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Diplomarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa
Betreuender Mitarbeiter: Dipl.-Inf. Volkmar Uhlig

24. März 2005
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Abstract

This work presents a novel approach to support multiprocessor scheduling at user-
level. We propose to use system instrumentation and event logging to obtain run-
time information relevant for scheduling, from different system sources such as the
hardware, operating system components, or application programs.

We instrument the system components with event log handlers that record schedul-
ing data in designated log files held in memory. The user-level scheduler can analyze
and evaluate these log files to base its processor allocation policies on. Our approach
allows for flexible, efficient, and scalable accumulation of scheduler-relevant run-time
characteristics; it was designed to be applicable both to user-level components, and
to the safety-critical operating system kernel. To demonstrate our approach, we have
developed a prototype logging infrastructure within a real-world, microkernel-based,
component operating system. We successfully extract several run-time scheduling
characteristics from different components, including timing properties and commu-
nication patterns from the microkernel, and shared-memory usage from a user-level
device driver subsystem. Measurements indicate an undramatic overhead for logging,
with baseline logging costs between about 26 and 275 clock cycles on an Intel 2.2
GHz Xeon Processor, and application-level overhead on driver throughput of about 3.8
percent for logging kernel-based communication, and about 10.5 percent for logging
shared memory usage.
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Chapter 1

Introduction

Moving resource management out of the operating system kernel has several advan-
tages over an in-kernel solution. Application-controlled management of resources in-
creases the flexibility of a system, by making room for domain-specific solutions and
adaptations. Also, it enhances robustness and safety, since it reduces the privileged and
mandatory part of the system. While user-level resource management is a promising
approach for other resources, too, it is particularly interesting within the context of
multiprocessor scheduling.

It is one of the core responsibilities of a multiprocessor operating system to allocate
the available processors among the concurrent activities and programs. The decision
how processor allocation should take place depends on a variety of system parameters
– be it architectural properties, like the costs of inter-processor communication, be it
workload characteristics, like processor service demands of applications, or be it user-
specified classifications, like the desired priority of a particular activity. With the diver-
sity of computer hardware, application workloads, and users’ expectations comes along
a diversity of scheduling strategies and implementations. In fact, there exists a plethora
of such approaches, suitable for different environments and circumstances [23]. With a
scheduler subsystem that is integrated within the kernel and therefore hard to replace,
a system will inherently be limited to a subset of policies, as it will be applicable only
to specific environments. Making the scheduling logic extensible, by moving it out
of the kernel, can therefore greatly enhance the system’s adaptiveness and tailorability
to different environments. Moreover, keeping the scheduler in a deprivileged compo-
nent ensures, that a faulty or malicious scheduler implementation is confined within a
protection domain, and can not compromise the entire system.

However, such a modular scheduler architecture poses a new challenge on sys-
tem design. Scheduling is principally based on information. While some of the de-
ciding factors are more of static nature, like for example user-specified priorities, or
static application characteristics, many of them accrue dynamically, that is, at run time
of the system. In contrast to static information, dynamic scheduling properties must
be gathered and evaluated while the system runs. A subsystem running in privileged
mode principally has access to all system and hardware data. Kernel-level schedulers
can therefore easily obtain the information they require to perform their policies and
decisions. However, for a scheduler running at user mode, with restricted access to
protected data, accumulation and extraction of scheduling information becomes a very
challenging task.

From the perspective of a user-level scheduler, the required information is dis-
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4 CHAPTER 1. INTRODUCTION

tributed among different parts of the system. Sources for scheduler-relevant informa-
tion may be the processor hardware, operating system components, or the application
workload. Moreover, the deprivileged scheduler does not necessarily have direct access
to the required scheduling information, since this information resides in unaccessible
hardware registers, or different protection domains. Furthermore, the characteristics
are diverse, and plentiful; also, the scheduler may not require knowledge of all of them
at the same time. For instance, while the cache-miss ratio reported by the processor
can be a helpful information for an affinity-based scheduler [12], it may be completely
useless for a different scheduling strategy such as co-scheduling [51]. Finally, some of
the characteristics are dynamic, and may accumulate at a high rate; this is caused by
changes in the application workload, and by other varying system behavior. Also, due
to the timeliness of scheduling decisions, much of the accumulating information can
become obsolete very quickly.

1.1 The Problem

There exist several approaches to support parallel scheduling in operating systems;
however, either they fulfill only part of the requirements that arise from the nature of
scheduling information, or they suffer from other limitations and inflexibilities. Pure
kernel-based schedulers have the required scheduling information right at hand. How-
ever, they usually offer only a limited set of scheduling policies [5,9,48,57]. Moreover,
with a scheduler entangled with the rest of the kernel, even adjusting a scheduling pol-
icy can become a complex and daunting task. Application-level schedulers, such as
user-level thread libraries [3], offer the desired flexibility with respect to the policies;
they are free to implement an arbitrary policy, and extending a current implementation
is a rather easy task, with minimal implications on the rest of the system. Nevertheless,
they are inherently inflexible with respect to their scope, since they are bound to a spe-
cific application domain. Also, application-level schedulers may exhibit poor perfor-
mance, due to the lack of coordination between user- and kernel-specific semantics [4].
Two-level schedulers attempt to combine the advantages of pure kernel- or application-
specific schedulers [4, 47, 62]. These approaches basically employ a kernel- and an
application-level scheduler, and a means to propagate scheduling-relevant information
and events in between. These approaches generally relieve the system from drawbacks
the pure variants suffer from. However, either they provide propagation mechanisms
that fail in cases of fluctuating or frequently accumulating scheduling characteristics,
or they focus only on conveying scheduling data, but do little to address the problem of
obtaining the data. Finally, also extensible kernels offer the opportunity to overcome
the inflexibility of kernel-based schedulers. Extensible kernels allow applications to de-
fine operating system functionality themselves, which is typically achieved by means
of downloading application-specific code into the kernel [13, 22, 54]. Thus in princi-
pal, extensible kernels combine the advantage of kernel-based schedulers, which have
direct access to scheduling information with the advantage of user-based schedulers,
which allow for application-specific policies. However, extensible kernels suffer from
a variety of hard problems related to safety, and require sophisticated countermeasures
to address these problems [20].
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1.2 Approach
The weaknesses of current approaches have motivated us to introduce a new mech-
anism which is more suitable to address the requirements of user-level schedulers in
the face of distributed, diverse, and varying scheduling characteristics. In this work,
we present a novel approach to support multiprocessor schedulers at user-level. We
propose to use system instrumentation and event logging, in order to obtain run-time
information relevant for scheduling.

Inspired by the efficiency and flexibility of performance monitoring tools, we lever-
age instrumentation techniques to enhance the system components with handlers that
record scheduling-relevant data into designated log files held in main memory. By
making sure that the instrumentation handlers are safe and well-defined, we retain ap-
plicability of our approach even to crucial system components such as the operating
system kernel, allowing thereby for a unified infrastructure for collecting scheduling
data. The asynchronous nature of event-logging and its broadband interface render our
approach an efficient solution even in cases of fluctuating or high-volume scheduling
data. In addition to the basic logging mechanisms, we provide several concepts for
flexible and efficient management of our logging infrastructure. Among these concepts
are a method to dynamically enable and disable logging on a per-characteristic base,
and an interface to dynamically specify the scheduling data emitted to the log files.
We also introduce the new concept of accounting domains, which allows schedulers to
account scheduling data to different entities in the system. Our log infrastructure is de-
signed to permit efficient access to log buffers, both by schedulers and the instrumented
component, and to scale well with the number of processors.

To evaluate accumulation of workload characteristics via logging, we have imple-
mented a prototype logging facility within a real-world, microkernel-based, component
operating system. Our environment is based on the L4 microkernel and the L4Ka Virtu-
alization Environment. We have successfully instrumented the microkernel, the appli-
cation workload, and a user-level device driver subsystem providing services to the ap-
plications. From these components, we extract several run-time scheduling characteris-
tics, including timing properties and inter-process communication (IPC) patterns from
the microkernel, and shared-memory usage from a user-level device driver subsystem.
Measurements indicate a rather undramatic baseline overhead, with zero overhead for
disabled scheduling characteristics, and logging costs ranging between about 26 and
275 clock cycles on an Intel 2.2 GHz Xeon Processor. Application-level benchmarks
on driver throughput indicate worst-case logging penalties of about 3.8 percent logging
for IPC usage, and about 10.5 percent for logging shared memory usage. Throughput
measurements were done in a scenario not bound to I/O processing, with a device driver
operating on a RAM disk.

The rest of this thesis is structured as follows: Chapter 2 reviews background ma-
terial and related work in the context of our approach. Chapter 3 will present and
discuss the design concepts and ideas behind our system. It is followed by a detailed
presentation of our prototypical implementation in Chapter 4, and an evaluation of our
prototype in Chapter 5. Chapter 6 summarizes our approach and presents our conclu-
sions.
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Chapter 2

Related Work

The following chapter presents background material and related work in the context of
our approach. The chapter is subdivided into three parts. In the first section, we review
run-time characteristics commonly used within the context of multiprocessor schedul-
ing. In the second section, we will discuss contemporary approaches to supporting job
scheduling on multiprocessors. In the third section, we will present research done in the
area of tracing and performance monitoring. Although having a different background
and goal, our work coincides with such tracing and monitoring facilities in several key
aspects.

2.1 Run-time characteristics used in Parallel Schedul-
ing

Following the taxonomy introduced in [17], the general scheduling function can be
defined as a mechanism that allocates processing resources to consumers, based on a
scheduling policy. We can consequently define multiprocessor scheduling as a mecha-
nism that allocates multiple processing resources to consumers, based on a given policy.
Scheduling principally relies on information. As the problem of allocating processors
to consumers, most of the measures and characteristics relevant for multiprocessor
scheduling are naturally related with the processors, or the consumers, or both. Fur-
thermore, many scheduling characteristics are relevant on a Äper-consumer base, that is,
they attribute the processor consumer with regard to upcoming scheduling decisions.
Some of the deciding factors of scheduling are of static nature, such as predefined job
classifications or priorities. However, a major part of the characteristics accrue dynam-
ically, during run time of the system. Our work focusses on those run time characteris-
tics; we have classified them into four major categories: (i) usage of the processor, (ii)
usage of processor-associated resources, (iii) usage of shared resources, and (iv) sys-
tem load indicators. In general, the first three categories cover the properties that are
relevant on a per-consumer base; we therefore use term usage instead of characteristic.
To denote the consumers of the various resources, we will use the term resource prin-
cipals hence. In contrast, system load indicators are typically global system properties,
and at most they reflect resources that have been consumed by all principals, or by
none. In the following, we will review relevant scheduling policies grouped by those
four categories, and detail how the policies extract the required characteristics from the
run-time system.

7
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2.1.1 Usage of the Processor

The processor is the central resource within the context of scheduling; consequently,
many scheduling characteristics are related to the processor and its usage by the proces-
sor principals. Perhaps the most evident example of a processor-related characteristic is
the service time of a principal, which is the time a principal has used a given processor.
Since the service time correlates with its parallelism, timing characteristics can be con-
sidered as parallelism characteristics as well. Traditional queuing models simply use
the cumulative service time on all processors to characterize principals; however, re-
search has shown that such a single-value parameter is an inadequate characterization,
and has therefore proposed more elaborate timing parameters such as the processor
working set, the execution signature, or the parallelism profile [27, 55]. In addition
to the actual service time, the coefficient of variation of the service time can help to
determine, if the service time is predictable at all [28]. Although timing characteristics
are often assumed to be known a priori, there have also been efforts to measure them
at run time [15, 28, 50]. Such measurements principally require instrumentation of the
execution points where a unit of work has been completed, such as context-switches
between kernel-, or user-level threads, or, at a coarser grain, start and stop times of
whole jobs or activities.

More recent efforts investigate the applicability of processor-internal characteris-
tics to multiprocessor scheduling. For instance, the approach in [1] measures mean
cycles-per-instruction per thread, with the goal improve scheduling on multi-threaded
processors. Similarly, the approach in [29] proposes to measure the energy consump-
tion of threads, in order to perform scheduling based on energy criteria. These ap-
proaches usually obtain the required characteristics from hardware sensors and perfor-
mance monitoring counters.

2.1.2 Usage of Processor-associated Resources

When a ready run processor principal is to be scheduled in a parallel system, it may
be required or beneficial to map this principal to a specific processor. One factor that
leads to the increased affinity is the usage of processor-associated resources. For in-
stance, some resource may be available only on a specific processor, and the principal
is forcibly bound run on these processors. Other resources may contain some “state”
while being used, and principals that make use of them in a timely or spatially local
manner improve their efficiency. Finally, resources may be used concurrently by mul-
tiple principals; running together principals with high usage rates may have negative
performance implications, due to contention and interference. Knowledge of usage
patterns of processor-associated resources can therefore significantly improve the ef-
fectiveness of parallel job scheduling.

Perhaps the most important example of a processor-associated resource is the pro-
cessor’s caches. Cache affinity scheduling basically attempts to reduce the amount of
state that principals must reload into the caches after being (re-)scheduled on a proces-
sor. [58]. Cache affinity scheduling can significantly improve performance if context
switching rates are high [12,61], or if the costs of reloading cache state are substantial,
like on on machines with high memory latencies [18]. Several techniques are used to
reduce the amount of cache state: one scheme is to re-schedule a principal on the pro-
cessor it last used, since there may still be “hot” state in this processor’s cache from
the last run. Another approach is to let a processor favor those principals, which have
run on the processor in the near past [18]. The last scheme tries to reduce the cache
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interference by scheduling principals with a high mutual cache locality in consecutive
order [11]. Cache affinity policies employ different schemes to measure the cache state
of a processor principal: some approaches simply model the cache state based on the
service time of the principal [9,18]. Alternative approaches leverage hardware support
to obtain the number of cache-misses per principals [12,65], or equivalent information
from the processor’s translation look-aside buffers [11].

Besides the cache state, also the memory requirements of a principal play an im-
portant role in scheduling. Scheduling policies make use of memory considerations in
basically two ways: first, on machines with non-uniform accesses to memory, some
approaches preferably run the principals on those processors or nodes, which host their
memory working set; cache-misses are then being mainly serviced from local rather
than from remote memory [18, 70]. Second, some approaches attempt to reduce mem-
ory pressure, either by using memory-based admission controls [10], or by preferring
principals in proportion to their memory requirements [52]. To obtain the memory
allocations to principals at run-time, memory-conscious scheduling policies typically
query the memory management subsystem, which is responsible for allocating memory
pages to the principals.

2.1.3 Usage of Shared Resources

The idea of scheduling cooperating processor principals together is widely referred
to as co-scheduling; it was initially proposed by Ousterhout [51]. Co-scheduling as-
sumes that parallel programs have a process working set, which must be scheduled
simultaneously for the program to make progress. A technique that is very similar
to co-scheduling is gang scheduling; the subtle difference between those variants is
that gang scheduling only schedules complete working sets, whereas co-scheduling re-
sorts to a subset, in case that there are not enough processors available. Co-scheduling
enhances the flexibility of scheduling, but breaks the performance guarantees gang-
scheduling can give.

Ousterhout originally relied only on statically specified input by the application
[51]. However, more recent approaches show, that run-time identification of process
working sets is a possible and efficient alternative [25, 56, 65]. Run-Time identifica-
tion is principally based on monitoring usage of shared resources. Similar to usage
of processor-associated resources, which increases the affinity to a processor, usage of
shared resources increases the affinity of principals to each other. A scheduling policy
that is aware of the interaction patterns between principals can use its knowledge and
schedule cooperating principals together, in order minimize synchronization times and
increase overall performance. In practice, different techniques exist to monitor usage of
shared resources: the approach in [25] identifies processor working sets by instrument-
ing communication channels. This approach requires that the channels are identifiable,
which holds true, for instance, for named communication facilities, or synchronization
locks. However, if communication is based on shared memory, the approach will fail,
since this form of communication is more opaque and harder to detect. The approach
in [56] monitors shared memory interaction indirectly, by periodically scanning the
contents of the processor’s translation look-aside buffers. Finally, the approach in [65]
proposes to obtain sharing patterns from hints, which are specified by the applications
themselves.
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2.1.4 System Load Indicators

The last category of scheduling characteristics covers all properties used to measure the
load of the system. In contrast to the characteristics that fall into the other categories,
system load indicators are typically global system properties. At most they reflect
resources that have been consumed by all principals, or by none. The current load
situation is principally a run-time system property. It is taken into account in order
to keep the fluctuating workloads balanced among the available processors. The most
widely used load indicator is the length of the processor run-queues, as for instance
used in [8] and [53]. But other single-value load descriptors are possible, such as
system call or context switching rates, or processor idle times [39].

2.2 Approaches to Support Parallel Scheduling
In this section, we will review current approaches to support parallel job scheduling on
multiprocessors. We begin with the two classical schemes used in operating systems,
kernel-level and application-level scheduling, and show that those approaches are in-
herently limited with respect to flexibility and scope. We then review several advanced
approaches to supporting multiprocessor scheduling. Although these approaches pro-
vide a more flexible for scheduling, they still suffer from efficiency and safety prob-
lems.

2.2.1 Kernel-Level Schedulers

Virtually all modern multiprocessor operating systems, including UNIX- and Windows-
based systems, export a notion of election context to the user – e.g, thread, process,
or virtual machine. The operating system multiplexes execution contexts among the
physical processors by means of a scheduling subsystem. The kernel-level scheduler
subsystem deals both with collecting required scheduling data, and dispatching con-
current context among the available processors, based on a given scheduler policy. The
scheduler runs at privileged mode, and dispatches only visible, first-class execution
contexts. Scheduling characteristics are cheap to accumulate, since hardware prop-
erties and other kernel subsystems are directly accessible, without the need to cross
protection boundaries.

However, kernel-controlled scheduling suffers from a number of problems and lim-
itations. First, kernel schedulers often export execution contexts that are tied to other
operating system abstractions, such as protection domains; this limits flexibility and
may lead to high overhead for switching those contexts [3, 7]. Second, although most
operating systems support more than one scheduling policy [5, 9, 48, 57], and some
even accept scheduling hints from users [14], kernel schedulers are inherently limited
with respect to the supported scheduling policies. Since the scheduler subsystem is
embedded and entangled with the kernel, even adjusting an existing scheduling policy
can become a complex and daunting task.

2.2.2 Application-Level Schedulers

The limitations of kernel schedulers have led to an emergence of user-level thread pack-
ages as a new abstraction for supporting application parallelism. Such libraries multi-
plex a set of user-controlled threads among a single, kernel-exported execution context.
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An application-specific scheduler is responsible for dispatching user threads among the
kernel context. Scheduler and threads reside within the same protection domain, and
the required scheduling information is – as it is the case for kernel-level schedulers –
right at hand. Aside from being faster as kernel threads [3], user-level threads greatly
enhance flexibility of scheduling. Thread libraries are free to implement any desired
policy, and extending current implementations does not have any side-effects on the
rest of the system. However, these benefits come at a cost. First, thread packages
may exhibit poor performance, since the underlying kernel-level scheduler is oblivi-
ous to the application-specific notion of threads [4]. Second, although thread packages
provide the required flexibility with respect to the policy, they are still inherently in-
flexible in their scope. Thread packages are bound to a specific protection domain, thus
cannot be used as a foundation for development of a scheduler that manages multiple
applications or protection domains.

2.2.3 Two-Level Schedulers
Since neither kernel-threads nor user-threads are fully satisfying concepts, research
has investigated, how the benefits of both solutions could be combined within a single
approach to express and manage parallelism. Such combinations are widely referred
to as two-level schedulers. In the following, we review three such approaches: Process
control, Scheduler Activations, and First-Class User Level Threads.

Process Control

The idea of process control is based on the observation that performance degrades
when the total number of processes exceeds the number of available processors. Pro-
cess control is a mechanism that allows parallel applications to dynamically adapt the
number of execution contexts, in order to achieve a one-to-one mapping from exe-
cution contexts to real processors [62]. For this purpose, process control employs a
centralized scheduler, which periodically polls the kernel for the number of runnable
processes; in case the number does not match the number of processors, it requests
applications to suspend some of their processes. For safety reasons, the applications
must suspend and resume their respective processes themselves. In contrast to pure
user-level threads, process control allows for scheduling of multiple applications and
protection domains. Also, it does not suffer from the limited extensibility kernel-level
schedulers are subject to. However, it introduces a number of disadvantages. First,
polling is an efficient approach to promote scheduling characteristics only if the fre-
quency of alterations is sufficiently constant; process control is thus limited to policies
that do not require characteristics accruing with varying frequencies. Second, process
control relies on cooperative behavior of the applications, since there is no means to
provide the scheduler with scheduling information required to determine if a process
can be suspended safely.

Scheduler Activations

The concept of scheduler activations is driven by the insight, that kernel-threads are the
wrong base for user-level thread packages. For this reason, scheduler activations are
introduced, as a new foundation to user-level management of parallelism [4]. In this
approach, a kernel scheduler allocates complete processors to address spaces, rather
than only processes; it hands over the dispatching of threads to a user-level scheduling
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system, by reflecting all relevant scheduling events (e.g., the blocking of a user-thread
within the kernel), to the user-level scheduler. This is achieved by means of a notifica-
tion mechanism, which is dubbed scheduler activation. The activated user-level sched-
uler can then respond to the change according to its own requirements. Like process
control, scheduler activations overcome the limitations of both application-specific and
kernel-specific execution contexts. However, propagating scheduling information via
synchronous upcalls suffers from similar problems as the polling mechanism used in
process control. Scheduler activations are inherently limited to events with a compara-
tively low frequency. Since a scheduler activation requires the switching to user-mode,
notification incurs heavy performance costs, if the frequency of events is high. Also,
there exist scheduler-relevant events (e.g., cache-misses) that do not require invocation
of the scheduler the instant they take place, rather, it is sufficient to record the particular
event for future use by the scheduler.

First-Class User-Level Threads

First class user-level threads is an approach similar to the two previous ones in that it
attempts to bring user-level and kernel-level abstractions closer together. The approach
grants user-level threads a first-class status: the kernel remains in charge of coarse-grain
thread management, while thread packages implement the fine-grain functionality that
does not require involvement of the kernel [47]. Like with scheduler activations, the
kernel notifies the thread packages on pending scheduling decisions, by means of a
software interrupt. In addition, kernel and thread packages convey important thread-
related data via shared memory, that is, without the requirement for synchronous in-
teraction. Thus, first class user-level threads are generally capable of communicating
scheduling-related information between user and kernel. However, their approach fo-
cusses on exchanging data, and only on exchange between kernel and user; it does little
to address the problem how data accumulation can be done efficiently. Also, there is
no support for data propagation between user-level components.

2.2.4 Extensible Kernels
Extensible kernels attempt to overcome the inefficiency and inflexibility of poorly
matching operating system services and interfaces. The basic approach is to let ap-
plications define the functionality constituting the operating system themselves, by
allowing them to download application-specific code into the kernel. Research on ex-
tensible kernels has proposed several ways to manage job scheduling at user level.
SPIN lets applications provide their own thread packages and scheduler, executed as
safe extension within the kernel [13]. Exokernel relies on a user-specified interrupt
handler for general purpose context-switching [22]. The approach in [19] further in-
vestigates multiprocessing on Exokernel; however, this approach implements only a
basic multiprocessor scheduler, and lacks support for more sophisticated than a basic
load-balancing algorithm. Thus, in theory, extensible kernels overcome the existing
limits of multiprocessor scheduling with respect to flexibility and extensibility. Allow-
ing for user-defined specializations of an operating system, they can accommodate the
different demands of scheduling policies, including the demands of distributed, diverse,
and dynamic scheduling characteristics. However, aside from lacking evidence with re-
spect to multiprocessor scheduling, extensible operating systems suffer from a variety
of hard problems related to safety. To prevent downloading compromising or mali-
cious code into the kernel, such systems require sophisticated countermeasures such as
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run-time safety-checks, or language restrictions to a Turing-incomplete subset [20].

2.3 Tracing and Performance Monitoring Tools
Understanding the behavior of an operating system is a challenging task, and tracing
infrastructures can provide valuable aid in debugging, analyzing or tuning operating
systems. Examples of such infrastructures are the Digital Continuous Profiling Infras-
tructure of DEC [2], the tracing infrastructure in K42 [66], DTrace of Sun Microsys-
tems, [16], or the Linux Trace Toolkit [68].

These infrastructures feature many techniques and mechanisms that are applicable
to our approach as well, such as dynamic instrumentation [59] or lock-less event log-
ging [66]. However, tracing facilities differ in two key aspects, which prevented us
from directly incorporating such a tool to solve the problems of accumulating schedul-
ing data. The first main difference lies in data lifetime. Tracing data is often preserved
for a long time (e.g., in a disk database [2]), for later analysis by humans or graphical
tools. Since this may take place off-line, tracing data can generally become very large
in size. In contrast, scheduling characteristics serve as a means to predict the future on-
line, based on the near past. Due to the frequency of scheduling decisions, the collected
samples usually become stale very quickly. Also, preserving the samples in a database
is not generally required. The second key aspect is that the debugging and tracing tools
trade off the three criterions efficiency, flexibility, and safety in a way that we deemed
unacceptable for our purpose: DEC’s Digital Continuous Profiling infrastructure al-
lows for efficient profiling, but is restricted to a fixed set of trace events. K42’s tracing
infrastructure also allows for efficient data accumulation, but was not specifically de-
signed with safety in mind. Sun’s DTrace features the ability to dynamically specify
trace events and handlers at run-time; designed for a production environment, DTrace
also assures that the execution of event handlers is absolutely safe. However, it does
so by executing probe handlers in a safe environment, and thus suffers from the same
complexity problems as other extensible kernels. Finally, the Linux Trace Toolkit only
focusses for kernel tracing, and provides no support for application-specific tracing.

2.4 Summary
To summarize, run-time characteristics relevant job scheduling fall into four major cat-
egories: (i) usage of the processor, (ii) usage of processor-associated resources, (iii)
usage of shared resources, and (iv) system load indicators. All these characteristics
arise from different sources in the system, and most of them are relevant only for spe-
cific scheduling policies or environments. Some of them are slow-paced, but others are
highly fluctuating parameters and accumulate very frequently. Previous approaches to
support parallel either suffer from deficiencies with respect to scheduling information,
or they are overly limited in other respects:

• Pure kernel- or application-level approaches offer limited flexibility and extensi-
bility, supporting either only a fixed set of policies, or restricting the scope to a
single application or protection domain.

• Process control and scheduler activations achieve the desired flexibility and ex-
tensibility, but may exhibit poor performance in cases where scheduler-relevant
properties change very frequently. First-Class User-Level threads overcome the



14 CHAPTER 2. RELATED WORK

efficiency problems of scheduler activations and process control, but are focused
on interaction between the kernel and user-level components, and do little to
convey scheduling events between the user components.

• Extensible kernels theoretically meet the demands of scheduling characteristics
with respect to flexibility and efficiency, but introduce safety and security related
problems.

Finally, while tracing and performance monitoring tools provide many features and
concepts that are applicable to the context of scheduling as well, they are not directly
usable for that purpose; specifically the different trade-offs with respect to efficiency,
flexibility, and safety renders a one to one adoption a questionable approach.



Chapter 3

Design

In this chapter, we will present the design of our approach to support user-level schedul-
ing via instrumentation and event-logging. We first point out a set of requirements and
goals that should apply to our solution. In the subsequent sections, we will present our
proposed approach, and then detail how it achieves the desired requirements and goals.

3.1 Requirements and Goals
We begin by defining the requirements and goals the design of our approach should
reflect. In particular, we want our solution to be:

• Flexible, and unified. If the scheduling subsystem is not limited to a set of poli-
cies – such as non-extensible kernel schedulers –, or to a specific application –
such as user-level thread packages –, the scheduling data is inherently diverse,
and distributed among the whole system. A valid solution must therefore be suit-
able for different components, not just for specific subsystems or applications.

• Applicable to the kernel. As a major source for scheduling-relevant informa-
tion, the approach must be apt also for use within the most privileged and critical
part of the operating system. However, we cannot permit arbitrary extensions of
kernel code or interfaces, since they compromise the whole system’s safety [20].

• Efficient. To meet the demands of real-world environments and dynamic work-
loads, the solution must accommodate the inherent fluctuations in scheduling
characteristics and the resulting abundance of scheduling data. Obtaining, gath-
ering, and delivering scheduling information needs to be cheap, and fast. Solu-
tions based on synchronous notification [4], or on polling [62], will fail in the
cases where changes in scheduling-relevant characteristics occur too frequently.

• Scalable. Naturally, support for multiprocessor scheduling must scale with the
number of processors. In this work, we focus on shared-memory multiprocessors
with uniform or non-uniform access to memory.

3.2 Proposed Scheme
This work presents a novel approach to support multiprocessor scheduler extensions
at user-level. We propose to use system instrumentation and event logging to obtain

15
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run-time information relevant for scheduling from different system components and to
store this information within designated log files. To deliver the accumulated schedul-
ing information, we share the log files with the user-level scheduler application. The
scheduler can finally analyze the shared log files to base its allocation policies on. Our
approach is illustrated by Figure 3.1. There are several concepts and aspects to our
solution:

Efficient and safe logging and instrumentation. By making sure that the log han-
dlers are cheap and small, we achieve that the data can be accumulated and de-
livered very efficiently. We further reduce the overhead by allowing the scheduler
extension to dynamically enable and disable instrumentation on a per-character-
istic base. However, for safety reasons, we deploy only well-known and prede-
fined instrumentation code, to retain the applicability of our approach even to
safety-critical environments such as the kernel.

Flexible log control and data specification. To allow for flexible data accumulation,
we provide an interface that allows schedulers to specify and control the data
flow through the log infrastructure. However, rather than to allow the specifi-
cation of arbitrary log contents and layouts, the interface only offers to choose
from a predefined set of possibilities. Limiting the degree of freedom not only
retains good performance while still being flexible enough within the context of
scheduling; it also enables us to provide a safe and well-known interface to the
scheduler which never results in undefined behavior.

Flexible log data accounting. The diversity of scheduling policies often comes along
with inherent ambiguities in the definition of schedulable or accountable enti-
ties. To comprise all different types and granularities of entities that may exist
throughout the system, we introduce the new notion of an accounting domain.
For the logging infrastructure, an accounting domain is merely a pool of resource
principals, and a set of dedicated log buffers that can be used to record schedul-
ing information in. The management of associations between resource principals
and accounting domains is exported to the scheduler application. This concept
not only enhances flexibility, by handing over the policy-associated definition of
accounted entities to the scheduler. It also serves as a performance improvement,
since pooling principals into a domain implies, that interactions within the pool
are not relevant for the scheduler, and can be filtered out by the logging facility.

Efficient log data aggregation. The log infrastructure provides several mechanisms
to aggregate and reduce the log data. Schedulers can configure and use these
mechanisms to aggregate the volume of accumulated data depending on their
own demands and requirements. We provide the mechanisms not only only to
meet performance requirements; aggregation techniques also make our facility
more flexible, since they allow the data flow to be adjusted to reveal specific
questions.

Efficient and Scalable Log Data Access. Rather than to incorporate copy-out or double-
buffering techniques, we share the log buffers directly with the user-level sched-
uler. Log buffers can be analyzed the instant the scheduler requires knowledge of
the information. Using lock-free synchronization between the log data producers
and consumers, we further make sure that data can be accumulated efficiently,
without requiring costly inter-processor synchronization operations. For reasons
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of scalability, log data is recorded in per-processor buffers; producers of log data
on different processors operate completely independent from each other.
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Figure 3.1: Design overview. The log infrastructure can instrument the kernel and
user-level modules or applications. At the respective instrumentation points, schedul-
ing characteristics are logged in per-processor log buffers. The log buffers are shared
with the scheduler application, which bases its decisions on accumulated information.
Additionally, the facility exports a control interface to the scheduler, which allows for
flexible log control.

In the remainder of this chapter, we will discuss the previous aspects in more de-
tail. We will first discuss the concepts behind logging and instrumentation (Section
3.3). We afterwards discuss issues related to log control and data specification (Section
3.4), and to the accounting of log data (Section 3.5). We continue by describing the
data aggregation mechanisms (Section 3.6). In the final section, we discuss issues and
considerations related to log data access (Section 3.7).

3.3 Logging and Instrumentation

In this section, we discuss the basic concepts that a logging and instrumentation fa-
cility suitable for scheduling-relevant information should implement. In general, these
concepts must meet two main design requirements: efficiency and safety. More specifi-
cally, while logging must be efficient enough that the costs of accumulating scheduling
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data do not outweigh its benefits, it still must be safe enough to be applicable also to
the privileged operating systems kernel.

Hollinwgsworth et al. describe instrumentation as: “the activity of collecting in-
formation about an execution without modifying the intent of the underlying calcula-
tion” [35]. This is basically accomplished by enhancing the system with probe handlers
or event hooks, that calculate and record the requested information. Using instrumenta-
tion for the purpose of logging consequently means to define a set of appropriate instru-
mentation events, and to enhance these events with a log mechanism. This mechanism
is activated whenever control flow reaches the instrumentation events, and records the
occurrence of the event – together with other useful information – into a designated log
file. Instrumentation and event-logging are commonly used technique in the context
of debugging, profiling, and performance monitoring [16, 46, 49, 59, 66]. In contrast,
we propose to use instrumentation to collect scheduling-related information from the
diverse system components. However, although the mechanisms are principally the
same, we must consider the special requirements when using instrumentation to accu-
mulate scheduling data: first, due to the timing constraints of scheduling-relevant data,
instrumentation should be as efficient as possible. Second, since we want to apply this
technique to the kernel as well, instrumentation must not have any implications on the
system’s safety.

Many performance analysis and debugging tools allow users (e.g., programmers,
compilers, or applications) to define themselves the actions that should be taken when-
ever an instrumentation point is reached. This is typically achieved by means of a
description language. The description language constitutes a dynamic interface that is
used for translating user-specified semantics into machine code. The code is then in-
jected into the instrumented component sometimes at compile-time [46], but preferably
at run-time [16,35]. Further, many of the dynamic instrumentation systems are capable
of instrumenting almost any kernel and user-level code [16,35,59]. Dynamic interfaces
and instrumentation greatly enhance the flexibility of these tracing tools, allowing for
instance the definition of arbitrary actions at run-time and code injection into unmod-
ifiable components and modules. Dynamic instrumentation techniques also improve
efficiency, since they allow for enabling and disabling the functionality at run-time.
However, these features come at a cost. While dynamic extensions and interfaces may
be well-suited and unproblematic for user programs, applying these techniques to the
operating system kernel – at least at arbitrary locations, or with arbitrary application-
provided code –, can clearly jeopardize the whole system safety. To overcome the
problems, these techniques must incorporate sophisticated countermeasures like run-
time safety-checks, or language restrictions to a Turing-incomplete subset [16, 35].
Particularly for small or safety-critical system components, with a concise and well-
defined interface (e.g., microkernels, or virtual machine hypervisors), neither complex
safety-checks, nor mutating kernel interfaces are a tolerable solution.

To retain some of the flexibility and efficiency of such dynamic techniques, but
to ensure on the other hand, that instrumentation and control is safe even within the
kernel, our approach makes a compromise between dynamic and static techniques. It is
based on the insight that, although scheduling characteristics are inherently diverse and
distributed, they still show structural and semantical similarities. This basically allows
us to use only predefined instrumentation events and handlers. By offering the ability
to dynamically enable instrumentation on a per-characteristic base, we meet our safety
goals, but still leave enough room for flexible and efficient customization of the logging
infrastructure. In the following paragraphs, we discuss our approach in more detail. We
first define several types of events that are appropriate for recording scheduling-relevant
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characteristics. We then discuss the issues related with the instrumentation of these log
events.

3.3.1 Log Events
Although scheduling information is inherently diverse, and distributed among different
system components, the characteristics still show structural and semantical similari-
ties. This mainly stems from the fact that scheduling is a processor allocation problem,
which results in a focus of the characteristics on processors and processor-related re-
sources. As discussed previously, run-time scheduling characteristics generally fall into
four different categories: usage of the processor, of processor-associated, or of shared
resources, and, finally, system load indicators. In light of these categories, we have
identified three types of events that are appropriate for logging scheduling-relevant
workload characteristics: (i) events where a characteristic changes or a resource is ac-
cessed, (ii) events where a principal enters or exits a phase of continuous access to a
resource, and (iii) asynchronous, unrelated events. The following paragraphs elaborate
on these three types of events in more detail.

On-Change/On-Access Events

On-change and on-access events are the most intuitive type of a scheduler-relevant
event. They simply denote an event, where a certain property changes, or resource ac-
cess takes place. An example of such an event is the access to a shared software object
by a principal. Another example would be the insertion of threads into a processor’s
run-queue.

Not all on-change or on-access events can be instrumented in practice. Only visi-
ble software events, represented by a code path, can be enhanced with an appropriate
code construct. This may not be the case with properties maintained by hardware, or
with properties hidden in unmodifiable or closed, binary-only components. Further-
more, such events can only be instrumented efficiently, if changes or accesses occur
not too frequently. Otherwise, instrumentation of every access will incur unacceptable
overhead.

On-Entry/On-Exit Events

Extracting scheduling-relevant characteristics on access or on change is a simple, but
often not applicable scheme. However, for resource usage by principals, which forms a
major part of the scheduling-relevant characteristics, one can sometimes use a different
set of events instead: based on the assumption, that usage of a resource is exclusive
to one principal for a certain time, one can instrument the entry and the exit of such
a phase of resource access. We refer to such a pair of events as on-entry and on-exit
events. The alteration in the resource usage can afterwards be charged to the respective
principal, without the requirement of tracking each single access. Alternatively, if
the resource access is known to be continuous, the time difference can be used to
approximate the actual alteration.

An example where such a scheme can be applied is the usage of a processor by a
thread. The difference in the number of cycles – or alternatively, in time – between
a thread’s dispatching and preemption event yields the actual processor usage count
of the thread (See Figure 3.2). Another practical application for this scheme would
be a client-server model, with communication based on shared resources. To track
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the “usage” of the server by client principals, one can instrument the event where a
client calls the server for service, and the event where the server completes this service
request. The communication intensity, counted for instance in the number of calls to
communication routines, or in the number of references to shared memory pages, is
afterwards charged to the client principal.
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Figure 3.2: Entry/Exit event type. Based on the assumption, that usage of a resource
is exclusive to one principal for a certain time, one can instrument the entry and the
exit of such a phase of resource accesses, and charge the alteration to the respective
principal.

Asynchronous Events

Both previous event types, on-change/on-access, and on-entry/on-exit events, are syn-
chronous to the actual change of the respective characteristic. The third class of events
covers all asynchronous events, which are unrelated to the actual alteration. Com-
monly used unrelated events are periodically invoked software functions, such as the
timer interrupt handler. Alternatively to periodic events, also random events can be
instrumented, to provide a set of samples of a certain scheduling characteristic.

Recording a characteristic by instrumenting unrelated events assumes that the in-
formation has already accrued somewhere in the system. Furthermore, instrumenting
unrelated events may not result in a complete record of characteristics, since alter-
ations between the events will not emerge into the record. However, it is more efficient
in cases, where a less detailed record of scheduling characteristics provides enough
information to the scheduler, and a synchronous instrumentation is thus not justified.

3.3.2 Component Instrumentation

To measure and extract the desired scheduling characteristics, our infrastructure in-
serts instrumentation handlers at the respective log events. By designating different
instrumentation points for different scheduling characteristics, we can ensure that ac-
cumulation and logging is always performed in the same way at each point. We are
therefore able to only insert well-defined instrumentation handlers. Each handler is
basically a small log mechanism, that accumulates the desired data and writes it out
into an assigned log file. Using only instrumentation code that is known at compile-
time not only ensures safety of the instrumentation process; it also allows us to give
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performance guarantees on the whole logging process, by using only time-bound in-
strumentation code.

However, the diversity of scheduling characteristics, and the fact that an actual
scheduling policy may require only a small subset of the accruing characteristics, has
convinced us that accumulation of all possible scheduling data at the same time is
clearly an inefficient and intolerable solution. We therefore make use of dynamic in-
strumentation techniques, and allow schedulers to enable and disable logging at run-
time. More concrete, all logging code enhancements are removed by default. Upon re-
quest by the scheduler, we enable the logging of a given characteristic, by dynamically
inserting the respective code enhancement into the instrumentation points correspond-
ing to the characteristic. Using dynamic code insertion permits us to enable logging
only for those characteristics that are really required by the scheduler. It also elimi-
nates the performance penalties of disabled-probe checks that would otherwise burden
the original code path.

Inserting code fragments at arbitrary locations requires mechanisms such as tram-
polines [35], or splices [59], to safely patch the respective location, and to relocate and
later execute the overwritten original instructions. In contrast, the limitation to a set
of well-known instrumentation points allows us to use a much simpler approach: we
prepare all log events with a sequence of place holders (e.g., no-op instructions), that
make room for later use by the instrumentation. Upon request, we simply insert the re-
spective log code enhancement into the space previously reserved by the place holders.
For further details on dynamic instrumentation, we refer to our implementation, which
is presented in Chapter 4.

3.4 Log Control and Data Specification
Our approach intentionally limits the control flow induced by instrumentation, for
safety and efficiency reasons. All inserted handlers consist of predefined code frag-
ments known at compile time. Using dynamic instrumentation, logging can still be
enabled and disabled during run time. We use a similar scheme for the data flow, that
is, the generated log data produced by the logging code enhancements. The similarities
in the semantics of scheduling data enable us to again limit the degree of freedom to
a set of predefined log layouts and contents, still providing however a flexible enough
mechanism for managing the log data flow. The scheme is illustrated by Figure 3.3, and
works as follows: Each logging component exports a well-defined interface, which al-
lows schedulers to route scheduling data from different characteristics to separate log
files. Further, this interface allows schedulers to choose the contents of each desig-
nated log file, by selecting for each a subset of the following predefined log entries: (i)
event identifier, (ii) resource principal identifier, (iii) counter, (iv) correspondent prin-
cipal identifier, and (v) time stamp. In the following, we describe each of the possible
entries in more detail.

Event Identifier. If more than one scheduling characteristic is logged in the same log
file, the event identifier is used to distinguish data from different sources. Event
identifiers are not true identifiers in the sense that they uniquely denote the event.
Rather, they uniquely denote the scheduling characteristic the event corresponds
to. That is, in the case of on-entry/on-exit events, both events will map to the
same identifier.
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Figure 3.3: Flexible but safe log control using separate log buffers and predefined log
entries.

Resource Principal Identifier. If an event reflects the usage of or access to a schedu-
ling-relevant resource, the principal entry is used to record the particular resource
principal. Such a principal may for instance be an address-space that allocates a
memory page, or a thread that causes a miss in the processor cache. Similar to
the event identifiers, the principal identifiers do not uniquely denote the resource
principal, but rather map to the principal’s accounting domain (See Section 3.5
for details on log data accounting).

Counter. This variable stores the actual alteration, or access counter associated with
the particular event. If the event is of type on-access or on-change, the counter
is hardwired to 1. Otherwise, in case of on-entry/on-exit-events, the counter is
used to log the “delta” of resource accesses at the exit event. For asynchronous
events, the counter value reflects the current state of the particular scheduling
characteristic, such as the length of the run-queue, or the number of memory
allocations to a principal.

Correspondent Principal Identifier. Access to shared resources is captured by log-
ging the correspondent principal at each resource access. For instance, when log-
ging access to a communication facility, the correspondent entry holds the com-
munication partner of the current principal. For resources shared among multi-
ple principals (e.g., broadcast or multicast communication), each correspondent
must be logged separately, using a new log entry row.

Time stamp. The time stamp stores the current time at which logging has taken place.
Logging the current time is useful, for instance, to identify data that has already
become obsolete at the time the scheduler makes its decision. Depending on
the instrumented component and the underlying hardware, we offer the selection
of different types, such the hardware time stamp counter reporting the number
of clock cycles since boot, or a logical time stamp counter, which is merely a
variable that is incremented after being read. Of course, alternative sources are
also possible, such as the real-time or BIOS clock.
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There are several benefits to offering only a set of fixed but selectable log layouts:
first, it enables us to provide a clean and safe control interface to the scheduler appli-
cation that can be as simple as a set of flags determining if a specific log entry should
be written or not. Second, we can assume that log entry sizes are fixed, by requiring
the scheduler to configure the interface appropriately. Constant log entry sizes allow
for both simpler and more efficient logging and reading out, as the starting point of a
log entry is always known [66]. Third, and last, we can incorporate a set of in-place
aggregation mechanisms, since we can assume well-known semantics of log entries
(Details on log data aggregation are presented in Section 3.6).

While some of the log entries are implicitly available at the time a log operation is
performed, others must be explicitly accumulated by the log mechanism. The step of
accumulation is dependent on the particular workload characteristic. Data maintained
by hardware is typically read out using a special processor instruction. Software prop-
erties such as the run-queue length require data structures to be parsed, or interfaces to
be queried. In most cases, the information is either internal to the instrumented com-
ponent, or can be obtained via an existing interface. However, a special case occurs, if
only the log event is internal to a component, but the information is located at a differ-
ent place, and no query interface exists that could be used obtain it from there. As an
example, page usage is often monitored in a software-managed data structure located
in the kernel (e.g., in a page table). However, detailed knowledge on page sharing is
usually available within the memory subsystem, which may not necessarily be incor-
porated within the kernel [6, 34]. We propose to use recursive logging in this case,
that is, to collect the scheduling information in a preliminary log file before promot-
ing the complete set to the scheduler. In the example above, the memory subsystem
and the kernel can share a log file, which the kernel uses to report page usage in. The
memory subsystem can search the log file for accesses to shared pages, and afterwards
propagate the complete information to the scheduler.

3.5 Log Data Accounting
Resource usage forms a major part of the scheduling-relevant characteristics. If not
measured for load estimation, where cumulative resource demands or idle capacities
are relevant as well, the usage must be charged to some accountable entity. The re-
source consumption is evaluated by schedulers when allocating processors to the enti-
ties (or, more precisely, to the schedulable objects these entities consist of). Commonly
used notions of such accountable entities are threads for processor-related resources,
or address-spaces for memory resources. But accounting can just as well be based on
coarser-grain, or compound entities, such as applications or computer users.

In general, our logging infrastructure already allows for accounting of resource us-
age: whenever a resource is accessed, the log mechanism can record the respective
resource principal in the designated log entry. A scheduler that later analyzes the log
file is thus able to trace back each resource access to its originating principal. How-
ever, we still must address the problem, how the resource principals should relate to
the entities accounted for the consumption. One solution would be to introduce a static
mapping between resource principals and accounted entities. This is done in many
general-purpose operating systems, where accounting is usually based solely on pro-
tection domains (i.e., processes). However, previous research has shown that such a
coincidence poses substantial constraints on resource management [7]. Moreover, with
regard to scheduling information, stipulating the notion of accounted entities does not
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only have implications on flexibility, but also on efficiency: Consider for example a
client-server based system with many thousands of threads and a high context-switch
rate. In this case, using threads as the base for accounting will significantly decrease
performance, since context-switches must be instrumented in order to monitor the per-
thread usage of the processor. Moreover, if the scheduler is actually aware of which
threads belong to which accountable entity (e.g., job, application, or user), such a fine-
grain accounting not only affects performance, but also generates unnecessarily de-
tailed log data.

To address this problem, we introduce a new abstraction that can be used for flexible
accounting of resource usage. Our approach is driven by two insights: first, there is no
unique set of resource principals in a system. Rather, this notion varies among the
components and modules the system consists of. While the kernel may only provide
base abstractions, like threads, or address-spaces, higher-level components may operate
on a completely different level, dealing with programs, or computer users. Second, it
should be the responsibility of the scheduler subsystem, not of the components, to
define the entities that accounting of scheduling data is based upon. We therefore
introduce the new concept of accounting domains, as a notion of an accounted entity.
For the log mechanism itself, an accounting domain is merely an association between a
resource principal and identifier emitted to the log files. The task of establishing these
associations is exported to the scheduler extensions, which allows them to freely define
the accounted entities their policies are based upon. The accounting domain concept
is illustrated by Figure 3.4; we will discuss this concept in more detail in the next two
paragraphs.

3.5.1 Accounting Domains and Logging

On request by the scheduler, the log mechanism logs an identifier of the principal orig-
inating the access to a given resource. The particular principal is tied to the resource,
but also depends on the component the resource access takes place. For instance, al-
though threads are the basic abstraction for consumers of processor time, instrumenting
a high-level OS component such as a program loader may yield processor time based
on a completely different abstraction – in this case, based on programs.

Accounting domains introduce a level of indirection between the actual principal,
and the identifier recorded in the log files. The additional indirection level allows for
dynamic associations between resource principals, and the accounted entities reported
to the scheduler. Defining the original principal is left to the instrumented component;
the accounting domain concept only provides a mechanism to map each principal to
its corresponding accounting domain. The logging procedure uses this mapping to
resolve a principal’s accounting domain, and then uses the domain identifier as the
principal’s identifier in the log file. Likewise, when logging access to shared resources,
it records the correspondent principal’s domain identifier in the respective entry. Since
the resolving procedure heavily depends on the particular component and resource, we
leave its semantics open to the implementation. Details on how it can be realized for
different environments will be presented in the implementation (Chapter 4).

3.5.2 Accounting Domain Management

Accounting domains decouple the original principal from the accounted entity the re-
source access is charged to in the log files. Since resource usage is accounted for
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Figure 3.4: The accounting domain concept. Schedulers can define associations be-
tween resource principals and accounting domains. When logging resource usage, the
log mechanism maps the originating principal to its corresponding accounting domain.

scheduling purposes, we hand over the task of defining the associations between princi-
pals and domains to the scheduler application. Each instrumented component provides
a management interface that allows schedulers to dynamically bind a resource principal
to an accounting domain. The log mechanism then charges all resources consumed by
this principal to its accounting domain. Conversely, an accounting domain is implicitly
charged for all resources consumed by its associated principals.

Based on their own knowledge of the activities in the system, schedulers can use
the accounting domain concept to customize how the logging infrastructure accounts
resource consumption. Similar to the concept of resource containers [7], the accounting
domain concept allows schedulers to associate scheduling information with activities
or users, rather than with a single resource principal. However, the accounting domain
concept assumes that the scheduler is aware of the original notions of resource prin-
cipals that exist in the instrumented components. For principals that are internal to
a specific component, or for virtualized principals (such as virtual threads [21]), this
may require additional mechanisms to establish an agreement on principals between
the scheduler and the instrumented components. Further, while we allow schedulers
to dynamically create and change the bindings between domains and principals, we do
not provide a mechanism to modify the domain bindings within the components. Fu-
ture work has to be done to investigate if such a model of “migrating principals” might
be useful in the context of our work.

Until now, we have discussed the concept of accounting domains only with regard
to the flexibility they add to our infrastructure. However, we introduced this concept
also for a second reason: to enhance the efficiency of the system. As a pool of resource
principals the scheduler considers to be “equal”, an accounting domain also enables us
to group data that belongs together, or to sort out domain-internal data that is irrelevant
for scheduling. These and other techniques will be presented in the following section
on log data aggregation.
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3.6 Log Data Aggregation
One of the main problems of run-time characteristics is their dynamic nature; fluctua-
tions in the application workload inherently come along with variations in scheduling
information. An accumulation facility striving to provide an adequately detailed record
on these characteristics will face high frequencies of scheduler-relevant events, and a
resulting abundance of scheduling data. Consider for example a multi-threaded web
server, with a main thread, and several “worker threads”, each devoted to a particular
client connection. Tracking communication patterns or processing time of all these
execution contexts requires the instrumentation of frequently invoked operations such
as inter-thread communication or thread context switches. Improper or inefficient ac-
cumulation will therefore have serious implications on performance, both through the
additional execution overhead, and through the high volumes of generated scheduling
data.

To allow accumulation of scheduling data even at performance-critical events, and
to control the amount of data that flows through our logging infrastructure, we have
incorporated several data aggregation and reduction techniques within our logging in-
frastructure. While the main purpose of these techniques is to improve efficiency, they
may improve flexibility as well, since they can be used to answer specific scheduling
questions. For instance, a scheduling policy may wish to find out the job that has run
on a given processor most recently. However, it may require neither exact timing char-
acteristics of this job, nor a complete histogram of accesses to the processor by all
jobs. Rather than being forced to sort out unwanted data itself, a scheduler can use our
mechanisms to aggregate or filter data at the source.

We based the design and selection of appropriate aggregation mechanisms mainly
on the criterion of efficiency. All in-place aggregation should be simple and cheap; im-
plementation of complex and costly mechanisms is left over to the scheduler applica-
tion. The incorporated mechanisms mainly focus on clustering data, that is, grouping
of log data sets by matching values, and on omitting unnecessary or unwanted data.
We refrained from integrating any statistical methods within the logging infrastruc-
ture; such methods are usually more complex than the previous two techniques. Also,
statistical methods typically operate on sets of data, whereas clustering and omitting
data operate on a per-sample or per-event base. Consequently, while the latter tech-
niques clearly have advantages if being done before or during accumulation, we see no
compelling reason to perform statistical calculations instantly, since they can only be
applied after the accumulation of a complete set has taken place anyway.

3.6.1 Clustering Data
A simple technique to reduce log data is to group entries by matching values. Since
the matching entry is then dispensable, it does not need to be stored with each log
entry. We refer to this technique as log clustering. The restriction to only five different
types of log entries limits the degree of freedom for clustering log data: data can be
grouped by (i) the event identifier (i.e., characteristic), (ii) the principal’s domain, (iii)
the counter, (iv) the correspondent’s domain, and (v) the time stamp.

To implement per-event and per-domain clustering, we extend our support for sepa-
rate log files to scheduling characteristics and accounting domains. In other words, we
provide a mechanism to route data streams from distinct characteristics and domains to
dedicated log files. Concretely, our facility maps each pair <event identifier, account-
ing domain> to a separate log file selector, which in turn refers to a designated log
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file. For global characteristics such as system load indicators, the accounting domain
is omitted and the log buffer is resolved solely based on the event identifier. When ac-
cumulating a given scheduling characteristic, the log mechanism resolves the mapping
and dereferences the log file selector. It finally writes the respective information into
the resulting log file.

As with the associations between domains and principals, the task of establishing
mappings from event identifiers and domains to log files is exported to the scheduler
application. Using the control interface, the scheduler can further define the particular
contents of each log buffer, and thereby avoid the dispensable matching event and
domain entries. Since the specification of the log layout is done on a per-log file base,
contents and sizes of a log file are guaranteed to be fixed, no matter if the log file
contains data from a single, or multiple sources1. With this scheme, several types of
log files and layouts are possible, as for example:

A global log that can be used by all events and domains. A potential application for
this type of log file would be a global history of characteristics on a given pro-
cessor.

A per-event, per-domain log, used to store exactly one scheduling characteristic of
exactly one domain in a dedicated log file. Such a log buffer could for instance
hold a history of the domains’ processor service demands.

A clustered domain log, used to store data for clusters of domains. Clustered domain
logs can be beneficial if the scheduler has a priori knowledge of relations between
different domains. In this case, the scheduler can employ group-wise log files to
keep together scheduling data of closely related domains.

So far, our facility only allows for clustering data per characteristic, and per domain.
The linear nature of event-logging implicitly provides support for sorting data chrono-
logically, and no extra support is needed to cluster data by time. Further, the different
semantics of the counter type renders clustering data by this entry completely useless.
In contrast, aggregating data by correspondent domain is a useful technique in cases
where a scheduling policy requires data records on a per-event, per-domain, and per-
correspondent base. However, we refrained from incorporating this technique within
our framework, since it would require implementing a three-stage routing mechanism,
complex both with respect to execution and maintenance. Future work has to be done
to explore, if and how efficient data structures and algorithms capable of aggregating
correspondent-wise data can be incorporated into our infrastructure.

3.6.2 Omitting Data
While log clustering makes some of the data dispensable, it does not affect the actual
information contained in the data. The next class of mechanisms is concerned with
omitting log data and information, by recording only a subset of the data. Such tech-
niques are useful in cases where the data is too high in volume for being considered
completely anyway. The basic idea is to discard some of the relevant information, in
the hope that the remaining information will still be sufficient and accurate enough to
make proper scheduling decisions. Our logging facility employs four basic techniques
to reduce the volume of accumulated scheduling data in-place: domain-based filtering,
cyclic logging, event counting, and sampling.

1If a given entry has meaning only for a subset of the data sources, the log mechanism uses dummy place
holders for the rest.
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Filtering Data using Accounting Domains

Accounting domains decouple the resource principal from the accounted entity re-
ported to the scheduler, by allowing for dynamic associations between principals and
domains. Conversely, each domain can be considered as a pool of resource principals
the scheduler considers to be “equal” with respect to accounting. Thus, the domains
implicitly define a filtering instrument, since the logging facility can ignore all events
that reflect state changes internal to an accounting domain. We implement this filtering
instrument by having the log mechanism check if changes in resource consumption
take place within or across accounting domains, and letting it disregard the internal
changes. As an example, if two threads reside in the same domain, context-switches be-
tween these domains are not regarded as resource release and access anymore. Rather,
the same domain continues to access the processor, and the log mechanism ignores the
event. Likewise, the mechanism ignores all resource sharing within a particular do-
main, and only records accesses to those resources, which are shared among multiple
domains.

Cyclic Logging

Compared to performance analysis and system debugging, where event-logging usually
is used, scheduling decisions are time-critical, and done comparatively frequently, in
the order of magnitude of milliseconds. The scheduling information basically serves
as a means to predict the near future based on the past, and the relevance of scheduling
correlates with the period between scheduling decisions; in other words, the log data
usually becomes obsolete quickly.

For this reason, all log files in our infrastructure are based on cyclic buffers. The
log base pointer rolls over to the first entry when being incremented from the last entry.
The oldest entries in the log file will automatically be overwritten with new data when
the buffer is full. It is the responsibility of the scheduler to make the buffers adequately
large. Likewise, if a scheduler application wishes to preserve log data, – e.g., to store
profiles in a database [28] –, it must take care of the preservation itself. If the log
files are not large enough to prevent data from being overwritten, the scheduler must
periodically copy the log buffers into a user-level database.

Event Counting

Another technique that can be used to reduce the amount of collected data is to count
the times a particular event has occurred, instead of logging each event separately.
While there are scheduling characteristics whose access counters are only available in a
cumulative form (typically those, which are accumulated at on-entry/exit or periodical
events), counting can also be used as a specific mechanism to reduce data flow [2]. A
simple realization of an event counter is a cyclic additive log file with only one entry.
To implement this scheme, we extended the log control interface to the scheduler by
a method that tells the log mechanism to add new entries instead of overwriting them.
For counting an event, the scheduler can simply route it to a log file that consists of
only one entry, and configure the log file to store only the counter value. Toggling the
“add bit” will then cause the log mechanism to count the number of occurrences of the
event in the specified entry.
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Sampling

Finally, we also provide support for sampling of scheduling data. Sampling basically
means to ”select a subset of the observed data for analysis, rather than all” [37]. Choos-
ing the appropriate subset can be accomplished in multiple ways; one can perform a
random selection, or consider only the most frequent, or most meaningful parts. The
majority of sampling techniques is applied to generated data. One method that can
be implemented in-place is event-based sampling, that is, to consider only a subset of
the events for logging, instead of all. In contrast to the previously introduced mecha-
nisms to omit data, event-based sampling tries to reduce the frequency of observations,
rather than the amount of log data. Our logging infrastructure features an event sam-
pling mechanism based on thresholds. The thresholds act as a filter for log events:
the number of events identical to the threshold must be reached, before a log entry is
made. Like all log controls, the threshold configuration is exported to the scheduler
application, allowing it to modify the event thresholds according to its own demands.

Generally speaking, the event threshold must reflect the speed of alteration of a
particular scheduling property. The more dynamic a given property, the more frequent
is the occurrence of the corresponding event. For global properties such as system
load indicator, it is sufficient to employ one threshold per event. However, resource
usage is principal-specific, and may also vary among different principals. Consider
for instance a server application that consists of a set of frequently interacting threads,
which runs concurrently with a “number-crunching” application that consists of rather
long running threads. In this case, associating thresholds only with the log events
results in the log file being polluted with characteristics from the former application,
while data of the latter is filtered out and lost for the most part. For resource usage, we
therefore employ one threshold per event and accounting domain. Although this incurs
more overhead for the scheduler in order to program the logging facility, maintaining
per-event and per-domain thresholds can be of great benefit for monitoring resource
usage in pace of the principal-specific fluctuations.

The log mechanism itself does not modify the thresholds set by the scheduler. If
the scheduler uses fixed threshold values over time, the subset selected for logging
follows the constant frequency resulting from the threshold. Sometimes however it
is advantageous to alter the frequency randomly, in order to avoid pathological cases
and to improve the representativeness of the data. Since the scheduler can modify
the thresholds, it can easily conduct random sampling by feeding the thresholds with
values varying randomly over time.

3.7 Log Data Access and Scalability Considerations

The logging facility collects all scheduling characteristics within designated, per-com-
ponent log buffers, held in main memory. All collected characteristics are eventually
promoted to the scheduling application, which analyzes the data to base its allocation
decisions on. Several problems arise related to the writing, and reading of log data and
meta-data. First, concurrent accesses to log data introduce potential synchronization
and integrity problems, and require us to provide appropriate coordination among the
accesses. Second, as the producers and consumers may reside on different processors,
scalability problems will arise, if our mechanisms and data structures are not designed
appropriately. However,we must not trade off efficiency when addressing synchroniza-
tion and scalability issues; otherwise our approach will fail to meet the demands of
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frequently and timely performed scheduling decisions. For this reason, we do not want
to require log data producers to hold any costly interprocessor synchronization opera-
tions while making log entries. Finally, our infrastructure must address the question,
who should be held responsible for providing the memory regions backing the log data.
In the following section, we will discuss the issues related to log data access and shar-
ing in more detail, and show how our logging infrastructure addresses these issues. We
begin by stating a set of general requirements on scalability the logging infrastructure
must adhere to. We then explain how the log architecture achieves the scalability re-
quirements and addresses the arising synchronization problems, both with respect to
log data accumulation and sharing. We finally discuss the question of adequate provi-
sion of memory to back the log data.

3.7.1 Scalability Requirements
In [64], Unrau et al. describes three general guidelines for the design of a scalable
operating system: (i) preserving application parallelism, (ii) bounded overhead with
respect to the number of processors, and (iii) preserving locality of applications. Al-
though accumulation of scheduling is not bounded to the operating system kernel, but
can also be applied to application programs, we nevertheless consider it to be a part of
the operating system and thus subject to these guidelines. We therefore translate the
three general principles into three concrete requirements for our approach: first, we
require that there is a separate data accumulation process on each processor. (Since
we do not want to restrict the design of the scheduler extensions, we do not explicitly
require separate analysis processes on each processor – although research has shown
that a decentralized scheduler design turns out to be more efficient in general [24,30]).
Second, we require that accumulation and analysis of log data of one processor does
not affect other processors than the involved ones. Third, we require that all log buffers
are held in local, per-processor memory.

3.7.2 Data Accumulation
Since logging code constructs do not contain parallelism in their semantics, we can
easily implement independent, per-processor accumulation processes that avoid inter-
processor control transfers. Further, we deploy independent, per-processor log buffers,
which are kept in processor- or node-local memory. Remote memory is only accessed
when a analyzing log data, but not when producing log data. The idea of processor-
wise log buffers is implemented by many tracing and debugging facilities [2, 16, 66].
Keeping log data and meta-data in processor-wise and local memory not only pre-
vents costly latencies of remote memory references and removes the overhead of cache
coherency protocols; it eliminates the requirement for synchronization operations be-
tween log data producers on different processors. Since we additionally separate log
data in component-wise log buffers, we must only address the problem of multiple
log data producers that reside within the same component and on the same processor.
However, since the problem is local to each processor, we can easily keep the produc-
ers coordinated without the need of costly inter-processor synchronization operations.
A simple solution is to guarantee that log operations are atomic. Within the kernel, one
can easily achieve this by disabling preemption. At user-level, one can ensure atomic-
ity by means of a preemption avoidance protocol [38,63]. Alternatively, in cases where
disabling or avoiding preemption is not possible, one can resort to atomically reserving
log entries instead, for instance by using a single instruction to increment the index.
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3.7.3 Data Sharing

To supply the schedulers with the accumulated properties, the log infrastructure must
provide them with access to the log files. Tracing facilities often copy-out the data, or
use double-buffering for this purpose [2,16,68,69]. Copying and buffering are effective
mechanisms to ensure correctness and completeness of the gathered data, since they
relieve the infrastructure from having to deal with synchronization or data corruption
problems. However, such techniques incur heavy performance costs, not only with
respect to the execution overhead, but also in terms of pollution of processor caches
and translation look-aside buffers. Especially for the time-critical task of scheduling,
where good performance is a firm requirement, we do not consider them as tolerable
solutions. We instead share the log buffers directly with the scheduler subsystem,
and memory-map all log buffers into the scheduler’s address-space. Since the size
of scheduling data is rather small compared to performance traces, direct sharing is a
practical and efficient approach, reducing both cache footprint and space requirements
of logging.

However, sharing log buffers implies the possibility, that log data is written into a
log file being analyzed simultaneously. Care must be taken to coordinate concurrent
reads and writes to log memory. However, for performance and scalability reasons,
we do not want to require analysis and accumulation processes to synchronize each
other before performing their respective accesses. Instead, we let the data producers
and consumers run unsynchronized, but enable the analysis process to detect reading
of inconsistent data. More concretely, loss of consistency occurs, if the log analysis
process reads an entry that is currently being written by a logging operation. Thus, as
described in [67], one can detect the potential inconsistency by associating a valid bit
with each log entry row, which is set by the log data producers after entering entries
into that row, and cleared by the analysis process after reading the row.

In our facility, we use a modification of this scheme, which slows down the more
seldom case of concurrent analysis and log producers, but eliminates the requirement
for valid bits in the frequently executed log operation: instead of using valid bits per log
entry row, we use the log file’s current index to detect if a log producer has made entries
to that file while the analysis process was reading it. That is, before parsing a log file,
the analysis process saves the log file’s current index in a local copy. Having finished
parsing the file, the process verifies that the current index has not changed meanwhile,
by checking it against the local copy. If they do not match, it must restart the complete
analysis of that file, since it may have read inconsistent data during analysis. Since log
buffers are processor-local in our facility, the log producers do not need to use memory
barriers or other synchronization operations when incrementing the index; the only
requirement is a write ordered memory consistency model, in order to ensure that the
the index always reflects the state of the log file consistently. Additionally, this scheme
requires to detect the corner case in which the producer has written exactly as much
entries as there is room in the complete log file. Further, with increasing probability
of collisions between reader and writer, the scheme requires a means to prevent the
analysis from starving forever. See Section 4.5 for all implementational details on this
scheme.

3.7.4 Memory Provision

The last problem discussed in this section is the question, who should be held respon-
sible for providing the memory used to store log data. Generally speaking, it should
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be the duty of the scheduling subsystem to page the instrumented components with
log memory. Since the scheduler subsystem is an application that resides at user-level,
such a scheme principally requires kernel support for application-controlled memory
management [6,34]. Moreover, if the instrumented component is the operating system
kernel itself, it also requires a solution, to hand over kernel-memory management to
the user-level [31]. In cases where such mechanisms are not supported, we propose to
allocate pinned memory for log buffer regions, in order to avoid the trust problem that
arises if the scheduler tries to read a log file that is not mapped into memory.



Chapter 4

Implementation

4.1 Overview

To evaluate accumulation of workload characteristics via logging, we have imple-
mented a prototype logging facility within a real-world, microkernel-based component
operating system. Like depicted in figure 4.1, our environment consists of four major
parts: (i) a small, privileged microkernel; (ii) several operating system modules running
at user-level; (iii) the application workload; (iv) a scheduler application responsible for
processor allocation to applications and driver modules. The software stack runs on a
medium-scale (up to 16-way) IA-32 architecture based multiprocessor.

CPU CPUCPU CPU…

µ-kernel

Sched Net Disk 

Hardware

User
Level

Kernel-
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App App App

Figure 4.1: Component operating system environment

Our logging facility extracts different workload characteristics from the microker-
nel, the operating system components running at user-level, and the application work-
load. We have implemented a prototypical scheduler application responsible for pro-
cessor allocation to applications and device drivers. The scheduler can analyze the
characteristics recorded in the shared log files to perform its actual allocation and mi-
gration decisions. However, since our work focusses on supporting scheduling, not
on investigating different scheduling strategies, we leave the actual scheduling policy
rather open, and focus mainly on the scheduler’s task of evaluating the log files.

33
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The following sections describe our prototypical implementation and its details.
We begin with outlining the components our environment consists of (Section 4.2).
Subsequent sections present the implementation of the logging facility. We first show,
how we instrumented the privileged microkernel (Section 4.3). We then present the
instrumentation of the application workload and user-level operating system modules
(Section 4.4), emphasizing however on the differences and particularities with respect
to the microkernel instrumentation. We finally present the implementation of the user-
level scheduler application (Section 4.5).

4.2 Environment

Our environment is a microkernel based operating system, which provides its services
to the application workload. As microkernel, we use an implementation of the L4 mi-
crokernel developed at the University of Karlsruhe. To host the application workload,
we leverage L4Ka virtualization technology, also developed at the University of Karl-
sruhe. The L4Ka virtualization architecture basically consists of paravirtualized Linux
instances – dubbed L4Linux – , which run in unprivileged user-mode, on top of L4. We
make use of virtual machines not only for hosting the application workload; we use
this technology also for providing user-level device driver services to the applications.
The following paragraph will shortly describe the core functionality and abstractions
of the L4 microkernel, and of the L4Ka virtualization environment.

4.2.1 The L4 microkernel

L4 is a state-of-the art, second-generation microkernel, which provides a minimal set
of powerful abstractions that can be used to build extensible systems on top [44]. L4
has three core abstractions: threads, address-spaces, and inter-process communication
(IPC). Threads are the basic notion of a schedulable entity exported by the L4 micro-
kernel. Also, they serve as the endpoint of the inter-process communication provided
by L4. Address spaces are first class kernel objects in that the hardware aspects are
implemented within the kernel. However, management of virtual address spaces can
be done outside the kernel, at user-level [43]. The IPC mechanism offered by the ker-
nel provides synchronous, unbuffered operations to send messages between threads.
As the generic mechanism for interaction between system components, the IPC path
is invoked very frequently. Its performance and efficiency is therefore crucial to every
L4-based system [42].

L4 features an internal scheduler that dispatches threads using a priority-based
round-robin scheme. Each thread has a time-slice that determines the length a thread
can run on a processor before being preempted by another thread. L4 provides an in-
terface that allows the control over scheduling from user-level. Using this interface, a
user-level scheduler can modify scheduling parameters such as thread priorities, time
slice lengths, or the particular processor a given thread should run on. Changing the
last parameter will cause L4 to migrate the thread to a different processor instantly.

4.2.2 The L4Ka Virtualization Environment

The L4Ka virtualization project investigates how microkernel technology can be ap-
plied to virtual machines [60]. The virtualization architecture consists of a framework
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that allows paravirtualized guest operating systems to run on top of L4. The guest op-
erating systems are basically adoptions of the Linux kernel, modified to run on top of
L4, instead of on bare hardware [33]. The framework additionally provides a virtual
machine monitor that implements the virtualization layer the L4Linux instances. The
monitor is an L4 task running at user-level. In addition to the guest virtualization, the
monitor also acts as a resource manager, responsible for allocation of memory, pro-
cessing time, or device I/O to the virtual machines. The monitor uses L4 abstractions
and mechanisms for virtualization and resource allocation.

The virtualization framework basically allows us to run any Linux application
within our scenario, unmodified, but encapsulated within a virtual machine. Beyond
hosting the application workload, the framework also provides the device driver mod-
ules running at user-level. The driver modules are essentially L4Linux instances that
encapsulate and reuse Linux device driver logic [41]. Every driver exports a virtual de-
vice interface that can be used by the application workload to request driver services.
The driver then multiplexes these requests on the physical devices it manages. Interac-
tion between applications and drivers are based on the user-level memory management
primitives and the IPC mechanisms provided by L4.

4.3 Instrumentation of the microkernel

In this section, we demonstrate the applicability of our logging concepts and mecha-
nisms, by showing, how these concepts were implemented within the L4 microkernel.
The microkernel is the entity in the system that runs in privileged mode; further, some
of its services are invoked very frequently. We must therefore take special care when
instrumenting the microkernel, in order to avoid safety and efficiency problems affect-
ing the overall system’s performance and stability.

The following paragraphs describe the microkernel instrumentation in more detail.
We begin with describing scheduler-relevant characteristics that accrue within L4 (Sec-
tion 4.3.1). We then detail the dynamic instrumentation techniques we use to safely
enhance the kernel with log handlers (Section 4.3.2). Subsequent sections present the
implementation of log handlers (Section 4.3.3), the accounting domain concept (4.3.4),
and the data aggregation techniques 4.3.5). We finally discuss implementational issues
of log data access (Section 4.3.6).

4.3.1 Workload Characteristics Accruing in L4

L4 only offers a minimal set of core abstractions, and tolerates a concept inside the
kernel only if moving it outside prevents the system from working correctly [43]. The
minimality of the L4 microkernel limits the workload characteristics internal to the ker-
nel. Also, L4 offers only basic services that can be used to build more elaborate system
functionality on top. Consequently, some of workload characteristics accruing within
the kernel can also be extracted from user-level components implementing higher-level
services or functionality. Following the microkernel philosophy, workload characteris-
tics should be extracted only from within the kernel if not possible otherwise.

We have identified five different characteristics relevant for scheduling that can
be measured within L4: (i) processor service time, (ii) information from performance
counter hardware, (iii) IPC usage, (iv) memory usage, and (v) changes in the run-
queue length. In the following paragraphs we will discuss each of these characteristics
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in more detail. For each characteristic, we detail its relevance with respect to multi-
processor scheduling. We further specify appropriate log events and describe how the
characteristics can be measured at these events. We also discuss the question, if the
characteristics are kernel-specific, or if they could also be measured at user-level.

Processor service time. As the central resource with respect to scheduling, knowl-
edge of the processor service time is of interest for many scheduling policies
[9, 15, 28, 40]. There exist different attributes and measures related to processor
service time, such as a principal’s aggregated time demands, or the most recent
time a principal has been serviced by a processor. Also, idle times are relevant
within the context of scheduling.

The basic notion of a processor principal in L4 is a thread. To measure service
time, we therefore instrument the context-switches between threads (see Figure
4.2). A context-switch is basically the exit event for the preempted thread, and the
entry event for the dispatched thread. For the exiting thread, the kernel calculates
the time spent running on the processor based on its entry and the current time.
It emits the preempted thread’s service time to the designated log file. For the
entering thread, the kernel records the current time in an internal buffer variable.
Depending on the desired accurateness, the kernel bases time calculations on the
IA-32 time stamp counter register, or on the internal timer tick counter1.

Thread switches are on the critical IPC path in L4; measuring timing properties
can therefore significantly reduce the performance of the microkernel. In Section
4.3.5, we discuss how we implemented the aggregation techniques that strive
to reduce this overhead. Unlike other workload data, timing information only
accrues within the kernel. This stems from the fact, that kernel thread switches
are safety-critical operations that must be performed by the kernel – at least if the
threads reside in different address spaces [45]. Also, switches are not necessarily
the direct result of a user invocation, which could be instrumented at user-level
instead of the switch in the kernel.

Performance counter information. The Performance Counters of the IA-32 archi-
tecture provide a rich source of information on the current state of the pro-
cessor [36]. The most palpable examples of using performance counters for
scheduling purposes are cache affinity policies that monitor the number of cache-
misses [12, 58, 65]. But performance counters also provide other information
such as mean cycles-per-instruction [1, 29].

Scheduling policies typically require performance counter information on a per-
principal base. In L4, these principals are, as with processing time, the kernel
threads. Since performance counters are maintained by hardware, and oblivious
to the kernel’s notion of threads, we must multiplex the counters among the ker-
nel threads. More concretely this means that, again, the context-switches must
be used as instrumentation points. The kernel calculates a counter “delta” for the
preempted thread, and buffers the current value for the freshly dispatched thread.
Alternatively to context-switches, the performance counters could be monitored
at asynchronous events such as the periodic timer tick. At these events, the kernel

1Currently, this can be specified at compile-time. To specify the timing base at run-time, we propose to
declare two separate events for the different timing bases. The scheduler can then select the desired timing
using the different event types at run-time.
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Figure 4.2: Measuring timing properties on context-switches. The log facility reports
the service time of the preempted thread to a log file and buffers the entry time of the
freshly dispatched thread.

would have to determine the counter and the currently running thread, and record
the information within the corresponding log buffer. At present, we instrument
the context-switches, since only this approach provides an accurate record of per-
thread performance counters. The scheduler can still do coarser-grain logging,
by using the offered aggregation and sampling mechanisms.

IA-32 processors can be configured to permit user-level accesses to performance
counters. Thus, at a rough glance, there should be no requirement at all to moni-
tor the counters within L4. However, performance counter values are only useful
data if monitored per principal. The scheduler depends therefore on the kernel if
it wishes to retrieve per-(kernel-)thread performance counter information.

IPC usage. L4’s IPC facility is a shared kernel resource. IPC usage patterns can thus
be used to identify relations between principals, which is an important informa-
tion for of co- and gang-scheduling strategies [25,51,56]. However, IPC usage is
also useful to identify affinity to processor-associated resources. For example, a
driver managing a device that is associated to a processor is also dedicated to this
processor; a high IPC interaction between an application and the driver implies
a high affinity of the application to the processor.

L4 provides a synchronous unbuffered IPC mechanism between one sender and
one receiver thread. We instrument code path to track invocations of the mech-
anism. To ensure correct logging records, sender and receiver must log usage
of IPC separately. This stems from the fact, that sender and receiver may reside
on different processors; in this case, the sender cannot access the receiver’s log
buffers, and vice-versa. We therefore instrument the IPC implementation twice –
the first time on the sender-side, as soon as the sender has transferred the message
and the operation is known to succeed, and the second time on the receiver side,
as soon as the receiver has been reactivated by the sender due to the successful
transfer of the message.

The IPC mechanism provided by L4 is a very minimal, but highly efficient com-
munication operation. The idea behind that is, that other, more complex com-
munications mechanism can be built on top of the IPC mechanisms. Conse-
quently, communication patterns may also be monitored by instrumenting high-
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level communication abstractions at user-level. If user-level instrumentation is
not possible or too complex, a scheduler must fall back to kernel IPC statistics.

Memory usage. In the context of scheduling, memory usage statistics can be used for
two types of scheduling policies. The first type of policies requires information
on allocations of memory [10,52]; the second type bases its policies on usage of
shared memory [11, 56].

L4 exports management of virtual memory to the user-level. It therefore pro-
vides operations to map and revoke virtual memory between different address-
spaces [43]. To track these allocations, we maintain memory page counters mon-
itoring the number of pages allocated to address spaces (i.e., the principals of
virtual memory). The counters are incremented and decremented whenever a
memory page is added to or revoked from an address space. Different events are
appropriate for logging allocation counters: the access events, that is, the map
and revoke operations, or other, asynchronous events, such as the periodic timer
tick. At present, the only kernel offers to log the counter at the access event. That
is, after the successful mapping or revoking of a memory region, the counters are
updated and then emitted to the log files.

To ensure correctness of mappings and revokings of memory, the kernel main-
tains a mapping database. This is a tree-like data structure that records all map
operations, to ensure that the mappings can be removed correctly afterwards.
The mapping database can also provide information on which pages are shared
between multiple address spaces. Page references are tracked by the IA-32 hard-
ware, in kernel-internal page tables. Thus, all required information to monitor
shared page usage is available within L4. However, three problems prevented us
from instrumenting the kernel in order to monitor usage of shared pages: first,
the layout of page tables is predefined, and parsing these tables is principally a
complex operation, which requires a significant amount of time. Second, since
page reference bits are tracked by hardware, there is no knowledge on the pace
of page usage that would be available to the kernel. Third, the kernel cannot
differentiate between actively and passively shared pages, as the actual manage-
ment of virtual memory is performed at user-level. However, for scheduling
purposes, passively shared pages are of little interest, as they are used for in-
stance to share code, but not for communication. Monitoring shared page usage
within L4 would therefore not only require the inevitable parsing of page tables;
the parsing may often result in no useful information at all, since the pages may
not have been modified since the last scan, or are shared passively anyway.

We therefore chose to monitor shared memory at user-level only. In contrast to
some of the previous workload characteristics, knowledge on memory usage is
completely available to the user-level. User-level memory managers principally
possess some knowledge on memory sharing [6], and L4 provides an interface
to query reference bits (i.e., usage) of memory pages. In Section 4.4, we demon-
strate an implementation at user-level, by tracking shared memory usage in the
device driver components of our environment.

Run-queue length. If an operating system maintains per-processor run-queues, the
lengths of these are a commonly used indicator of the current load distribution [8,
53]. Although a simple indicator, research has shown that this relatively simple
measure yields even better results than other, more complex ones [39].
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Figure 4.3: Measuring the run-queue length at timer interrupts. We maintain a per-
processor variable that reflects the current state of the run-queue. On each timer in-
terrupt, the log handler emits the current run-queue length to the respective log file.

For its own thread scheduling, L4 maintains kernel-internal, per-processor run-
queues. However, for efficiency reasons, the kernel uses a lazy scheme to manage
the run-queue. That is, L4 avoids costly enqueueing and dequeuing operations
on the critical IPC path, and uses per-thread flags instead to mark the correct
scheduling state. The kernel clears the pending backlog of postponed changes
whenever it parses the run-queue to search for a ready to run thread [42]. To
reflect these silent changes in our logging facility, we maintain a per-processor
counter representing the real length of the run-queue. This counter is updated on
all state changes in the kernel that imply a increase or decrease in the run-queue
length. We thereby ensure that the run-queue length is always reported correctly,
still avoiding however the costly modifications to the run-queue on the fast path.

We have identified two different event types appropriate for logging the run-
queue length. First, the length can be logged the instant it changes. Second, the
length can be logged periodically, every timer tick. Since the IPC invocations po-
tentially change the run-queue length, we refrained from logging the run-queue
length on every change. Like illustrated by Figure 4.3, we rather chose to instru-
ment the timer interrupt to reporting report the length of the run-queues. Since
re-balancing decisions happen comparatively infrequently, in the range of hun-
dreds of milliseconds, the timer interrupt, firing every millisecond, still occurs
often enough to make it possible to perform proper re-balancing decisions.

Principally, the number of ready to run kernel threads is only available within
L4. The microkernel is responsible for thread scheduling, and performs this task
obliviously to the user-level. Load estimation based on the number of runnable
L4 threads therefore relies on extracting this information from the kernel. How-
ever, there may exist other notions of threads in the run-time system, for instance
if the application workload uses user-level thread libraries. The scheduling state
of these threads does not necessarily coincide with the state of the L4 kernel
threads. Depending on the workload, load estimation must therefore be based on
kernel-, or on user-level threads, or on both. As will be described in Section 4.4,
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the scheduler application in our environment can retrieve both the length of the
L4-internal and the virtual-machine-internal run-queues.

4.3.2 Dynamic Instrumentation of Log Events

The following Section details how we instrumented the L4 kernel to efficiently transfer
control to the log handlers. Efficiency of the microkernel is one of the key requirements
in a microkernel based system [33]. It was our goal was to keep the instrumentation
overhead low as possible.

Many of the discussed log events on the critical IPC code path. Besides the obvious
case of the IPC event itself, measuring timing characteristics or performance counters
is also done during IPC, since the synchronous nature of the IPC mechanisms implies
a context-switch between sender and receiver thread. Dynamic instrumentation avoids
burdening the hot spot of the microkernel with disabled-logging checks, and our facil-
ity makes use of this technique to allow the scheduler to choose the characteristics at
run-time. If logging of a characteristic is enabled, the kernel determines all correspond-
ing instrumentation points its code image. It then modifies these points and injects a
control transfer to the logging logic, executed whenever the instruction stream reaches
a particular instrumentation point.

pop %ebp

lea <log_code>, %ebp

push %ebp

call *%ebp

Enable Event

nop

nop

…

Disable Event

nop

Kernel Code 

patch

Backpointer

0xf010207

…
…

…

sc
an

Figure 4.4: Dynamic instrumentation of log events. The instrumentation points are
prepared with a small sequence of no-op placeholders; further, the points are stored
in a per-characteristic backpointer list. When enabling logging of a particular charac-
teristic, the kernel parses the backpointer list, and injects the respective instructions to
transfer control to the log handlers.

In contrast to other dynamic instrumentation tools [16, 35, 59], our solution does
not need to instrument arbitrary machine instructions. The possible instrumentation
points in our system are limited to the log events, which are known at compile-time.
We are therefore able to prepare these points for later dynamic instrumentation. We
use a method similar to the alternative input() function in the Linux 2.6 kernel.
Our method is depicted by Figures 4.4 and 4.5, and will be described in the following.
At each of the instrumentation points, we enhance the source code by a small assem-
bler macro (Figure 4.5) that performs two tasks: Firstly, it inserts sequence of no-op
instructions, to make room for later control transfer to the logging code. If the invoked
logging code requires arguments to be passed, the macro inserts additional no-op place
holders, later substituted with instructions passing the arguments via the stack. Second,
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the macro tells the linker to save the start and end address of the no-op sequence in
a back-pointer list. This back-pointer list stores the instrumentation addresses on a
per-characteristic base. The instant the scheduler enables logging of a characteristic,
the kernel parses the list of back-pointers to the no-op sequences. At each of these ad-
dresses, it patches the call instruction transferring the control to the logging code, and
additionally inserts the push and pop instructions that pass the required arguments via
the stack. To avoid additional instructions in the original code path, we do not respect
any compiler conventions on register savings when transferring control to the logging
code; instead, the called code preserves all registers itself, including the caller-saved
ones.

#define DECLARE_LOG_EVT(evt_id, log_function, arg1) \
__asm__ __volatile__( \

"1: \n\t" \
".byte 0x8d,0xb6,0x00,0x00,0x00,0x00 \n\t" /* 6-byte no-op */ \
".byte 0x8d,0x74,0x26,0x00 \n\t" /* 4-byte no-op */ \
"2: \n\t" \
".section .log.evtenable."#evt_type" \n\t" \
"push %0 \n\t" /* push arg */ \
"lea "#log_function", %%ecx \n\t" /* load call addr */ \
"call *%%ecx \n\t" /* transfer control */ \
"pop %0 \n\t" /* pop arg */ \
".previous \n\t" \
".section .log.evtlist."#evt_type" \n\t" /* backptr list */ \
".align 16 \n\t" \
".long "#evt_type" \n\t" /* store type */ \
".long 1b \n\t" /* store begin */ \
".long 2b \n\t" /* store end */ \
".previous \n\t" \
:: "r" (arg1) : "ecx");

Figure 4.5: Assembler macro that prepares the dynamic instrumentation. The macro
inserts the required no-op place holders into the original code, and then stores the
control transfer instructions within a different section. Finally, it stores the begin and
end of the place holder sequence in the backpointer list.

By default, logging is disabled, and the code only executes the few inserted no-op

instructions before it continues normal execution. The costs for disabled events is
thus limited to (i) the cycles of additionally executed no-op operations, (ii) the space
these no-ops occupy in the instruction cache, and (iii) the potential costs for preparing
input arguments for being passed via the stack. Only a few no-op instructions are
required, which renders the former two costs minimal and tolerable even on the critical
IPC path. The costs for preparing arguments arise only if the arguments are not held
in processor registers at the instrumentation point. In this case, the arguments must
be fetched into a register before being saved on the stack by the push instruction.
The register convention is determined by the compiler, thus the fetching cannot be
instrumented dynamically. It may involve memory accesses and also waste register real
estate. However, in the common case, this step should not be required. The arguments
passed to the logging code specify the workload data to be logged at this event. If
the event is synchronous with the accrual of the workload data (which holds definitely
true for all on-access/on-change, and on-entry/on-exit events), the arguments are very
likely to be used by the original control flow anyway. On the critical IPC path, we only
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passed parameters that were already held in registers2.
The kernel provides a system call interface that can be used by the scheduler to

switch on and off logging at run-time. On invocation of the system call, the kernel
changes all corresponding code addresses according to the scheme described above.
At present, all multiprocessor instances of L4 share a single code image in memory
(For versions with per-processor images, one could establish temporary mappings to
modify code sections residing in remote memory). In any case, there is certain chance
that the code image is modified while simultaneously being executed on a remote pro-
cessor. To ensure that the dynamic instrumentation is safe, we must avoid execution of
inconsistent code. We therefore atomically patch in a jmp instruction at the beginning
of the code fragment before inserting or removing the actual code. The jmp ensures
that other processors jump over the potentially inconsistent code fragment while being
modified. The jmp is removed as the final step.

4.3.3 The Log Handler
This section details the implementation of the actual log handler in the L4 microkernel.
Its functionality can be split into the following four sub-steps:

1. Checking thresholds

2. Retrieving and parsing the log control register

3. Accumulating the log data

4. Logging the data into and updating the control register

The invoked log code checks at first, if the log thresholds have been reached and
logging should take place at all. The threshold functionality will be described together
with the other data aggregation mechanisms, in Section 4.3.5. In the next step, the log
mechanism retrieves the log control register, a data structure that is associated with
each log file. The mechanism afterwards accumulates the data to be logged. It finally
writes the data out into the designated log buffer, and performs the required updates to
the log meta-data in the log control register.

Log control register

While the log events themselves are predefined at compile time, the log files and their
contents can be specified at run-time. We implement this scheme by representing each
log file through a log control register, which contains all meta-data associated with
the log file. The register denotes the memory buffer reserved for logging, and the
location of the next log entry within the buffer; it also specifies the entries to be stored
in the log file. We co-locate the control registers with the actual log buffers, in the
shared log area. To implement the log control interface, we permit the schedulers
write-accesses to the log area, allowing them thereby to modify the log control registers
directly (For all details on log data sharing, we refer to Section 4.3.6). The mappings
from events and domains to log files are implemented by means of log control selectors
that each point to a distinct log control register. For the run-queue length, we omit the

2Since the IPC path is written in assembler, we were also not restricted by the compiler’s calling conven-
tions. We could therefore aoivd the stack involvement completely, by passing the arguments directly in their
registers.
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domain indirection and associate the events directly with a control register selector. On
invocation, the log mechanism determines the selector corresponding to the given event
and domain; it then dereferences the selector to retrieve the log control register. Finally,
it parses the register and performs its actual log operation based upon the configuration
in the register.
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Figure 4.6: Log control registers; each log control register contains the meta-data of a
log file such as the current log index and the flags specifying the contents of the log
file.

The log control register is depicted by Figure 4.6. It is a 32-bit data structure that
contains three members: (i) the current log index, (ii) the size of the log buffer, and
(iii) a set of flags that specify the data to be logged in the buffer. The current index
points to the buffer that contains the actual log entries. The current index is encoded
by a relative offset, current offset, pointing into the shared log space. The current
implementation uses 16-bit wide offsets, which limits the log space area to at most 64
KBytes (this is, of course, no design limit). The size of the log file is specified by
size mask. For space and efficiency reasons, size mask stores the dual logarithm
of the actual size, and the real size is 2size mask. The base pointer of the buffer is
not explicitly stored in the register, since it can be calculated by masking the current
offset with the bitwise negate of the log file size. The flags implement the content
configuration interface. Each of the flags refers to a possible entry, and the scheduler
can specify the desired log entries by setting or clearing the flags. Concretely, the
scheduler sets or clears the following flags:

Flag Description

event Toggles logging of the event identifier.

current Toggles logging of the domain identifier.

correspondent Toggles logging of the correspondent identifier.

counter Toggles logging of the event counter. The counter add flag
is used to implement event counting.
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timestamp Specifies the timestamp to be logged. If not turned off, the
time stamp entry can be based on three different sources:
first, a virtual time stamp can be logged. The virtual time
stamp is incremented each time it is read by a log handler.
Second, L4’s (processor-specific) timer tick variable can be
selected. Third, and last, timing can be based on the hard-
ware time stamp counter register. The hardware register is
actually 64-bit wide; however, at present, all log entries size
are fixed to 32-bit. The mechanism therefore right-shifts the
counter by a predefined value (currently set to 8), and only
records the lower 32-bit of the result2.

padding Used to pad a log entry row. To speed up the log operation,
the size of a row must be a power of two. The padding spec-
ifies the number of dummy entries to be added to a log row.
Since at most five true entries are possible, two bits are suffi-
cient for the padding field.

Accumulating the Log Data

Having retrieved the log control register, the log mechanisms scans the control flags,
and accumulates the desired data based on the configuration of these flags. This step
depends on the particular scheduling information that is to be logged. Measuring hard-
ware properties involves reading the model-specific or other hardware registers. Other
characteristics are represented by local variables at the instrumentation point and must
be passed to the log mechanism as input arguments. Since passing arguments involves
references to stack memory, and potentially wastes register real estate, we try to keep
the log mechanism as state-less as possible.

The event variable recording the respective identification number is implictly
known in the log handler. Time stamps are stored in global variables or hardware regis-
ters, and can be obtained without further parameters as well. Accumulating current,
correspondent and counter entries depends on the particular scheduling charac-
teristic. We therefore discuss these two entry types separately, for each of the different
characteristics in L4.

Processor service time. The service time is logged on thread preemption. The current
variable holds the accounting domain identifier, which is directly derived from
the particular thread. The thread identifier is passed to the log code as an argu-
ment. Accumulating the service time stored in the counter requires knowledge
of the current time and the buffered entry time of the respective thread. The
current time is a global variable or hardware register. Since the processor is an
exclusive resource, also the entry time can be held in a global variable.

Performance counters. Also the performance counters are logged on thread preemp-
tion. The current domain is again derived from the preempted thread, which
is passed to the log code as an argument. Like with processor time, a per-thread

2In other words, the hardware-based time stamp counts the time in steps of 256 clock cycles, and wraps
around after 240 cycles. On a 3 GHz Pentium, this yields a times-tamp with an accurateness of about
85 nanoseconds, wrapping around after about 6 minutes. At present, the logging infrastructure ignores
inconsistencies that may arise due to the time stamp overflow.



4.3. INSTRUMENTATION OF THE MICROKERNEL 45

delta is logged as counter variable, which requires knowledge of the current
performance counter value, and the buffered value of the preempted thread. The
current and buffered values are obtained via inspecting the respective perfor-
mance counter hardware register, using the rdpmc instruction. Logging multiple
performance counters requires to employ distinct instrumentation points for dif-
ferent performance counters. Since control to the log mechanism is then trans-
ferred separately for each of the performance counters, the particular register is
known implicitly in the instruction stream.

The semantics of performance counter registers heavily depend on the particular
sub-architecture (e.g., Pentium 3, Pentium 4, Opteron). The current prototype
provides support for only one event (i.e., one hardware register), and only one
sub-architecture (Opteron). Adding more events and sub-architectures should be
a simple matter of engineering. To select the hardware events routed into the
particular counter, we allow the scheduler modify the performance counter con-
figuration registers itself, at user-level. To permit the scheduler to modify these
registers, we trap the modifications in the kernel and emulate them appropriately.

IPC Usage. Logging IPC usage is done on access, in the IPC code path. Usage is
logged twice, both on the sender and the receiver side. The current domain
corresponds to the current thread, that is, to the sender on the sender side, and
to the receiver on the receiver side. The domain of the communication partner
is recorded in the correspondent entry. The correspondent domain is derived
from the thread identifier of the partner, which is locally known in the IPC code
path. The partner’s identifier is passed to the log mechanism as an argument.
The counter variable is hardwired to 1.

Memory Allocations. Memory allocations are logged on access, when pages are map-
ped into or revoked from an address space. The current domain is derived from
the particular address space, which is passed to the log code as argument. The
memory allocations are tracked using an array of allocation counters, keyed by
accounting domain. The log mechanism retrieves the current allocation counter
by indexing into this array, and stores the result in the counter variable.

Run-Queue Length. The length of the run-queue is logged periodically, at the timer
interrupt. The counter variable holds the current length. The run-queue length
is a global, per-processor parameter, and no domain or resource principal is in-
volved.

Logging the Data

The log handler finally writes the accumulated data out into the log memory. We have
implemented both C-versions and an assembler versions of the handler; the assembler
versions are used for instrumenting the IPC fast path. The handler is shown as pseudo-
code in Figure 4.7. It basically parses the flags in the log control register, accumulates
all missing entries (i.e., those that were not passed as arguments) and writes them out
to memory. All log files are cyclic buffers, and there is no notification mechanism that
tells the scheduler that a log buffer is full.

For efficiency reasons, the log buffer sizes are powers of two. Further, each log en-
try row must fit into the buffer without an overlap. The scheduler must set the padding
flag accordingly, to ensure that the size of a log entry divides the complete log size
without a remainder. The first constraint allows a more efficient implementation of
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the wrap-around, using only bit operations, but no compares or jumps. The second
constraint allows the log mechanism to leave out the wrap-around operations for all in-
termediate entries of a log entry row, since these entries will always fit into the buffer.
When calculating the log buffer size from size mask, the log mechanism crops the
result using a maximum size mask. This safety check ensures that the log control reg-
isters can be safely co-located with the log files, in the shared log area. Safety issues
are discussed in detail in Section 4.3.6.

void make_log_entry(ctrl_reg, event_id, current_id,
correspondent_id, counter)

{

idx = ctrl_reg.current_offset;
size = (1 << ctrl_reg.size_mask) & max_size_mask;

if (ctrl_reg.event == TRUE)
log_area[idx++] = event_id;

if (ctrl_reg.current == TRUE)
log_area[idx++] = current_id;

if (ctrl_reg.correspondent == TRUE)
log_area[idx++] = correspondent_id;

if (ctrl_reg.counter == TRUE)
log_area[idx++] = counter;

switch (ctrl_reg.timestamp)
{

case TS_RDTSC:
{

log_area[idx++] = rdtsc();
break;

}
case ...
...

}

idx += ctrl_reg.padding;
idx = (idx & ˜(size - 1)) | ((idx + 1) & (size - 1));
ctrl_reg.current_offset = idx;

}

Figure 4.7: The log handler in C-like pseudo-code. The handler parses the flags in
the log control register, accumulates all entries that were not passed as arguments, and
writes the entries out to memory.

4.3.4 Accounting Domains
The following section details how we implemented the accounting domain concept in
L4. Like described in Section 3.5, the benefits of the accounting domain concept is ac-
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tually twofold. Firstly, accounting domains are managed at user-level, by the scheduler
application. By mapping other kernel principals to accounting domains, the sched-
uler can specify itself the particular principal the kernel uses when logging access to
resources. Secondly, domains also act as pools or groups of other kernel principals.
They can thus be used to reduce the logging frequency and the amount of logged data,
which ensures that the logging infrastructure can accumulate the workload in an effi-
cient way. Implementing the accounting domain concept in L4 required the following
tasks to be done: first, the kernel needs an internal representation of accounting do-
mains. Second, the kernel must provide an interface for management of accounting
domains from user-level. The following subsections will discuss both issues in detail:

Internal Representation

In L4, each accounting domain is identified by a 32-bit domain number. For each
domain in use, the kernel maintains a data structure called domain descriptor that is
used to store domain specific variables. The descriptor is depicted in Figure 4.8 and
basically consists of two member variables: (i) an array of per-event log control register
selectors, (ii) an array of per-event threshold variables. The log control selector array
is used by the logging mechanism, to retrieve the log control register corresponding
to a given accounting domain and event. The thresholds are used to implement event
sampling. Event #3Domain42

initial_thresholdlog_control_selectorcurrent_threshold +TCB Virtual Descriptor Array42 032 Domain Descriptor 4242 +30
Figure 4.8: Accounting domain implementation in L4. Each domain is represented by
a domain descriptor that is held in virtual memory. Threads and address-spaces are
mapped to domains via pointer indirection.

Besides the domain descriptor data structures, the kernel needs operations to map
principals to their respective accounting domains. The considered workload charac-
teristics require two different kernel entities to be mapped to domains: threads, and
address-spaces. Threads are the principals with respect to processor time, performance
counters, and IPC usage. Address-spaces are the principals for memory page alloca-
tions. To map threads to domains in L4, we enhanced the thread control block with
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a member variable containing the thread’s accounting domain number. Likewise, we
added the domain number to the address-space management data structure, which orig-
inally contains other address-space specific data such as page directories and tables.

All descriptors are held in an array keyed by the accounting domain number. To
map a given event and principal pair to its corresponding log file, the log mechanism
first obtains the principal’s accounting domain number from the thread control block
or address-space management structure. It then indexes into the descriptor array, to
retrieve the particular domain descriptor. Finally, it uses the event identification number
to retrieve the log control selector pointing to the control register.

User-Level Interface

To provide an interface for accounting domain management from user-level, we en-
hanced L4’s system call interface with domain-related operations. L4 already pro-
vides system calls for thread and address-space manipulation, ThreadControl(),
and SpaceControl(). We enhanced both calls with a domain parameter. When a
user-level program invokes ThreadControl() to create or modify a thread, the ker-
nel modifies the domain member variable in the thread control block according to the
domain parameter. Likewise, on invocation of SpaceControl(), the kernel changes
the domain number in the address-space data structure according to the passed domain
parameter. In L4, operations on threads and address-spaces are restricted to privileged
threads, such as initial root servers. If the scheduler application is not privileged itself,
it must contact a privileged thread and request it to execute ThreadControl() and
SpaceControl() on its behalf.

4.3.5 Data Aggregation Techniques
The logging infrastructure provides several mechanisms that allow scheduler applica-
tions to reduce both frequency of logging and the amount of logged data. The following
subsection details how we implemented these mechanisms within the L4 microkernel.
Besides cyclic logging and event counting, which are already implemented by the log
mechanism, the infrastructure features three other mechanisms to aggregate and reduce
log data. First, log files can be clustered on a per-event, per-domain base. Second,
characteristics that are internal to an accounting domain can be filtered out. Third,
scheduling characteristics can be counted in a single log entry instead of being logged
in separate log entries. Fourth and last, log events can be sampled, using per-event and
per-domain thresholds.

Clustering

Log clustering is used to reduce the amount of data logged on each log operation. The
log infrastructure allows schedulers to specify the designated log buffers on a per-event,
per-domain base. With buffers local to a domain or an event, the respective identifiers
can be omitted, which saves log space. Clustering also relieves the scheduler from
searching a log for relevant entries.

To implement this scheme, we map the accounting descriptors writable into the
address spaces of privileged L4 threads. The privileged threads can then specify a
distinct log control register for each domain and event, by modifying the log control
register selector in the domain descriptor. In case the scheduler is not privileged itself,
the privileged threads can use L4’s memory management primitives to map the domain
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descriptors into the scheduler’s address space. Section 4.3.6 discusses, how we ensure
that write accesses do not have implications on the system’s safety.

Domain-based Filtering

Accounting domains can group together other kernel principals. More concrete, sched-
ulers can specify the way how a thread or address-space is mapped to an accounting
domain. The domain thereby acts as a “filter” for log events, and the kernel ignores all
events that reflect state changes internal to an accounting domain.

To implement the domain-based pooling concept, we installed a predicate check
on each log event, which checks if the particular event involves an inter-domain state
change, or if the change is domain-local . For context-switches, we can simply check if
the newly dispatched thread resides in the same domain as the preempted one. For IPC
usage, we check if the communication partner is in the same domain. Finally, mem-
ory mapping and revocation operations are only considered as relevant for logging, if
the two involved address-spaces reside in different domains. Allocation counters are
therefore maintained per accounting-domain, not per address-space.

Sampling

The last technique enables schedulers to log only a sample of the scheduling informa-
tion rather than all. Sampling is based on per-event, per-domain threshold examined
before logging the particular information. The schedulers can set these threshold values
according to their own specific knowledge of the frequency of log events.

To implement the threshold functionality, we maintain an array of per-event thresh-
olds in each accounting domain descriptor. Since descriptors are mapped writable,
schedulers can modify threshold values directly in memory. The thresholds basically
consist of two member variables, a counter, and an initial value. The variables are
maintained in reverse logic: on each putative log operation, the current counter is in-
cremented and afterwards compared against zero. If so, it is reinitialized with the
(negative) initial value, and the workload data is accumulated and logged. Otherwise,
the log mechanism directly returns control to the invoking function.

For entry/exit-type events, the threshold functionality is split among the two events.
The thresholds are incremented at the entry-event, but compared against zero and reini-
tialized at the corresponding exit event. Also, while the actual log operation depends
on the threshold of the exiting domain, the internal buffers variables must be updated
based on the threshold of the entering domain. For context-switches this implies, that
two different thresholds have to be checked.

4.3.6 Log Data Access

The memory backing log data and meta-data is directly shared between microkernel
and the user-level scheduler application. The kernel references this memory when log-
ging scheduling data. The scheduler application later on evaluates the data by reading
it out of the same memory buffers. Additionally, the scheduler is responsible for pro-
gramming the control data structures initially. The following two subsections illustrate
how we implemented access to log data within the kernel, and how the buffers are
shared with the user-level. We finally discuss the question of memory provision for log
data and meta-data.
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Kernel-Level Access to Log Space

For scalability reasons, the kernel holds all log data and meta-data in processor-local
memory. This ensures that accesses to log memory on different processors are indepen-
dent from each other. Since there is only one kernel instance per processor, we did not
need to implement mechanisms to synchronize multiple log data producers within the
kernel. The log area is mapped to the same virtual address on each processor, which
avoids the necessity for per-processor address calculations. For each processor, the
log space consists of the memory pages containing log buffers and control registers,
plus the pages backing the accounting domain descriptors. The size of the descriptor
memory depends on the number of events and the number of accounting domains. In
the current implementation, the descriptors are held in a single 4 KByte page. Each
descriptor stores two per-event arrays, one for thresholds (4 bytes per element), and the
other for the log control register selectors (2 bytes plus 2 bytes padding per element).
With four different event types besides the global one for the run-queue length, this
yields a size of 32 byte per descriptor, which limits the number of accounting domains
to 128. These limits are only artificial and no design limit; nothing, except potential
constraints on virtual or physical memory prevents the provision of more descriptors.

At present, our prototype uses statically allocated memory for the log area. For
future versions, we propose to use a dynamic allocation scheme similar to the manage-
ment of thread control blocks in L4 [42]: the new scheme only reserves the log areas in
virtual memory, without preallocating physical page frames. When the kernel accesses
a log area page the first time, the processor will generate a page fault. The page fault
handler then must transparently allocate a memory page frame to the faulting address.

User-Level Access to Log Space

To share the log area with the scheduler application, the kernel simultaneously re-maps
the log memory regions into the user address spaces of privileged threads. Using L4’s
user-level memory management primitives, the privileged threads can then redistribute
the log memory to the respective scheduler application. For evaluation of log files, the
scheduler needs only read access to the log area. However, when programming the
log facility, the scheduler must initialize the control data structures, and therefore also
needs write access to the log area. The kernel thus re-maps all log memory regions
writable. This however implies, that a malicious or flawed scheduler application may
corrupt both log data and meta-data. Since log control structures are interpreted by the
kernel, corrupt log meta-data may affect the whole system safety. We address this prob-
lem by confining the potential implications on safety to the log area. In other words,
while we do not prevent the log area from being garbled, we make sure that corrupt
log meta-data has no overall consequences for the rest of the system. We achieve this
property by meeting the following three conditions:

(1) The log area is only interpreted for logging purposes.

(2) Address calculations for writing log data do not result in arbitrary addresses.

(3) The state of the log meta-data does not result in undefined behavior of the kernel.

We easily achieve the first condition, by not using the shared log area for any other
purpose than for logging, and by only using the log area when logging. We accomplish
the second requirement by using only relative address offsets in the control data struc-
tures. Thus, address calculations always result in an address within the shared log area.
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The only exception arises with the size mask parameter. A corrupt log buffer size can
result in a log file exceeding the permitted log area. We address this issue by having
the log operation crop the log size by a maximum value, which bounds the potential
exceeds to a small scratch region behind the actual log area. By leaving this scratch
region empty, we ensure that the second condition holds true in every case. We finally
meet the third condition automatically, since the rest of the log meta-data is always in
a defined state: any setting of the log control register flags is valid by definition. Like-
wise, all possible configurations of the thresholds always result in a correct threshold
logic.

Log Memory Allocation

Generally speaking, it is the the duty of the scheduler application to provide the backing
memory for the log data and meta-data. While we can easily implement this policy for
instrumented application components, by using the user-level memory management
mechanisms provided by L4, we need a different approach to export the control over
the kernel’s log memory to the scheduler. Previous research has shown that kernel
memory resources can be safely exported from L4 to the user-level [31]. However,
the lack of an implementation of this approach prevented us from incorporating this
solution into our logging facility. Currently, the log memory resources are taken from
the kernel-internal memory pools.

4.4 Instrumentation of Applications and Device Drivers

With the distributed nature of our component operating system comes along a diversity
of the sources of scheduling-relevant information. While some of these characteristics
only accrue within the microkernel, others are only available to the user-level modules
of the component operating system. Besides the microkernel, we therefore also inves-
tigated applicability of logging concepts to the user-level modules of our scenario. We
have successfully instrumented both the guest virtual machines hosting the application
workload, and the user-level device driver modules.

Since both application workload and the drivers are based on L4Linux, we could
apply the same implementation to both components. Also, we could leverage much
of the already existing microkernel logging facility. Rather than to detail the com-
plete user-level implementation, we therefore focus on the differences with regard to
microkernel.

We could directly adopt the dynamic instrumentation and the basic logging mech-
anism; also, the data aggregation techniques are not specific to the microkernel, and
could be easily adopted. One main difference to the microkernel implementation lies
in the scheduling characteristics – they are obviously component-specific. The sec-
ond difference lies in the accounting domain implementation: within L4, we mapped
threads and address-spaces to accounting domains. At user-level, we took a different
approach of mapping virtual machines to domains. Finally, we used a different scheme
to provide the control and log data interfaces between the scheduler and the instru-
mented application components. The following three paragraphs will discuss these
differences in more detail.
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4.4.1 Scheduling Characteristics Accruing at User-Level
Since our environment hosts the application workload in virtual machines, it principally
supports a diversity of applications and scenarios. In contrast to the microkernel with
its limited functionality, there also exists no set of relevant workload characteristics
that covers even a portion of the possible scheduling policies. While it is our belief that
most of the desired workload data can in fact be accumulated using logging, we surely
cannot apply our facility to all those characteristics. We therefore chose to select two
relevant examples that accrue within the user-level components: (i) the length of the
L4Linux run-queue, and (ii) usage of the shared memory used for interaction between
device drivers and application VMs.

L4Linux Run-Queue Length. The virtual machines hosting applications and driver
code are based on L4Linux, which is a paravirtualized Linux adoption. While
L4Linux generally bases scheduling on L4-threads – spawning a L4Linux-thread
for instance results in the creation of a L4-thread –, parts of the original Linux
threading functionality still remain active. Beyond that, the scheduling state of
the L4Linux-internal threads does not necessarily coincide with their counter-
parts in L4. As an example, each L4Linux instance creates a server thread that is
activated whenever a user-level thread performs a “system call” into the L4Linux
kernel. In other words, system calls are translated into control transfers from the
user-level thread to the L4Linux server thread. While processing the system call,
the server thread thus executes on behalf of the user program. This model im-
plies, that a Linux thread may be in the state running, although the corresponding
L4 thread is in the state blocked, since the thread is currently requesting services
from the Linux kernel.

Knowledge of the length of the L4Linux run-queues can therefore be a valuable
source for estimating the real load on a processor. Fortunately, the Linux sched-
uler already tracks the length of the run queues, in a per-processor variable called
nr running [48]. To promote the length to the scheduler application, we simply
instrumented the schedule() function, thereby logging the number of running
tasks whenever L4Linux invokes its own internal scheduling logic.

Driver Memory Usage. As discussed in Section 4.3.1, knowledge on memory usage
can be a beneficial information for schedulers. In contrast to the allocations of
memory, which can be efficiently tracked from within L4, communication based
on shared memory is effectively oblivious to the kernel. This mainly stems from
the fact that the kernel cannot distinguish between actively and passively pages,
and has no knowledge on the frequency of accesses to shared pages.

However, user-level applications are often more aware of the usage of shared
pages. A striking example of such a conscious communication via shared mem-
ory in our environment is the interaction between device drivers and the appli-
cation workload. The translation modules implementing the virtual device inter-
faces are based on shared memory used to hold driver data or meta-data such as
producer-consumer rings or command queues [41]. Intense interaction between
an application and a device driver VM will thus result in frequent accesses to
these memory regions.

To track those page access patterns, we instrumented the driver side of these
translation modules. To make sure, that the references are monitored in pace
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Figure 4.9: Measuring usage of memory shared between applications and the device
driver. On completion of driver requests, the log handler retrieves the number of refer-
ences to shared pages from the kernel and logs the reference counter into a designated
log file.

of the normal device driver interaction frequency, we chose to instrument the
function invoked upon completion of a driver request. The L4 kernel provides a
system call that reports the reference bits of a given memory page. The log code
enhancement first retrieves the number of references to the memory pages shared
between the driver and the client; it then promotes the reference counter to the
scheduler application via logging. Due to the complexity of page table analysis,
retrieving page reference bits from L4 is a rather slow operation. Schedulers can
adjust the logging thresholds according to the intensity of driver interaction, in
order to avoid driver slowdown through the additional instrumentation costs3.

4.4.2 Accounting Domains

In contrast to the microkernel, which maps threads and address-spaces to accounting
domains, we took a different approach for the user-level instrumentation: rather than
to base the mappings on component-internal principals, we map complete virtual ma-
chines to accounting domains; in other words, we consider virtual machines to be the
base principals with respect to scheduling. For scheduling on a L4Linux-process level,
we would have to incorporate a process-to-domain mapping similar to the scheme
used within L4. The scheduler establishes and maintains the mappings from virtual
machines to domains; it communicates the mappings to the virtual machine monitor,
which in turn passes the respective domain identifier to the kernel whenever it allo-
cates a thread or address-space to a virtual machine. Further, the monitor publishes the
mappings to the VMs themselves, by means of a shared memory region.

3As an alternative approach, one could to count the number of driver buffers, or commands, instead of
the number of referenced pages. This however is a driver-specific approach, and requires knowledge of the
internals of a translation module.
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4.4.3 Log Control and Data Access

Since the scheduler and the instrumented applications run both on top of L4, we did
not need to implement a special interface for interaction with the scheduler. Rather,
we could make use of the standard L4 primitives. More concrete, while we needed
special system calls for controlling the microkernel’s log facility, we could base all
user-level interaction on L4’s IPC operations. To define the control interfaces, we
used an interface definition language, and a compiler that converts the interfaces into
optimized assembler stubs [32].

To provide the memory that holds log data and meta-data, we use the hierarchical
pager scheme provided by L4 [6]. The scheduler application initially reserves a virtual
log memory region for each instrumented L4Linux instance. Whenever a L4Linux in-
stance touches an unmapped log area, the page-fault is forwarded to the corresponding
user-level pager, which is the virtual machine monitor. The monitor in turn propagates
the fault to the scheduler application, that finally instructs the pager to map the correct
page into the address-space of the L4Linux instance. Like with the L4-kernel, there ex-
ists only one kernel instance per processor. As we did not instrument any applications
programs, the kernel instance remains the only log data producer of a virtual machine
on each processor; we therefore did not need to implement mechanisms to synchronize
multiple log data producers.

4.5 Implementation of the Scheduler

The following section describes the implementation of the user-level scheduler respon-
sible for allocating processors to the application workload and the drivers. Besides
performing the actual allocation policy, which is not part of the logging facility itself
and therefore not discussed here, the scheduler must fulfill several tasks in order to ob-
tain the desired characteristics from the instrumented components. More concrete, to
make use of the logging infrastructure, the scheduler must perform the following steps:
first, it must initialize the log control data structures in the instrumented components
(microkernel, device drivers, and applications), to configure and enable the accumula-
tion of the desired workload characteristics. Second, it must parse the generated log
data, avoiding however reading of stale or inconsistent data. Third, the scheduler must
interpret the particular log data, in case the log data does not yield the desired informa-
tion directly. The three steps are discussed in the following paragraphs.

4.5.1 Configuring the Log Facility

To program the logging infrastructure, the scheduler first sets up the log control data
structures in the shared log area. Each log buffer is reserved by initializing the asso-
ciated log control register. Afterwards, the scheduler sets the control register selectors
in the accounting domain descriptors, to point to the designated log control registers.
Also, threshold values are initialized with the appropriate values. Having set all control
data structures in the shared log space, the scheduler finally tells the instrumented com-
ponents to enable logging of the desired workload characteristics. Upon request, the
components dynamically instrument the all code events associated with the particular
workload characteristics, which finally enables logging.
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4.5.2 Parsing Log Buffers

While performance analysis tools usually maintain a global log for all types of log data,
our logging facility was explicitly designed to separate different workload character-
istics from each other. Consequently, the scheduler is relieved from selecting relevant
log entries out of a log buffer. It can simply parse linearly through each log buffer
and evaluate all log entries. However, two other problems arise when analyzing log
files. First, the scheduler must prevent reading stale log date that has been analyzed
in a previous run. Second, since log buffers are directly shared with the instrumented
components, the scheduler must prevent reading inconsistent data.

To avoid reading stale log data, the scheduler can employ two different techniques:
first, it can use the log time stamps (or other knowledge on the frequency of log oper-
ations), to distinguish stale from fresh log entries. Time stamps do not need to reflect
real time characteristics, and a virtual time stamp is sufficient. Second, if time stamps
are not available (e.g., to save log space) the scheduler can mark all parsed log entries
as invalid, by using a magic number. However, the second solution can significantly
affect performance due to cache-line bouncing, if the log buffer is located on a different
processor. We therefore resort to the first solution.

Reading inconsistent data is avoided by detecting writes to a log buffer that is si-
multaneously being read by the scheduler. Rather than to implement a solution based
on reservations and valid bits [67], we developed a different solution, which relieves
the log operation from setting valid bits during logging. The write-ordered memory
model of the Pentium processors [36] automatically ensures that the current index al-
ways reflects the state of the log file consistently. The scheduler uses the index in order
to detect if the log buffer was written concurrently. Before parsing log buffers, the
scheduler saves the log file’s current index. When the analysis is finished, it first exe-
cutes an mfence instruction that serializes all memory reads prior to this instruction.
Afterwards, it verifies that the current index matches the saved copy, by re-reading the
index from memory. If they do not match, it restarts the complete analysis process.
This strategy fails if the concurrent log data producer generates exactly as much log
entries as there is room in the log buffer. In this case, the current index remains the
same, although the complete log buffer has been replaced meanwhile. To address this
corner-case, the scheduler must additionally verify time stamps (or other entries that
are known to change), in case the index matches the saved copy.

Our solution may result in a starving analysis process, if the log file is permanently
being written during analysis. To address this problem, the scheduler additionally dis-
ables the log data procedure in the uncommon case that it detects an index mismatch.
A simple technique to disable write-accesses on a per-log-buffer base is to atomically
clear all flags in the corresponding log control register. Since the log producer may
reside on a different processor, we must make sure that the updated register flags are
eventually promoted to the remote processor. On IA-32 processors, this requires the
serializing operation mfence to be executed on the remote processor. To avoid exe-
cuting this operation on each log operation, we added it to the periodic timer interrupt
handler, which bounds the waiting time of the analysis process to at most one timer
tick.

To illustrate the complete log buffer analysis, an example is shown in pseudo-code
in Figure 4.10. The example shows the evaluation process for an L4-provided log file.
Stale log entry detection is based on time stamps. The time stamp is assumed to be
held in the last entry of each row. The analysis procedure first retrieves the domain
descriptor (desc) corresponding to the particular event type and domain, by scanning
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the virtual array of domain descriptors shared between L4 and the scheduler. It then
dereferences the log control selector (selector) held in the domain descriptor and
locates the log control register in the log area (ctrl reg). Log analysis will start im-
mediately after the row currently being written (cur idx) and end immediately before
the current index (last idx); the current entry must be ignored, since it is prone to
concurrent writes that do not modify the index. Before starting the actual analysis, the
log procedure obtains a local copy of the current index (chk idx), and a copy of the
time stamp in the last completely written log entry row (chk time). For each entry
row in the log file that has not been evaluated yet, the procedure parses the respective
entries. Having processed the complete log buffer, the procedure checks if the current
index was modified meanwhile. If not, it additionally checks the saved time stamp, to
detect the corner case of a producer having written exactly as much log entries as the
buffer can store. If any of the two checks fails, all log control register flags are cleared
and the analysis process is restarted. After a successful retrial, the flags are finally reset
again. The procedure returns the time stamp of the most recent entry row; it is passed
to the analysis procedure in the next run.

4.5.3 Deriving Scheduling Information

Deriving scheduling information from log files is dependent on the particular policy,
which is not part of the logging infrastructure itself. To outline how this process may be
accomplished, the following section will present a set of example queries that derive
three different characteristics: processor load, processor affinity, and finally domain
locality information.

Processor Load. To estimate the load on a processor, the log of the particular load
gauge (e.g., the run-queue length in L4 or L4Linux) is parsed. Usually, first the
individual load on each processor is calculated [8,48]. Individual load values are
then compared against each other [53], or against the overall or average system
load [26]. Hence, costs and complexity of measuring processor load will grow
with the number of processors and the number of entries in the load history.

Processor Affinity. Determining affinity to a processor is done by analyzing log data
of processor associated resources, like the processor’s caches or the dedicated
device driver modules. Processor affinity is a domain property, therefore affinity
values must be calculated for each processor and each domain. Many cache-
affinity policies only consider the last time a domain or process ran on a proces-
sor to be relevant [9, 12, 18]. However, also a set or history of values may be
viable. Costs and complexity will correlate with the number of processors, the
number of domains in use, and the number of entries in the log buffers.

Domain Locality and Domain Working Sets. Identifying locality relations and do-
main working sets requires scanning a correspondent log file that records access
to shared resources such as the IPC operations provided by L4. In some cases, a
domain to be scheduled is already given, and the goal is to calculate the domain’s
locality to other domains, in order to identify potential “gang members” [12]. But
communication patterns can also be used to calculate process working sets. That
is, complete gangs are identified, not only a set of domains associated with a par-
ticular domain [25]. Costs and complexity heavily depend on the scope (global,
clustered, or local) of log buffers. Principally, a correspondent history will grow
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quadratically with the number of domains, and linearly with the number of en-
tries in the log buffers4.

4Costs of calculating a transitive closure as in [25] are not considered here
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int parse_l4_logfile(event_id, domain_id, last_timestamp,
row_size)

{

#define NEXT_ROW(idx) (idx & ˜(log_size - 1)) |\
((idx + row_size) & (log_size - 1))

#define PREV_ROW(idx) (idx & ˜(log_size - 1)) |\
((idx - row_size) & (log_size - 1))

desc = l4_descriptor[domain_id];
selector = desc.log_control_selector[event_id];
ctrl_reg = l4_log_area[selector];
log_size = 1 << ctrl_reg->size_mask;
restarted = false;

restart:
cur_idx = NEXT_ROW(ctrl_reg->current_offset);
cur_time = last_timestamp;
last_idx = ctrl_reg->current_offset;
chk_idx = ctrl_reg->current_offset;
chk_time = l4_log_area[PREV_ROW(chk_idx) + row_size - 1];

while (cur_idx != last_idx)
{

if (l4_log_area[cur_idx + row_size - 1] > cur_time)
{

analyze_log_entry_row(cur_idx);
cur_time = l4_log_area[cur_idx + row_size -1];

}
cur_idx = NEXT_ROW(cur_idx);

}

mfence();
rechk_idx = ctrl_reg->current_offset;
rechk_time = l4_log_area[PREV_ROW(chk_idx) + row_size - 1];

if (chk_idx != rechck_idx ||
chk_time != rechck_time)

{
atomic_clear_flags(ctrl_reg);
restarted = true;
goto restart;

}

if (restarted == TRUE)
atomic_set_flags(ctrl_reg);

return cur_time;
}

Figure 4.10: Example log analysis procedure in C-like pseudo-code. The exam-
ple shows the evaluation process for an L4-provided log file of size log size, with
row size entries per row. The last entry in each row is assumed to store a time stamp.
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Evaluation

The goal of this work is to support the flexible and extensible design of user-level
schedulers, by providing a efficient and scalable way to accumulate and promote scheduler-
relevant information. We conducted several experiments to evaluate if our approach
achieves the desired qualities in terms of efficiency and scalability. We considered two
different aspects as relevant, the baseline costs, and the overall effects on application
performance of log data accumulation and analysis. In this chapter, we present the
performed experiments and discuss the results.

5.1 Experimental Environment

In all experiments, we used a current version of L4Ka::Pistachio, the latest L4 micro-
kernel developed at the University of Karlsruhe. The L4Ka virtualization environment
hosting applications and user-level device drivers is based on two different generations
of the Linux kernel: version 2.4, and version 2.6. We chose the latter version for our
evaluation. The virtualization code base also provides the interface modules for pro-
viding driver services to the applications. We conducted the measurements on an IBM
eServer xSeries 445, with 8 hyper-threaded Intel Xeon CPUs. Each of the CPUs has a
clock speed of 2.2 GHz, 12 KBytes I-Cache and 8 KBytes D-Cache, 512 KBytes level
2 unified cache, and 2048 KBytes level 3 unified cache. The xSeries 445 implements
a NUMA-based, cache-coherent architecture, with 2 nodes à 4 CPUs and 2 GBytes
node-local memory.

5.2 Baseline Log Performance

In order to determine the efficiency of logging, we measured the performance of log-
ging at the most critical path in the L4 microkernel: the IPC system call. Performance
of the IPC call is a metric traditionally used for L4-based systems [33,42]. Since several
scheduler-relevant events are on the critical IPC path – thread switches for measuring
timing or cache properties, and the software event used to log IPC communication pat-
terns – fast path performance is also highly revealing for measuring log performance.

59
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5.2.1 Logging Overhead
For measurement of CPU overhead, we compared a native version of L4Ka::Pistachio,
which does not support event-logging, against our modified version, which provides
logging support. For all baseline measurements, we used a log file size of 512 bytes.
We enabled logging only of IPC usage, and disabled all other characteristics. As de-
scribed in Section 4.3.1, we normally log IPC usage twice, once for the sender and
once for the receiver; however, since we wanted to measure the base performance of
one single log operation, we disabled the second operation. Also, by logging IPC us-
age, we disregard any overhead for accumulating counters, since this overhead depends
on the particular characteristic. If the overhead is constant – which holds true for all
characteristics recorded on the fast path – one can easily offset it to the results.

To create “IPC load”, we used the pingpong benchmark, which basically consists
of two threads on a processor that continuously send short IPC messages to each other.
The benchmark measures the round trip time in clock cycles for message sizes from 0
to 252 Bytes. Since transfer times are very short, the benchmarks conveys messages re-
peatedly for each size. Originally, pingpong deploys only one pair of threads that both
run on a single CPU. To evaluate if the logging facility achieves good multiprocessor
performance and keeps separate log data producers independent, we developed a par-
allel version of the pingpong benchmark. The parallel version creates eight pairs of
threads, with each pair each dedicated to one of the Xeon CPUs1. It then lets all thread
pairs run concurrently on their respective CPUs, which results in eight processor-local,
but simultaneous sequences of message transfers. Like with the original uniproces-
sor benchmark, each thread pair measures round trip time per message size; the main
thread finally collects all round trip results from the different processors. To evalu-
ate logging performance, we further had to add support for placing the threads pairs
into different accounting domains. We performed all round trip measurements both for
IPCs within the same address-space (Intra-AS) and across address-spaces (Cross-AS).
We compared the following configurations:

“native”. The original, unmodified kernel version without support for logging.

“disabled”. The instrumented version, but with disabled logging. This configuration
matches the case where the kernel provides support for logging, but no log event
is currently enabled by the scheduler. It also matches the case where a given
event is internal to a specific domain, and therefore not considered for logging;
this predicate is always checked, no matter if a given event is turned on or off2.

“0-entry”. In this configuration, logging is enabled, but all log entry flags are cleared.
Thus, the processor transfers control to the log mechanism and performs the
required threshold checks and address calculations; but it does not actually write
an entry.

“1-entry” and “4-entry”. Equals the previous configuration, but this time actual log
entries are written. In the case of “1-entry”, the log mechanism only logs the

1To avoid hardware interferences, we did not make use of the hyper-threading features, and only used
one virtual CPU on each physical CPU.

2At present, we do not instrument the domain checks dynamically. A given code path may be instru-
mented more than once – like the context-switch, which is instrumented for processor service time, perfor-
mance counter information, and IPC usage. If we dynamically inserted the checks on such code paths, we
either would have to execute the predicate checks multiple times, or alternatively implement some function-
ality to check which events are actually enabled. Since the overhead of a domain check is minuscule, we
chose to skip dynamic instrumentation of the domain checks completely.
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event identifier; in the case of “4-entry”, it logs event, current, and correspondent
identifiers, and the counter, which is hard-coded to 1 for IPC usage.

“5-entry”. Equals the “4-entry” configuration, but additionally logs a time stamp based
on the hardware time stamp counter register. The log handler also inserts a
padding of 3 entries, in order to round up the number of entries to a power of
two.
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Figure 5.1: Costs of a log operation on the IPC path, across address-spaces (left), and
intra address-space (right).

Figure 5.1 depicts the performance of the different configurations, averaged over
the processors. A further summarized version of these results is given in Figure 5.2,
which lists the overhead averaged over processors and message sizes, in absolute clock
cycles and in percent of the native performance. Disabled logging does not have any
overhead. For logging zero to four entries, the overhead is less than 16 percent for
cross and intra address-space transfers. The most expensive log operation, with five
log entries and about 26 respectively 55 percent penalty, adds an extra overhead to
the performance, which is caused by the rdtsc instruction to read the time stamp
counter3. The differences in the number of instructions between cross address-space
and intra address-space transfers probably arise from the instruction cache, which is
flushed on a reload of the page table base register.

native disabled 0-entry 1-entry 4-entry 5-entry

cycles (1053) 2 80 161 157 275Cross AS
percent (0.0) 0.2 7.6 15.4 15.0 26.2
cycles (480) -1 26 59 72 264Intra AS
percent (0.0) -0.3 5.6 12.5 15.1 55.1

Figure 5.2: Average overhead of log operations on the IPC path, relative to native
performance.

3As a side note, on an Opteron-based processor, the rdtsc operation costs only about 6 clock cycles,
which renders it an accurate and efficient way to measure timing properties.
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In general, the results are very promising; in absolute terms, logging overhead is
minuscule; for less critical instrumentation points, the overall effect will certainly be
negligible. Specifically on the fast path, performance drops about 10 to 15 percent in
most cases, and about 55 percent in the absolute worst case. However, the flexible
design of the logging facility leaves plenty of room to reduce this overhead: First, the
scheduler can disable irrelevant log events, which reduces the overhead to zero. Sec-
ond, it can leverage the accounting domain concept, to filter out interactions between
equally accounted threads. Third, it can employ the threshold functionality, which will
reduce the overhead linearly with the value of the thresholds.

To illustrate the scalability of our logging facility, we have depicted the results
in a slightly different form in Figure 5.3. The figure draws the round trip time per
processor, averaged over the message sizes. The curves clearly demonstrate that log
data producers on different processors are completely independent from each other,
and no interference occurs.
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Figure 5.3: Performance of log operations on different processors, across address-
spaces (left), and intra address-space (right).

5.2.2 Log Analysis Overhead
In addition to evaluating the performance of log data generation, we also measured the
overhead of log data analysis. In general, log data analysis overhead will grow linearly
with the amount of memory being read; however, ensuring log data integrity may incur
additional overhead, since it implies that the analysis process is restarted in the case
of concurrency. To evaluate the effects induced by the restarts, we used the following
scenario: we constantly produced log data at a high frequency, by enabling a log event,
which occurs very frequently in a L4 based system – the IPC log event on the fast
path. We simultaneously ran an analysis process that tries to read the generated log
data. Although this scenario is rather artificial, and unlikely to occur in a real-world
environment, it still helps us to evaluate the worst case overhead of log analysis.

To cause the kernel to log IPC usage as fast as possible, we used the canonical
pingpong benchmark (we used intra address-space transfers). This time, we modified
the benchmark such that the thread pairs continue exchanging messages ad infinitum
rather than to stop eventually and measure round trip time. We then developed a simple
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Figure 5.4: Analysis retrials, with clearing log control register flags. The node-local
case is shown on the left hand, the node-remote case on the right hand.

scheduler application that continuously tries to read the log buffer being written by the
kernel. On each message transfer, the kernel logs two entries, the correspondent iden-
tifier, and a virtual time stamp. The scheduler implementation follows the algorithm
described in Section 4.5: it first tries to read the complete log buffer, and afterwards
verifies that the buffer was not written meanwhile, by re-checking the current index in
the log control register, and the time stamp of the log entry row before the current one.
The scheduler restarts the procedure, until it finally succeeds in reading the complete
log buffer uninterruptedly. To evaluate our approach of disabling logging remotely if
the check fails, we compared two different configurations of the scheduler application:
in the first configuration, the scheduler clears the control register flags before restarting
the analysis; in the second, it only restarts the analysis. Since L4 is not preemptible,
the analysis process will always succeed in the first run, when reading processor-local
data. However, if the log buffers reside on a different processor, there is a high chance
that the remote kernel instance produces new log data while the scheduler is reading the
buffers. We measured the number of trials the analysis process requires to read remote
log buffers of different sizes. For each size, the scheduler performs 100,000 consec-
utive analysis operations, and afterwards prints out the distribution of the number of
retrials required for each operation. We conducted the measurements for reading node-
local respectively node-remote memory, that is, with the scheduler and the pingpong
threads residing within the same node respectively in different ones.

The results are depicted by Figures 5.4 and 5.5. The figures draw the distribution
of the number of trials, for log file sizes ranging from 16 bytes up to to 8192 bytes.
The number of trials generally increases with the size of the log file. We consider the
hardware cache-coherency protocols (and the different overheads for node-local and
node-remote memory) to be responsible for the variances in the distribution4. Figure
5.4 shows the number of trials in the first configuration, in which the scheduler clears
the control register flags. In this case, the number of analysis trials is limited to 2.
For log file sizes of more than 2048 bytes, the analysis process always requires two

4We ran the same setup on a 2-way AMD Opteron multiprocessor, which uses a simple bus-snooping
protocol to keep the caches coherent. On this architecture, the variances disappeared in both configurations,
and the number of trials increased linearly with the size.
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Figure 5.5: Analysis retrials, without clearing log control register flags. The node-local
case is shown on the left hand, the node-remote case on the right hand.

runs for a successful reading. Figure 5.5 shows the second configuration, in which the
process simply retries reading the buffers, without clearing the control register flags.
One can see, that this is a practical approach for smaller log file sizes; in this case the
chance is high that consecutive analysis trials will eventually go through. However,
with increasing log file size, the analysis process requires more parsing time, which
results in a decreasing analysis frequency and a higher chance of interruption by the
log data producer. The number of trials grows exponentially with the approximation of
log analysis and log producing frequency. As soon the frequencies match, the analysis
will starve forever. We canceled the measurements for sizes higher than 2048 Bytes, as
they required absurdly much time.

Figure 5.6 shows the CPU overhead for log analysis, in a double-logarithmic scale.
While the curves of the first configuration grow more or less linearly with respect to
the log buffer size, the curves of the second configuration grow exponentially. The
lowermost curve shows the performance of log analysis in the processor-local case. To
summarize, with the proper analysis algorithm, the costs of parsing a log buffer are
completely memory-bound, and ensuring data integrity using requires only a small and
constant overhead.

5.3 Application-Level Performance

To evaluate the overall effects of logging on application-performance, we implemented
an example scheduler application responsible for allocation of processors to virtual ma-
chines. The policy implements a basic affinity scheduling which relies on interaction
patterns between application workload and device drivers (the drivers associated with
a particular CPU). The interaction patterns are gathered in two different ways: first, by
analyzing the IPC usage logs provided by L4; second, by analyzing the shared memory
reference logs provided by the device drivers. Using data from multiple sources not
only allows us to evaluate the additional costs of accumulating log data. Logging two
characteristics with a similar meaning also demonstrates that our facility can be used
to investigate the expressiveness of scheduling characteristics.
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To monitor IPC and shared memory usage, the scheduler initially programs the log
facilities, using the control interface; it further associates a separate accounting domain
number with each virtual machine instance, and communicates the associations to the
virtual machine monitor. The monitor passes the respective domain number to the ker-
nel whenever it allocates a thread or address-space to a virtual machine. The monitor
further publishes the associations to the virtual machines themselves, in a dedicated
shared memory region. The kernel is configured to use domain-local IPC buffers, and
to store the correspondent domain and a time stamp on each IPC. The device drivers
use a global log buffer for the memory references. The drivers accumulate the refer-
ences upon completion of a driver request, by calling into the kernel and retrieving the
particular page reference bits.

To calculate the actual affinity values, the scheduler maintains a per-driver data
structure that holds the scheduling statistics derived from the logs. Each data struc-
ture basically consists of two counter vectors, one to count the IPC interactions with
the driver’s clients, and the other to count the references to the memory shared with
the clients. To calculate the two counters from the logs, the scheduler deploys a sep-
arate thread, which periodically wakes up and parses the IPC and shared memory log
buffers. For each log entry row, it increments the per-domain correspondent counters
appropriately. The counter vectors finally yield a matrix of client-to-driver transactions,
reflecting the affinity between applications and device drivers.

We evaluated this scenario in three aspects: first, we calculated the amount of mem-
ory that is required to accumulate IPC and shared memory usage. Second, we com-
pared the resulting device driver throughput against a native version of the scenario,
which completely lacks support for logging. Third, we evaluated the expressiveness
of the two scheduling characteristics. For measurements, we used a device driver pro-
viding access to a hard disk, and a client that accesses this hard disk using the driver’s
virtual disk interface. In order to eliminate all I/O processing costs, we let the device
driver export a RAM disk of size 256 MByte, rather than a real hard disk. The driver
interface is based on a shared memory segment comprising four memory pages; the log
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code accumulates the reference counters of these four pages upon completion of each
block request. To generate disk load, we ran the Postmark benchmark in the client, on
the RAM disk exported by the device driver. Postmark simulates the workload of an
Internet electronic mail server, by creating a large pool of continuously changing files.
We configured Postmark to use files ranging between 500 bytes and 1 MByte in size, a
working set of 200 files, and 10000 file transactions.

5.3.1 Memory Requirements

To determine the amount of log data memory required for this scenario, we first per-
formed a dry-run of the benchmark, in order to obtain the number of IPC and shared
memory transactions that take place during each analysis interval. The size of the log
files must correspond with these numbers, otherwise the periodic scheduler thread will
loose some of the usage statistics. To count the usage numbers, we used the event
counter mechanism provided by the logging facility. In the case of shared memory,
we counted the number of log invocations rather than the number of references. We
set the scheduler wakeup interval to 20 milliseconds, and took 500 samples of IPC and
memory usage counters while the disk driver was handling the Postmark benchmark.
The samples yield average numbers of 29 IPCs and 437 shared memory log invoca-
tions, and maximum numbers of 90 IPCs and 973 shared memory log invocations per
scheduling interval5. Hence, the resulting memory requirements add up to at least 512
Bytes for each per-domain IPC log file, and to 4096 Bytes for the global device driver
log file. We used this configuration for the actual benchmarks.

The current prototype implementation employs a 64 KByte log space area per in-
strumented component and processor. The evaluation shows, that this is enough for
few domains and global logs, but may be problematic especially with an increasing
number of accounting domains or domain-local logs. For future versions, it may be
required to reserve more space to hold the log buffers.
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Figure 5.7: Postmark throughput on a RAM disk, for different log configurations.

5The disk driver implementation uses interrupt coalescing, therefore the number of IPCs is much lower
than the number of completed block requests.
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5.3.2 Device Driver Throughput
To measure the overall effects on device driver throughput, we obtained the results
of the Postmark benchmark for five different configurations: the first configuration
runs without any support for logging, that is, neither the instrumentation code nor the
scheduler application is enabled. In the second configuration, logging is supported but
disabled; the scheduler application is periodically invoked but performs its calculations
on empty buffers. In the third configuration, only IPC usage is gathered. The fourth
configuration monitors both IPC and shared memory usage, but accumulates the latter
only on every third event, using a log threshold of 3. Finally, the last configuration
accumulates both IPC and shared memory usage on every single event.

The results are shown in Figure 5.7. For configurations that do not monitor mem-
ory references, the overall effects are not dramatic. For real device drivers, which do
involve I/O-processing, the effects will be even lower than in our memory-bound sce-
nario. Disabled logging but enabled log data analysis reduces throughput to about 98
percent compared to the native setup. Accumulating IPC usage reduces throughput
to 96.2 percent relative to the native setup. As expected, monitoring shared memory
usage is an expensive task. Logging shared memory on every third event causes the
performance to drop to about 89.5 percent compared to the native setup; accumulating
on every single event yields the worst result, with a throughput of about 76.1 percent.

5.3.3 Correlation of IPC and Shared Memory Usage
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Figure 5.8: Correlation of IPC usage and shared memory references during the Post-
mark benchmark, for different log thresholds.

Investigating adequateness or meaningfulness of different scheduling characteris-
tics is certainly not a goal of our work; however, what we can demonstrate is, that the
logging facility may be a helpful tool for such an investigation. We therefore evaluated
the expressiveness of the accumulated scheduling data, by comparing IPC and shared
memory usage counters against each other. For this purpose, we modified the sched-
uler application to sample the usage counters at 500 subsequent scheduler invocations,
which resulted in a distribution of IPC and memory reference counters over a period of
10 seconds. All samples were taken while the disk driver was handling the Postmark
benchmark. To obtain a trend of the distribution, we smoothed the resulting data sets
using the Bézier smoothing method of gnuplot. The curves are shown in Figure 5.8.
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The graph on the left side shows the configuration, in which shared memory usage is
accumulated on every third event; the graph on the right hand depicts the configuration
with single-event accumulation of shared memory. Although the figures only show a
trend line, one can still observe that, at large, IPC and shared memory usage correspond
to each other. Furthermore, there is no substantial difference between logging memory
references on every single and every third event.



Chapter 6

Conclusion

The goal of this thesis is to overcome the limitations and inflexibilities of current ap-
proaches with respect to scheduling-relevant information. To achieve this objective,
this thesis introduces a system based on instrumentation and event-logging, which is
able to propagate the required information to the user-level scheduler in a flexible, ef-
ficient, safe, and scalable manner.

Existing approaches to support multiprocessor scheduling all have their advantages
and limitations, but none of them achieves all of the desired requirements: some ap-
proaches have direct and fast access to scheduling information, but are overly limited
with respect to the offered policies, or with respect to their scope. Others provide
flexible support for performing scheduling decisions, but either they exhibit poor per-
formance in cases of frequent scheduling events, or they are limited to specific system
components such as the operating system kernel. Finally, there exist approaches that
allow for user-controlled scheduling and for direct access to scheduling information,
but jeopardize the system’s safety for it.

This thesis introduces a new mechanism that achieves all of the required properties.
Based on system instrumentation and event-logging techniques, the mechanism pro-
vides a flexible and scalable way to accumulate scheduling characteristics at run-time,
from different components in the system. Suitable to heap large amounts of schedul-
ing data, logging remains efficient even in cases of frequently changing scheduling
characteristics. Designed with safety requirements in mind, the mechanism is not only
applicable to user-level applications, but also to crucial system components such as the
privileged operating system kernel.

We see our work as a starting point to evaluate existing, or to develop new schedul-
ing extensions at user-level. It is our belief that many existing policies can easily be
ported and adapted to make use of our logging infrastructure. Although we have in-
vestigated different multiprocessor scheduling policies, and also developed some ex-
perimental implementations in order to evaluate our infrastructure, we were unable to
consider all of them during evaluation. Implementing new policies would therefore
be helpful for our infrastructure as well, since it would provide valuable feedback and
offer the chance for further improvements and enhancements. Aside from supporting
scheduling policies, our infrastructure could also act as a tool to evaluate scheduling
characteristics, with regard for instance to their meaningfulness, or the costs of their
accumulation. Furthermore, while the focus of our approach has been on support for
multiprocessor scheduling, we see no particular reason why it should not be applica-
ble to other scheduling problems as well, as for instance, real-time scheduling. How-
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ever, other scheduling problems may have different constraints, and care must be taken
when applying our scheme there. For instance, the hard timing requirements of real-
time scheduling may demand for both asynchronous and synchronous mechanisms to
promote scheduling information, since real-time schedulers usually rely on accurate
delivery of scheduling events. Finally, our work supports user-level scheduling at the
input side, but relies on existing mechanisms at the output side, such as thread dis-
patching or migration routines provided by the operating system. Future work has to
be done to investigate if the mechanisms on the output side are adequate for use by our
facility.
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