containers

can be mapped to heat dissipation. Thermal management is important because

cooling hardware is responsible for a significant fraction of costs in modern data

centers already [8]. The resource container concept allows limiting the maximum

temperature of certain hosts by throttling the CPU and thus being able to cut off

peak temperatures that might occur only rarely. That way, cooling hardware can be

adapted to average heat dissipation, rather than to maximum heat dissipation.

A prototype implementation for the Linux kernel that runs on Intel Pentium 4

CPUs is provided, the kernel’s system call interface was extended and user pro-

grams that allow management of the system are made available as well.

The rest of this work is organized as follows: Chapter 2 gives an overview of

related work. Chapter 3 presents the motivation for this work. It describes why

distributed energy accounting is useful and shows some examples where it can be
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used sensibly. In chapter 4, the designs of the accounting system and the underly-

ing systems are described and the reasons for choosing this design are explained.

Chapter 5 describes the actual implementation while chapter 6 presents the results

of some tests that show the operativeness of the implementation. It also gives some

information about energy usage of certain tasks. In chapter 7, possible future ex-

tensions to the existing work are outlined and chapter 8 summarises the results of

this work.



Chapter 2

Related work

This chapter gives an overview of related work. Starting with energy accounting

for single machines it continues with methods for accounting of energy for several

hosts.

2.1 Local energy accounting

The general concept of resource containers as an abstract resource principal has

been introduced by Banga [2]. Banga’s work uses web servers as an example

for services that require this abstraction for correct accounting. Later, Bohrer et

al [9] have shown that power management for web servers is worthwhile because

they mainly dissipate energy by using the CPU. In this work, some web server

experiments are performed as well.

Bellosa demonstrated in [10] that energy consumption can be derived from data

gathered from the CPU’s performance counters. Kellner [11] presented an imple-

mentation that allows mapping of performance counter data to CPU temperature as

well. A resource container implementation that relies on this performance counter

data to calculate energy consumption was presented by Waitz [7]. Both implemen-

tations are limited to single machines.

2.2 Distributed energy accounting

Another concept that uses resource containers to achieve performance isolation

of certain tasks by setting limits to local containers areCluster Reservesas pre-

sented by Aron et al [12]. Cluster Reserves are defined as the resource principal

5



6 Chapter 2. Related work

in clusters and are therefore similar to the global resource containers introduced

in this work. Cluster Reserves guarantee a certain minimal proportion of cluster

resources to every class of requests orservice class. This remains true even if the

total system load induced by other requests is high. The distribution of resources to

the Cluster Reserves is computed by solving a constrained optimization problem.

Chase et al [8] studied the management of energy and other resources in data

centers using an economical approach with their architecturemuse. Services are

considered customers thatbid for resources while a central management instance,

theexecutivebalances the cost of the energy usage against the benefit of employing

it. Servers under control of the executive can be turned on and off automatically

to adjust to current resource demands. Muse uses resource containers and can

limit maximum load. This allows adaption of cooling hardware to average cases

rather than to maximum load. Muse has been implemented as a kernel module for

the FreeBSD operating system [13]. Another possibility to avoid peak loads and

therefore decrease the requirements for cooling hardware is dynamic voltage- and

frequency-scaling, as described in [14].

The tradeoff between power and performance has been studied by Pinheiro et

al [15]. They examined spreading the work evenly over available cluster resources

(load balancing) and concentrating the work on fewer nodes to be able to turn the

idle nodes off (load unbalancing).

Finally, Pinheiro et al have developed an operating system for load balancing

in computer clusters calledNomad[16]. This system disseminates the load in-

formation across the cluster without extra messages by sending the information

piggyback with distributed file access messages. Nomad has been implemented by

modifying an existing Linux kernel.



Chapter 3

Motivation

This chapter characterises the motivation for this work. The need for energy ac-

counting is illustrated and situations in which a concept for distributed energy ac-

counting can be of use are outlined.

3.1 The need for energy accounting

In recent years the number of mobile devices has risen significantly. Addition-

ally, those mobile devices have become more and more powerful over time. For

instance, today’s mobile phones are not only for making phone calls but also for

taking pictures, sending and receiving multimedia-messages etc. The introduction

of the new standard Universal Mobile Telecommunications System (UMTS) will

add even more possibilities mobile phones can be used for. A major problem of all

these devices is their energy consumption. While more and more possible fields

of application cause increasing energy consumption, batteries cannot keep up with

the growing demand satisfactorily. Nevertheless, the battery lifetime is an impor-

tant factor, and therefore it is necessary to reduce the energy consumed by those

devices.

While the need for reducing energy consumption is obvious for mobile devices,

it is not restricted to them, though. Because less energy consumption also means

less waste heat it is a matter of personal computers and server farms, too. While

the former can be operated with fewer cooling devices and therefore work more

silently, the latter can reduce costs for cooling of server racks.

7



8 Chapter 3. Motivation

Since it is desirable to reduce energy consumption, it is necessary to have a

possibility to account it. Accounting of energy consumption makes it possible to

give less priority to tasks that already consumed more than others or to stop those

tasks until new energy is allocated to them. The gathered information could be

used to charge users for their energy consumption as well. It is also possible to

give more energy to certain types of tasks than to others.

Support for the accounting of energy consumption in modern operating systems

is generally poor. The Linux 2.5 operating system, for example, offers a possibility

to measure the time spent in user-space and kernel-space with the command time

(that uses thewait3 system call). But measuring the energy consumed in this

period cannot be accomplished with standard system calls.

3.2 Energy accounting in distributed systems

In distributed systems the task of accounting energy becomes more complex.

Energy consumed for the accomplishment of a certain task needs to be monitored

on different systems and accounted correctly. Therefore it is necessary to keep a

record of the task that a certain process is currently working for. Synchronized task

lists on different machines are needed so that jobs computed on different machines

that are working for the same task are accounted to this task correctly.

3.2.1 Load balancing in computer clusters

A cluster is a type of distributed system that consists of a collection of inter-

connected stand-alone computers and is used as a single, unified computing re-

source [17]. Such a cluster can be used in a client-server-context to serve requests

from the outside world. One of the cluster computers acts as a dispatcher while the

other machines perform the actual work. Then, the server cluster looks like a single

machine with a single IP address (the dispatcher’s IP) to the clients. After serving

the request, the cluster computer that did the actual work can send its reply either

to the dispatcher that in turn forwards the reply to the client or the reply can be sent

directly back to the client, bypassing the dispatcher. Load balancing techniques

such as those given in the Linux Virtual Server project [18] allow distribution of

incoming requests to the cluster machines. Usual techniques include round-robin

distribution or directing new connections to the machine that is currently serving

the least number of requests (least connection scheduling).
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However, only considering the current number of connections might not be ap-

propriate since requests may differ significantly in the amount of energy dissipated.

Energy accounting in distributed systems allows a way ofleast energy schedul-

ing by directing new connections to the server that is currently using the least

amount of energy and thereby levelling the energy usage within the server clus-

ter and avoiding peak energy usages of single machines. This is possible because

current local energy usage data can be made available on each system [7]. A dis-

patcher can collect these numbers and dispatch the current job to the system with

the least usage. Machines that have entirely used up their current energy limit can

even be taken out of the dispatcher’s list of target machines completely until new

resources become available on those computers.

Load balancing is not restricted to dispatchers like in the example above, though.

Cluster computers that hand over parts of requests to other hosts might use load

balancing techniques as well. More importantly, this is of interest for systems

that do not have a designated coordinator at all (e.g. peer-to-peer systems). Peers

could store the energy that they consumed on behalf of other peers and the energy

that other peers consumed on behalf of them. This information could be used for

deciding where to direct the next request to. That way, energy could be borrowed

and returned between peers.

3.2.2 Accounting of energy usage

Apart from balancing requests regarding energy aspects within the cluster it

could also be necessary to grant different amounts of energy to different types

of requests from outside the cluster. A possibility would be to divide client com-

puters into different request classes with respect to their IP-address. Assignment of

energy classes to different types of clients also means it is not sufficient to account

energy per process. Consider a server process within the cluster serving a request

for a client. A typical process-centric view would account the energy used by the

server process to this very process, while it was actually the client that initiated the

request and is responsible for the work done by the server. Again, this server could

also query some other server (i.e. it could be a client as well) to serve the initial

request, for example query a DNS-Server. Therefore, we require both requests to

be accounted to the initial client’s energy class, not to the server processes.
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Incoming requests can be tagged with their respective energy class at the dis-

patcher so that cluster computers performing the actual work will account the work

to the relevant class. For example, computers accessing a web server from within

the intranet can be favoured over computers accessing from elsewhere. Further-

more, it is desired to be able to set an upper limit of energy usage for certain

request classes. Those limits need to be valid within the whole cluster. Moreover,

collected data about energy usage of certain tasks can be used to make clients pay

for their energy usage rather than their CPU time spent. Since energy usage also

results in extra waste heat and therefore may require expensive cooling-strategies,

charging the amount of energy used could be a better way of accounting.

3.2.3 Thermal management of computer clusters

Rising energy consumption also leads to rising amount of waste heat. This poses

a major problem as costly cooling methods need to be applied. In server farms

certain upper temperature bounds need to be met constantly to ensure hardware

integrity. Sharma et al describe in [1] the nature of this problem. Sharma et al

state that computing units are more and more stored in high-density racks while

those racks are in turn stored closely together in data centers. In addition to this,

increasing power of modern processors intensifies the waste heat problem as well.

A typical data center cooling scheme is based on under-floor cold air distribu-

tion. The racks are situated in rows, taking in the chilled air from one side (cool

aisle) and exhausting the hot air to the other (hot aisle). Chilled air is produced

by computer room air conditioning units (CRACs). Such a typical cooling scheme

is shown in Figure 3.1. The goal is to keep the temperature in the system below

the upper bound at all times. However, due to non-uniform load-distributions and

irregular air flow between the racks, temperature distribution is not uniform either

and so-calledhot spotsare generated. If a CRAC fails, uniformity is completely

lost and upper temperature bounds cannot be met around the failed device anymore.

Sharma et al show that it is necessary to monitor temperature distribution within

the computer room (using a large number of temperature sensors) and to use work-

load placement policies in order to correct thermal imbalances. The temperature

distribution and especially temperature peak values can be predicted by monitoring

the server utilization and by monitoring the current temperatures measured by the

sensors.
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In [1] it is shown that high temperature variations of up to 10 degrees Celsius

are present although workload was distributed equally among the servers. Unifor-

mity of temperature can be improved by redistribution of workload based on the

measured temperatures. Figure 3.2 shows temperature distribution before and after

workload redistribution in the example data center.

The work also shows that in the event of failure of a CRAC the temperature in

the surrounding area rises dramatically and reaches peak values above hardware

upper temperature bounds within 90 seconds. This, however, could be handled by

workload redistribution as well.

Thermal load balancing can be achieved with the concepts shown in this work.

Kellner provides a concept to map energy consumption to temperature in [11]. His

work allows the enforcement of an upper temperature limit for a single machine

by throttling the CPU. With the extensions described in this work several machines

could be throttled to keep temperature evenly-distributed and below an upper limit.

Non-uniform temperature distribution due to irregular air-flow can be controlled by

using temperature factors for each machine depending on that machine’s position

in the data center.

Thermal management could use priorities like the accounting model in section

3.2.2, too. Request classes that have low priorities could be throttled first when

temperature rises above a critical level. While temperature is below this level, no

throttling would be performed.



Chapter 4

Design

In the previous chapter I have shown different fields where a system for dis-

tributed energy accounting and limiting would be of interest. In this chapter I will

dig deeper into this system, describing how the system is built and why it was built

this way.

4.1 Control of energy usage and temperature using re-

source containers

The usual entity of accounting resource usage by the operating system is the

process. Consider the resource CPU time, for example. The CPU time that is used

by a certain process will be accounted to this process and the resulting data will be

used by the operating system’s scheduler for its selection which process is to run on

the CPU next. For many applications that only use a single, independent process

and do not require the operating system kernel to perform larger amounts of work

for them, this model is sufficient. However, there are scenarios where several pro-

cesses work on behalf of a single task or a single process works for different tasks.

An application might consist of several processes or — even worse for account-

ing — a server application that consists of a single process works successively for

different clients and therefore it may work for different tasks. Additionally, code

executed within the kernel cannot be reliably accounted to the initiating process.

Server applications, for example, are network-intensive and require relatively high

portions of CPU time spent in kernel mode. To receive a network packet, for in-

stance, a process has to issue theread system call. The work that is done within

the kernel for that system call is accounted to that process but the actual receiving

13



14 Chapter 4. Design

of the network packet in the lower layers is not. This is because the incoming net-

work packet was received by the kernel earlier and held in a queue where it can

be collected by the process later by issuing the system call. The same is true for

outgoing network packets. Table 4.1 gives an overview of user/kernel mode CPU

usage for some network intensive applications.

Hence, the process centric accounting model is not suitable for many situations.

Process centric accounting would not be appropriate for energy accounting either.

Consider the example of energy accounting within a server cluster in section 3.2.2.

An accounting of energy usage of the cluster computers’ server processes would be

useless if usage were accounted to the server processes instead of being accounted

to the clients.

To overcome this problem, Banga et al [6] have developed an abstraction entity

called aresource container. A resource container accounts a certain resource (ei-

ther energy or possibly other resources such as CPU time) that is consumed for

the accomplishment of a certain activity, no matter if several, one or only part of

a process is working on its accomplishment. This includes accounting of resource

usage within kernel mode. A process gets bound to a certain resource container

when it starts working for a certain task and the binding is changed afterwards.

Using resource containers can guarantee a certain amount of some resource (for

instance 60 per cent of the total CPU time) to a certain activity by putting all other

activities on that host into another container that is limited to 40 per cent of CPU

time. This concept of a resource container will be used below.

Application
% CPU
(user mode)

% CPU
(kernel mode)

ftp (transferring data at 92 Mbps) 10 90
Netscape (downloading at 320 KBps) 31 69
Squid (120 requests / second) 22 78
thttpd Web server (400 requests / second) 16 84
gcc (compiling via NFS) 79 21
RealPlayer (30 frames / second) 32 68

Table 4.1: CPU usage in user and kernel modes for network intensive applica-
tions [2]
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4.1.1 Accounting and control of energy usage

Martin Waitz developed an energy accounting system based on resource con-

tainers [7] as an extension to the Linux operating system kernel [19]. With this ex-

tension the operating system administers resource containers that account and limit

energy consumption of certain tasks. Processes are bound to resource containers

dynamically and energy consumed on behalf of these processes is accounted to

the respective container. The computer does not need to be equipped with energy

meters or similar equipment — the calculation of energy consumption is based on

data collected from the Intel Pentium 4 processor’s performance counters [7, 11].

This calculation will be described in section 4.1.2.

The resource container that a certain process is currently bound to is called the

process’resource binding. The key concept is to charge the process that is re-

sponsible for a certain energy usage by dynamically setting the resource binding to

the responsible process. To realize this, the kernel extension detects client-server

relationships so that the client can be charged for energy usage of the server. A

client that sends expensive requests to a server process will eventually run out of

resources this way (even if the requests are not expensive from the client’s point of

view), stopping it from sending further requests. Thus, system load can be reduced.

When a server opens a socket to listen for incoming connections a special flag

(O SERVER) is set for the socket to indicate that this server process’ resource bind-

ing should be reset each time a new client connects to the server. This standard

behaviour may be turned off by disabling theO SERVER flag with thefcntl system

call.

When a client connects to the server process and the server receives data by us-

ing theread system call the server’s resource binding is set to the client’s. The

resource binding is kept until the next client connects to the server and the server

callsread again, replacing the binding. Thus, accounting energy usage to the in-

voking client rather than to the server process is achieved.

This concept also works in transitive cases. If a server process connects to another

server (i.e. the first server becomes a client) to fulfill the initial client’s request,

the resource binding of the first client is passed on to the second server, too. This

means, the client is not only accounted for energy usage of the server to which the

client is directly connected, but also for energy usage of further server processes

that are contacted in turn by the first server.
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The resource containers are organized as a hierarchy to enable more complex

limitation models. In this hierarchy the energy usage of all descendant containers

of a certain resource container is also accounted to the parent container. This al-

lows restricting the total resource usage of a group of processes on a higher level

within the hierarchy while allowing the application to freely distribute its share

among the descendant resource containers. The operating system realizes those

restrictions by allocating energy allowances to the resource containers with respect

to their energy share. Those allocations are refreshed after a fixed time interval has

passed. Currently there are two different time intervals (1s and 100ms) that can be

limited autonomously. If a process’ energy usage is over limit its process state is

set toTASK UNINTERRUPTIBLE so that the the Linux scheduler does not select it

for running anymore until its resources have been refreshed with the next interval.

4.1.2 Temperature control

Simon Kellner developed a model to calculate energy usage on a local machine

based on the performance counters available in the Intel Pentium 4 CPU [11]. The

data that is collected from the energy resource containers in Martin Waitz’ kernel

extension as mentioned before is based on results of this work. Kellner measured

the energy consumed by the Pentium 4 under different load conditions. Measure-

ment of the CPU alone is possible because the Pentium 4 receives its power supply

from an exclusive 12V source. In his experiments he used different groups of test

programs (e.g. programs that only work on registers opposed to programs that need

to access memory frequently). The data from the performance counters was col-

lected and compared to the actual energy consumption derived from the meters.

Using a linear approach he found an approximation mapping from performance

counter data to energy consumption. Since energy consumption cannot be calcu-

lated exactly but only approximated from the limited data that is available from the

performance counters, his design is optimized not to give an approximation that

is lower than the actual value, i.e. only over-estimations of energy usage should

be possible, not under-estimations. A test with real-world applications such as the

Mozilla browser, Open Office or a Linux kernel build showed that energy estima-

tions errors were between -0.56% and +6.09%. A more detailed explanation of this

approximation can be found in [11].

In section 3.2.3 I presented an example why temperature control in clusters can

be useful. To achieve temperature control on local machines a mapping from cur-
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rent energy usage to current processor temperature is needed. Therefore Kellner’s

concept also allows calculation of processor temperature from the energy usage

approximation. Again temperature approximation is required to never be less than

actual temperature values. The model given showed in tests that it does not under-

estimate the CPU temperature while it does not over-estimate the temperature by

more than 10%.

4.2 Distributed energy accounting

Section 4.1 showed possibilities for the use of resource containers for energy

accounting and temperature control. However, both systems have one major draw-

back: they only work on single machines and cannot be directly applied to dis-

tributed systems. The reason for this problem is simple. A resource container is a

data structure in kernel memory. A process’ resource binding is saved as a refer-

ence to such a structure. Of course, those references are not valid across machine

boundaries. Hence, to extend the concept of resource containers to more than a sin-

gle machine, an abstraction from this references on local machines is necessary so

that energy accounting and limiting can be achieved in distributed systems as well.

Section 3.2.2 showed an example for such a scenario. In addition to the require-

ment to extend resource containers to be able to exist across machine boundaries,

possibilities to collect usage data for a given container from the machines that share

resource containers, to create new containers and to set limits for containers would

be useful.

Not breaking the transparency with this extension is of great importance for the

applications running on selected machines. An extension that relies on every single

application being changed to adopt to the new environment is inconceivable. The

kernel needs to take care of sending and receiving information that carries resource

information without the applications’ intervention, instead.

4.2.1 Extending the concept to cluster networks

Consider the following scenario: a cluster consisting of a dispatcher and several

computing nodes is depicted in figure 4.1. Clients from outside the cluster send

requests to the dispatcher. One of those requests, a HTTP GET-request, is marked

(1) in the picture. The dispatcher forwards this request to a web server running

on cluster computer A (2). To fulfill this request, the web server on node A sends
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another request to a database server running on node B (3). The arrows 4, 5 and

6 show the replies sent back to node A, the dispatcher and the client, respectively.

The work done on the dispatcher and nodes A and B to fulfill the initial request (1)

needs to be accounted to the same resource container.

4.2.1.1 Sending usage information between nodes

To account and/or limit the energy used for a certain resource container cluster-

wide, the nodes need to exchange information about upper limits and current usage

data somehow. In a straightforward approach the dispatcher could assign an up-

per limit to the client’s request (depending on the type of the request, the type of

the client etc.) and add this information to the request before sending it on to an-

other cluster node. To account the actual usage the dispatcher would also need to

add information about its own energy usage to the request. Hence, every request

would be extended by two extra data fields,Energy Max andEnergy Used. The

cluster node that serves the request could calculate the remaining energy left for

use (Energy Max - Energy Used) and set its own resource container appropriately.

When querying node B it would add its own energy usage so far toEnergy Used.

Node B would return its reply withEnergy Used increased by its own usage and

node A would again add its own usage and return this information to the dispatcher.

�

�

�

�

�

�

Clients

Cluster Nodes

Dispatcher

Figure 4.1: Example scenario for a client connecting to a server cluster
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This approach is simple because it does not require altering the resource containers.

Containers exist independently on different cluster nodes, only limits in the con-

tainers need to be adjusted on arrival of requests or replies. However, this concept

does not allow to group different activities to be accounted to the same resource

container, for there is no way to identify the resource container on another ma-

chine. For the same reason it is not possible either to give additional energy to a

resource container later.

4.2.1.2 Extending resource containers by identifiers

To overcome the shortcomings of the approach described before, a different ap-

proach is used. The resource containers are extended by a global identifier that is

valid not only on a single cluster node but within the whole cluster. In this case

the nodes only need to add this resource container identifier to their messages.

For each energy class that can be set by the dispatcher a resource container with

a unique ID is created on every cluster node including the dispatcher. When the

dispatcher assigns a resource container to an incoming request, it adds the ID of

this container to the request before sending it to cluster node A. This ID is known

on every node and the receiving node A can bind the receiver process to the local

resource container with that ID accordingly. When sending another request to node

B that same ID is added to the request. The same is true for the respective replies.

With this concept it is possible to assign different requests to the same resource

container (by using the same ID) and to change limits for a container cluster wide.

It is still necessary to collect information about resource usage from the cluster

nodes but this is independent from the requests and can be achieved by periodi-

cally obtaining usage information for each resource container ID from every clus-

ter node. The data can be collected on the dispatcher and could be used for further

distribution of energy resources among the resource containers.

4.2.2 Transparent energy accounting

In the previous section I described the information that needs to be added to the

requests exchanged between the cluster nodes. However, a key requirement for

this concept of energy accounting is to preserve transparency for the applications

involved. The server process that receives a request needs to receive the same re-

quest as it would without distributed energy accounting. That is to say, the data

belonging to the application layer protocol cannot be altered. This only leaves the
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lower layers of the TCP/IP protocol stack for alteration: the data link layer, the net-

work layer or the transport layer. While usually protocol headers of any protocol

cannot be changed without breaking transparency either (a modified kernel would

not be able to communicate with other kernels that use an unmodified version of

this protocol) the Internet Protocol version 6 (IPv6) offers optional headers that

can solve this problem. No extra messages are needed but the information can be

contained in normal request/reply packets. By defining a custom optional header

for exchanging resource container IDs between cluster computers it is possible to

achieve transparency on kernel level as well as on application level. The applica-

tion will generally not be aware of any headers of the network protocol layer and

an unmodified kernel that does not know the custom optional header will simply

discard the optional header but receive the packet normally.

4.2.2.1 The Internet Protocol version 6

The IPv6 protocol (formerly known as IPng for Internet Protocol next gen-

eration) is the successor of the existing IPv4 standard (the name IPv5 was al-

ready given to another protocol in the seventies). IPv6 was recommended by the

IETF [20] in RFC 1752 [21] in July 1994. The current standard definition can be

found in RFC 2460 [22]. The main reason for the proposal of a new standard was

the threat of address shortage within the existing IPv4 standard. IPv4 addresses

have a length of 32 bits. Theoretically this allows 4.2 billion different addresses

but in practice many addresses are unusable because large subnets have been as-

signed to many organisations making them unavailable to others. Not only the

growing number of computers connected to the Internet need unique addresses but

other devices (such as mobile phones, printers etc.) have growing demand for as-

signment of IP addresses, too. Although there are techniques such as NAT1 and

Dynamic IP addresses for dial-up connections, IP addresses have become scare in

some areas already. To avoid address shortage for a long time, IPv6 introduces a

new address length of 128 bits. That means there are 3·1038 addresses available or

6·1023 addresses per square metre on the Earth’s surface.

A larger address space is not the only advantage IPv6 has over IPv4, though.

IPv6 simplifies network administration by introducing automatic host configura-

1Network Address Translation. A technique that allows connecting multiple computers to the
Internet with only one IP address.
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tion, making protocols such as BOOTP and DHCP2 superfluous. Methods to pro-

vide secure communication (authentication headers, encapsulating security pay-

load) and Quality-of-Service capabilities are also being added by IPv6. Yet, the

most important issue for the extensions presented in this work: it also adds support

for new options that are not part of the IPv6 standard but can be added in the future.

As IPv6 addresses are four times as long as IPv4 addresses and because new

options (see above) are introduced with the new standard, the header is not defined

to be of fixed length and contain room for all possible options. Such a header

would be very large resulting in far higher protocol overhead compared to IPv4.

Instead, the IPv6 header contains only the most necessary fields and defines addi-

tional headers that can be added between the IPv6 header and the transport protocol

header (e.g. the TCP header) although this is not necessary. The sequence of pos-

sible IPv6 Headers is shown in Figure 4.2. One of those headers is theDestination

Options Header. This header is used to carry optional information that need be ex-

amined only by a packet’s destination node [22]. RFC 2460 defines two destination

options headers, one that is located before and one that is located after the routing

header. The latter is for options that need to be processed only by the packet’s des-

tination, not by intermediate destinations listed in the routing header. Intermediate

destinations are not necessary in this concept, so the second destination options

header (after the routing header) is chosen to carry the additional information. So

2Bootstrap Protocol and Dynamic Host Configuration Protocol. Protocols that allow assignment
of an IP address to client computers remotely (among other things).

upper-layer

header

Destination

Options header 2

IPv6

header

Hop-by-Hop

Options header

Destination

Options header 1

Routing

header

Authentication

header

Encapsulating Security

Payload header

Fragment

header

Figure 4.2: Sequence of IPv6 Headers as defined in RFC 2460
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far there are no destination options defined except for two padding options used for

data alignment of other options. For this work I have defined a destination option

for the exchange of resource container IDs. Outgoing network packets that are sent

by a process with a resource binding to a global resource container are extended

by a destination options header containing the container’s ID. On the receiver’s

side, incoming network packets with this new destination option are bound to the

respective global resource container. A detailed description of the implementation

of this concept can be found in the succeeding chapter.

Although most networks still use IPv4 it will soon be replaced by IPv6 because

address shortage will force this step. The possibility to tunnel IPv6 packets through

IPv4 networks makes it unnecessary to change to IPv6 at once but this can be done

step by step. It is expected that large-scale IPv6 usage will start in Asia because

IPv4 address shortage is worst on this continent. Europe will follow next and

America has the least problems with address shortage so far. However, IPv6 is

already in use in some areas and it will be the network protocol of the Internet

within years so it is sensible to use it for the concept derived in this work.
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Implementation

This chapter describes the implementation of the distributed energy accounting

scheme. The implementation is based on the Linux 2.5.65 kernel. Additionally,

some user space tools were added. Starting with a description of the aims of this

implementation the chapter continues with a detailed description of the modifi-

cations made to the Linux kernel including its API and an overview of the IPv6

data structures that were used for the implementation. Finally, new programs and

changes to existing user space programs and libraries are listed.

5.1 Aims of the implementation

Apart from being suitable for its intended purpose the distributed energy account-

ing system was designed to fulfill the following ancillary aims, too:

• A main design goal istransparency. Any modifications that are made to the

operating system need to be transparent to the normal application programs

running on that system because it is impossible to change normal user appli-

cations for this kernel extension. Additionally, modifications performed on

the kernel’s network stack may not break transparency either. The modified

kernel still needs to be able to communicate with hosts running unmodified

kernels (or even other operating systems). The transparency of the system is

vital for its application in real computing environments rather than restricting

it to certain made up scenarios. Thus, I did not need to use own test programs

written for the particular purpose of measuring results of the implementation

in the following chapter, but I was able to test the implementation using com-

23
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mon applications such as the Apache web server [23], the relational database

PostgreSQL [24] and the distributed GCC version Distcc [25].

• Stability is a major design goal in every serious application. This goal is

even more important when performing modifications to the operating sys-

tem’s kernel. Bugs in the kernel have even larger impact than bugs in user

level programs because the former will result in undesired behaviour of the

whole system. Therefore, a design goal was the limitation of changes to

the kernel code to as few and as small modifications as possible. Parts of

the implementation that do not require to run inside the kernel were not in-

cluded but developed as user space programs. Additionally, the changes to

the kernel’s API1 were limited. Certainly, user space tools need a way to

communicate with the new kernel extensions. In order to keep the changes

small, I did not add any new system calls but only extended the existing ones.

Additional goals such as good performance or most efficient code were not

objectives of this work. Moreover, although running stable in the tests, the mod-

ified kernel has not been tested for a longer period or on many different systems

and therefore cannot be compared to the well-tested original Linux kernel. The

implementation described in this chapter is not optimized for these aims and im-

provements are probably possible.

5.2 Modifications to the Linux kernel

The implementation of my kernel extension is a modification to the existing

energy resource container implementation for the Linux operating system by Mar-

tin Waitz [7]. This implementation is a modification, too. It was built using the

Linux 2.5.65 kernel. The original kernel can be found at [19], the modified one

at [26]. Martin Waitz’ implementation relies on the performance counters of the

Intel Pentium 4 processor. Using data gathered from these counters, resource us-

age is computed. Therefore, this implementation is dependent on those counters

too and has to be run on Pentium 4 CPUs.
1Application Programming Interface. The kernel’s API is the interface for user space applications

to communicate with the kernel, i.e. the set of system calls.
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5.2.1 Global identifiers for resource containers

The existing resource container implementation represents a resource container

by a structure in kernel memory. Data stored in this structure includes references

to the container’s parent and children, a list of processes that are bound to this

container, a reference counter that counts the number of times that this container

is currently referenced, references to the current resource usage count of this con-

tainer etc. Extending resource containers by a global identifier and adding this

identifier as an extra field to the kernel structure seems to be an obvious option.

Doing so would not be the best choice, though. Mapping a resource container

structure to its ID and vice versa is done very frequently during normal operation.

Every time a packet is sent out the ID for a resource container has to be looked up

and every time an ID is received the corresponding resource container needs to be

found.

Resource containers are stored in a hierarchy in kernel memory. The pointer to

the top of the hierarchy (theroot container) is known. From there on, the hierarchy

can be traversed by following the root container’s references to its children. Those

children in turn contain references to their children etc. Traversing the entire con-

tainer hierarchy every time a container with a certain ID needs to be found would

be too time consuming. That especially applies to an ID that does not exist in the

system. It is not necessary for each container that exists in the system to have a

global identifier. In fact, most resource containers will not have one but usually

only a few cluster-wide containers are needed.

I therefore chose a different structure to save the identifiers. The arrayrc table

maps IDs to containers (and vice versa). This array does not affect the original

hierarchical resource container representation. It does not even require more ker-

nel memory than putting the ID into the existing structure would. In the array a

reference to the respective resource container is stored for each entry. On the Intel

Pentium 4 32-bits architecture this requires only 4 bytes. This insignificant amount

is even outweighed by not reserving storage space for an ID in every resource con-

tainer but only for those that actually need it. The size of the array can be adjusted

to actual needs.

To add new entries torc table the functionrc table add id is provided.

This function is called when registering a new ID, see section 5.2.4. To obtain
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an ID for a given container as well as a container for a given ID, the functions

rc table get id andrc table get addr are used, respectively.

Some applications create extra processes to perform their work using thefork

system call. When a process that is bound to a resource container forks off children

processes, those children will automatically be bound to new resource containers

that are children of the initial process’ container in the container hierarchy. That

way, all their resource usage is accounted to the parent container as well. If such an

application is bound to a globally known resource container it is vital that packets

which are sent from that process’ children are also accounted to the globally known

container of the parent process. However, for the computer receiving those packets

it is not important to know what actual process sent the packet - it actually does not

even need to know that the sending process forked off extra processes at all. It only

requires information about the sender’s global resource container ID. Thus, the

same ID needs to be sent with those packets, no matter if they are sent by the parent

or by one of its children. The children containers cannot be assigned the same ID

like their parent, though, because in that case multiple resource containers with the

same ID would exist in the system. That would not allow to unambiguously map

an ID to a resource container on that system (which is necessary when receiving

packets with an ID, see section 5.2.2.2).

Hence, the children containers do not get an ID at all. However, the function

rc table get id takes care of returning the correct ID. Whenever it is called for

a resource container that does not have an ID, it ascends in the container hierar-

chy until it either finds a container that does not have a parent anymore (the root

container) or until it finds a container that has an ID. Only in the former case no

ID is returned, otherwise it returns the first ID found. This way, subprocesses do

not cause a problem for the ID system. If necessary it is even possible to assign a

single ID only to the root container so that all processes on that machine will be

sending out network packets containing that same ID.

5.2.2 The network stack

As illustrated in section 4.2.2 the optional IPv6 headers are used to transport

resource container identifiers across the network. The kernel on the sending side is

responsible to write the identifier of the global resource container into this header

if the process that sent the network packet (or one of its parents, see section 5.2.1)
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is bound to a container that has such an ID. Conversely, the kernel on the receiving

side has to extract this information from the header (if it exists) and map it to the

local resource container that corresponds to the global ID so that the receiving

process can be bound to the container.

The IPv6 specification [22] defines two different optional extension headers that

allow sending of user-defined options: the Hop-by-Hop options header and the

Destination Options header. While the Hop-by-Hop options header’s purpose is

to carry options that are examined by every node on the packet’s path up to its

final destination (i.e. not only the packet’s destination but routers too), the Destina-

tion options header is for carrying information destined only for the packet’s final

destination. Therefore, Destination Options headers are used.

Unfortunately, support for Destination Option headers is not fully implemented

in the Linux Kernel 2.5.65. The reason is that no Destination options have been

officially defined yet (except for two padding options used only for internal data

alignment of other options). The kernel can handle reception of Destination Op-

tion headers and can scan them for options contained (although the handling of

actual options is missing of course, as they have not been defined yet). It does not,

however, offer a possibility to add new destination options to outgoing network

packets. This was added in this implementation.

In the Linux operating system network packets are represented by thesk buff

data structure. This structure is used for outgoing packets as well as incoming ones.

It also represents the network packet on every layer of the network stack; header

information is added to the beginning of thesk buff during send and removed

and analyzed during reception. This way, copying of data between the layers is

avoided. Thesk buff-structure can contain a reference to a resource container.

When a packet is sent by a process bound to a certain container, thesk buff’s

reference is set to the sending process’ resource binding. On reception of a packet

the reference in thesk buff can be read and used to set the receiving process’

binding.

5.2.2.1 Outgoing network packets

Whenever a user space application wants to send data across a network it has

to get a socket as a communication endpoint from the operating system first. The
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socket system call is used to acquire a socket. The application needs to spec-

ify the protocol family used for the application (local communication, IPv4, IPv6

etc.). To be able to benefit from ID transfer it has to choose the IPv6 protocol. Ad-

ditionally, the type of communication needs to be specified. For the TCP protocol,

SOCK STREAM is used.

After opening a connection on the socket the application can send data to the

socket. Depending on the type of socket the data will be passed to a function

that handles the sending for the corresponding protocol. For the TCP protocol on

top of IPv6, the data is copied into ansk buff and passed to thetcp v6 xmit

function. This function in turn calls theip6 xmit function that passes the buffer

to the network device layer. Finally, the packet is sent out over the network.

Theip6 xmit function was modified to add a destination options header to the

outgoing packets. Within this function a destination options header is created and

added as an extra header to thesk buff data structure if a resource binding to a

globally known resource container exists. The contents of a destination options

header are defined in [22]. The header starts with a fieldNext Header identifying

the type of the next header following this destination options header, i.e. the header

of the transport layer (e.g. TCP). The next field is calledHdr Ext Len and defines

the complete size of this header (including this and the Next Header field) as a

multiple of eight bytes not including the first eight bytes. These two fields have a

size of one byte each. The actual options immediately follow those header fields.

Destination Options headers can contain a variable number oftype-length-value

(TLV) encoded options, consisting of three consecutive type, length and value

fields. Those tlv options have the following format:

• The Option Type is a one byte identifier. So far, only two option types

exist (thePad1 andPadN options with option type 0 and 1, respectively).

Those padding options allow insertion of eitheroneor n padding bytes into

the header to ensure correct alignment of special options that have certain

alignment requirements. Since no destination options have been defined yet,

alignment of options is not an issue here. The highest-order two bits of the

option type define how a receiving node needs to act if it receives a packet

with such an option but does not know this option type. Setting those two

bits to00 instructs the node to skip this option and continue processing this

header. All the other possibilities for the highest-order bits instruct the node
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to discard the packet and possibly return an ICMP message to the sender

to indicate the problem. The third-highest-order bit indicates if theOption

Data of this option may change on the packet’s way to the recipient. A0

indicates that this option will not change.

• The length of this option is encoded in the next byte, the fieldOpt Data Len.

This defines the length of the subsequentOption Data in bytes.

• Following those two fields is the actualOption Data. The data is specific to

the option type.

To send resource container identifiers within those headers I introduced a new

option type 20, theResource ID option. The option type 20 (bit representa-

tion 00010100) is a number with its three highest-order bits set to 0, specifying

that nodes that do not understand this option (i.e. nodes that do not have this kernel

extension) will just skip this option and continue processing the packet normally

(required for transparency) and that this option data will not change on the packet’s

way to the destination node. ThisResource ID option is used for container ID ex-

change. For the actual ID, one byte (and therefore 256 possible IDs) are absolutely

sufficient. As a destination options header’s size needs to be a multiple of 8 bytes

(see above) but this header is only 5 bytes long, the rest of the header is filled

with a PadN option (3 bytes). Sample destination options headers filled with some

TLV encoded options and filled with only oneResource ID option are displayed

in figures 5.1 and 5.2, respectively.

To add a destination options header in theip6 xmit function, the following steps

need to be taken:

1. If the packet does not contain a resource binding, skip this packet (note that

‘skip’ in this context means that the next steps of this list are not taken for

this packet – it does not mean that the packet is actually skipped by the

ip6 xmit function). If it does contain a resource binding, check whether

this binding references a container that has been made globally available by

assigning an ID to it (or one of its parents has). This is achieved by calling

rc table get id for the resource binding and check whether this function

returns a positive number identifying the ID. If it does not, skip this packet.

If an ID is returned, continue.
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Next header Hdr Ext Len Option Type Opt Data Len

Opt Data Len

Opt Data Opt Data Opt Data

Opt DataOpt DataOpt DataOpt Data

Option Type

Option TypeOpt Data Len Opt Data

Figure 5.1: Sample Destination Options Header carrying some TLV encoded op-
tions

2. Allocate memory for the new destination options header from the socket’s

memory buffer usingsock kmalloc.

3. Enter the tlv option containing the current ID into the new header.

4. Adjust the length information of the optional header to the correct value.

5. Add the newly created header to the skb.

6. Free the memory allocated above.

Identifiers need to be added to every packet that is sent (and bound to a global

container). At first glance it might be possible to send an ID only with the first

packet for each container ID and each destination address and port (i.e. each

server). This server will be bound to the resource container with this ID on re-

ception of the first packet from node A and will continue to be bound to this ID

until it receives a packet with a different ID. However, the kernel on node A does

6

(Protocol: TCP)

0

(0 more octets)

20

(Resource ID)

1

(1 byte data)

x

(ID)

1

(PadN)

1

(1 byte padding)

0

(padding)

Figure 5.2: Destination Options Header carrying only the Resource ID option
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not know whether there are other nodes sending packets with possibly different

IDs to the same server process. In case of another node B that sends packets with

a different ID, the server’s binding will be changed to that other ID even if node B

only sent a single packet and the work performed by the server for this request is

completed very quickly. The work performed by the server for following requests

from node A would also be accounted to this node B’s ID. To avoid this problem,

it is necessary to send the ID with every request (i.e. every packet), no matter how

many packets have been sent to this server already.

To allow certain applications to define that they do not want this destination

options headers to be added at all, thesetsockopt system call has been expanded

by another option,IPV6 SEND OPTS. This option can be explicitly turned off for

a socket, preventing all packets sent via this socket from being handled by this

procedure.

Sending further options within the destination options headers described above

is also conceivable. Nodes might send a new limit together with a resource con-

tainer ID that is to be set on the receiving node. Servers might also return their us-

age data—taken from their current resource binding—to the client node that way.

Those and other possibilities can be easily realized by either extending the newly

definedResource ID option to hold more than only the ID or—more obvious and

implemented more easily—by defining extra options for this extra data to be ex-

changed. The code in theip6 xmit function would have to be extended. This

function would need to add these extra options to the packet. Furthermore, new

handlers in analogy to the existing one for handling reception of those options (see

section 5.2.2.2) would have to be added.

5.2.2.2 Incoming network packets

Kernel modifications for the reception and interpretation of destination options

headers containing the newly defined option type 20Resource ID (see section

5.2.2.1) take less effort than the modifications performed for outgoing network

packets. The Linux Kernel 2.5.65 already has a system that handles incoming

destination options headers, scanning them option for option and calling a handler

for each option type (in case such a handler does not exist, it reacts as specified by

the highest-order two bits of the option type as described in the previous section).

Those handlers get passed the completesk buff and a pointer to the beginning of
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the option (i.e. to the fieldOption Type). Hence, it suffices to add a new handler

for the option type 20 (and possibly more handlers for further options if such an

extension is desired, see section 5.2.2.1) and reference this handler in the data

structuretlvprocdestopt lst[] that maps option types to handler functions.

The handler for theResource ID option is straightforward. It starts with check-

ing the option length. Then it proceeds to acquire the ID from the option data and

to call rc table get addr for this ID. This function returns the address of the

corresponding resource container (or a null pointer, if no such container is found).

This address is stored in thesk buff’s resource container reference from where it

will be assigned to the receiving process later. The source code for this handler is

shown in figure 5.3.

static int resource_id_handler(struct sk_buff *skb, int offset) {
unsigned char *cp;
int length;
int rcvd_id;
struct rc *rcvd_addr;

cp = &skb->nh.raw[offset+1]; // offset points to option type
length = (int) *cp; // option length
if (!length) return 0; // option length is zero

rcvd_id = (int) *(cp+1);
if ((rcvd_id > 0) && (rcvd_id != 255)) { // id 255 is reserved

rcvd_addr = rc_table_get_addr(rcvd_id);
skb->rc = rcvd_addr;
if (rcvd_addr) rc_get(rcvd_addr); // increment rc’s refcount

}
return 1;

}

Figure 5.3: Handler for the option type Resource ID

5.2.3 Accounting and throttling of resources

The actual accounting of resources consumed on behalf of a local resource con-

tainer has been already implemented by Martin Waitz using the Pentium 4 perfor-

mance counters as described in section 4.1.1. No changes are needed in the ac-

counting system—the distribution of identifiers allows global resource containers

consisting of local resource containers that exist on every single machine. Account-
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ing of those local containers is already provided by the existing work and there is

no need for further changes to the kernel. The same is true for throttling processes

that are bound to resource containers which have no resources left. However, to

aid distributed accounting, user space tools are provided (see section 5.3).

5.2.4 Changes to the kernel’s API

The kernel extensions add some functionality to the system call interface of the

existing kernel. To keep changes to the API small, no new system calls were added

but only existing ones were extended. The following extensions were made:

• As mentioned in section 5.2.2.1, thesetsockopt system call has been ex-

tended to allow an application to control the sending of destination options

headers in outgoing network packets via one of the application’s sockets.

A new optionIPV6 SEND OPTS was added to theSOL IPV6 options level of

this system call that toggles a flag in the socket. This flag is checked by

the modifications in theip6 xmit function every time before starting their

work.

• The system callresource info was extended by two new options. This

system call was introduced in Martin Waitz’ kernel extension and is used to

get and set options of existing resource containers, such as query or modify

the current limit or usage of this container. It gets passed a resource con-

tainer and a variable number of options. The two new options assign an ID

to an existing container or get its ID if one exists. These options are named

RCI SET ID andRCI GET ID, respectively. The necessity of the former op-

tion is obvious, identifiers must be assigned to resource containers to make

them global. The latter option is for interaction of user space tools with the

kernel extension (see section 5.3).

5.3 User space programs

The most important user space program to make use of the kernel extension is

the programmrcid (MakeResourceContainer withID ). This program creates a

new resource container by cloning its own container. This container is assigned

an identifier passed as an argument tomrcid using the newRCI SET ID option of

theresource info system call. A limit that can be passed as another argument
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to mrcid is set for this container. Finally, if the user startsmrcid with further

arguments, they are interpreted as a program name and its arguments.This program

is executed within the current process context (using theexecvp system call), i.e.

the program is bound to the newly created resource container with the given ID and

the resource limits apply. If a client is started in such a way its ID will be transfered

to server processes across the network.

Two more user space programs are the toolsglobalrcd (global resource

containerdaemon) and the corresponding clientglobalrc. Those tools are pro-

vided for easier use of this concept within a server cluster. The daemon process is

started on each cluster node and listens on a specified port for incoming requests

from the clientglobalrc. Of course, client and daemon communicate using the

IPv6 protocol although resource accounting is not required for those tools’ com-

munication. But usage of IPv4 would require the cluster nodes to be connected

via IPv6 and IPv4 and this can be avoided by completely using IPv6. The client

needs to know the addresses of all nodes that are part of the cluster and are there-

fore running aglobalrcd daemon. This information can be given to the client

via a configuration file. Then, the client can communicate with the daemons on all

the nodes and access or modify some of the resource container data on the local

machines. The following functionality is provided:

• Create a new global resource container with a given ID

• Set or modify the resource limit of a given global resource container

• Collect the current usage data of a given global resource container

Finally, the existing user space toolviewrcs that prints the current resource

container hierarchy as well as the limits and the usage data for each container was

edited to print out the identifier (if existent) of each container as well (using the

RCI GET ID option). Also, the header files of the user space tools had to be edited

to support the new options for the system calls.
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Evaluation

In the previous chapter I described the prototype implementation of a distributed

transparent energy accounting scheme. In this chapter some experiments that show

that this prototype implementation actually works are described. The power con-

sumptions of resource containers in different scenarios is measured. Starting off

with a description of the testing environment the chapter continues with the actual

experiments and their results.

6.1 Testing environment

All tests were performed with a homogeneous cluster consisting of three clus-

ter nodes. Those nodes were equipped with Intel Pentium 4 2000MHz CPUs and

512 Megabytes RAM. All machines ran the modified kernel described in the pre-

vious chapter. They were connected by a 100 MBit switch and they communicated

using the IPv6 protocol. The machines will be referred to ascluster1, cluster2and

cluster3below. A further machine outside the cluster acted as client (clientnode)

and ran the same modified kernel as the cluster nodes.

The software that I used for the experiments was chosen to be either IPv6 com-

pliant or at least ready to use within an IPv6 network with few modifications. The

Apache web server 2.0.44 [23] together with PHP 4.3.4 [27] and the PostgreSQL

7.4.1 relational database [24] are IPv6 compliant. I also used the Distributed GNU

Cross Compiler distcc 2.12.1 [25] that is not IPv6 compliant but has an option to

use ssh [28] for communication so that it can communicate using IPv6. I also used

Hammerhead 2.1.3 [29], a tool for stress testing web servers, that can be config-

ured to send a specified number of requests to a web server a configurable number

35
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of times per second. In order to be able to use Hammerhead, I modified its source

code to make the connections via IPv6.

6.2 Tests of the implementation

6.2.1 Distributed compilations

Distcc is a program to distribute builds of C programs across several machines

on a network [25]. While usual tests only consider the time speed-up achieved by

distributed compilation, I used the kernel extension that I created to measure the

energy consumption during a distributed build. I also ran a local build of the same

code on only one of the cluster machines using the same configuration otherwise1,

so that the results are comparable. The code used for compilation was the unmod-

ified Linux kernel 2.6.1 with the standard configuration options. Table 6.1 shows

the time that was needed for local and distributed compilation of this code. The av-

erage power consumption was measured for the whole cluster, i.e. all three cluster

nodes were connected to a single meter. During the local build the two other nodes

were turned on but idle. If those machines are not needed otherwise they could

of course be turned off, leading to a more distinct difference between the power

consumption of the local and the distributed build than the difference given here.

Average power
consumption [W]

Time [s]

Cluster idle 214 —
Distributed build 295 263
Local build 250 330

Table 6.1: Cluster power consumption and time spent during distcc build of Linux
kernel 2.6.1

As table 6.1 shows, the distributed build was 67 seconds or 20.3% faster than

the local build. This is a rather disappointing speed-up compared to noticeable

better results with respect to speed described on the distcc web site [25]. I presume

this result was partly due to the usage of ssh (instead of direct communication

using the distcc daemon), which adds a usually unnecessary overhead to distributed

1To force local compilation, theDISTCC HOSTS environment variable was set to localhost only.
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compilation time, but was necessary here to allow IPv6 communication (see section

6.1). Additionally, the Pentium 4 2GHz CPUs in use here were probably too fast

for distcc to have a better effect on speed — the time needed for distributing part

of the C code files to other machines and returning the corresponding object files

via the same channel is not significantly shorter than the time for local compilation

of the complete set of C code files on a fast CPU.

The relatively small gain in speed leads to an even higher interest in the question

of how much extra energy is needed for distributed compilation as opposed to local

compilation. The new kernel extension allows fine-grained measurement of CPU

energy consumption for the kernel build only. To measure this consumption, I set

up a global resource container in the cluster and started the distcc build bound

to this container on one of the cluster nodes (this host will be calleddistcc host

from here). The kernel extension takes care of binding the compilations performed

on the other cluster nodes (theremote hosts) to this global container, enabling

accurate energy measurement of the whole compilation process. Figure 6.1 shows

the CPU power consumption for the compilation process on all three cluster nodes

and the power consumption on one machine for the local build. The consumptions

were measured once per second (data has been normalized for this figure). Note

that the power consumption on the distcc node alone in the distributed case is

slightly higher than it is for a local compilation, even without considering the extra

power consumption on the two remote hosts. That is, compiling only part of the

files locally and sending and receiving further C-code- and object-files across the

network requires more power than compiling everything locally in this case.

However, because of the shorter compilation time in the distributed case the to-

tal energy consumption has to be considered rather than only looking at the power

consumption at a specific point in time during the build. Table 6.2 shows the total

CPU energy consumptions measured by the global resource container for the dis-

tributed and the local kernel build. In this example, the 20% speed increase of the

distributed build needed about twice as much energy than the local build.

6.2.2 Transitive energy accounting

The next experiment demonstrates that the implementation also accounts transi-

tive client-server relationships on different nodes correctly. The Apache web server
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Figure 6.1: CPU power consumption for Linux kernel build on host running distcc
and remote hosts (top) and power consumption during local build (bottom)

Host Time [s] Energy consumption [J]

Distributed build
distcc host 263 11991,7
remote host 1 261 7576,4
remote host 2 253 6905,4
total 263 26473,5

Local build
local host 330 13237,5

Table 6.2: Total CPU energy consumption for Linux kernel build on distributed
hosts and on local host

was running on cluster1 and the PostgreSQL database on cluster2. A client from

outside the cluster sent queries to the web server on node 1 for a dynamic HTML

page that required a database lookup on the database server on node 2. The lookup

was performed via the PHP PostgreSQL API. By not generating the requests man-

ually with a web browser but by using the open source web server stress testing

tool Hammerhead I obtained a fixed and sufficiently high number of requests per

second. Though not IPv6 compliant, very small changes to Hammerhead’s code
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were sufficient to be able to connect via IPv6.
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Figure 6.2: CPU power consumption for Apache web server and PostgreSQL
database during transitive energy accounting

Hammerhead was bound to a global resource container and set up to send 500 re-

quests per second to the Apache web server. Each of those requests caused Apache

to send an own request to PostgreSQL. Hence, work performed on cluster nodes

one and two for the initial Hammerhead request was accounted to the same re-

source container. Figure 6.2 shows the CPU power consumption (one value per

second) on the affected cluster hosts measured by the local containers.

6.2.3 Limiting energy consumption

This final experiment shows that limiting energy consumption for requests sent

from remote machines is possible. Again, the Apache web server was running on

a cluster node while connections were made from a client computer outside the

cluster. To simulate two different request classes, two Hammerheads were running

on the client node. The Hammerheads were started bound to a global resource

container each. One of those resource containers was limited to 10 watts per second

on the cluster machine running the web server, the other container was not limited.
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The actual power consumption of both resource containers is plotted in Figure 6.3

(one value per second).
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Figure 6.3: CPU power consumption for Apache web server limited to 10 watts
and unlimited
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Future work

This chapter gives a concise survey of possible extensions to the concept of trans-

parent energy accounting described in this work.

7.1 Extending the infrastructure for transparent informa-

tion exchange

This work has introduced a new option type for destination option headers, the

Resource ID option. As already mentioned in section 5.2.2.1, this does not need

to remain the only possible option. As this work implements an infrastructure

for sending and receiving of piggyback information in destination options headers

transparently for the application, there is obviously the possibility to send other

information via this way as well. Further options could be added easily.

Yet, the number of possible options is limited. TheOption Type is an 8 bit field,

but the first 3 bits have a special meaning and cannot be chosen freely (see section

5.2.2.1). Furthermore, two option numbers are taken for the padding options. This

leaves 30 different options types. Considering that option numbers for destination

options headers might be used for other concepts in the future as well, there might

not be enough options left for all conceivable applications. In order to circumvent

this problem, extra options could be limited to a single option type and a protocol

for the contents of theOption Data field would have to be defined to regularise the

communication between sender and receiver. A straightforward approach would

use another way of tlv-encoding inside theOption Data field.
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7.2 Relocation of unused resources

Global resource container usage data is collected by installing local resource

containers on each host and adding up usage data of those containers. When con-

tainers are limited, the same limit is set on every node. If some nodes do not

exhaust their limit, this share of the limit is simply lost and not relocated to the

other hosts.

This is not a problem for accounting-only scenarios or for thermal management

either, because each node can be limited freely. However, this can be a problem

in scenarios in which customers pay for a certain share of energy in advance, for

instance, and fractions of this share are lost. Aron et al have shown in [12] that

equally distributed resource limits on every cluster node suffice to achieve perfor-

mance isolation if the requests bound to each resource container are load balanced

across the cluster nodes. For scenarios in which this assumption does not hold, the

energy accounting and limiting concept developed in this work could be extended

to a system that collects unused resources from local containers and relocates those

resources among corresponding containers that belong to the same global container

and have exhausted their share already.

Implementation of such an extension is not straightforward, though. The current

local resource container implementation that this work is based upon [7] does not

store unused resources but old resources are lost with every refresh cycle. Thus,

those containers would need to be extended first. Moreover, relocation of resources

among the nodes would require extra network traffic, especially because efficient

relocation would require to quickly and therefore frequently redistribute unused

resources. Consequently, a significant overhead for such a relocation system is

likely. It needs to be studied whether or not this overhead is outweighed by the

expected advantages.

7.3 Accounting of further resources

Of course, the concept of resource containers is not limited to accounting CPU

energy usage. Further resources such as memory or network-bandwidth could be

accounted, too. Likewise, accounting of energy usage could be extended to other

hardware components in the system other than the CPU. This would either require
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that those components are capable of delivering similar data like the Pentium 4

CPU does from its performance counters, or certain fixed energy amounts could be

assigned to special events. For instance, the sending of a network packet induces

energy usage within the network interface card to actually send the packet. Unless

the energy consumption of this card during the sending of a packet is unpredictable,

fixed amounts could be accounted for such events.

7.4 Profiling of resource containers

Keeping a history of a resource container’s usage data could be of interest for al-

location of processes to cluster nodes. In that respect, processes bound to resource

containers which have shown the need of only little CPU time could be combined

on one machine and the clock speed could be reduced to save energy without or

with only little performance penalties.





Chapter 8

Conclusions

This work has introduced a concept for task-specific accounting of energy dissipa-

tion in distributed systems.

Limitations of the existing energy resource container implementation have

been overcome by extending the concept of a resource container to aglobal re-

source containerthat is valid across system boundaries. This has been accom-

plished by adding globally available identifiers to the resource containers and

sending those identifiers between clients and servers that reside on different hosts.

Transmitting extra messages has been avoided by sending the identifiers piggyback

with normal network traffic. The use of the new Internet Protocol IPv6 is a sensible

choice as this protocol allows optional and definable headers, hence identifiers can

be transmitted transparently for the applications involved. Communication with

other operating systems is not obstructed either, although energy accounting will

not be in effect on those systems, of course.

Several applications of the given accounting scheme have been proposed. To-

gether with the limitation of resource containers and the mapping of energy usage

data to heat dissipation of CPUs, further scenarios have been outlined.

A prototype implementation of the concept has been presented as a modifica-

tion of a Linux kernel together with user-level programs. Several experiments have

shown that the implementation is effective and that valuable energy usage data can

be collected on clusters for different scenarios.

Finally, the use of energy usage data obtained from this concept for relocation

of unused energy portions to other systems has been suggested. While not neces-

sary in all situations, this extension could enhance the existing concept further.
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Erfassung und Abrechnung des

Energieverbrauchs in Verteilten Systemen

Die Entwicklung hin zu immer leistungsfähigerer Hardware hat dazu geführt,

dass Energieverbrauch und Abwärme und die mit letzterer verbundenen Ausgaben

für Kühlung immer mehr zu einem entscheidenden Kostenfaktor werden. Dieses

Problem wird durch den zunehmenden Trend zu höher integrierter Hardware auf

engem Raum in Rechenzentren und damit der Zunahme der Leistungsaufnahme

pro Quadratmeter Stellfläche noch weiter verschärft. Die Erfassung, Abrechnung

und Limitierung des Energieverbrauchs ist deshalb von zunehmender Bedeutung.

Möglichkeiten zur Erfassung des Energieverbrauchs werden von aktuellen Be-

triebssystem nicht angeboten. Es gibt jedoch existierende Betriebssystemerweite-

rungen, die eine derartige Funktionalität bereitstellen. Eine Erweiterung für das

Linux Betriebssystem von Martin Waitz verwendet das bekannte Konzept derRe-

source Container, um eine Erfassung des Energieverbrauchs bestimmter Aufga-

ben, d.h.̈uber Prozessgrenzen hinweg, zu gewährleisten. Prozesse werden dabei an

bestimmte Resource Container gebunden, um zu kennzeichnen, für welchen Re-

source Container ein Prozess im Moment arbeitet. Diese Bindung ist dynamisch,

d.h. wenn der Prozess seine Aufgabe wechselt, so wechselt auch die Resourcen-

bindung. Allerdings ist diese Implementierung nur auf Einzelrechnern einsetzbar.

Diese Arbeit stellt ein auf obiger Implementierung aufbauendes Konzept vor,

das den Einsatz von Resource Containernüber Rechnergrenzen hinweg, z.B. in

Rechnerverb̈unden, erm̈oglicht. Hierzu werden Resource Container um einen glo-

bal g̈ultigen Identifikator erweitert. Dieser wird bei Anfragen an andere Rechner

mitübertragen, um eine Zuordnung zum korrekten — nun global gültigen — Re-

source Container zu erm̈oglichen. Wird etwa ein Server-Prozess für einen Client-

Prozess aktiv, so wird der Server-Prozess für die Dauer dieser Aktiviẗat an den
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Resource Container des Clients gebunden und somit der vom Server ausgehende

CPU-Stromverbrauch für die Dauer dieser Bindung diesem Resource Container

zugeschrieben. Bei einer Anfrage des nächsten Clients̈andert sich diese Bindung

entsprechend. Client und Server können sich dabei auf unterschiedlichen Rechnern

innerhalb des G̈ultigkeitsbereichs des globalen Resource Containers befinden. Ei-

ne Begrenzung des Stromverbrauchs für globale Container sowie die Verwendung

dieses Konzepts für die Temperaturregelung in Rechnerverbünden sind ebenfalls

möglich.

DasÜbertragen der zusätzlichen Identifikatoren erfolgt dabei transparent für die

beteiligten Anwendungen und ohne zusätzlichen Netzwerkverkehr̈uber IPv6 Ver-

bindungen. Hierzu bedient sich die Implementierung einer von IPv6 angebotenen

Möglichkeit, selbst definierte Optionen in zusätzliche, optionale IPv6-Header ein-

zufügen. Die Pakete bleiben dabei absolut standardkonform, so dass ein Datenaus-

tausch auch mit anderen, nicht modifizierten Betriebssystemen weiterhin möglich

ist.

Zur Umsetzung dieses Konzepts wurde eine prototypische Implementierung für

das Betriebssystem Linux erstellt. Sie besteht aus einer Kernerweiterung und aus

verschiedenen Hilfsprogrammen zur Verwaltung. Mehrere Experimente, bei denen

der Energieverbrauch zur Bewältigung verschiedener Aufgaben innerhalb eines

Rechnerverbunds gemessen und limitiert wird, zeigen die Funktionsfähigkeit die-

ser Implementierung. Die Experimente umfassen Messungen mit einem Webser-

ver, der zum Bearbeiten einer Anfrage nach einer dynamischen Seite auf einen

Datenbankserver auf einem anderen Rechner zugreift, sowie Messungen bei der

verteiltenÜbersetzung eines Programms auf mehreren Rechnern. Abschließend

werden Ans̈atze zur weiteren Verbesserung des Konzepts vorgeschlagen.
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