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Abstract

Actions usually taken to prevent processors from overheating, such as decreasing the
frequency or stopping the execution flow, also degrade performance. Multiprocessor
systems, however, offer the possibility of moving the task which caused a processor
to overheat away to some other, cooler processor, so throttling becomes only a last
resort taken if all of a system’s processors are hot. Additionally, the different energy
characteristics that different tasks are showing can be exploited, and hot tasks as well
as cool tasks can be distributed evenly among all processors.

This work presents a mechanism for determining the energy characteristics of tasks
by means of event monitoring counters, and an energy–aware scheduling policy, which
strives to assign tasks to processors in a way that balances the power consumption of
the processors, so individual processors do not overheat.

We implemented energy–aware scheduling for the Linux kernel. Evaluations show
that the overhead incurred by the additional task migrations required for balancing
power is negligible, and that, for many scenarios, energy–aware scheduling reduces
the need for throttling and thus yields an increase in throughput.
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1 Introduction
With increasing clock speed and circuit density, power dissipation has become an issue
in todays high-performance microprocessors. Every Watt of electric power that a mi-
croprocessor consumes is transformed into heat and has to be removed from the system
by a cooling facility. In the past, cooling facilities were designed for the worst case, i.e.,
a situation in which the processors are constantly operating at their theoretical maxi-
mum power. However, most ordinary tasks do not cause a processor to consume this
maximum power. Therefore, designing cooling facilities for the worst case results in
overprovisioning, and causes unnecessary costs.

The alternative is to design cooling facilities for a more moderate thermal design
power. If a processor executes tasks that exceed this power, it may reach a critical tem-
perature, which can cause malfunctions or even physical damage. Hence, contemporary
systems are monitoring the processor temperature and engage some throttling mecha-
nism to keep the processor from overheating whenever a certain threshold temperature
is reached.

The goal of throttling is to reduce the processor’s power consumption. This can be
achieved, for instance, by putting the processor in a low power sleep state for some
time, by periodically disabling the clock signal (clock gating), by limiting the rate at
which instructions are forwarded from the L1 cache or by reducing the processor’s
frequency and voltage. Besides reducing the power consumption of the processor, all of
these measures also reduce the system’s performance, because they delay the execution
of instructions or reduce the frequency at which instructions are executed. Therefore,
throttling should only be applied if really necessary.

1.1 Thermal Imbalances
Idle processors consume considerably less power than busy processors. Modern pro-
cessors offer special instructions to put the processor into a low power sleep state. The
operating system executes these instructions whenever there is no work to be done for
a CPU. This results in a lower power consumptions and a lower temperatures for idle
processors.

Even two busy processors (of the same model) executing different tasks can show
different power consumptions. The power consumption of recent processors depends
on the type of instructions executed and therefore on the task that is running on a pro-
cessor [BWWK03, IM03]. Different tasks utilize different kinds and different numbers
of functional units on the processor chip. This results in individual tasks causing dif-
ferent power consumptions. Hot tasks cause a high power consumption and therefore

1



1 Introduction

  

CPU 1 CPU 2

H (idle)

CPU 1 CPU 2

H H
migrate

periodically

(a) Dual processor system running one hot task

CPU 1 CPU 2

H HH H C C

CPU 1 CPU 2

H HH C H C

(b) Dual processor system running two hot and two cool tasks

Figure 1.1: Examples of thermal imbalances

a high temperature of the processor; cool tasks consume less power, which leads to a
lower processor temperature.

The following two examples elucidate how this can lead to thermal imbalances, i.e.,
the processors having different temperatures. In the first example, a dual processor
system is running a single hot task (Figure 1.1(a)). If the task is running on the same
CPU all the time (left side of the figure), the CPU concerned will have a high temper-
ature, whereas the other CPU is idle and therefore cool. If the task were migrated to
another CPU from time to time (right side of the figure), both CPUs could be kept to a
medium temperature.

In the second example, two hot tasks and two cool tasks are running on a dual pro-
cessor system (Figure 1.1(b)). If the two hot tasks are running together on one CPU,
and the two cool tasks are running together on the other CPU (left side), this results
in a high temperature for the first CPU and a low temperature for the second one. If
each CPU were executing one hot and one cool task (right side), both CPUs would have
medium temperatures.

In both examples, thermal imbalances, as shown on the left side of the figures, can
lead to situations in which the hot processors operate at high temperatures and have to
be throttled, whereas the temperature of the cool processors is far below the threshold
temperature. However, as shown on the right side of the figures, thermal imbalances
could be avoided if the right decisions concerning which task to run on what CPU were
taken. Yet, schedulers found in contemporary operating systems are neither aware of
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the energy characteristics of the different tasks nor of the processors’ temperatures, and
thus do not take any precautions to prevent thermal imbalances.

1.2 Energy–Aware Scheduling
This thesis deals with operating system based dynamic thermal management in multi-
processor systems. Our goal is to reduce thermal imbalances between the processors
of a system, so no individual processor becomes so hot it has to be throttled. Our ap-
proach takes advantage of cool processors and of the different energy characteristics
of individual tasks. Instead of throttling hot processors, we move hot tasks that caused
a processor to overheat away to a cool processor, and combine hot tasks with cool
tasks on processors. By balancing the power consumption of the processors in the sys-
tem, we keep all processors at the same temperature and avoid overheating individual
processors. This reduces the need for throttling and therefore increases the system’s
performance.

Balancing the processors’ power consumption requires assigning tasks to processors
depending the tasks’ energy characteristics and on the processors’ temperatures. In
an operating system, the scheduler is the component responsible for deciding which
task runs on which processor. To get maximum performance out of a multiprocessor
system under constraints imposed by the limited ability of each processor to dissipate
energy without overheating, the scheduler has to know how much energy each task is
consuming and how much energy can safely be dissipated on each processor per time
unit, so it is able to make the right scheduling decisions and assign tasks to processors
appropriately; it has to be energy–aware.

Schedulers found in contemporary operating systems try to maximize the throughput
and the responsiveness perceived by the user. For making them energy–aware, they
have to be extended to take the energy criterion into account, without neglecting their
conventional criteria.

Therefore, we identify the following prerequisites: Firstly, we need a mechanism for
determining the energy characteristics of a task, which means, how much energy a task
is currently consuming and is expected to consume in the future, so we can identify hot
tasks and cool tasks. Secondly, we need a policy for deciding which task shall run on
which CPU, respecting the criteria of throughput, responsiveness, and energy.

Event monitoring counters included in modern microprocessors can be used to esti-
mate the energy a processor spent during a certain period of time [BWWK03]. We use
these counters to create task energy profiles describing the energy characteristics of the
individual tasks. Our energy–aware scheduling policy is based on these profiles and
strives to balance the processors’ power consumption in order to minimize the need for
throttling.

We implemented energy–aware scheduling for the Linux kernel and evaluated it un-
der a number of different workloads. The evaluations show that energy–aware schedul-
ing can significantly increase the throughput of a system.
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1.3 Structure
The rest of this work is structured as follows: Chapter 2 discusses the fundamentals
upon which our work depends and reviews related work. Chapter 3 analyzes the prob-
lem of thermal imbalances, which we already outlined in this chapter, more in depth,
and presents the design of an energy–aware scheduling framework enabling the oper-
ating system to prevent thermal imbalances. Chapter 4 describes the changes done to
Linux in order to integrate energy–aware scheduling and discusses some implementa-
tion issues. Chapter 5 shows evaluations of our Linux implementation of energy–aware
scheduling using different workload scenarios. Chapter 6 concludes and discusses di-
rections for future work.
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2 Background and Related Work

2.1 Multiprocessor Scheduling

2.1.1 Affinity Scheduling
In SMP (simultaneous multiprocessing) systems, in principle, each task can run on
each CPU. However, after a task has been running on a CPU for some time, it has
warmed up the CPU’s cache. Even if the scheduler suspends the execution of a task
and assigns the CPU to another task, some of the first task’s data is likely to be still
in the cache when the scheduler switches back to it after some time. Therefore, it is
beneficial to respect processor affinity and to resume a task on a CPU on which it ran
previously, since this reduces the need for reloading the contents of the cache. Affinity
scheduling [SL93, TTG95] takes advantage of this, and strives to avoid running tasks
on different CPUs, either by giving tasks a priority bonus depending on the CPU, or by
introducing local queues for the individual CPUs.

Our work is built upon the latter approach, which has been adopted by many of to-
days multiprocessor operating systems. Following this approach, the operating system
divides the set of all runnable tasks in the system among the system’s CPUs. It assigns
a subset of the tasks to each CPU, and each CPU runs a scheduler of its own, which
chooses the task to be run next on the CPU out of this subset. For each CPU, the sched-
uler organizes the subset of tasks that are eligible for execution on the CPU in some
kind of data structure, e.g., a linked list, in order to keep track of the tasks. In Linux
(and in other systems as well), this data structure is called the runqueue. Since every
task belongs to one runqueue only, it is always executed on the same CPU unless it is
transfered from one runqueue to another one.

The approach of local runqueues entails the problem of load imbalances, i.e., un-
equal runqueue lengths. The more tasks a runqueue consists of, the smaller is the share
of CPU time each task gets. If there are CPUs having empty runqueues while the run-
queues of other CPUs consist of multiple tasks, CPU capacity is wasted. Counteracting
this problem requires load balancing, which means migrating tasks between runqueues.

General purpose operating systems strive to provide fairness to their tasks, and keep
all runqueues to the same length by moving tasks from longer runqueue to shorter ones
if necessary.
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2.1.2 Hierarchical Load Balancing
NUMA (non uniform memory access) systems add a new dimension to the affinity
problem. They introduce node affinity, which is given if a task is kept to the same
node. Respecting node affinity is beneficial to performance [CDV+94]. If a task gets
migrated across the node boundary, the memory the task is referencing must either be
transfered to the new node, or the task has to do inter–node accesses. Both possibilities
incur performance penalties. Therefore, if load balancing can be done between CPUs
belonging to the same node, this should be preferred to load balancing between CPUs
belonging to different nodes.

Similarly, in SMT (simultaneous multithreading) systems, load balancing should
preferably be done between sibling CPUs, since they share the same cache. In or-
der to make the optimal load balancing decisions, the scheduler has to know about the
CPU topology of the system, i.e., who is whose sibling and who shares the same node
with whom. Linux introduces an abstraction called scheduler domains to represent this
topology [Lin05].

A scheduler domain consists of two or more CPU groups. A CPU group is a set of
CPUs. Scheduler domains are stacked in a hierarchical fashion to mirror the system’s
topology. The higher the level in this domain hierarchy, the costlier are the balancing
operations in a domain.

An example (see Figure 2.1): In an eight–way SMP system consisting of two NUMA
nodes with four processors each, and with each processor being two–way simultane-
ously multithreaded (16 logical CPUs in total), there are three levels in the domain
hierarchy: On the lowest level, there are eight domains, each spanning one physical
processor. Each of those domains consists of two CPU groups and each group spans
one logical CPU. On the second level, there are two domains, each spanning one node.
Both domains consist of four CPU groups. Each CPU group spans one physical pro-
cessor and therefore consists of the processor’s two logical CPUs. Finally, there is one
top level domain spanning all CPUs. It consists of two CPU groups, each spanning
one node. Each group consists of eight logical CPUs whose corresponding physical
processors all reside on the same node.

With the domain hierarchy available, a scheduler can do hierarchical load balancing
between the domain’s groups. The goal of load balancing is to have the same runqueue
length for each CPU. This is equivalent to having the same average runqueue length for
all CPU groups on each level of the domain hierarchy. If group A has a greater average
runqueue length than group B, tasks have to be migrated from some CPU in group A to
some CPU in group B. Since the cost of migrations rises with the level in the domain
hierarchy, a hierarchical load balancer solves imbalances on the lowest level possible.

For the example topology above, hierarchical load balancing means resolving im-
balances between two sibling logical CPUs by transferring tasks from one sibling to
the other, instead of moving tasks from a different physical CPU to the first sibling or
moving tasks to a different physical CPU from the second sibling. Similarly, tasks are
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physical level:    node level:                         
top level:    logical CPU:  

Figure 2.1: Example of scheduler domains

only transfered between CPUs residing on different nodes if the top–level domain is
unbalanced.

2.2 Energy and Temperature Estimation

2.2.1 Online Energy Estimation Using Event Monitoring Counters
Modern processors like the Pentium 4 offer special registers called performance moni-
toring counters, or more general, event monitoring counters. These counters are in-
tended for delivering values useful for performance analysis and optimization, and
therefore are able to count various processor–internal events. As those events corre-
spond to activities on the processor chip, the operating system can use these coun-
ters for estimating the energy the processor spends during a certain period of time
[BWWK03, Kel03].

Assuming that the processor consumes a certain fixed amount of energy for each
activity, the energy consumption of the processor can be estimated as follows: A set of
n events that can be counted simultaneously is chosen, and a fixed amount of energy ai

is associated with each event. The energy spent during a period of time is calculated as
the linear combination of the counter values ci:

E =
n∑

i=1

ai · ci (2.1)
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2 Background and Related Work

The weights ai are calibrated by measuring the real energy consumption with a multi-
meter for several test applications, counting the events that occur during the test runs,
and solving the resulting linear equations.

Assigning a constant amount of energy to each event neglects the fact that the power
consumption of a processor depends on temperature. Especially leakage power in-
creases with higher temperatures. However, within the temperature window of 20 de-
grees, in which we operate (see Chapter 5), the influence of temperature on energy
consumption is only small. This justifies neglecting temperature effects.

Since event monitoring counters are implemented as registers in hardware, they can
be read with low overhead. This allows to estimate the energy consumption very fre-
quently and to determine the energy consumed during a period as short as a scheduling
interval. Therefore, it is possible to attribute energy consumption to distinct tasks,
which is a prerequisite for determining the individual tasks’ energy characteristics.

The mechanism for online energy estimation just described has been implemented
for the Intel Pentium 4 Processor and the Linux kernel [Kel03] and yields an estimation
error of less than 6% for real–world integer applications. Since the counters present
in the Pentium 4 do not completely cover all relevant events corresponding to floating
point activities, the error is higher for floating point applications (up to 20%).

This work uses the mechanism for energy estimation described, but extends it to
estimate energy consumption separately for the logical CPUs of a simultaneously mul-
tithreaded processor (see Section 3.4.3 in the next chapter).

2.2.2 Thermal Model of a Microprocessor
When the energy consumption of the processor is known, it can be used as an input
for a thermal model of the processor and its cooling facility [BWWK03,Kel03]. Using
such a model, the temperature of the processor can be estimated quite accurately. The
error resulting from estimating energy and then estimating temperature from the energy
estimate is smaller than one degree for real–world applications. Conversely, the thermal
model can be used to calculate the amount of energy which may be dissipated during
a certain period of time without overheating the processor. This information is of vital
interest for an energy–aware scheduler.

The energy that a processor consumes gets dissipated in form of heat. This energy
is stored in the chip and the heat sink and results in increased temperature of those
components. But the energy is not stored forever: Owing to the thermal conductivity
of the heat sink, the energy is delivered to the surrounding air and removed by the air
flow that the fans generate.

If the processor operates at a static power, dissipation and conduction on the long
run form an equilibrium, which results in a constant temperature. On the other hand,
if there is a change in power, this results in a change in temperature. Because of the
thermal capacitance of the heat sink, this change does not take place immediately. On
an increase in power, the temperature rises exponentially until the equilibrium resettles
at a higher temperature. Similarly, on a decrease in power, the temperature falls expo-

8
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time

temperature
power

Figure 2.2: Dependence of chip temperature from power consumption

nentially. Figure 2.2 illustrates this: After one time unit, the formerly constant power
raises to a higher level for four time units. Then it drops back to its original level. The
temperature follows power, but does not change at once, but exponentially over time.

The course of the processor temperature over time is modeled with the following
equation [BWWK03]:

ϑ(t) =
−c̃

c2

· e−c2t +
c1

c2

· P + ϑ0 (2.2)

ϑ0 is the ambient temperature. c1 and c2 are constants depending on the thermal resis-
tance and the thermal capacitance of the processor and the heat sink. c̃ is an integration
constant depending on the temperature of the processor at the time t = 0.

Equation 2.2 consists of a dynamic part (first addend) and a static part (second and
third addend). The static part depends only on the ambient temperature and the power
consumption of the processor. It models the temperature that the processor reaches after
operating with constant power P for a long time. The dynamic part is an exponential
function with time constant c2 and models the exponential rise or decay of the processor
temperature after a change in power consumption.

The time constant of this exponential function can be determined by starting a task
which produces a maximum of heat on a processor formerly idle, recording the tem-
perature values over time, and fitting an exponential function to the experimental data.
With knowledge of c2, the constant c1 can then be determined from the static part of
Equation 2.2 by simultaneously measuring temperature and power consumption while
the CPU is executing workloads with different but constant power consumptions.
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The ability of different materials to store and to conduct heat can be seen analo-
gously to the corresponding electrical qualities, electrical capacitance and electrical
conductivity (or its inverse, electrical resistance). From this point of view, the ther-
mal model of the processor and the heat sink just described corresponds to a compact
model [HGS+04] consisting of one thermal capacitor and one thermal resistor. More
elaborate compact models consisting of greater numbers of thermal capacitors and re-
sistors, which characterize the thermal properties of a processor chip more accurately
and yield different temperatures for the individual functional units of a chip, have been
proposed [LS05]. However, considering more than one temperature value per chip for
scheduling is beyond the scope of this work.

2.3 Energy–Aware Scheduling
An energy–aware scheduler considers the energy characteristics of individual tasks and
the temperature of the processors when making scheduling decisions. Up to now, most
of the work on energy–aware scheduling does not take multiple processors into account,
but is focused on uniprocessors. There are also some hardware related approaches,
which, like our approach, mitigate thermal imbalances by migrating computation.

Process Cruise Control

On processors supporting frequency and voltage scaling, the scheduler can use the en-
ergy characteristics of a task to determine the optimal frequency at which the processor
should run the task [WB02]. The scheduler uses a task’s IPC (instructions per cycle)
value and the frequency of memory accesses to determine the optimal frequency at
which energy consumption is reduced without decreasing performance substantially.
However, frequency and voltage scaling are not available on most of todays high per-
formance processors used in multiprocessor server machines.

Task Level Throttling

If the operating system knows which tasks are responsible for a rise in processor tem-
perature, it is able to keep the temperature below a certain limit by throttling only the
hot tasks, instead of penalizing all tasks [RS99]. The scheduler identifies hot tasks by
their high CPU activity and throttles them by executing the hlt instruction, which puts
the processor in a low power state until the next interrupt arrives.

We argue that in multiprocessor systems, if there are cooler processors, migrating
a hot task to such a processor is superior to throttling. Additionally, considering only
CPU activity has proven insufficient for determining a task’s energy characteristic on
recent processors like the Pentium 4 [BWWK03].

10
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Energy Containers

The abstraction of resource containers [BDM99] allows the management of energy as a
first class resource in distributed systems [Wai03, WB04]. Each task has an associated
energy container on which the operating system accounts the energy consumed by the
task. Only tasks whose energy container is non–empty may be chosen by the scheduler.
Since this work’s focus is not on choosing which tasks are allowed to be scheduled, but
rather on where they are scheduled, the two approaches are fully compatible and could
easily be combined.

Heat–And–Run

The principle of moving computation away when temperature gets too high is part of
the Heat–and–Run scheduling policy developed for simultaneously multithreaded chip
multiprocessors [GPV04]. Heat–and–Run characterizes tasks by their IPC value and
uses this characterization to co–schedule tasks on sibling processors in a way that pro-
duces maximum heat. If a certain temperature limit is reached, the tasks are migrated
to another core on the chip multiprocessor. However, Heat–and–Run was not imple-
mented on real hardware, but uses the Wattch [BTM00] architectural–level simulator.

Activity Migration

A more hardware related approach to dynamic thermal management consists in includ-
ing spare resources like register files, ALUs, or issue queues on the processor chip
and migrating computation to one of those spare resources when the original resource
reaches a critical temperature [HBA03,SSH+03]. Our approach works on a more coarse
grained level, moving computation not within a chip but between chips. Also, in our
approach, decisions concerning the migration of tasks are taken at the operating sys-
tem level, whereas activity migration within a chip can only be triggered by a hardware
mechanism, since the microarchitecture of the processor is transparent to software. The
hardware, however, has no knowledge about tasks and can only migrate computation in
general, but not on a per task basis.

Energy–Aware Fetch Policy

Another approach, which also operates at the hardware level, modifies the fetch policy
of a SMT chip [DM05]. Instead of characterizing individual tasks, this approach char-
acterizes the individual hardware threads of a SMT processor by their utilization of the
chip’s functional units. Depending on the current temperatures of the functional units,
the processor prefers fetching instructions for threads that are mainly using units that
are currently cool.
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3.1 Problem Analysis

3.1.1 Thermal Imbalances
The power consumption of a modern microprocessor depends strongly on the type of
instructions it executes and thus on the program code of the task that runs on the pro-
cessor [BWWK03, IM03]. On the 2.2GHz Pentium 4 Xeon processor we used in our
experiments (see Chapter 5), we measured power consumptions ranging from 38W to
61W for different compute intensive tasks.

As already stated in the introduction, schedulers found in contemporary operating
systems do not take the tasks’ different energy characteristics into account when decid-
ing on which CPU of a multiprocessor system to run a task. As a result, most of the
time, the processors have different power consumptions. Since the energy that a pro-
cessor consumes determines the temperature of the processor chip (see Section 2.2.2),
this results in different temperatures for the different processors of a system. This is
even more the case if some CPUs of a system are idle, since idle processors consume
considerably less power than busy processors.

Besides power consumption, the temperature of a processor also depends on the
cooling facilities: Processor A might be located closer to some cooling facility like
a fan or an air intake than processor B. Therefore, even if processors A and B are
operating at the same power, A’s temperature will be lower than B’s. This also means
that processor A is able sustain a higher power consumption without overheating than
processor B.

So we can identify two reasons for thermal imbalances: power consumption and
cooling properties. Power consumption is highly dynamic. It depends on the tasks
that run on a CPU and can therefore — at least to some degree — be influenced by
the operating system via scheduling decisions. Opposed to this, we treat the cooling
properties of a processor as static. Although modern cooling systems allow properties
like the fan speed to be controlled by software, the maximum power each processor can
dissipate without overheating, which is the critical property in our case, is fixed.

3.1.2 Timescales
As we depicted in Section 2.2.2, when the power consumption of a processor changes,
the chip temperature does not change immediately, but continuously over time. Al-
though there are certain variations in the power consumption when a processor executes
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a particular task, the greatest changes in power consumption occur when the operating
system switches the CPU between tasks with different energy characteristics, when a
busy CPU becomes idle, and when an idle CPU becomes busy.

When the power consumption of a processor changes, it takes seconds up to minutes
for the temperature to change significantly because of the high thermal capacitance of
the processor chip and the heat sink. Compared to this, scheduling intervals are short
— the length of a timeslice ranges between 10 milliseconds and 100 milliseconds in
general–purpose operating systems. During such a short period of time, the processor
hardly heats up or cools down at all. Therefore, if a processor runs several tasks with
different energy characteristics that are scheduled in round–robin fashion, the resulting
temperature is a mix of the individual tasks’ characteristics. Hence we can avoid over-
heating a processor running hot tasks, if we run some cool tasks on the same processor,
too.

On the other hand, since processors only heat up slowly, even if a processor is running
only hot tasks, it takes some time until the processor reaches a critical temperature.
If a hot task is started on or migrated to a cool processor, it can run there for some
seconds or even minutes before overheating the processor. Therefore, we can also
avoid overheating processors by migrating hot tasks to cool processors from time to
time.

3.1.3 Need for On–Line Energy Estimation
The knowledge about the tasks’ energy characteristics is a prerequisite for influencing
the processors’ temperatures via scheduling decisions. Therefore, the operating system
must be able to identify hot tasks and cool tasks. An analysis of the processor’s power
consumption while running a particular task shows that power consumption is fairly
static most of the time, but exhibits changes as the task experiences different phases
of execution, e.g. runs different algorithms successively [Bel01]. The sequence and
the duration of these phases depend on the task’s input data. Therefore, the energy
characteristics of a task cannot be known in advance and thus cannot be determined by
off–line analysis.

Characterizing tasks on–line means we must observe a certain quality that represents
the tasks’ characteristics at least once every timeslice, since the CPU might be exe-
cuting a different task every timeslice. This is the reason why we cannot characterize
individual tasks by the temperature of the processor: As described in the preceding
subsection, a processor’s temperature only changes slowly. It is possible that a proces-
sor currently executing a cool task is hot, since it has executed hot tasks in the past.
Similarly, as already mentioned, a processor executing hot tasks in turn with cool tasks
has a medium temperature.

Unlike temperature, the energy consumed by the processor is suitable for character-
izing individual tasks on–line. Individual tasks cause typical, distinguishable power
consumptions of the processor during the timeslices of their execution. Therefore, we
can characterize individual tasks if we can determine the amount of energy the proces-
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sor consumes during each timeslice. Although there is measurement hardware with a
temporal resolution high enough to determine these amounts of energy [FS99], such
hardware is too expensive for use in production environments. Also, the sampling and
the evaluation of on–line measurements incurs high overhead, and is therefore usually
done by a second computer system.

In contrast to this, on–line energy estimation by means of event monitoring counters
as described in Section 2.2.1 is a convenient way for the operating system to determine
the amount of energy the processor consumes during each timeslice. Without requiring
additional hardware, this mechanism delivers quite accurate results. Most important,
the overhead for reading the event counters and calculating the energy estimation is
low, so the operating system can estimate the energy consumption every timeslice.

3.1.4 SMT Issues
Recent processors feature simultaneous multithreading (SMT), the ability to run sev-
eral (logical) threads of control on a single (physical) processor. This poses additional
challenges to energy–aware scheduling.

To the software, and thus to the operating system, a SMT processor looks like several
processors (also called logical processors) executing different tasks independently. On
the hardware side, however, there is only one chip. The logical processors all share
the same physical resources on the chip and therefore all dissipate their heat at the
same locations. Hence, if tasks with different energy characteristics are running on
different logical processors in parallel, the resulting chip temperature is a mix of the
individual tasks’ characteristics, similar to the situation described above, with several
tasks running on the same processor in round robin fashion.

Since the threads of a SMT processor run truly in parallel, not only the chip’s tem-
perature, but also its power consumption is a mix of the characteristics of the tasks
that are running in parallel on the logical processors. To characterize individual tasks,
the operating system needs a way to determine which share of the processor’s power
consumption is caused by which of its logical threads. Energy estimation by means
of event monitoring counters can accomplish this, if the processor’s event monitoring
counters are able to distinguish which of the processor’s threads caused an event. In
this case, energy estimation can take place separately for each logical processor, and
power consumption can be attributed to individual tasks running in parallel on a SMT
processor.

3.2 Approach
To tackle the problem of thermal imbalances and the resulting need for throttling some
processors of a system, we introduce an energy–aware scheduling framework. We
enable the operating system to know about the energy characteristics of the tasks it
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manages, and to choose a suitable CPU for running each task respecting the processors’
temperatures and abilities to dissipate heat.

However, our approach does not directly deal with throttling. We assume that some
other authority decides when a processor is throttled and when not, depending on the
processor’s temperature. Since temperature is the trigger for throttling, our energy–
aware scheduler strives to assign tasks to CPUs in a way that keeps all CPUs’ temper-
atures below the limit temperature at which throttling is engaged. This way, we can
minimize the need for throttling.

Since it is not always possible to keep temperature below the maximum temperature
by means of scheduling, e.g if there are only hot tasks, energy–aware scheduling is
only a best effort approach. Limiting temperature remains the responsibility of the
throttling component, whereas the energy–aware scheduler strives to leave as few work
as possible to this component.

Our approach does not depend on a specific operating system or architecture. The
only prerequisite from the operating system side is support for CPU affinity scheduling
and load balancing as described in Section 2.1.1. To work on SMT processors, our
approach additionally requires some sort of hierarchical load balancing that is able
to distinguish between physical and logical CPUs, like scheduler domains introduced
in Section 2.1.2. From the hardware side, the only prerequisite is support for event
monitoring counters. On SMT processors, at least some of the counters must be able to
attribute events to distinct logical CPUs .

3.3 Overall Design
We propose an energy–aware scheduling framework consisting of three components —
energy estimator, energy profiler and energy–aware scheduler — to incorporate energy–
aware scheduling into an operating system. Figure 3.1 depicts how these components
interact. The energy–aware scheduler is the heart of the framework. It pursues an
energy–aware scheduling policy whose goal is to avoid overheating processors. To
achieve this goal, the scheduler assigns tasks to CPUs in an appropriate way. This
requires knowledge about the energy characteristics of the individual tasks and about
the power consumption and temperature of each processor.

The energy profiler is the component responsible for characterizing tasks by their
power consumption. For each task, it maintains an energy profile which describes the
task’s energy characteristics. Besides the task–specific energy profiles, the energy pro-
filer also calculates CPU–specific power consumption rates. Both the task energy pro-
files and the CPU power consumption rates are the base for the energy–aware sched-
uler’s decisions.

The energy profiler needs knowledge about the amount of energy each CPU con-
sumes while executing a task for one timeslice to calculate the task energy profiles
and the CPU power consumption rates. These energy values are provided by the third
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Figure 3.1: Overall design

component of our framework, the energy estimator. Using the CPUs’ event monitoring
counters, the energy estimator assesses the energy consumed by each CPU.

The remainder of this chapter discusses these three components from a bottom–up
view, beginning with the energy estimator and finishing with the energy–aware sched-
uler. As mentioned in the preceding section, our design is not operating system or plat-
form specific. At some places in the following sections, we use Linux or the Pentium 4
architecture as an example. An actual implementation of energy–aware scheduling for
Linux and the Pentium 4 platform is described in the next chapter.

3.4 Energy Estimator

3.4.1 Motivation
The energy profiler needs to determine how much energy each of the tasks running
on a CPU is consuming (see Section 3.5). Since a CPU executes the tasks in its run-
queue in round robin fashion, each one for a certain period of time, the energy profiler
needs knowledge about the amount of energy the CPU consumes during these periods
of time. The energy estimator is the component which provides this information. As
already mentioned in Section 3.1.3, we choose to determine the processors’ energy con-
sumption using event monitoring counters, because access to those counters is fast and
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allows to attribute the energy a processor consumes exactly to the different timeslices
during which different tasks are executed.

3.4.2 Principle of Operation
The energy estimator transforms event counter values read from a CPU to energy val-
ues. It uses the estimation mechanism described in Section 2.2.1.

The energy estimator offers an interface to the energy profiler. Whenever the profiler
invokes the estimator using this interface, the estimator reads the CPU’s event monitor-
ing counters and compares them to the values the counters had at the last invocation. It
calculates the difference for each event, and weights it with the amount of energy cor-
responding to that type of event. The result, the energy consumed by the CPU during
the time between the two invocations, is returned to the energy profiler.

3.4.3 SMT Issues
For characterizing tasks running on a SMT processor, we need to attribute the events
that occur on the processor to the tasks running on its logical CPUs. However, it may
not be possible to count all events individually for each logical CPU. For certain events,
the counting hardware is unable to distinguish which logical CPU has caused the event.
Furthermore, on the two–way multithreaded Pentium 4 architecture, for which we im-
plemented the energy estimator, there is only one set of event monitoring registers
shared by both logical CPUs. Therefore, even some of the events that could be at-
tributed to distinct logical CPUs, cannot be counted simultaneously for both CPUs due
to a lack of counter registers [Int03].

For events that cannot be counted on a per–logical–CPU basis, there is no other way
than to divide the number of events by two and to assign half of the events to each
logical CPU, which may cause errors in the energy estimation. Events that cannot
be counted simultaneously for both logical CPUs due to a lack of counter registers
could be handled the same way by instructing one counter register to count events for
both processors and by dividing the value of the register between the processors. We
choose a different approach for handling these events, which lessens the error in energy
estimation: The energy estimator multiplexes counter registers between both logical
CPUs. Every timer tick, it instructs the counter to count events for a different logical
CPU. This way, the counter counts events for a logical CPU every other timer tick.
The energy estimator doubles the values obtained this way to compensate for counting
events only half of the time for each CPU.

So in summary, we can divide the events into three classes:

• Events that can be counted for individual logical CPUs, and for which there is a
separate counter register for each logical CPU. This is the ideal case.

• Events that can be counted for individual logical CPUs, but for which there is
only one counter register. In this case, we multiplex the register.
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• Events that cannot be counted for individual logical CPUs. This is the worst case,
since we have to divide the counter value between the logical CPUs.

3.5 Energy Profiler

3.5.1 Motivation
An energy–aware scheduler needs to know about the energy characteristics of the in-
dividual tasks, i.e. how much energy a task is currently consuming per time unit, and
how much energy it is expected to be consuming in the near future in order to be able
to make the right decisions concerning which task to run on which CPU. The energy
profiler, which we introduce in the following sections, is the component responsible for
doing an online analysis of the tasks’ energy consumption.

Besides knowing how much energy is consumed on a per–task basis, the scheduler
also needs to know how much energy each processor is consuming over time. Since a
processor’s temperature is determined by the amount of energy the processor consumed
in the past, past energy consumption is a valuable information for the scheduler, too.
For each CPU, the energy profiler therefore maintains two power consumption rates
representing present and past energy consumption on a per–CPU basis.

3.5.2 Task Energy Profiles
For characterizing individual tasks by their energy consumption, we introduce task en-
ergy profiles. A task’s energy profile is part of the task’s runtime context and describes
the task’s current energy characteristics. It consists of an energy value which is an es-
timation for the energy the task will consume if it is allowed to run on a CPU for one
timeslice. The energy profiler maintains an energy profile for each task. The scheduler
uses the information from the profiles for deciding on which CPU to run which task
(see Section 3.6).

To make the optimal decision regarding on which CPU to run a task for the next time,
the scheduler would have to know how much energy the task is going to consume during
its next timeslice. This is not possible, since in systems where input data influence the
behavior of tasks in a non–deterministic way, the energy profiler cannot look into the
future. Although the energy characteristics of a task depend on the actual piece of
program code being executed and thus may change over time, most tasks exhibit a
fairly static behavior. This makes the amount of energy a task consumed the last time
it was executed a good guess for the amount of energy the task will consume the next
time it is allowed to run.

Considering the consequences a change in a task’s energy profile might have, namely
the transfer of the task to another CPU (see Section 3.6), we should avoid changing a
task’s energy profile too often and too drastically. Therefore, we do not only take the
energy spent during the last timeslice into account, but use an exponential average.
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In the area of power management, exponential averages have been used to smooth
data gathered about the performance demands of applications [GCW95,PBB98,FM02].
We use it to smooth out the energy profiles over time. The exponential average is
a weighted moving average intended for calculating the average of a value which is
sampled over constant periods of time. It weights recent sample values with a higher
weight than sample values lying further in the past. Since on every iteration, the past
values are weighted down anew, their contribution to the exponential average fades over
time. As a result, short term changes in a task’s behavior do not cause the task’s energy
profile to change significantly, whereas a permanent change is reflected in the energy
profile after an appropriate time.

Whenever a task’s timeslice is over, the energy profiler queries the energy estimator
about the amount of energy the CPU consumed during the timeslice and updates the
task’s energy profile by recalculating the exponential average. Since tasks may also
block, release the CPU voluntarily , or, in preemptively scheduled systems, be deprived
of it by a higher priority task in the middle of a timeslice, the energy profiler has to do
the same querying and calculation on such occasions. However, it has to be aware that
the resulting energy value is not the energy spent during a full timeslice, but during a
shorter period of time.

3.5.3 Exponential Average for Variable Sampling Periods
Exponential average is intended for calculating the average of a value sampled over
constant periods of time. In our case, this period usually corresponds to one timeslice.
But as mentioned in the last subsection, sometimes a task does not execute for a full
timeslice. Additionally, some operating systems, like Linux, use different timeslice
lengths for different tasks, depending on a task’s priority. Therefore, the length of the
sampling period is no longer a constant.

There are two solutions to this problem: Firstly, we can shorten the sampling period,
so it is considerably smaller than the mean time between two subsequent task switches.
This way, we recalculate the exponential average not only at the end of each timeslice,
but, for instance, on every timer tick, so the energy profile of a task is up to date even
if the task stops executing in the middle of a timeslice. Secondly, we can extend the
exponential averaging algorithm to support variable periods, so we are able to calcu-
late the exponential average at any time a task stops executing. We choose the latter
approach, since it incurs less overhead (we have to recalculate the exponential average
and to query the energy estimator less often) and is more exact (a task switch might
occur even between two timer ticks).

We start from the conventional exponential average: The exponential average xn

for sampling period n is calculated by weighting the current sample value vn, which
in our case is the energy spent during the sampling period, with a weight p between
0 and 1, while the exponential average xn−1 of the last sampling period is weighted
with (1 − p):

xn = p · vn + (1 − p) · xn−1 (3.1)
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Figure 3.2: Calculating an exponential average

We can interpret the weight p the following way (also see Figure 3.2): vn is the energy
spent during a sampling period of constant duration τ . We calculate the average over
a larger super period with duration T , so we can calculate the weight p as the quotient
(τ / T ). We take the old exponential average xn−1 as the value for the energy spent
during the rest of the super period (T − τ) and weight it with (1 − p) = ((T − τ) / T ).
This yields

xn =
τ

T
· vn +

T − τ

T
· xn−1 (3.2)

If the lengths of the sampling periods differ, we can now calculate the exponential
average after a sampling period with length τn by replacing τ with τn:

xn =
τn

T
· vn +

T − τn

T
· xn−1 (3.3)

If τn is shorter than τ , we give the past a bigger weight, which compensates for calculat-
ing the exponential average more often. (The past values are weighted down with every
iteration.) Vice versa, if τn is longer, we give the past a smaller weight, but calculate
the average less often.

However, Equation 3.3 is applicable only if the sample value vn is independent of the
length of the sampling period τn, as is the case, e.g., with temperature values. But the
energy spent is not independent from the sampling period: The longer the period, the
more energy is spent. Therefore, we have to scale up or scale down the energy value vn

if τn is shorter respectively longer than τ . We accomplish this by multiplying vn with
(τ / τn), so the final equation used for calculating the energy profiles is

xn =
τ

T
· vn +

T − τn

T
· xn−1 (3.4)

where τ is the length of a standard timeslice and τn is the actual execution time. The
value of T must be chosen depending on how quickly the exponential average is sup-
posed to react on changes in the input values vn. With a standard timeslice length of
100ms, 1.6s (16 timeslices) turned out to be a good choice for T .
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3.5.4 Newly Started Tasks
Since we want to have energy profiles quickly available for newly started tasks, we
use smaller values for tasks which have just been started. If a task has not yet been
executing for 1.6s, we use the execution time of the task as the value for T . This way,
the energy profile adapts quickly to the energy characteristics of newly started tasks,
which is especially important for tasks that run only for a short time.

We can avoid unnecessary task migrations if the scheduler knows about the energy
characteristics of a task even before the task is started. This way, the scheduler can
place the task on the right CPU from the beginning. For workloads consisting of many
short running tasks, this is even a prerequisite for energy–aware scheduling to work: A
short running task might already have terminated before an energy–profile is available
via online analysis.

As stated in Section 3.1.3, we cannot know about the energy characteristics of a task
in advance because of the different phases occurring during the task run which depend
on input data. Most tasks, however, do some initialization before processing any input
data. Therefore, if a task is started, its initial behavior is independent of the data that
the task processes.

The energy profiler remembers the amount of energy a newly started task consumes
during its first timeslice to take advantage of this. If a task is started again from the
same binary, the energy profiler uses the remembered value as starting value for the
energy profile. For binaries started for the very first time, it uses a default value.

3.5.5 Calculated Power Consumption Rate
Next to the task–specific energy profiles, the energy profiler also maintains CPU–
specific power consumption rates. First of all, the scheduler has to know how much
power is currently consumed by each CPU, because (as we will motivate in the follow-
ing section), power consumption should be balanced between the CPUs. In principle,
on a system which schedules the tasks a runqueue consists of in round robin fashion,
the power consumption of a CPU can be calculated by averaging the values taken from
the energy profiles of all tasks in the CPU’s runqueue. Only this average matters, since,
as mentioned in Section 3.1.2, scheduling intervals are much shorter than the time it
takes for the processor’s temperature to change.

However, the calculated power consumption rate obtained this way is only of limited
accuracy. The timeslice length might be different for different tasks; higher priority
tasks might get longer timeslices, as it is the case in Linux. Additionally, the energy
profiler cannot know whether each task in the runqueue will fully utilize its timeslice,
or if some tasks will block in the middle of a timeslice and no longer be runnable.

Another shortcoming of the calculated consumption rate is that it only considers tasks
that are currently members of a CPU’s runqueue. This is insufficient for two reasons:
Firstly, there may be tasks which are blocking and unblocking frequently, e.g. a web
server answering requests and sleeping during the time between successive requests. A
blocked task is waiting for some event and thus not eligible by the scheduler and no
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member of the runqueue. Since such tasks usually resume executing on the same CPU,
they should also be considered when they are blocked and currently not members of the
CPU’s runqueue. Secondly, the energy dissipated by tasks which were executing on the
CPU in the past is still partly stored in the processor chip and the heat sink. The sched-
uler must therefore not only consider the processor’s current power consumption, but
also its temperature, which is determined by past power consumption. Otherwise, there
would be no way for the scheduler to distinguish between a cool processor and a hot
one whose hot tasks have just been migrated away (other than measuring temperature,
which is costly).

3.5.6 Empirical Power Consumption Rate
To overcome the shortcomings of the calculated power consumption rate, we introduce
a second CPU–specific power consumption rate, which is also maintained by the energy
profiler. The profiler determines this rate in an empirical way by looking at the amount
of energy a CPU really consumes during each timeslice; therefore we call it empirical
power consumption rate. This empirical consumption rate mirrors the current processor
temperature. Hence, it must consider the energy consumed in the past to a degree that
corresponds to that part of the energy that is still stored in the processor and the heat
sink.

As Section 2.2.2 elucidates, the energy stored in the processor and the heat sink
manifests itself in form of heat and raises respectively decays exponentially. There is a
close relationship between an exponential function and an exponential average. Since,
when calculating an exponential average, past sample values are multiplied with (1−p)
every iteration (compare Equation 3.1), their contribution fades exponentially: A value
that was sampled m iterations ago is weighted with (1 − p)m.

Therefore, we use an exponential average to calculate the empirical power consump-
tion rate. Whenever the energy profiler queries the energy estimator to update the en-
ergy profile of the task that was executing during the last timeslice, it uses the energy
value delivered by the energy estimator also to calculate a CPU–specific exponential
average. This exponential average is similar to the task energy profiles, but considers
any task that is running on the CPU in question instead of being task specific.

Since the empirical consumption rate is determined empirically by looking at the
amount of energy a task consumed, it only considers tasks to the extent they really run
on the CPU, i.e., not necessarily to the extent of a full timeslice. Since we calculate an
exponential average, the empirical consumption rate also considers tasks which ran in
the past but are no longer members of the runqueue.

The empirical consumption rate mirrors the energy that was dissipated by tasks in the
past is still stored in the processor and the heat sink and therefore models the processor’s
temperature. Hence, we fit the exponential average used to calculate this consumption
rate to the exponential function of our thermal model (Equation 2.2). If a hot task
has just been migrated away from a processor and the temperature of the processor
as well as the empirical consumption rate are at their upper limits, the consumption
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rate should be halfway down to the power consumption of an idle processor when
the processor’s temperature is halfway down to the temperature of a processor that
has been idle for a long time. We accomplish this by choosing a super period length
for the exponential average that corresponds to the time constant c2 in Equation 2.2.
Appendix A.1 elucidates how we derive the super period length from the time constant.
For brevity, we only quote the result here:

T =
τ

1 − ec2τ
(3.5)

However, the empirical power consumption rate has one disadvantage: A task that
has been newly migrated to a CPU can be considered immediately by the calculated
consumption rate, whereas the empirical rate does not consider it until it has used up
its timeslice for the first time. This is important when the scheduler balances power
consumption by moving tasks from one CPU to another, since it avoids over–balancing,
i.e. moving over too many tasks so one imbalance is replaced by another imbalance
into the opposite direction. The energy profiler therefore maintains both, calculated
and empirical power consumption rate, for each CPU, so the scheduler can consider
both rates for its decisions.

3.5.7 SMT Issues
The energy a task consumes depends heavily on whether it is executed alone on a
physical processor or together with other tasks running on sibling logical CPUs. A task
running alone executes considerably more instructions per time unit and is therefore
consuming more power. Also, different combinations of tasks in many cases yield
different power consumptions for each of the tasks, depending on whether they use
mainly the same CPU resources and thus obstruct each other, or different ones.

The energy profiler cannot compensate this, since it calculates the task energy pro-
files based on empirical data and does not know how much energy a task would have
consumed if the situation on the sibling CPUs had been a different one. This introduces
errors in the energy profiles of tasks running on SMT processors. We will discuss the
implications this has on energy–aware scheduling in Section 3.6.6.

Since scheduling decisions and task switches happen independently for the sibling
CPUs of a simultaneously multithreaded processor, the energy profiler maintains power
consumption rates separately for each logical CPU. Since the logical CPUs operate
in parallel, the power consumption rate of the physical processor is the sum of the
consumption rates of all its logical CPUs.
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3.6 Energy-Aware Scheduler

3.6.1 Motivation and Objectives
The goal of our energy–aware scheduling policy is to avoid thermal imbalances and
high temperatures of individual processors. Section 2.1.1 states that conventional SMP
schedulers migrate a task from one CPU to another if there is a load imbalance. How-
ever, an energy–aware scheduler may find different reasons for moving tasks than un-
equal runqueue lengths: For instance, hot tasks might have to leave hot processors, so
these processors do not become even hotter and have to be throttled. If this is not done
exceedingly often, the penalty incurred by migrating tasks is redeemed by having all
processors running at full speed. Nevertheless, we still want the load of the processors
balanced, since we want to keep the property of providing fairness to the tasks.

In Section 3.1.1, we identified imbalances in power consumption and non–uniform
cooling properties of the processors as the reasons for thermal imbalances. For sim-
plicity, we first assume that all processors possess the same cooling properties. In this
case, we can balance the processors’ temperatures by balancing their power consump-
tion. We achieve this by combining hot tasks with cool tasks on each CPU in a way that
the the average of the power consumption is the same for all runqueues. Once power
consumption is balanced, there is no further need for task migrations. However, it is not
always possible to balance power consumption exactly, e.g. in a system with many hot
tasks and one single cool task. In this case, we have to do migrations from time to time,
but since the processors’ temperature only change slowly, the number of migrations is
still low.

Balancing temperature by balancing power consumption only works if all processors
possess the same cooling properties. A processor that is located closer to some cooling
facility like a fan or an air intake than another one is able to dissipate more energy per
time unit without overheating and can thus endure a higher maximum power. Since
there is a linear relationship between (static) power consumption and temperature (see
Equation 2.2), we have to balance the power consumption with respect to the maximum
power that a processor is able to dissipate without overheating to keep all of a system’s
processors at the same temperature. Hence, our scheduling policy strives to equalize
the ratios between the processors’ power consumption and their respective maximum
power. This way, we compensate the processors’ non–uniform cooling properties by
directing power consumption towards the processors with better cooling properties.

For processors running only one task, balancing power consumption by combining
tasks with different energy characteristics is not applicable. Hence, we apply a different
policy in such situations. The high power consumption of hot tasks causes a processor
executing a hot task to heat up. To avoid having to throttle such processors, we migrate
hot tasks from hot processors. A hot task can then continue to run on a cooler processor,
which has either been idle before, or has been running a cool task. In the second case,
the cool task can continue to run on the hot processor. We minimize the number of task
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movements by we migrating a single hot task at the latest possible moment, when the
processor it runs on is about to reach its maximum temperature.

In summery, we pursue two different energy–aware scheduling policies, depending
on the number of tasks running on a CPU: In situations with more than one task per
CPU, we employ energy balancing, a form of load balancing which takes the tasks’
energy profiles into account and tries to distribute energy consumption evenly among all
CPUs. In situations when there is only one or less runnable task on a CPU, we employ
hot task migration to move tasks away from processors that threaten to overheat.

3.6.2 Input Values
We will now discuss the input values on which the energy–aware scheduling algo-
rithm’s decisions are based. Most of the scheduler’s input values are provided by the
energy estimator, and have already been introduced in Section 3.5: the task energy
profiles as well as the calculated and the empirical power consumption rates.

As motivated in the preceding subsection, we do not necessarily want to balance the
consumption rates, but rather their ratios relative to a CPU–specific maximum power
that the processor can withstand on the long run without overheating. Therefore, this
maximum power, which is a constant depending of the processors thermal character-
istics, must be known to the scheduler. If the allowed maximum temperature for a
processor, ϑmax, the ambient temperature ϑ0 and the processor–specific constants c1

and c2 are given (see Equation 2.2), we can calculate the maximum power Pmax for a
processor using the static part of Equation 2.2:

Pmax =
c2

c1

· (ϑmax − ϑ0) (3.6)

The meaning of this maximum power is: If the power consumption of a processor
is greater than Pmax, on the long run, the processor will overheat. If the power con-
sumption is only temporarily greater than Pmax, this does not necessarily lead to over-
heating, since the temperature does not rise immediately, but gradually as described by
the dynamic part of Equation 2.2. The empirical consumption rate is calibrated to this
dynamic behavior (see Section 3.5.6). Therefore, a processor’s temperature is below
ϑmax as long as its empirical consumption rate is below Pmax.

As already mentioned, energy–aware scheduling does not guarantee that the pro-
cessor temperature is kept below ϑmax. The maximum power is only a hint for the
scheduler, who tries to keep power consumption below this rate in a best–effort man-
ner.

From the maximum power and the power consumption rates, we can derive the ratio
between the calculated power consumption rate and the maximum power and the ratio
between the empirical power consumption rate and the maximum power. So in total,
the following input values are available to support the scheduler’s decisions:

For each task

• the energy profile
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and for each CPU

• the calculated power consumption rate

• the empirical power consumption rate

• the maximum power

• the ratio between calculated power consumption rate and the maximum power

• the ratio between empirical power consumption rate and the maximum power.

3.6.3 Energy Balancing
The energy–aware scheduler applies energy balancing if a runqueue consists of two
or more tasks. The goal is to combine the tasks of different runqueues in a way that
results in the same power consumption ratio (and therefore the same temperature) for
each CPU. For scalability reasons, energy balancing uses a distributed algorithm simi-
lar to the load balancing algorithm found in Linux: The algorithm runs on every CPU,
possibly in parallel and works in two steps: During the first step, the algorithm searches
for another queue to do balancing with. The second step consists in moving tasks be-
tween the two queues in order to resolve imbalances. Only tasks which are currently not
executing but waiting until it is their turn to get a timeslice of CPU time are transfered
this way. This is called passive balancing.

As the balancing algorithm is executed periodically on every CPU, balancing needs
only be done in one direction: The Linux load balancer, e.g., only pulls in tasks from
remote runqueues to resolve imbalances. If there is an imbalance which would require
pushing out tasks, this imbalance is resolved when the load balancer runs on the remote
CPU. Similarly, energy balancing shall (with some exceptions) be done only by pulling
in “heat” from other runqueues. Since we want to balance the processors’ temperatures
by balancing their power consumption, transferring “heat” from CPU A to CPU B
means finding a task whose migration from A to B causes A’s calculated power con-
sumption rate to decrease. Therefore, the energy profile of the task in question must be
bigger than A’s calculated power consumption rate.

Since migrations incur some overhead, we balance rather conservatively to avoid
ping–pong effects (tasks being migrated back and forth). Two conditions must be sat-
isfied to justify the migration of a hot task from CPU A to CPU B: The temperature of
CPU A must be higher than the temperature of CPU B, and CPU A must be consuming
more power with respect to its maximum power than CPU B. Translated to power con-
sumption ratios, this means that A’s empirical power consumption ratio must be greater
than B’s, and A’s calculated power consumption ratio must be greater than B’s.

This way, we limit the number of task migrations: On one hand, since the empirical
power consumption ratio is only changing slowly, this introduces a hysteresis effect;
tasks that we moved in one direction stay on the target CPU for some time until the need
for moving them back can arise. On the other hand, the calculated power consumption
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Figure 3.3: Energy and load balancing algorithm

ratio, changing immediately, forbids to migrate an undue number of tasks, so we do not
replace an imbalance in one direction with another imbalance in the other direction.

Since we want to keep all runqueues to the same length, we have to apply energy
balancing and load balancing. Energy balancing decisions must be consistent with load
balancing decisions and vice versa. Otherwise, a task movement made for energy rea-
sons might be undone again for load balancing reasons. Therefore, the energy balancer
must always strive not to create load imbalances and the load balancer must strive not
to create energy imbalances. Since load and energy balancing are intertwined (energy
consumption is always bound to tasks), we decided to merge load balancing with en-
ergy balancing into one algorithm.

Figure 3.3 depicts our combined energy and load balancing algorithm. The scheduler
respects the domain hierarchy when doing balancing and tries to resolve imbalances on
the lowest level possible (see Section 2.1.2). Therefore, the scheduler executes the
following steps for each domain a CPU doing balancing belongs to, beginning with the
lowermost.

First it searches for the CPU group with the highest average power consumption ratio
in order to do energy balancing. If the group containing the local CPU is found to be the
one with the highest ratio, which is probable because we are comparing conservatively
as described above, there is no need to do energy balancing and the scheduler proceeds
directly to the load balancing step. Otherwise, it searches for the queue with the highest
ratio among the queues in the remote group to do balancing with this queue. It migrates
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tasks from the remote to the local queue that have energy profile values higher than
the calculated consumption rate of the remote queue in order to cool down the queue.
However it does only migrate such a number of tasks that it does not create a load
imbalance or an energy imbalance in the wrong direction. Sometimes, it might not be
possible at all to migrate tasks without creating a load imbalance, e.g. if both queues
are of equal length. In this case, the scheduler migrates a low energy task from the local
queue back to the remote queue in exchange.

Then the scheduler searches for the most loaded CPU group in order to do load
balancing. If the local CPU belongs to the most loaded group, there is no need to
do load balancing. Else the scheduler searches for the longest runqueue in the group
concerned. Again, it migrates tasks from the remote to the local queue without creating
a load imbalance in the opposite direction and without creating an energy imbalance.
Opposed to energy balancing, load balancing can always be done without creating an
energy imbalance: If the remote runqueue is hotter than the local one, the scheduler
migrates a task that is hotter than the remote queue’s consumption rate. If the remote
runqueue is cooler, it migrates a task cooler than the remote queue’s consumption rate.

3.6.4 Hot Task Migration
As described in Section 3.6.1, we want to move a task to another CPU (assuming there
is a suitable one), if it has caused the CPU it is running on nearly to overheat. So if
a CPU’s empirical consumption rate rises above its maximum power — which, due
to the calibration of this rate to the CPU’s thermal characteristics, is coterminous with
the CPU having reached its temperature limit — and only one task is in the CPU’s
runqueue, we use active migration to transfer the task elsewhere. Since a task cannot
be migrated while running, we have to stop it prior to migrating it. Therefore, active
migration is done by a special task, which is woken up to preempt the currently running
task and to transfer it to its destination CPU.

If there already is one task or more in the runqueue of the destination CPU, sim-
ply transferring the hot task would create a load imbalance between the source CPU,
which would be idle after the migration, and the destination CPU, which would be run-
ning several tasks. Therefore, in such situations, we move a cool task back from the
destination CPU to the source CPU in exchange.

The destination CPU, to which the task is transfered, should be a CPU that is sig-
nificantly cooler than the source CPU. Otherwise, the hot task would soon have to be
migrated again. Also, only idle CPUs or CPUs running a cool task are suitable as des-
tination CPUs, since we do not want to migrate a hot task back in exchange. Unless
necessary, migrations across node boundaries should be avoided in NUMA systems.

Figure 3.4 depicts the hot task migration algorithm. To keep the cost of the mi-
gration as small as possible, the scheduler traverses the domain hierarchy similar to
energy balancing bottom–up to find a suitable destination CPU. For each domain level,
beginning with the lowermost, the scheduler searches for the the coolest CPU within
the local domain. If the difference between the empirical consumption rate and the
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Figure 3.4: Hot task migration algorithm

maximum power of this coolest CPU is bigger than some predefined constant, and the
CPU’s runqueue is empty or contains a cool task, the scheduler chooses the CPU as the
destination, else it continues searching one level higher in the domain hierarchy.

If no suitable CPU is found after searching the top–level domain, all of the system’s
CPUs are hot and the hot task must remain on the hot CPU, which in turn will have to
be throttled.

3.6.5 Initial Task Placement
In any case, whether energy balancing or hot task migration is applicable, choosing the
right CPU for a newly started task is important. An inauspicious placement entails the
need for migrations in the near future. Section 3.5.4 described how the energy profiler
makes a task’s energy profile available before the task starts executing. Using this initial
energy profile, the scheduler chooses a fitting CPU for the task. First of all, we want to
avoid creating load imbalances. Therefore, a CPU is only eligible for running the new
task, if there is no other CPU currently running fewer tasks.

For each of the CPUs in question, the scheduler calculates what the ratio of the power
consumption rate with respect to the maximum power would be if the new task were
assigned to the CPU. Since our goal is to have the same ratio for all CPUs, we assign the
new task to the CPU whose ratio, including the new task, comes closest to the average
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ratio of all CPUs. This way, hot tasks get assigned to cool CPUs and cool tasks get
assigned to hot CPUs.

3.6.6 SMT Issues
Since the logical CPUs of a simultaneously multithreaded processor all dissipate their
heat on the same physical chip, there is no need to do energy balancing between them.
We take care of this by means of the scheduler domain abstraction: We mark the sched-
uler domains on the lowest level, which encompass all logical CPUs belonging to the
same physical processor, with a special flag. This tells the scheduler not to do energy
balancing, so it skips the energy balancing step for those domains. Load balancing, on
the other hand, must still be done between sibling CPUs, but the energy restrictions for
load balancing mentioned in Section 3.6.3 do not apply.

As the logical CPUs of one processor all dissipate their heat on the same chip, we
divide the maximum power that a physical processor can endure without overheating
between all its logical CPUs. Since we do not do energy balancing between sibling
CPUs, it may be that one logical CPU operates above its maximum power, while an-
other one operates below. On the next higher scheduler domain level, where we do
energy balancing, all logical CPUs of one processor are collected in one group, and
only the average of the group matters. Hence, the scheduler considers energy balanced,
when the power consumption of the physical processors are balanced, while there may
still be imbalances between the logical CPUs of each processor.

Similarly, since not logical but only physical processors can overheat, we only mi-
grate a hot task actively from a logical CPU belonging to a simultaneously multi-
threaded processor, if the sum of the empirical consumption rates of all logical CPUs
belonging to a physical processor is greater than the allowed maximum power for that
processor. Again, we skip the lowermost level of the scheduler domain hierarchy when
searching for a destination CPU, since migrating the hot task to a sibling CPU would
not improve the situation.

In Section 3.5.7, we mentioned the problem that the energy profile of a task depends
on whether the task runs alone on a physical processor or together with other tasks
running on sibling CPUs. The energy profile of a task that is migrated from a logical
CPU with busy siblings to another chip’s logical CPU whose siblings are idle (or the
other way round) changes significantly in most cases.

Hot task migration has to deal with this problem, since it is applicable in situations
in which not all logical CPUs of the system are busy. It is possible that some tasks are
running on logical CPUs with busy siblings and other tasks are running on logical CPUs
with idle siblings. We solve the problem by not directly comparing the energy profiles
of tasks running on different physical processors, but by comparing the CPU specific
consumption rates of the physical processors, which are the sums of the consumption
rates of the logical CPUs. This is sufficient, since for hot task migration, we only need
to know whether a physical processor is hotter than another physical processor, but
need not compare the power consumption of logical CPUs or tasks.
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Energy balancing is only applicable when there are several tasks in a runqueue. Since
the load balancer ensures that no CPU is idle while another CPU has more than one task
in its runqueue, our energy–balancing algorithm only has to deal with tasks that run on
logical CPUs having busy siblings and never with tasks running on logical CPUs having
idle siblings. Although the problem mentioned above hence does not concern energy
balancing, there is a similar problem when migrating tasks between logical CPUs with
busy siblings: Even the energy profile of a task that is migrated between logical CPUs
with busy siblings might change after the migration, since the power consumption of
each task depends on the combination of tasks running on a chip’s logical CPUs.

This means that a task migration might not have the desired effect on the power con-
sumption of the processors, since the tasks’ energy profiles might change unfavorably
after the migration, which entails the need for further migrations. However, with the
siblings of source and target CPU busy, the change in the tasks’ energy profiles is only
minor in most cases. For our test applications (see Chapter 5), the profile varies about
10% on average for different combinations of applications. Hence, energy balancing
still works well on SMT processors. Our measurements showed the same benefits of
energy balancing for SMT and non–SMT processors.
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4 Implementation
We implemented the three components described in the preceding chapter — energy
estimator, energy profiler, and energy–aware scheduler — for the Linux kernel. Our
modifications done to Linux in order to integrate the components sum up to roughly
2000 lines of C–code. We implemented the energy estimator, which is the only archi-
tecture dependent component, for the Intel Pentium 4 processor.

In a symmetric multiprocessor system, every CPU can execute kernel code. Hence, a
kernel function can be invoked on different CPUs. Often, the data a function is working
on depends on the CPU on which the function is running. For example, schedule(),
the main scheduler function, works on the runqueue data structure associated with the
CPU on which schedule() is executing. In this chapter, we use terms like “the
scheduler of CPU X” in the meaning of “the function implementing the scheduler run-
ning on CPU X and working on CPU X’s runqueue”.

4.1 Energy Estimator
We extended the energy estimator taken from the resource container implementation
by Martin Waitz [Wai03] to support Pentium 4 processors with HyperThreading. A
Pentium 4 with HyperThreading is a two–way simultaneously multithreaded Pentium 4
processor. Since we do energy estimation separately for both logical CPUs, each logical
CPU runs an energy estimator of its own.

As described in Section 3.4.3, we distinguish three categories of events on the Pen-
tium 4: Events that can be attributed to logical CPUs and can be counted separately,
events that can be attributed to logical CPUs and require multiplexing, and events that
cannot be attributed to logical CPUs.

Of the eight events chosen for energy estimation (see Table 4.1), three fall into the
first category: Writes to the µop queue, retired branches, and mispredicted branches can
be counted separately for each logical CPU. Accesses to main memory and first level
cache misses require multiplexing, since for these events, there is only one counter
register for both CPUs. Load replays from the memory reorder buffer, leakage power,
which we model by weighting the time stamp counter, and the base power the processor
consumes when not in sleep mode, modeled by counting unhalted cycles, cannot be
attributed to logical CPUs.

Simultaneously multithreaded Pentium 4 processors exhibit a peculiarity having to
do with consistency. From an architectural point of view, the sibling CPUs of a SMT
processor behave like distinct processors: Each sibling has its own set of registers.
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event counting method
µop queue writes individually
retired branches individually
mispred branches individually
mem retired multiplexed
ld miss 1L retired multiplexed
time stamp counter divided
unhalted cycles divided
mob load replay divided

Table 4.1: Events used for energy estimation

The event monitoring registers are an exception to this, since they are shared by both
siblings. If one sibling modifies an event monitoring register, the change is visible
to the other sibling. Therefore, concurrency issues must be considered when sibling
processors access the same event monitoring register, as is the case with the registers
we multiplex or share between the siblings.

For events which require multiplexing counter registers , we implemented a master–
slave approach to solve concurrency the problem. For each multiplexed counter regis-
ter, one logical CPU is the master. The energy estimator running on this master CPU is
responsible for doing the multiplexing. It maintains two counter values in main mem-
ory, one for each logical CPU. On every timer tick, it stores the value of the counter
register to memory and reloads it with the value saved for the other logical CPU on the
previous timer tick. Then the energy estimator reprograms the control register associ-
ated with the counter and instructs the counter to count events for the other logical CPU.
The energy estimator on the slave logical CPU never deals with the counter register, but
only with the counter value residing in memory.

The energy estimator accesses all non–multiplexed counter registers read only. On
every invocation, it compares the actual counter values with the counter values of the
last invocation in order to determine the energy consumption. This also applies to reg-
isters counting events that cannot be attributed to distinct logical CPUs. Although such
registers are shared by two logical CPUs and count events occurring on both CPUs,
consistency is guaranteed, since the energy estimators on both CPUs access the counter
read only. The energy estimator on each logical CPU reads the register, compares its
value to the value of the last invocation, and assumes that half of the events that hap-
pened in the meantime happened on account of the local logical CPU.

The original implementation of Martin Waitz was designed for sampling energy con-
sumption on every timer tick. This turned out to be insufficient for characterizing tasks
with periods of execution shorter than a timer tick. This is e.g. the case for two tasks
linked by a pipe, where both tasks block and unblock frequently, waiting for the pipe’s
buffer to be filled or emptied. Therefore, we modified the implementation to be able
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to sample energy consumption at arbitrary points in time, so the energy profiler can
invoke the estimator whenever a task stops executing.

4.2 Energy Profiler

4.2.1 Task Energy Profiles and CPU Power Consumption Rates
Since a task energy profile is associated with a specific task, we implemented it by
incorporating additional fields into the task_struct data structure, which Linux
uses to describe a task.

The CPU power consumption rates, on the other hand, are CPU–specific. In Linux,
the runqueue is a CPU–specific data structure, which — besides a list of currently
runnable tasks — also contains other information relevant to scheduling. We imple-
mented the empirical and the calculated CPU power consumption rate as two additional
fields in the runqueue data structure. A further field holds the time constant used for
calculating the empirical consumption rate.

4.2.2 Initial Energy Profiles
Whenever the operating system starts a new task, the energy profiler must initialize the
task’s energy profile. We chose the approach of storing the initial energy profiles, which
the energy profiler assigns to newly started tasks, in a global hash table. The manage-
ment of those initial energy profiles in a hash table is simple since we do not need any
collision management. Assuming that collisions occur rarely, it does not matter if a
wrong initial energy profile is assigned to a task: The initial energy profile is only a
hint for the scheduler regarding the initial placement of a task and is soon replaced with
the true profile determined by online energy estimation. The only consequence of a
wrong initial profile is a suboptimal placement decision of the scheduler, which can be
tolerated from time to time.

In Linux, a file can be uniquely identified by its inode number in combination with
the device number of the device hosting the file system. Hence we use the inode and
device number of a task’s corresponding binary file to calculate the hash key.

Like in many Unix systems, in Linux, the creation of a new task from a binary file
image happens in to steps: First, a new task is created with the fork() system call,
which, simply put, duplicates the task issuing that system call. The new task is called
the child, whereas the originating task is called the parent. The child then issues the
execve() system call, which replaces the memory image of the child with the binary
image loaded from a file.

In many, but not in all cases, a fork() system call is followed by an execve()
call. Some applications just use fork() to duplicate themselves and then work with
multiple threads of control. Recent versions of Linux offer the clone() system call,
which allows multithreaded applications a fine grained control over which parts of the
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parent’s runtime image should be duplicated and which ones be shared between the
parent and the child.

The energy profiler considers these two possibilities: If a child is created via a
fork() or a clone() system call, it inherits the energy profile of the parent, since it
is an identical copy and thus has the same energy characteristics as the parent.

As soon as a task issues an execve() system call, the energy profiler replaces
the task’s energy profile. On an execve() system call, the energy profiler calcu-
lates a hash key for the file holding the image being loaded, and stores this key in the
task_struct data structure describing the task. Then, it uses the key to retrieve
the task’s initial energy profile from the hash table. If there is no entry for the task
concerned in the hash table yet, it uses a default value.

If a newly started application finishes its first timeslice, the energy profiler stores the
amount of energy consumed during this first timeslice to the hash table using the key
saved in the task_struct data structure. This way, if the same application is started
anew at a later point in time, the energy profiler can use the saved value to initialize the
energy profile.

4.2.3 Updating
The energy profiler must update a task’s energy profile on two occasions (see Sec-
tion 3.5.2): at the end of a timeslice and on a task switch. In Linux, the scheduler is
the only component that triggers task switches. The scheduler also detects the end of
a timeslice; it gets invoked every timer tick to check whether the timeslice of the cur-
rently running task is over yet. Hence, we let the scheduler invoke the energy profiler
at the end of a timeslice and prior to a task switch. (If the end of a timeslice entails a
task switch, we invoke the energy profiler only once.) The energy profiler then updates
the energy profile of the task that ran up to the point of invocation as well as the local
CPU’s empirical power consumption rate. Since the calculated power consumption rate
is the average of the energy profiles of all tasks in a CPU’s runqueue, the energy pro-
filer has to recalculate this rate, too, after updating the energy profile of the currently
running task.

The energy profiler must also update the calculated consumption rate whenever a task
is added to a runqueue or leaves a runqueue. Therefore, the scheduler (which is the only
component to modify the runqueues) notifies the energy profiler on such occasions.

Linux protects each runqueue with a spinlock from concurrent accesses. Since
changes to the power consumption rates occur only on occasions on which the corre-
sponding runqueue is locked (at the end of a timeslice, prior to a task switch, and when
a task is added to or removed from the queue), the runqueue’s spinlock also provides
consistency for the consumption rates. The same applies for the task energy profiles:
A task’s energy profile is only modified by the energy profiler running on the CPU
the task is currently executing on, and only on occasions when the CPU’s runqueue is
locked.
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4.3 Energy–Aware Scheduler

4.3.1 Input Values
As mentioned in Section 4.2.1, the CPU power consumption rates are stored in the
runqueue, where the scheduler can access them. In addition to the power consumption
rates, the scheduler needs to know the maximum power for each CPU, which we also
store in the runqueue.

The scheduler calculates the ratios of the empirical and the calculated power con-
sumption rate with respect to this maximum power on the fly whenever needed, for the
consumption rates change rather frequently. Additionally, the scheduler often does not
need the current ratio, but has to calculate what the ratios would be like if a specific
task were migrated from one CPU to another one.

4.3.2 Energy Balancing
We implemented energy balancing by modifying Linux’s load balancer. Linux runs the
load balancer periodically for each scheduling domain. The time between two subse-
quent invocations of the load balancing algorithm is domain–specific and depends on
whether a CPU is busy or idle, and on whether previous balancing attempts were suc-
cessful or unsuccessful. We replaced the original Linux load balancing algorithm with
our combined energy–load balancing algorithm described in Section 3.6.3.

In addition to the periodic runs of the balancer, Linux also attempts to do load bal-
ancing whenever a task issues an execve() system call. execve() replaces the
task’s memory image. Hence, a task has no memory and cache footprint when is-
suing execve(), and can be migrated almost without overhead. Again, instead of
doing pure load balancing on execve(), we apply the combined policy described in
Section 3.6.5 based on the new energy profile the energy profiler assigns to a task on
execve().

4.3.3 Hot Task Migration
We extended the kernel thread already present in Linux for doing active migration to
support hot task migration. There is one migration thread for every CPU in the system.
These threads are inactive when there are no migrations to be done.

To detect the need for hot task migration, we extended the scheduler_tick()
function, which executes every timer tick on each CPU. In this function, we compare
the CPU’s empirical consumption rate to the allowed maximum power. If the empirical
rate is greater than the maximum power, and the conditions for a hot task migration (the
local CPU is running only one task and there is a suitable destination CPU) are given,
we instruct the migration thread of the local CPU to do a hot task migration. For this
purpose, we added two further fields to the runqueue data structure. One holds the
task that the migration thread is supposed to migrate, and the other holds the destination
CPU. After filling those fields, we wake up the migration thread.
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If the destination CPU is already running one or more tasks, we wake up the mi-
gration thread of the remote CPU, too, after having filled out the corresponding fields
of the remote runqueue, in order to migrate a cool task from the remote CPU to the
local one in return. This second active migration is not strictly necessary, since after
transferring the hot task, the destination CPU would be running two or more tasks and
thus the cool task could be migrated passively. However, passive migration would have
to wait until a point in time at which the cool task is currently not executing, and until
then, the hot CPU would be idle. Active migration happens immediately, and therefore
yields a better utilization of the hot CPU.

4.4 Proc Interface
Linux provides the proc filesystem for exporting information from the kernel to user-
space and for letting the user modify certain kernel parameters at runtime. We use the
proc–interface to export information related to energy–aware scheduling in which the
user might be interested, and to allow the user to calibrate the energy–aware scheduler
to the thermal characteristics of the processors.

4.4.1 Task Energy Profiles
Besides its use for energy–aware scheduling, the energy characteristics of a task can
also be interesting to the user. Given two different applications that are able to perform
the same work, the user might want to know, which one is more efficient in terms of
energy consumption. Exporting the task energy profiles to userspace allows users to
take advantage of the energy estimation mechanism present in the kernel.

We therefore added the file /proc/<PID>/energy to the task–specific part of
the proc filesystem. A read from this file delivers the current energy profile of a task.

4.4.2 Energy–Aware Scheduler
We also added the file /proc/eas to the proc filesystem. Reading this file reveals
the current empirical and calculated power consumption rate as well as the allowed
maximum power of each CPU for informational purposes.

Writing to /proc/eas allows the user to set the allowed maximum power and the
time constant for the empirical power consumption rate.

Using this interface, the user (or an automated userspace program that has access
to temperature values from the thermal diode present in almost all modern systems to
measure the processor temperature) can calibrate the energy–aware scheduler to the
thermal characteristics of each CPU.
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4.5 Throttling
We also implemented a crude throttling mechanism to demonstrate how energy–aware
scheduling mitigates the need for throttling. We throttle a processor by executing the
hlt instruction, which puts the processor in a low power sleep state until the next in-
terrupt arrives. We trigger this mechanism whenever a CPU’s empirical consumption
rate rises above the maximum power. Because of the calibration of the empirical con-
sumption rate to the thermal characteristics of the processor, this is coterminous with
the processor’s temperature rising above the limit temperature.

Although this mechanism is based on measures taken from the energy–aware sched-
uler, it is not part of our energy–aware scheduling framework; energy–aware scheduling
is compatible with any throttling mechanism triggered by processor temperature.
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We evaluated our implementation with a set of different workloads to show how
energy–aware scheduling improves the performance of a system by reducing the need
for throttling.

We quantify the benefits of energy–aware scheduling by combining it with a temper-
ature control mechanism that works by throttling hot processors. Using scenarios with
long running vs. short running tasks, homogeneous vs. heterogeneous energy char-
acteristics, and many vs. few tasks, we evaluate the influence of the workload on the
effectiveness of energy–aware scheduling.

5.1 Test Setup
We ran our modified Linux kernel on an 8–way Pentium 4 Xeon multiprocessor
(2.2GHz each processor) consisting of two NUMA nodes with four processors each.
The processors offer HyperThreading. We ran some of the tests with HyperThreading
enabled and some with HyperThreading disabled to test the impact of simultaneous
multithreading on energy estimation and energy–aware scheduling.

Table 5.1 summarizes the programs we used in our tests. Most of the programs
show static energy characteristics, with the exception of OpenSSL, which we ran in
benchmark mode. Because of the different encryption and checksum algorithms bench-
marked sequentially, the energy profile of OpenSSL varies between 42W and 57W over
time.

We did evaluations of our energy–aware scheduler with two different classes of work-
loads. For workloads consisting of long–running tasks (tasks running for several min-
utes up to hours), task migrations are especially important, whereas for workloads con-
sisting of short–running tasks (tasks running only for some seconds), the initial place-
ment of newly started tasks is most essential. Therefore, two versions of each of the
test programs exist: a long running one, which takes several minutes to execute, and a
short running one, executing for less than a second.

We ran all programs in an endless loop from a shell script to have a constant load
during the whole test run: Whenever one instance of a program terminates, the script
starts a new instance of the same program.
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program power description
bitcnts 61W bit counting operations
memrw 38W memory reads/writes
aluadd 50W integer additions
pushpop 47W stack push/pop
openssl 42W − 57W OpenSSL benchmark
bzip2 48W file compression
gcc 47W gcc compiling the Linux kernel

Table 5.1: Programs used for the tests

5.2 Energy Balancing
We ran a workload consisting of the six long–running programs to demonstrate the
influence of energy balancing on the processors’ power consumptions. We started each
program three times, for a total of 18 running tasks. We ran three series of the test:

1. Energy balancing disabled.

2. Energy balancing enabled with a 60W limit for all processors, so so power con-
sumption should be balanced evenly across all processors.

3. Energy balancing enabled with a 40W limit for CPUs 0 to 3 and a 60W limit for
CPUs 4 to 7.

For comparison, we ran the test series first with simultaneous multithreading disabled
and then with simultaneous multithreading enabled.

Figure 5.2 depicts the empirical consumption rates of the eight CPUs with energy
balancing disabled and with energy balancing enabled (SMT disabled). Because of the
exponential average used for calculating these rates, the rates rise exponentially first.
This mirrors the rise of the processors’ temperatures. With energy balancing disabled,
the curves diverge during the further course of the experiment because of the different
energy characteristics of the tasks running on each CPU (Subfigure (a)). With energy
balancing enabled and uniform energy limits, the curves stay close to each other, since
the energy–aware scheduling policy triggers task migrations whenever the consumption
rates of two CPUs differ too much (Subfigure (b)). With non–uniform energy limits,
the scheduling policy migrates low–power tasks to the CPUs with low energy limits
and high–power tasks to the CPUs with high energy limits (Subfigure (c)).

We ran the experiments several times for 15 minutes, and counted the number of task
migrations during the experiments. On average, there were 3.3 migrations with energy
balancing disabled and 32 migrations with energy balancing enabled. Although this
is an increase by a factor of nearly ten, the overhead of additional migrations is small
compared to the benefit of avoiding the throttling of processors. Considering the total
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Figure 5.1: Empirical power consumption rates (long running tasks)
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of 18 running tasks we had in our experiment, 32 migrations means that on average each
task was migrated less than twice during the 15 minutes, so the overhead is negligible.

We did the same experiments with SMT enabled to test the impact of simultaneous
multithreading on energy balancing. Since with SMT, there are 16 logical CPUs instead
of 8, we started each program six times, for a total of 36 tasks. The results are similar
to those of the experiments with SMT disabled. On average, there are 9.8 migrations
with energy balancing disabled and 87 migrations with energy balancing enabled.

5.3 Initial Task Placement
We ran the same test series with a workload consisting of short running tasks to as-
sess the importance of initial task placement. Figure 5.3 depicts the empirical power
consumption rates of the CPUs running this workload.

The short runtime of the tasks results in a high frequency at which the tasks are
restarted. With energy–aware task placement disabled, the initial placement of the tasks
depends solely on the load of the CPUs. From an energy point of view, the placement
happens at random. In combination with the high frequency at which tasks are started,
this results in power consumption being more or less balanced across all CPUs even
with energy–aware scheduling disabled (Subfigure (a)).

If we have uniform energy limits for all CPUs, the benefits of energy–aware task
placement are only small (Subfigure (b)). Placing tasks depending on their energy pro-
file results in a slightly smaller width of the array of curves than random placement.
In contrast to this, with non–uniform energy limits, considering the tasks’ energy pro-
files for initial task placement results in significantly different power consumptions for
the CPUs with high respectively low energy limits (Subfigure (c)). So in this case, the
benefit compared to energy–oblivious placement is large.

5.4 Temperature Control
We applied our energy–aware scheduling policy in combination with temperature con-
trol by means of throttling to be able to quantify the benefits of energy–aware schedul-
ing. Because of the overprovisioned cooling facilities of our test system, even without
energy–aware scheduling and without temperature control, the highest CPU temper-
ature we measured with our mixed workload was only 45°C. Therefore, we set the
maximum power of each one of the eight processors in our system to a value that corre-
sponds to a temperature of 38°C. This is not a critical temperature; we only chose such
a low value to create a need for throttling at all. As described in Section 4.5, we en-
force this temperature limit by executing the hlt instruction on CPUs whose empirical
consumption rate exceeds the maximum rate.
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Figure 5.2: Empirical power consumption rates (short running tasks)
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CPU Pmax T
0 (8) 34W 64.9s
1 (9) 56W 28.8s
2 (10) 66W 39.0s
3 (11) 33W 75.0s
4 (12) 35W 54.8s
5 (13) 49W 36.1s
6 (14) 76W 28.8s
7 (15) 40W 53.4s

Table 5.2: Thermal properties of our test system

5.4.1 Calibration
We calibrated the energy–aware scheduler to the thermal behavior of our system and to
a maximum temperature of 38°C. Therefore, we determined the constants c1 and c2 as
described in Section 2.2.2. Using Equations 3.5 and 3.6, we calculated the maximum
power Pmax and the super period length T for each processor.

Table 5.2 lists the values we obtained for our test system. The processors of our
system possess non–uniformly distributed thermal properties: CPUs 1, 2, 5 and 6 are
located closer to the air intake than CPUs 0, 3, 4 and 7 and thus can withstand higher
power consumptions without exceeding the temperature limit of 38°C, and cool down
quicker when the power changes.

The CPU–IDs shown in brackets represent the IDs of the logical siblings when Hy-
perThreading is enabled. The CPU–IDs of two siblings differ in the most significant
bit. As explained in Section 3.6.6, we divide the maximum power of the processor
between its logical CPUs in this case.

5.4.2 Benefits of Energy–Aware Scheduling
Since energy–aware scheduling strives to assign tasks to CPUs in a way that keeps the
consumption rates for each CPU below the maximum, we expect the need for throttling
to be considerably lower if we enable energy–aware scheduling, which will result in
more CPU cycles available for executing tasks and thus in a higher throughput. Again,
we used the mixed workload listed in Table 5.1 and ran a test with the long running and
one with the short running versions of the programs. We obtained the results we are
presenting in this section with simultaneous multithreading enabled. Without simulta-
neous multithreading, the results look similar.

Table 5.3 shows the percentages of the time the CPUs had to be throttled to enforce
the temperature limit. In both scenarios, some CPUs have to be throttled neither with
energy–aware scheduling disabled nor with energy–aware scheduling enabled because
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CPU long running tasks short running tasks
EAS disabled EAS enabled EAS disabled EAS enabled

0 51.5% 35.1% 61.2% 45.4%
1 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0%
3 54.1% 39.7% 49.5% 45.6%
4 10.8% 0.0% 5.0% 0.1%
5 0.0% 0.0% 0.0% 0.0%
6 0.0% 0.0% 0.0% 0.0%
7 0.0% 0.0% 0.0% 0.0%
8 61.1% 35.7% 49.9% 45.7%
9 0.0% 0.0% 0.0% 0.0%

10 0.0% 0.0% 0.0% 0.0%
11 54.7% 51.9% 53.3% 36.9%
12 11.0% 0.0% 46.5% 14.0%
13 0.0% 0.0% 0.0% 0.0%
14 0.0% 0.0% 0.0% 0.0%
15 0.0% 0.0% 9.3% 0.4%

average 15.2% 10.2% 18.4% 12.7%

Table 5.3: CPU throttling percentage
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Figure 5.3: Dependence of throughput from workload

of their good thermal properties. For all other CPUs, the throttling percentage is consid-
erably lower when energy–aware scheduling is enabled both for the scenario with the
long running tasks as well as for the scenario with the short running tasks. This results
in an increase in throughput, which we measured by counting the number of tasks that
were finished per time unit. With energy–aware scheduling enabled, the throughput is
4.7% higher for the long running tasks and 4.9% higher for the short running tasks.

5.4.3 Dependence from the Workload
The actual increase in throughput depends on the workload, or more precisely, on how
different the energy characteristics of the tasks are. The more heterogeneous a work-
load is in terms of energy profiles, the more room has the energy–aware scheduler for
directing the CPUs’ power consumptions by assigning tasks to CPUs. We measured
how much energy–aware scheduling increases the throughput for workloads of different
homogeneity (Figure 5.3). We created workloads from three applications: bitcnts with
a high power consumption, pushpop with a medium power consumption, and memrw
with a low power consumption. We ran the tests with HyperThreading disabled and
used workloads consisting of 18 running tasks. We started with an inhomogeneous
workload consisting of nine instances of memrw and nine instances of bitcnts. For the
following tests, we successively replaced one instance of memrw and one instance of
bitcnts with an instance of pushpop, until we arrived at a totally homogeneous workload
consisting of 18 instances of pushpop.

As we expected, the increase in throughput is best with inhomogeneous workloads,
since the energy–aware scheduler can adapt the processors’ power consumptions to
their thermal properties and run the hot tasks on the processors with better thermal
properties and the cool tasks on processors with worse thermal properties. Energy–
aware scheduling achieves the highest increase in throughput (12.3%) for the workload
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consisting of eight instances of memrw and bitcnts, and two instances of pushpop. The
increase for this workload is even higher than the one for the workload consisting only
of memrw and bitcnts, since some processors in our system possess medium thermal
properties, and energy–aware scheduling can therefore best balance temperature when
there are some tasks with medium power consumptions to run on these processors.
With homogeneous workloads, where all tasks possess the same energy characteristics,
energy–aware scheduling has almost no benefit, since the scheduler has no chance for
influencing the processors’ power consumptions by task migrations.

5.5 Hot Task Migration
Up to now, all the results we presented were obtained with workloads consisting of
many tasks that kept all CPUs busy. In this section, we present evaluations done with
workloads that leave some CPUs idle. In this case, our energy–aware scheduler applies
the hot task migration policy described in Section 3.6.4.

For the first test, we used a single instance of the bitcnts program, consuming about
60W , for evaluating hot task migration. We chose to use uniform energy limits, which
do not correspond to the real thermal characteristics of our system. When the energy–
aware scheduler is programmed with the values listed in Table 5.2, like in the previous
test, the bitcnts task gets migrated one time at most, since hot task migration transfers
it to CPU 2 or CPU 6. Since those CPUs can run bitcnts without overheating, there is
no further need for hot task migrations.

Hence, we simulated a system where all processors possess the same thermal char-
acteristics. We allowed each physical processor to consume 40W at most to create the
need for continuous hot task migrations.

We activated simultaneous multithreading for the test. Since we have only one run-
ning task, the sibling of the logical CPU that bitcnts is running on is always idle. If
bitcnts is started on or migrated to a CPU formerly idle, it takes approximately ten
seconds for the sum of the experimental consumption rates of the two sibling CPUs
(one idle, one executing bitcnts) to rise above 40W . The bitcnts task is then migrated
elsewhere by the hot task migration mechanism (Figure 5.4).

Two things are worth noting: Firstly, bitcnts is never migrated to a sibling CPU on
the same physical processor. (As already mentioned, the CPU IDs of two sibling CPUs
differ in the most significant bit.) Secondly, bitcnts is never migrated across the node
boundary: CPUs 0 to 3 (with their siblings 8 to 11) reside on node 0, whereas CPUs 4
to 7 (with their siblings 12 to 15) reside on node 1. The bitcnts task visits the physical
CPUs of node 0 nearly in round robin fashion, because the CPU least recently visited
is always the coolest one. However, after bitcnts has taken one full turn, the CPU on
which it executed first has cooled down enough to avoid inter–node migration.

If bitcnts were executed on one processor all of the time, as is the case without hot
task migration, this processor would have to be throttled 33% of the time to enforce the
40W limit, assuming that a processor is consuming no energy when throttled. How-
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Figure 5.4: Hot task migration of a single task

ever, the processors in our test system consume 13.6W when put into a sleep state by
executing the hlt instruction. Therefore, we even measured a 43% decrease in exe-
cution time with hot task migration. This corresponds to an increase in throughput of
76%. Even if we set the maximum power of the processors to 50W , hot task migration
still results in a 21% reducement of the execution time (27% increase in throughput).

For this scenario with only one running task, energy–aware scheduling yields a much
higher increase in throughput compared to the scenarios of the previous section. The
reason for this is that we always have a cool idle CPU, whither we can migrate the hot
task, so we can completely get rid of the need for throttling. Idle processors consume
considerably less power than even processors running cool tasks. Therefore, a system
with some idle CPUs tends to show greater thermal imbalances which can be taken
advantage of by energy–aware scheduling than a system with all CPUs busy.

When a hot processor becomes idle because a hot task has been migrated to another
processor, it takes some time for the processor to cool down. Therefore, if there are
multiple tasks running in the system, there might not always be a cool CPU available,
so the hot task has to stay on the hot CPU, which in turn will be throttled. Figure 5.5
shows the throughput of the system running multiple instances of the bitcnts program
relative to the throughput of a system with energy–aware scheduling disabled. With
two running tasks, energy–aware scheduling yields the same increase in throughput as
with only one task. With two tasks, the first one runs on CPUs 0 to 3 in turns like in the
scenario with one task, whereas the second one runs on CPUs 4 to 7. If there are more
than two tasks, there are situations when there is no cool target processor because the
processors do not cool down fast enough, and some of the time, tasks have to run on
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Figure 5.5: Hot task migration — throughput with multiple tasks

throttled processors. Therefore, the more tasks are running, the smaller is the increase in
throughput. With eight (or more) running tasks, after some time all physical processors
are hot, and there is never a target CPU suitable for hot task migration. This results in
a throughput identical to the one of a system without energy–aware scheduling.
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6.1 Achievements
In this thesis, we showed that the characterization of individual tasks by their power
consumption, determined by on–line analysis using event monitoring counters, can be
used to influence the power consumptions and temperatures of the processors in a SMP
system via scheduling decisions. By employing an energy–aware scheduling policy, the
operating system is able to reduce thermal imbalances between the system’s processors
and thus to mitigate the need for throttling processors, so more cycles are available
to userspace tasks. This results in increased performance. Therefore, the two main
contributions of this work are

• Task energy profiles as a means for characterizing individual tasks on–line by
their power consumption

• Energy–aware scheduling as a means for balancing the processors’ power con-
sumptions and for reducing thermal imbalances.

Furthermore, we showed that energy estimation using event monitoring counters can
be applied independently for the logical threads of a simultaneously multithreaded pro-
cessor, provided that the event counters are able to attribute events to the logical CPU
that caused them. This way, we were able to individually characterize tasks running
quasi–parallel on a SMT processor. With the characterization of individual tasks, we
were able to apply energy–aware scheduling to systems with SMT processors using
hierarchical balancing.

6.2 Summary
On modern processors like the Pentium 4, different tasks cause different power con-
sumptions depending on the instructions they execute. Processor temperature is de-
pendent on power consumption. In a multiprocessor system, the different processors
therefore are likely to have different temperatures. Throttling is a way to prevent hot
processors from overheating, but unfortunately, throttling decreases performance. The
approach we presented in this work takes advantage of the different energy characteris-
tics of individual tasks and of the thermal imbalances between the processors in a SMP
system. We mitigate the need for throttling by assigning tasks to CPUs depending on
the tasks’ energy characteristics and on the processors’ temperatures.

53



6 Conclusions

For this, we propose to enhance the operating system by a mechanism for determin-
ing the individual tasks’ energy characteristics, and by an energy–aware scheduling
policy for the operating system’s task scheduler. We determine the energy character-
istics of a task by means of online energy estimation using event monitoring counters.
Therefore, we add a component called energy estimator to the operating system. This
component transforms the values from the CPUs’ event counter registers to energy val-
ues. For representing each individual task’s energy characteristic, we introduce task
energy profiles. We add a component called energy profiler to the operating system,
which maintains these profiles and provides them to the scheduler. The energy profiler
also maintains CPU-specific power consumption rates to provide estimates for each
processor’s power consumption and temperature to the scheduler.

Energy–aware scheduling works by placing new tasks on a suitable CPU and by
migrating existing tasks depending on their energy profile. We propose two different
energy–aware scheduling policies, energy balancing and hot task migration. We ap-
ply energy balancing in situations with multiple tasks running on each CPU. In those
situations, we strive to balance the processors’ power consumptions and thus their tem-
peratures, so no single processor overheats and has to be throttled, while there are
other, cooler processors. We achieve this by combining tasks with different power con-
sumptions on the CPUs. In situations with only one task running on a CPU, there is no
chance for balancing power by combining different tasks. Therefore, in such situations,
we apply hot task migration: We keep a hot task running on a CPU until the processor
chip reaches a critical temperature and then migrate the hot task to a cooler CPU.

Together, the three components energy estimator, energy profiler and energy–aware
scheduler constitute an energy–aware scheduling framework, which we implemented
for the Linux kernel.

We tested our implementation on an 8 processor Pentium 4 Xeon system with dif-
ferent workloads. Our experiments show that the overhead incurred by the migrations
that are required for balancing the processors’ power consumptions and temperatures is
negligible. On the other hand, energy–aware scheduling reduces the number of cycles
during which CPUs have to be throttled by trying to keep all processors’ temperatures
below the maximum temperature. This way, more cycles are available for executing
user programs, which results in increased throughput.

How big the increase actually is, depends on the variety of the energy characteristics
of the tasks that the system executes. For typical scenarios with mixed workloads, the
throughput increased by about 5% when we enabled energy–aware scheduling. The
corner cases are workloads extremely homogeneous in terms of power consumption,
where all tasks possess the same energy characteristics, and extremely heterogeneous
workloads with some tasks having a very high and other tasks having a very low power
consumption. In the first case, energy–aware scheduling has no benefits, whereas in the
second case, energy–aware scheduling has maximum benefits.

A special case of an extremely heterogeneous workload is a workload which does
not utilize all of a system’s CPUs, because the power consumption of idle CPUs is
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extremely low. Migrating tasks from hot CPUs to idle CPUs instead of throttling the
hot CPUs increases performance substantially.

6.3 Future Directions
The biggest limitation of energy–aware scheduling has already been stated in the pre-
ceding section: It is only applicable for workloads consisting of tasks with different
power consumptions. If all tasks have the same power consumption, there is no need to
do energy balancing, since power consumption is inherently balanced.

Currently, most processors are equipped with a single thermal diode. Throttling
mechanisms are engaged by some monitoring hardware or software when the tempera-
ture value reported by this diode exceeds a certain threshold. Since energy is dissipated
at the individual functional units of a processor, the temperature of the chip may be
distributed non–uniformly, so decisions about throttling should be based on multiple
temperature values. As a consequence, the goal of an energy–aware scheduling pol-
icy should be to keep the temperature of all functional units on all processors below
the throttling threshold. Future work on energy–aware scheduling could incorporate a
more elaborate thermal model featuring multiple temperatures per chip and could char-
acterize tasks not only by their power consumption, but also by the location at which
the power is dissipated. This way, energy–aware scheduling would even be beneficial
for tasks having the same power consumption, if they dissipate the power at different
functional units, as is the case with floating point and integer applications.

We believe that energy–aware scheduling is also applicable to chip multiproces-
sors (CMP), which will probably become common in future systems. Migrating tasks
between individual cores on a CMP for energy reasons is beneficial because differ-
ent cores on the same chip can have different temperatures. Since our energy–aware
scheduling framework uses the scheduler domains abstraction, extending energy–aware
scheduling for use on a CMP is a matter of adding an additional layer to the domain
hierarchy.

Future multiprocessor systems might consist of CPUs that execute applications at
different speeds, e.g. a CMP with fast cores and slow cores, or offer dynamic frequency
and voltage scaling for each individual CPU in the system. In such an asymmetric
system, migrating tasks between CPUs running at different speeds has an impact on
performance and on power consumption. Additionally, the energy characteristics of a
task depend on the CPU the task is executing on. This offers new opportunities and
new challenges for energy–aware scheduling.
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A Appendix

A.1 Calibrating the Power Consumption Rate to the
Thermal Model

The empirical power consumption rate models a processor’s temperature and must
therefore be calibrated to the thermal behavior of the processor, which we model with
Equation 2.2.

We assume that the processor has been operating at a static power Pold for a long
time and has the temperature ϑ (0) = ϑold. Then the power changes to Pnew at the time
t = 0. Now the processor’s temperature approaches exponentially to the temperature
ϑnew.

We describe the situation using our thermal model:

ϑ (0) =
c1

c2

· Pold + ϑ0 (A.1)

ϑ (t) =
−c̃

c2

· e−c2t +
c1

c2

· Pnew + ϑ0 (A.2)

Combining Equations A.1 and A.2, we can eliminate the integration constant c̃:

ϑ (t) =
c1

c2

· (Pold − Pnew) · e−c2t +
c1

c2

· Pnew + ϑ0 (A.3)

Transforming the equation yields:

c2

c1

· (ϑ (t) − ϑ0) = (Pold − Pnew) · e−c2t + Pnew

P̂ (t) = (Pold − Pnew) · e−c2t + Pnew (A.4)

The left hand side of Equation A.4 is what we want to model with the empirical power
consumption rate. It has the dimension of a power, but the dynamic behavior of tem-
perature.

We use an exponential average to calculate the empirical power consumption rate.
We assume that all timeslices have the standard timeslice length τ . When operating at
the power Pold, the processor consumes the energy vold = Pold · τ during a timeslice
of length τ ; when operating at Pnew, it consumes vnew = Pnew · τ . We assume that
the power rises from Pold to Pnew after timeslice n = 0. So the exponential average
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(compare Equation 3.4) is:

x0 = vold

xn =
τ

T
· vnew +

T − τ

T
· xn−1 (A.5)

To calibrate the exponential average to the thermal behavior of the processor, we have to
find a super period length T which corresponds to the time constant c2 in Equation A.4,
so that the exponential average xn/τ after timeslice n is identical to the exponential
function P̂ (t) at the time t = nτ . Transforming Equation A.5 into a non–recursive
form yields:

xn =
τ

T
·

n−1∑
i=0

(
T − τ

T

)i

· vnew +
(

T − τ

T

)n

vold

xn =

(
1 −

(
T − τ

T

)n
)
· vnew +

(
T − τ

T

)n

vold

xn = (vold − vnew) ·
(

T − τ

T

)n

+ vnew (A.6)

We divide Equation A.6 by τ :

xn

τ
=

(
vold

τ
− vnew

τ

)
·
(

T − τ

T

)n

+
vnew

τ
xn

τ
= (Pold − Pnew) ·

(
T − τ

T

)n

+ Pnew (A.7)

We replace t in Equation A.4 with nτ :

P̂ (t = nτ) = (Pold − Pnew) · e−c2nτ + Pnew (A.8)

Comparison with Equation A.7 yields:

T − τ

T
= e−c2τ (A.9)

This resolves to:

T =
τ

1 − ec2τ
(A.10)
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