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Executive Summary

Bluetooth is going to be used as one of the major digital data transport protocols
mainly for small and embedded devices. The focus was laid on small hardware
development costs, low power consumption and a space-saving design. Bluetooth
adapters are included nowadays in almost every new laptop and mobile phone. With
the rising acceptance of this standard the needs to fulfill different tasks rised, as well.
Besides the basic functionality of sending and receiving data from a technical point
of view, it became urgent for companies to see some quality of service being specified
by the Bluetooth Special Interest Group (SIG). One of these extensions is flow con-
trol mode. This mode is meant to prevent devices flooding the remote device with
data, that is sent so quickly, that the receiving device is not able to process the incom-
ing data faster than new data is passed into its buffer. Flow control instead provides
mechanisms, that enable devices to negotiate appropriate values for their buffers to
protect them from buffer overflows.

The Linux kernel, which builds the heart of the GNU/Linux operating system, of-
fers its users an existing implementation of the Bluetooth software stack, called BlueZ.
This implementation is the equivalent to so many existing proprietary Bluetooth soft-
ware stacks, but being open source and freely available by no costs makes Linux an
ideal development platform.

This thesis is about an implementation of Flow Control in the L2CAP layer for
Linux’ Bluetooth subsystem BlueZ.
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1. Introduction

The Bluetooth technology was developed by Ericsson, Nokia, Intel, IBM and Toshiba
in the mid-1990’s. These companies built the core of the Bluetooth Special Interest
Group (SIG) which serves as an official consortium and is composed of 6123 members
in the meantime.1

The Bluetooth wireless technology is focused mainly on short-range communica-
tion and domain-specific applications. Because of its low energy consumption and
low costs it perfectly fits the needs of small embedded devices such as Notebooks,
PDAs or mobile phones. The official Bluetooth website bluetooth.com describes the
technology as follows:

“Bluetooth wireless technology is a short-range communications tech-
nology intended to replace the cables connecting portable and/or fixed
devices while maintaining high levels of security. The key features of Blue-
tooth technology are robustness, low power, and low cost.”2

The domain specific applications—also known as Profiles—build a characteristical
foundation of the technology which distinguishes it from most other wireless tech-
nologies. Instead of just specifying the core technical parts, the Bluetooth specifi-
cation defines some core profiles for which the technology is meant to be used and
which may be supported by Bluetooth compliant devices. Currently there are 33
unique profiles defined (e.g. Audio/Video Remote Control Profile (AVRCP), Basic
Imaging Profile (BIP), Basic Printing Profile (BPP), Bluetooth Network Encapsulation
Protocol (BNEP), Dial-up Networking Profile (DUN), Fax Profile (FAX), File Transfer
Profile (FTP), Human Interface Device Profile (HID), Object Exchange (OBEX), Per-
sonal Area Networking Profile (PAN), Radio Frequency Communication (RFCOMM)
or Service Discovery Protocol (SDP)).3

The use of fixed, defined profiles enables companies to guarantee specific interop-
erability by fulfilling the corresponding qualification processes. This is an advantage
in the low end sector of embedded devices [see also Wollert, 2002, page 27].

1This statistics arise from September 2006. The membership is separated into Promoter Members (8
companies), Associate Members (231) and Adopter Members (5884)—only the latter one is free of
charge. The Promoter Members consist of the founder companies (with Lenovo (Singapore) Pte
Ltd. instead of IBM) plus Agere Systems, Microsoft Corporation and Motorola, Inc.

2See http://www.bluetooth.com/Bluetooth/Learn/Basics/ (last visit 27 Sep 2006)
3For a complete list with short explanations refer to http://bluetooth.com/Bluetooth/Learn/

Works/Profiles_Overview.htm (last visit 27 Sep 2006)
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11.1. The Bluetooth Protocol Stack

Figures within this text are taken from the official specification if not otherwise
stated.

1.1. The Bluetooth Protocol Stack

The Bluetooth standard has many protocols which are separated into loosely coupled
layers. The Bluetooth stack (see figure 1.1) does neither follow the ISO/OSI model,
nor is it applicable to the TCP/IP model [see Tanenbaum, 2003, Chapter 4.6.3]. The
IEEE standardization committee mapped the core Bluetooth technology into its own
802 model, so that Bluetooth became an own IEEE standard 802.15.

Application

O
B
E
X

TCP/IP
PPP

AT
Commands

RFCOMM TCS SDP

L2CAP

HCI

Audio Link Manager

Baseband

Bluetooth Radio

Figure 1.1.: Overview of the Bluetooth Stack

1.2. The Logical Link Control and Adaptation

Protocol (L2CAP)

All Bluetooth devices provide only the lower protocol layers within the controller’s
firmware. The higher level protocols and layers are implemented in a separated soft-
ware stack. The Host Controller Interface (HCI) builds the bridge between the lower
layers and the L2CAP layer. Hence profiles are implemented within the upper layers.
[see also Wollert, 2002, Chapter 4].

The L2CAP layer has three main functions:
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1. Introduction

1. L2CAP accepts frames with up to 64KB of length. Applications may usually
require to send data packets that exceed this limitation, whereas the baseband
on the other hand has an even more intense constraint towards smaller frame
sizes. This forces the L2CAP layer to segment big data packets into smaller
frames on the sending side, and to reassemble frames on the receiving side.

2. Higher level protocol multiplexing. Due to the lack of an appropriate type field
in the lower layers identifying higher level protocols it is L2CAP’s responsibility
to distinguish protocols such as RFCOMM, SDP, or Telephony Control on its
own.

3. L2CAP is responsible for all parts of Quality of Service. This includes the con-
nection setup as well as necessary negotiations regarding sending and receiving
parameters and aspects like flow control and retransmission.

L2CAP supports connection-oriented data services as well as connectionless ones
for higher layer protocols. The concept is based on per-connection channels which
provides the ability to transfer multiple protocols over one asynchroneous link si-
multaneously.

Figure 1.2 gives an overview of the internal L2CAP architectural block as described
by the specificaton. The Channel Manager is responsible for all kinds of signalling. It
provides the control functionality and manages signals to and from the lower layers,
the upper layers and the Resource Manager. The Retransmission and Flow Control
part is located within the Resource Manager. This block may provide applications
per-channel flow control and retransmission. The Resource Manager is responsible
for all transmission and reception activities of packets related to L2CAP channels.

Some core parts of the L2CAP layer are to be explained in more detail.

Segmentation and Reassembly This technique takes place between the upper layer
protocols that are directly related to applications (like TCP/IP or RFCOMM)
and the L2CAP layer. The data packet that is exchanged between those layers is
called a Service Data Unit (SDU) with the Maximum Transmission Unit (MTU)
as its maximum size. The application is totally decoupled from the required seg-
mentation that needs to be done to map the application packets into the lower
layer frames.

Flow Control per channel L2CAP offers the optional feature of per-channel Flow
Control which is the base of this work. Providing this technique within a pro-
tocol layer for all tasks prevents applications from being forced to implement
it on their own. Instead of a simple stop-and-go Flow Control scheme as em-
ployed in the baseband, a more efficient window-based Flow Control scheme is
provided. This feature is an optional part of the specification.

Error Control and Retransmission An extra error checking mechanism within the
L2CAP layer is provided for applications that require a lower error rate than
the baseband can deliver. An error check (based on a CRC checksum) is used in

6



11.2. The Logical Link Control and Adaptation Protocol (L2CAP)

ChannelManager
UpperLayer

LowerLayer(HCI/BB)
L2CAPLayer Ressoure Manager Segmentation (Reassembly)Retransmission & Flow ControlEnapsulation & ShedulingFragmentation (Reombination)

data data data(SDUs)
(ommands)(PDUs)(fragments)

Figure 1.2.: L2CAP architectural block [see BlueSpec, Vol. 4 page 22]

the Retransmission and Flow Control mode. The optional Retransmission mode
shall provide a reliable connection by protecting the device from packet loss.

Fragmentation and Recombination Exchanging data between L2CAP and the Host
Controller Interface is performed by using Protocol Data Units (PDUs) which
contain the entire L2CAP protocol information besides the optional upper layer
information data. Splitting PDUs into smaller fragments is called fragmenta-
tion; the reverse operation is called recombination. Both techniques ensure
proper collaboration with the lower layer. Note that the specification leaves
it open to the actual implementation if this procedure is part of the L2CAP layer
itself, or if it occurs in the HCI driver, and/or in the Controller. Fragmentation
and recombination is not part of the BlueZ L2CAP layer.

L2CAP implements major parts of the data link layer of the ISO/OSI model, even
if the ISO/OSI stack cannot be compared strictly to the one of the Bluetooth specifica-
tion. Those parts include the insurance of a reliable connection by splitting the byte
stream into blocks (named frames) and using sequence numbers and frame check se-
quences. The ability to send acknowledgements and to retransmit frames that are
considered lost, as well as a window based flow control mechanism can be accom-
plished by L2CAP’s new retransmission and flow control option on which this thesis
is based.
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1. Introduction

1.2.1. Terminology

It is indeed important to keep the terminology in mind. The SDU (Service Data Unit)
is the data packet that is to be exchanged between the L2CAP layer and the upper
layers (refer to figure 1.2). The SDU is the plain data unit that is received by L2CAP
from the upper layer and does not contain any L2CAP specific header information.
Therefore the techniques applied to SDUs are called segmentation and reassembly.

Instead, the PDU (Protocol Data Unit) is the data packet containing L2CAP specific
protocol information, control information and/or upper layer information data and
is always preceeded by an L2CAP header. The PDU can be of types B-frame, C-frame,
G-frame, I-frame and S-frame—the latter two are used within Flow Control mode, the
first one (B-frame) is used in basic L2CAP mode. Fragments are used in the delivery
of data to and from the lower layer. Therefore the corresponding actions applied to
fragment PDUs are called fragmentation and recombination.

The MTU (Maximum Transmission Unit) describes the maximum size of payload
data that can be exchanged between the L2CAP layer and the upper layer entity—this
corresponds to the maximum SDU size respectively.

The MPS (Maximum PDU Payload Size) on the other hand corresponds to the size
that the L2CAP layer entity is capable of accepting from the lower layer entity. Note
that either in Basic L2CAP mode, or if no segmentation is used in Flow Control mode,
the MTU equals the MPS.

1.3. Related Work

Multiple Bluetooth stacks are widely used. Especially for the Microsoft Windows op-
erating system exist several different proprietary Bluetooth stacks albeit none of them
is open source. Besides the other common open source BSD implementations there
are two Bluetooth stack implementations for Linux which are both released under
the terms of the General Public License (GPL). One of them is called AFFIX4 and was
primarily developed by Nokia. This stack is totaly independent of the currently used
official stack BlueZ on which this thesis is based. AFFIX already implements some
parts of the newly introduced features of the Bluetooth specification 1.2, e.g. Retrans-
mission and Flow Control. Further development of this stack slowed down during
the past years—only security patches were introduced since the last major release
3.2.0 in July 2004.

4http://affix.sourceforge.net
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2

2. Linux Kernel Development

Developing inside the kernel of an operating system like GNU/Linux involves some
deeper knowledge and a solid understanding of specific parts of the development
process as a whole. We will now cover some of these aspects which are essential for
any kernel developer. Helpful in this regard are [Love, 2005] for a good overview of
the kernel’s implementation and design, [Bovet and Cesati, 2006] for a very detailed
explanation of the Linux kernel, [Corbet et al., 2005] and [Quade and Kunst, 2006] for
the purpose of Linux device driver’s development and finally [Benvenuti, 2006] for
the networking internals of the kernel.

2.1. Socket Bu�ers

The socket buffer structure sk_buff is a critical data structure that is used widely
within all networking code in the Linux kernel. Its main use lies in an abstract and
generic packet storage for all different network layers. Within this data structure all
headers and the information payload are stored along with further information for
some internal coordination. Some of the fields are not self-explanatory, that’s why we
will discuss this data structure in detail and go over some of the functions and macros
that manipulate those fields. For a more detailed discussion refer to [Benvenuti, 2006,
Chapter 2].

The sk_buff structure represents headers for data that has been received or is to be
transmitted. As it is used by all different layers and by all different protocols makes
it a huge structure with a tremendous number of variables. The main diagram of this
structure is shown in figure 2.1.

The head pointer points to the first byte that is returned by kmalloc at buffer alloca-
tion time and is never be adjusted afterwards. The data pointer returns the beginning
of the data which consists of headers and the information payload. This pointer can
be adjusted to each layer’s needs. tail points to the end of the data section within the
buffer, precisely to the first byte after the data section. This pointer may be adjusted.
The end pointer points to the beginning of the so-called skb_shared_info structure
which is used to keep additional information about the data block. This structure is
mainly used to transfer paged data but is not involved in the work of this thesis.

Working within the L2CAP layer means we use an already allocated socket buffer
in case of frame reception (via l2cap_data_channel()) but have to allocate memory if
an application needs to send data (via l2cap_sock_sendmsg()). Memory allocation for
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2. Linux Kernel Development

struct skb_buff *skb

· · ·
head
data
tail
end
· · ·

headroom

DATA
Buffer

tailroom

-

-

-

-

6

skb->len

?

Figure 2.1.: The sk_buff struct and their head/end versus data/tail pointers

socket buffers is done in BlueZ by using bt_skb_send_alloc(). After that we make use
of three different management functions. Note that none of these functions actually
copies data from or into the buffer—only pointers are adjusted accordingly.

• skb_put extends the tail pointer by a given length, increases the len field and
returns the old position of the tail pointer. This is a major function used when-
ever we copy some data into the socket buffer e.g.:

memcpy(skb_put(l2cap_pi(sk)->sdu , skb ->len), skb ->data ,

skb ->len);

or if we reserve some space for a given struct, e.g.

/* Create L2CAP header */

lh = (struct l2cap_hdr *) skb_put(skb , L2CAP_HDR_SIZE);

lh->cid = __cpu_to_le16(l2cap_pi(sk)->dcid);

lh->len = __cpu_to_le16(len + (hlen - L2CAP_HDR_SIZE));

• skb_pull is used to pull the data pointer towards the tail by a given length and
returns the new data pointer; the len field is decreased respectively. This can be
used to remove data from the front of a buffer and is widely used in each layer
to remove the layer’s header from the packet.

• skb_trim trims the socket buffer to a given length and moves the tail pointer
towards the head. This function is useful if we want to cut a trailer off the packet
like a given frame check sequence.

10
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2.1. Socket Buffers

The latter two functions are used in combination within l2cap_reassembly():

/* remove header , control and fcs from i-frame */

skb_pull(skb , L2CAP_HDR_SIZE + L2CAP_CONTROL_SIZE);

skb_trim(skb , skb ->len - L2CAP_FCS_SIZE);

Figure 2.2 illustrates how an I-frame is stored within a socket buffer. The headroom
and tailroom is not regarded and may or may not be filled with data.

struct skb_buff *skb

· · ·
head
data
tail
end
· · ·

DATA
Buffer

Length

CID

Control

SDU length

Information

Payload

FCS

headroom

tailroom

-

-

-

-

6

skb->len

?

Figure 2.2.: The sk_buff struct with the I-frames field in the data section

2.1.1. Lists of Socket Bu�ers

To store more than one corresponding socket buffer, a so-called socket buffer list
(struct sk_buff_head) is used. The definition is quite simple:

struct sk_buff_head {

/* These two members must be first. */

struct sk_buff *next;

struct sk_buff *prev;

__u32 qlen;

spinlock_t lock;

};

The implementation follows a doubly linked list where qlen represents the number of
packets on this list and lock can be used for an SMP-aware locking policy. Note that
“the first two elements of both sk_buff and sk_buff_head are the same: the next and

11



2. Linux Kernel Development

prev pointers. This allows the two structures to coexist in the same list. [. . . ] In addi-
tion, the same functions can be used to manipulate both sk_buff and sk_buff_head.”
[Benvenuti, 2006]

Such a list was introduced by this implementation for the transmission TxQueue
in l2cap.h. The functions and macros to manipulate these lists are straight forward.
Three of them are used within this implementation:

• skb_queue_head_init is an initialization function for a sk_buff_head object.

• skb_queue_tail puts a socket buffer at the tail of a list.

• skb_dequeue removes a socket buffer from the head of the queue and returns it.
If the list is empty NULL is returned respectively.

Some more information about how socket buffers work can be found online on
Dave M. Miller’s web pages: http://vger.kernel.org/~davem/skb.html

2.2. Portability

Linux is an extremely portable operating system which supports all different flavours
of hardware. Programming inside the kernel implies programming in a portable
menner. One major issue concerning the portability of C Code is the size of spe-
cific data types. A word is known as the entity which a machine can process in one
cycle—this is the size of a general purpose register within a CPU. The size of a word
equals the size of a pointer. But the size of a word counted in bits differs from one
architecture to another. On widely used Intel IA32 CPUs one word is four bytes long
which corresponds to 32 bit. But on a new Intel IA64 CPU a pointer is 64 bits wide.
It gets even trickier because if we work on a 64 bit machine we cannot make any as-
sumption about the size of an integer in bits. Appendix A gives an overview of the
different data type sizes of different architectures.

For this reason the kernel developers introduced Opaque Data Types which do not
offer their internal format or their actual size. pid_t or atomic_t are examples for
such data types—the developer should never make any assumptions about the actual
size of them. Furthermore there are Special Types and Explicitly Sized Types. Special
Types must be stored in an explicit manner, e.g. the types jiffy or flags are always
stored as unsigned long. The Explicitly Sized Types are of much greater interest in
this implementation project, especially regarding the networking part of the L2CAP
module.

Explicitly Sized Types help the developer to ensure meeting the requirements of
the specification. If a networking packet follows a specific composition we want to
ensure access of portions of this packet in the right manner. This means we need to
know how to access a byte or a 16 bit field. Therefore each architecture within the
kernel defines corresponding data types for generic data types with an explicit size.
That means that no matter which architecture we are currently running the kernel on,

12
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2.2. Portability

an unsigned byte is always represented by u8, an unsigned 16 bit integer by u16; the
same applies to u32 and u64, respectively.

2.2.1. Alignment and Endianess

Alignment describes the positioning of a data segment within memory. A variable
is naturally aligned if it is stored at a location which is a multiple of its size. For
example a 32 bit type is naturally aligned if it is stored at a memory location which
is a multiple of 4 (so that the two least significant bits are zero). Some architectures
are quite strict concerning these alignments; especially in most RISC architectures a
load of mis-aligned data causes an expensive CPU-trap. Modern compilers like GCC
avoid those alignment problems automatically.

But this dependancy becomes a problem whenever one uses complex data struc-
tures like the commonly used struct in C because the alignment of a struct is al-
ways the alignment of its biggest type. Therefore the compiler uses a technique called
padding which enlarges structures with differently sized internal types even though
this is not visible by the developer. This is very undesirable if we work with net-
work packets that are usually not naturally aligned—they are packed together by all
different fields of different sizes.

But GCC permits us to pack those structures without any padding. Responsible is
a compiler specific attribute called __attribute__ ((packed)). This is used within all
different kinds of frame and packet structures in the L2CAP layer. For example:

struct l2cap_cmd_hdr {

__u8 code;

__u8 ident;

__le16 len;

} __attribute__ (( packed));

Unaligned data within a byte stream should be accessed by using the two macros
get_unaligned() and put_unaligned() defined in <asm/unaligned.h>. Those macros
work for every data item, no matter if it is one, two, four or eight bytes long (see
also [Corbet et al., 2005, page 294]).

Another major issue is the byte-order of the underlying architecture. The byte-
ordering describes the order in which bytes are stored within one word. The pro-
cessor can order the bytes within one word either in storing the least significant byte
at the first position or at the last position. The two methods are called Big Endian
and Little Endian. Working with networking packets enforces the precise definition in
which way data is going to be sent and read over the connection.

The conversion to or from the host to the network is a major concern. Not ev-
ery architecture is fixed in its endianess—the endianess that should be used on an
IA64 machine for example, can be chosen by the user. Therefore the developer has to
ensure that data is always processed correctly without assuming anything of the un-
derlying machine. Generic kernel macros help the developer to convert the network
data to the host back and forth.

13



2. Linux Kernel Development

The Bluetooth specification defines its data to be in little endian format. That means
we mainly use macros like __le16_to_cpu() or __cpu_to_le16(). The same can be done
with data of size 32 bit or 64 bit.1 If the underlying architecture uses the same endi-
aness as the network packet, say an Intel IA32 machine with little endian order, the
macro is empty and no conversion takes place.

2.2.2. Concurrency and Race Conditions

Concurrency describes the situation in which the system tries to do more than one
thing at once. This is not a problem on a simple single processor system, but multi-
processor systems and a preemptible kernel means that we can lose the processor at
any given time. Further reasons for concurrency besides multiprocessor systems and
kernel preemption are asynchronous Interrupts, Softirqs and Tasklets. [see also Love,
2005, page 176]

“Concurrency-related bugs are some of the easiest to create and some of
the hardest to find.” [Corbet et al., 2005, page 106]

Concurrency can cause Race Conditions, Deadlocks and Starvation of different pro-
cesses.2 That means access to shared data has to be controlled by the programmer,
otherwise the results are unpredictable. Operations on data structures must be exe-
cuted atomically. Larger sections of code need to be protected within a critical section;
that is code that can be executed by only one thread of execution. The Linux kernel
offers a wide variaty of different primitives for different needs.

One of the first facilities included was the so-called big kernel lock. This turned the
entire kernel into one big critical section which allowed the developers to work on
SMP systems. But this solution did not scale very well and shortly new techniques
were introduced to offer the developer a finer-grained locking scheme.

Today’s Linux kernels come with a variety of mechanisms that allow protection of
critical sections and atomic operations. The kernel offers Reader/Writer Semaphores
(including Mutexes), atomic variables (type atomic_t), atomic bit operations (set_bit,
clear_bit, change_bit, . . .) Seqlocks and Reader/Writer Spinlocks for code that cannot
sleep, like interrupt handlers. Even if all specific needs seemed to be addressed by
these techniques,

“fine-grained locking comes at a cost, however. In a kernel with thou-
sands of locks, it can be very hard to know which locks you need—and in
which order you should acquire them—to perform a specific operation.”
[Corbet et al., 2005, page 123]

Some data structures like sockets and socket buffers provide their own locking
scheme. The most critical data structure in our code is the socket specific struct

l2cap_pinfo which maintaines the device’s L2CAP channel and socket info.

1Note that an 8 bit field (one byte) does not need any conversion.
2For an indepth discussion about these topics refer to [Tanenbaum, 2001, chapters 2 and 3]
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More about the kernel portability and synchronization issues can be found in [Love,
2005, Chapter 8, 9 and 19], [Corbet et al., 2005, Chapter 5 and 11] and [Quade and
Kunst, 2006, Chapter 6.5 and 9.3].
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3. Con�guration Process

Before we actually use flow control between two entities, the two devices need to ne-
gotiate appropriate settings for their channel utilization. This is all done during the
configuration process which starts immediately after the connection establishment
when we start into a so-called BT_CONNECT state. Each device needs to configure
specific parameters for its incoming and outgoing logical link before attempting to
use the channel for data transmission. Using information requests is an optional way
to retrieve specific information about the peer’s further abilities albeit it is mandatory
to use information requests prior to using extended features such as the retransmis-
sion and flow control mechanism in a configuration request. Any incoming informa-
tion request shall be answered by an appropriate information response.

3.1. Information Retrieval

The information retrieval consists of two possible signalling packets, namely infor-
mation requests and information responses. They are used prior to the actual config-
uration requests to ask for implementation specific features from the remote entity.
If we want to use flow control within the L2CAP layer it is mandatory to use in-
formation requests before we put the retransmission and flow control option into a
configuration request packet.

3.1.1. Information Request

The information request checks the peer’s ability for optional features such as flow
control mode. The data packet itself consists of the unique code (0x0A) followed by
a unique channel identifier, the fixed length (2 octets) and the information payload
in the form of an InfoType field which consists of either 0x0001 for the request of a
connectionless MTU or 0x0002 for the request of extended features. We are mainly
interested in the latter one. All other values are currently reserved for future use.

3.1.2. Information Response

The information response must be sent upon receiving a valid information request.
The response data packet consists of the code (0x0B), the unique identifier which
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3.1. Information Retrieval

matches the request’s one, a variable length field, the InfoType, a result code, and
the optional data.

The InfoType field matches the value of the requested information, i.e. 0x0002. The
result can basically indicate either success (0x0000) or no available support (0x0001).
The contents of the data field are dependant on the InfoType. In case of the retrans-
mission and flow control feature that we are to request it contains 4 octets which
consist of the extended features mask.

3.1.3. Extended Features Mask

To make Flow Control usable we have to promote this feature as being accessible in
our implementation. This is done by setting the corresponding Bit in the Data field
of the Information Response Packet as being described in [Vol. 4 of BlueSpec, section
4.12, page 56]:

“The features are represented as a bit mask in the Information Response
data field (see Section 4.11 on page 55). For each feature a single bit is
specified which shall be set to 1 if the feature is supported and set to 0
otherwise. All unknown, reserved, or unassigned feature bits shall be set
to 0”.

No. Supported feature Octet Bit

0 Flow Control Mode 0 0

1 Retransmission Mode 0 1

2 Bi-directional QoS 0 2

31 Reserved for feature mask extension 3 7

Table 3.1.: Extended Features Mask

Incoming information requests are served in our code by l2cap_information_req

() and incoming information responses are served by l2cap_information_rsp(). An
information request is issued either after the reception of a connection response to
start the configuration process or after the reception of a configuration request if we
did not already send an information request to the remote peer.

Once we receive an information request we prepare an appropriate information
response immediately. The InfoType field of the corresponding request serves as an
indicator for the length and data portion of the reponse packet. This means either a
connectionless MTU size or extended features are requested—everything else will be
treated as unsupported in the response’s result code.
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3. Configuration Process

3.2. Con�guration Request

A configuration request is an essential signalling packet for the purpose of negotia-
tion:

“Configuration Request packets are sent to establish an initial logical
link transmission contract between two L2CAP entities and also to re-
negotiate this contract whenever appropriate”. [BlueSpec, page 47]

Each configuration request is exclusively related to either the incoming or the outgo-
ing traffic. In case of the retransmission and flow control option, such a configuration
request determines the incoming values of a sender’s request. For example, consider
device A sending a request to device B wishing to configure retransmission and flow
control with a TxWindow size of 32. This value serves as the window size for incom-
ing traffic related from device B to device A even if the remote peer (here device B)
certainly has to keep track of negotiated values and is therefore also involved.

Even if all default values are acceptable from the beginning a configuration request
needs to be sent in order to proceed with data transmission. In such a case it is per-
fectly valid to send an empty request and no explicit options.

Device’s configuration requests refer always on their own:

“The configuration request cannot request a change in the parameters
the device receiving the request will accept”. [BlueSpec, page 47]

The architecture of a configuration request packet is shown in figure 3.1. It consists
of six fields, namely the unique code (0x04), the identifier, the whole packet’s length
(the variable size depends on the following options), the destination’s CID, a 16 bit
flags field1, and finally the configuration options.

Con�guration Options

Destination CID Flags

Code = 0x04 Identi�er Length

LSB MSB

octet 0 octet 1 octet 2 octet 3

Figure 3.1.: Configuration Request Packet

The specification currently defines four possible configuration options, namely the
Maximum Transmission Unit (MTU), the Flush Timeout, Quality of Service (QoS) and

1Currently there is only one flag defined which serves as a continuation flag if the receiver’s MTU is
not large enough to receive a whole specific configuration request at once and fragmentation of the
request’s packet needs to take place.
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3.2. Configuration Request

Retransmission and Flow Control. All options are filed in table 3.2 for reference with
their corresponding macroname in this implementation. The RFC option is discussed
in depth in section 3.4. Note that the options field may contain an option of a specific
type multiple times, for example MTU + RFC + MTU. In such a case we decided
to consider only the very first occurrence of each option. To realize that we defined
a bitmask (unsigned long options) that is used via the atomic macros set_bit and
test_bit.

Code Type Macroname

0x01 Maximum Transmission Unit (MTU) L2CAP_CONF_MTU

0x02 Flush Timeout Option L2CAP_CONF_FLUSH_TO

0x03 Quality of Service (QoS) Option L2CAP_CONF_QOS

0x04 Retransmission and Flow Control Option L2CAP_CONF_RFC

Table 3.2.: Possible type fields for the configuration option format

Once we receive an incoming configuration request (in l2cap_config_req()) we set
up an array of size 128 bytes to store the individual result codes of all sent config-
uration options as well as the overall result code. The latter one which is a union
of all the separated result codes is stored at result[0]. Each possible configuration
option’s result is stored at its unique place within the array which corresponds to
the option’s code that is given by the specification. For example the MTU option has
code 0x01 and is stored at result[1] (result[L2CAP_CONF_MTU] in the implementation)
whereas the retransmission and flow control option (code 0x04) is stored at result[4]
respectively.

The helpful side effect is herein that there is no option with code 0x00. We decided
to use an array of size 128 because this allows us to handle 127 different options
(code 0x00 cannot be used). This size should be sufficient for all future releases as the
specification defines the option’s code field to be only one octet long. Given the octet’s
most significant bit being used as a hint, only seven out of eight bits can be used for
the option’s code.

We should be prepared for such a big number of options because in case we receive
a configuration request wishing to configure parameters for an unknown option, say
0x42, we have to respond with a configuration response informing the remote peer
that option 0x42 is unknown. That is why we have to keep track of each possible
incoming option. There are currently four possible result codes defined as stated in
table 3.3.

All fields within the result array are initialized with 255:
memset(result , 255, L2CAP_MAX_OPTS);

This value was chosen as it can never be used in a real request and 0 would have
stated success for every single option by default which is undesirable.
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Result Description

0x0000 Success

0x0001 Failure � unacceptable parameters

0x0002 Failure � rejected (no reason provided)

0x0003 Failure � unknown option

Other Reserved

Table 3.3.: Possible configuration response result codes

The result array is passed forward to l2cap_parse_conf_req(). This function parses
a given configuration request for all different options. It sets the appropriate con-
figuration request parameters from the remote peer if all options are valid and un-
derstood. It rejects them if they are malformed and prepares an unknown status for
options that we do not support yet. The individual result code for each seperate
option is set via l2cap_check_conf_opt() which checks this specific option for valid
parameters.

3.3. Con�guration Response

Another part of the configuration process comes into play once we received a valid
request and need to build a matching response. This situation occurrs when we
ran through the aforementioned configuration request parsing process. Within the
function l2cap_config_req() we call l2cap_build_conf_rsp() to build such a response
packet. The function takes a pointer to the result array which was just set up. It runs
through the following steps:

(1) Check the value of the overall result code result[0] to take appropriate action.
Be aware that this is the indicator for the result code of the entire packet:

“The result of the configuration transaction is the union of all the
result values. All the result values must succeed for the configuration
transaction to succeed”. [BlueSpec, page 49]

We distinguish five different cases—the four specified result codes (see table
3.3) plus an empty request that needs to be answered as well.

(2) Within each case of the overall result code we check every single entry of the
array for the same result code. For example consider a configuration request
that is treated as successful for all single configuration options and made us set

result [0] = L2CAP_CONF_SUCCESS;
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This makes us check all 127 remaining entries within the array for the code
L2CAP_CONF_SUCCESS.

(3) If both cases match check the entry (e.g. 0x01 for L2CAP_CONF_MTU) and add this
option to the configuration response that we build.

Adding such an option is done via l2cap_add_conf_opt(). This function receives a
pointer to the location where all options are finally stored. At the end of the function
this pointer is increased in length of the pushed option to point to the next available
option. The function’s signature demands for the option’s type and length so that the
function itself can be used generically for all different options and to build a proper
response packet as well as a valid request.

An incoming configuration response is handled by l2cap_config_rsp(). Configura-
tion response packets consist of basically the same fields as a configuration request—
instead of a destination CID it uses a source CID and further more there is a one octet
field result which takes one of the result codes of table 3.3 on page 20. The architecture
of a configuration response packet is shown in figure 3.2.

Result Con�g

Source CID Flags

Code = 0x05 Identi�er Length

LSB MSB

octet 0 octet 1 octet 2 octet 3

Figure 3.2.: Configuration Response Packet

Depending on the given result code appropriate action is taken. This implies a thor-
ough understanding of the different result codes. In case of Success the configuration
request is fully accepted by the remote peer which lets us finally set the different pa-
rameters to match the requested values. In case of an Unacceptable Parameters failure
the response contains all “the values that would have been accepted if sent in the
original request.” [BlueSpec, page 51] An Unknown Option failure indicates missing
support for a requested option. It is important to note that this option is to be in-
cluded within the response to let the requesting side know which of the sent options
cannot be understood. The last possible option is a Reject failure which does not need
any reasons to be provided.

3.4. Retransmission and Flow Control Option

For the purpose of extending configuration parameters L2CAP offers configuration
parameter options. The basic format is illustrated in figure 3.3. The Type specifies
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the option type field of the parameters that are to be configured. The four currently
specified options are shown in table 3.2.Type Length Option DataLSB MSBotet 0 otet 1 otet 2 otet 3

Figure 3.3.: Configuration option format

Note that the option data field can consist of multiple options within one single
request. The Retransmission and Flow Control option format itself is specified as
drawn in figure 3.4. The whole option is 11 bytes long and the different fields are
discussed in this section.

Monitor time-out
(most signi�cant byte)

Maximum PDU size (MPS)

Max Transmit Retransmission time-out Monitor time-out
(least signi�cant byte)

0x04 Length = 9 Mode TxWindow size

0 31

Figure 3.4.: Retransmission and Flow Control option format

Mode (1 octet) This field is the final instance about the link mode that is to be used
for this connection. The different values for this field are specified in table 3.4.
The default is the Basic L2CAP Mode and using this mode invalidates all other
fields within this option.2

TxWindow (1 octet) The TxWindow size field has to be set accordingly to the avail-
able buffer space for flow control. The size reflects the available buffer space
counted in frames and may vary between one and 32. For a better channel uti-
lization a larger value is recommended. The sending delay is influenced by this
value, too. The transmitter can send as many PDUs as fit within the receiver’s
TxWindow.

Max Transmit (1 octet) This field’s value specifies the number of possible retrans-
missions of a single I-frame in Retransmission Mode—therefore it is of no interest
for Flow Control Mode.

2It is not entirely clear why the Extended Features are propagated when it basically comes down
to the use of the Basic L2CAP Mode for each connection as seen on the Siemens S75 mobile phone
which claims to support all extended features but never allows us to make use of them by signalling
a value of 0x00 for the Mode field in the Retransmission and Flow Control Option.
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3.4. Retransmission and Flow Control Option

Value Description

0x00 Basic L2CAP Mode

0x01 Retransmission Mode

0x02 Flow Control Mode

Other values Reserved for future use

Table 3.4.: Possible mode definitions within the RFC option

Retransmission Time-Out (2 octets) This value represents the time-out given in
milliseconds and is primarily used for the initilization of the Retransmission
Timer. In Flow Control mode the purpose of this timer is the supervision of
I-frame transmissions. This leads the transmitting side to keep on transmitting
I-frames after the time-out value if acknowledgements or I-frames got lost.3

Monitor Time-Out (2 octets) This is the value in milliseconds that is used for the
initialization of the monitor timer which ensures that lost acknowledgements
(S-frames) are retransmitted. Note that only one of the two timers shall be active
at any given time. Upon expiration of the Monitor-Timer the last acknowledge-
ment frame is to be sent again and the timer shall be restarted. The timer shall
remain active in the open state and enforces an idle connection to have periodic
monitor traffic sent in both directions.

Maximum PDU Size (1 octet) This is the size of the maximum PDU payload size
that the device is capable of accepting.

3Note that the purpose of the retransmission timer in Flow Control Mode is actually not for the
retransmission of lost I-frames but more to prevent the transmission process to stock due to a lost
acknowledgements. It enables the sending peer to continue transmission.
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4. Procedures for Flow Control

After the mandatory configuration process as the first part of the procedures for flow
control in L2CAP we are now actually entering the stage of transmitting and receiving
data in flow control mode. Two frame formats are specified for this mode: The I-
frame (Information frame, to transport information payload instead of the B-frame in
Basic L2CAP Mode) and the S-frame (Supervisory frame, to control the transmission of
I-frames). Both frames are illustrated in figure 4.1.

Length ChannelID Control SDULength Information Payload FCS
Length ChannelID Control FCS

Information Frame (I-Frame)
Supervisory Frame (S-Frame)

LSB MSB
LSB MSB

16 16 16 0 or 16 16
16 16 16 16

Figure 4.1.: L2CAP PDU formats in Flow Control Mode

The L2CAP Header
The fields length and CID build the L2CAP header. The Length field consists of two
octets and contains the size of the entire L2CAP PDU in octets, excluding the header
itself. The specification states that the maximum length varies between 65,529 octets
and 65,531 octets depending on the presence of the L2CAP SDU length field. This
field is present when the SDU spans more than one I-frame and yields the size of the
total SDU which consists of multiple information payload fields of different I-frames.
Whether this 2 octets are to be considered as the SDU length field or not is specified
within some bits of the Control field.

The Control Field
The control field is 2 octets long and is used in both S-frames and I-frames. Its archi-
tecture is illustrated in figure 4.2. The right-most bit of the control field distinguishes
the frame’s type by being either set to 0 (I-frame) or 1 (S-frame). Only I-frames can
be used to transfer information whereas both frames can be actually used to signal
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an acknowledgement. Within the Retransmission Mode S-frames may request the
retransmission of missing I-frames and allow the use of so-called Reject-frames. But
both techniques do not apply to Flow Control Mode and are beyond the scope of this
work. FrameType 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1IS × × ReqSeq R × × × S 0 1SAR ReqSeq R TxSeq 0

× denotes reserved bits. Shall be oded 0.
Figure 4.2.: Control Field Formats

The Segmentation and Reassembly bits (SAR) are used to distinguish different frames
if an L2CAP SDU is segmented. These bits do only occur within the control field of
I-frames and represent one of four possible states:

00 specifies an unsegmented L2CAP SDU.

01 represents the start frame of a segmented L2CAP SDU. When this condition
applies the L2CAP SDU length field is present and needs to be set accordingly
by the transmitter and recognized by the receiver respectively.

10 signals the end frame of a segmented L2CAP SDU.

11 is present in all continuation frames of an L2CAP SDU.

The Retransmission Disable Bit (R) is part of any Flow Control implementation. When
the sender receives a frame with this bit set to one, the receiver indicates that his
internal receive buffer is full and that the sender shall disable the retransmission timer
and stop transmitting I-frames. The monitor timer is started on the transmitter side
to monitor signalling.

The two sequence numbers ReqSeq and TxSeq are used to number frames and ac-
knowledge previously received frames. In Retransmission Mode the receive sequence
number would allow the receiver to request retransmission of a specific frame that got
lost. But retransmission does not take place in Flow Control Mode.

Finally there is the two bits long Supervisory function (S) which marks the type of the
S-frame. Currently there are only two of four possible types defined (The encoding
10 and 01 are reserved for future use). One is the RR frame (Receiver Ready, code 00)
and the other one is the REJ frame (Reject, code 01). In Flow Control Mode REJ frames
shall not be used.

The Frame Check Sequence
The Frame Check Sequence (FCS) at the end of each S- and I-frame forms a cyclic re-
dundancy check over the whole frame, including the L2CAP header. The generator
polynomial is g(D) = D16 + D15 + D2 + 1, [see BlueSpec, page 39]. The Linux kernel
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offers a crc16() function within <linux/crc16.h> which covers exactly the aforemen-
tioned generator polynomial. It can be used to create a frame check sequence, for
example:

/* calculate fcs over information payload plus

* len , cid and control fields */

fcs = crc16(0, skb ->data , len + 6);

or to detect invalid frames (in l2cap_invalid_frame_detection()):
/* contains an fcs error */

fcs = get_unaligned ((u16 *) (skb ->tail - 2));

if (unlikely(fcs != crc16(0, skb ->data , skb ->len - 2)))

err = -3;

Figure 4.3 illustrates the segmentation process between different layers. The SDU
is composed of multiple information payload fields of different I-frames. Note that
the entire protocol overhead, like the L2CAP header, the control field, or the frame
check sequence are stripped for the SDU composition. The SDU length field is only
present in the first I-frame of a series of I-frames that belong to a segmented SDU and
is marked in bright gray within this figure.

For illustrating purpose, parts of the HCI layer and its interaction with the L2CAP
layer are shown as well. We see how multiple HCI data payloads compose an I-frame.
This is done transparently to the L2CAP header on which this work is based.

L2CAP
Servie Data UnitLength CID Control SDU Len Information Payload FCSLength CID Control Information Payload FCSLength CID Control Information Payload FCS

HCI ConnetionHandle Flags =start Length HCI data payloadConnetionHandle Flags =ontinue Length HCI data payloadConnetionHandle Flags =ontinue Length HCI data payload
Figure 4.3.: Example of the segmentation process between the L2CAP and HCI layers
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4.1. Variables and Sequence Numbers

Implementing Flow Control requires the use of some internal variables and sequence
numbers to keep track of the current status of its own buffer and the remote peer’s
buffer respectively. We distinguish between the sending peer and the receiving peer.
The techniques used with specific variables are illustrated by figures 4.4 and 4.5. All
variables are in the range of 0 to 63.

4.1.1. The sending peer

The sending peer uses three different internal variables, namely TxSeq, NextTxSeq and
ExpectedTxSeq. The send sequence number TxSeq is used to number each transmitted
I-frame sequentially and will be provided within the control field of the transmitted
I-frame. NextTxSeq states the number of the next new I-frame to be transmitted and
shall be maintained for each remote endpoint. Once the sender decides to transmit
a new in-sequence I-frame1 the value of TxSeq is set to the one of NextTxSeq and
NextTxSeq is incremented by one. Be aware that “the value of NextTxSeq [. . .] shall not
exceed ExpectedAckSeq by more than the maximum number of outstanding I-frames
(TxWindow)” [BlueSpec, page 89].

Finally ExpectedAckSeq reflects the current value of the next I-frame expected to
be acknowledged by the receiving peer. This acknowledge state variable shall be
maintained for each remote endpoint, too. An acknowledgement of a single I-frame
from the remote side yields the value of ExpectedAckSeq + 1 as its ReqSeq value.F1 F2 F3 F4 F5 F6 F7 F8 F9TxWindow

transmitted andaknowledged
ExpetedAkSeq NextTxSeqtransmitted but notyet aknowledged

Figure 4.4.: Example of the Transmitter’s side

Note the following requirement given by [BlueSpec, page 90]:

“If a valid ReqSeq is received from the peer then ExpectedAckSeq is set to
ReqSeq. A valid ReqSeq value is one that is in the range ExpectedAckSeq ≤
ReqSeq ≤ NextTxSeq”.

1Retransmission Mode allows retransmission of already sent I-frames for which the value of TxSeq
must not be changed.
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Figure 4.4 illustrates the use of all variables for the transmitter. The negotiated
TxWindow size is five and all the frames F2 to F6 have already been transmitted but
not yet acknowledged. The first acknowledgement is expected to match frame F2.
But note that once we receive an acknowledgement for any frame that still needs
to be acknowledged (here frames F2 to F6) all frames up to (but not including) this
frame are acknowledged even if either one of the frames in front of it or one of the
acknowledgements got lost.

For example suppose the value of ExpectedAckSeq to be 2 as seen in the figure men-
tioned above. If the sending peer receives a valid frame from the receiving peer (of
which the ReqSeq value is implicitly counted as an acknowledgement number) which
sends an acknowledgement with ReqSeq = 5, we assume the frames 2, 3 and 4 to be
implicitly acknowledged. Only within Retransmission Mode action can be taken on
the frames 2, 3 and 4, which is beyond the scope of this work.

4.1.2. The receiving peer

Three internal variables are defined for the receiving peer, namely the receive se-
quence number ReqSeq, the receive state variable ExpectedTxSeq and the buffer state
variable Bu�erSeq. Figure 4.5 shows an example of how all of these variables come
into play on the receiver’s side.F1 F2 F3 F4 F5 F6 F7 F8 F9TxWindow

reeived andpulled byreassemblyfuntion Bu�erSeq ExpetedTxSeqreeived but not yet pulledby reassembly funtion
Figure 4.5.: Example of the Receiver’s side

ReqSeq is used in I-frames as well as in S-frames to acknowledge correctly received
frames with corresponding TxSeq values up to and including ReqSeq− 1. Therefore
the value of ReqSeq shall be set to the current value of ExpectedAckSeq or Bu�erSeq
(which of these values are to be used is implementation specific and discussed in
the next paragraphs). ExpectedTxSeq reflects the expected TxSeq value of the next
in-sequence I-frame.

The buffer state variable Bu�erSeq provides the delay of acknowledging frames un-
til they have been pulled by the upper layers. This mechanism prevents the receiver
of buffer overflow. The values of ExpectedTxSeq and Bu�erSeq are equal when no
segmentation takes place and frames are pushed to the upper layer immediately on
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reception. Sequence numbers of I-frames shall be in the range of ExpectedTxSeq ≤
TxSeq < (Bu�erSeq+ TxWindow).

The specification states [BlueSpec, page 92]:

“On receipt of an I-frame with TxSeq equal to ExpectedTxSeq, Expect-
edTxSeq shall be incremented by 1 regardless of how many I-frames with
TxSeq greater than ExpectedTxSeq were previously received”.

4.2. Retrieving Data

Retrieving data in a socket based matter is done in UNIX network programming by
a recvmsg call. Such a call is matched in the L2CAP layer by a signal handler func-
tion which is called bt_sock_recvmsg wherein the necessary socket buffer is filled and
various checks are fulfilled. Note that this function itself is not part of the L2CAP
layer implementation. The L2CAP layer comes into play when the HCI layer beneath
invokes the signal handler for l2cap_recv_acldata(), namely recv_acldata. From this
point on the responsibility lies within the L2CAP layer.

The control flow moves on to l2cap_recv_frame() where a strict differentiation takes
place between three kinds of frames that can be received, based on the given frame
header’s CID. This means we either step into a signalling channel if the header’s CID
is 0x0001, which covers all sorts of signalling packets that we saw during the config-
uration process. Elsewhise we can move into a connectionless channel if the CID is
0x0002. In all other cases we use a data channel and l2cap_data_channel() is called.
Herein we check the stage in which we operate and decide upon the result whether
we are about to handle an I- or S-frame in Flow Control Mode or if we received an
ordinary B-frame if we are in Basic L2CAP Mode. In the latter case—which was al-
ready implemented—no more action is to be taken except checking the size of the
information payload for validity and passing the socket buffer to the upper layer via
sock_queue_rcv_skb().

4.2.1. Invalid Frame Detection

Quite more steps than those in Basic L2CAP Mode are necessary to handle frame re-
ception in Flow Control Mode. The first of a variety of steps consists of a validity
check in l2cap_invalid_frame_detection(). This function corresponds to [BlueSpec,
section 3.3.6] where seven possible reasons are mentioned in which case the PDU
shall be regarded as invalid. Those conditions cover errors like a wrong frame check
sequence or wrong fields in the frame like an unknown CID or a length that exceeds
the maximum PDU payload size (MPS). Whenever one of these error conditions ap-
plies the whole PDU is dropped silently. Error reporting is currently used only within
the optional debug output but may be implemented later to interact with the user in-
terface for convenience.
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One extra check was implemented within this function. It is the very first check
that is performed and covers the assumption that each single socket buffer matches
exactly one frame. This condition is validated by the following code snippet:

len = get_unaligned ((u16 *) skb ->data);

if (len != (skb ->len - L2CAP_HDR_SIZE))

err = -1;

This assumption is correct because a complete frame is copied into a newly created
socket buffer (conn->rx_skb) in l2cap_recv_acldata and the size of the newly allocated
memory area of conn->rx_skb is set to the same size that is specified in the frame’s
header.

4.2.2. Process the Send Sequence Number TxSeq

The send sequence number TxSeq, that can only be present in I-frames, is set by the
transmitter to its internal sequence number NextTxSeq. The receiver yields an internal
variable called ExpectedTxSeq that reflects the value of TxSeq expected in the next I-
frame. Another internal variable on the receiver’s side, Bu�erSeq, is used to delay
acknowledgement of received I-frames when segmented I-frames are buffered.

Basically four error checks are done within l2cap_process_reqseq(). First of all the
sent TxSeq value is compared to the expected one. In case of success the ExpectedTxSeq
is incremented by one and everything is fine:

if (txseq == pi->exp_txseq) {

pi->exp_txseq = (pi->exp_txseq + 1) % 64;

}

If this condition does not apply we check for an out-of-sequence I-frame and re-adjust
the ExpectedTxSeq value:

else if ((( txseq - pi->buffer_seq + 64) % 64) < pi->itxw) {

/* out -of-sequence i-frame */

pi->exp_txseq = (txseq + 1) % 64;

}

The last two checks cover the case of a duplicated I-frame or an invalid TxSeq se-
quence number in which an error is returned and the whole frame is dropped.

4.2.3. Process the Receive Sequence Number ReqSeq

The ReqSeq value within the control field must be processed in I-frames as well as in
S-frames. A basic error check is fulfilled at the beginning of l2cap_process_reqseq()
by checking the status of the right-most bits. In case of an I-frame the very last bit
shall be coded 0, and in case of an S-frame the four right-most bits shall be coded 0001

because the two S bits of the supervisory function are always encoded 00 (marking the
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S-frame to be of type Receiver Ready) and this is the only valid S-frame type within
Flow Control Mode.2

The next error checking mechanism implemented takes [BlueSpec, section 8.5.6.2]
into account:

“An ReqSeq sequence error exception condition occurs in the transmit-
ter when a valid S-frame or I-frame is received which contains an invalid
ReqSeq value. An invalid ReqSeq is one that is not in the range ExpectedAck-
Seq ≤ ReqSeq ≤ NextTxSeq.

The L2CAP entity shall close the channel as a consequence of an ReqSeq
Sequence error”.

This task is accomplished by the following code:

/* reqseq sequence error */

if (!(( reqseq - pi->exp_ackseq + 64) % 64 <=

(pi->next_txseq - pi->exp_ackseq + 64) % 64)) {

/* close channel -> send disconnect request */

struct l2cap_disconn_req req;

struct l2cap_conn *conn = l2cap_pi(sk)->conn;

sk->sk_state = BT_DISCONN;

sk->sk_err = ECONNRESET;

l2cap_sock_set_timer(sk, HZ * 5);

req.dcid = __cpu_to_le16(l2cap_pi(sk)->dcid);

req.scid = __cpu_to_le16(l2cap_pi(sk)->scid);

l2cap_send_cmd(conn , l2cap_get_ident(conn),

L2CAP_DISCONN_REQ , sizeof(req), &req);

return -2;

}

If the ReqSeq value is valid and in-sequence, the internal ExpectedAckSeq value is
set to the current ReqSeq value.

4.2.4. Reassemble the SDU

Reassembling the SDU of multiple PDUs is actually done in l2cap_reassembly(). This
function receives an I-frame in form of a socket buffer and the extracted value of the
corresponding control field. The first action to be taken on the socket buffer is to
remove the unnecessary fields from it, namely the L2CAP header, the control field
and the frame check sequence:

/* remove header , control and fcs from i-frame */

skb_pull(skb , L2CAP_HDR_SIZE + L2CAP_CONTROL_SIZE);

skb_trim(skb , skb ->len - L2CAP_FCS_SIZE);

2This error condition would have to be changed slightly whenever Retransmission Mode is going to
be implemented and REJ-frames may occur.
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What remains is the information payload and—just for the first frame of a segmented
SDU—the 16 bit SDU length field that preceeds the information payload.

Depending on the type of the frame, regarding its position within the SDU, we
have to distinguish basically four different cases:

(1) The frame is the first in a sequence of frames that build a complete SDU. This
frame is marked with 01 or constant-wise L2CAP_SAR_START in the SAR bits of the
control field. When this condition applies the SDU length field is present and
the information payload field is reduced by two octets in size.

(2) The frame belongs to a segmented SDU but is neither the first nor the last bit of
it. This frame has the bits 11 or constant-wise L2CAP_SAR_CONTINUE set in its SAR
bits.

(3) The frame belongs to a segmented SDU and builds the end of it. The SAR bits
of its control field are set to 10 or L2CAP_SAR_END.

(4) If the frame is not segmented and builds a SDU by its own, the bits 00 are set in
the SAR portion of the control field.

We will now see how these four cases can be worked out in a generic way and how
we handle error conditions and exceptions.

The first design decision affects handling these different states. Depending on the
SAR bits of the control field we differentiate between two explicitly stated cases,
namely L2CAP_SAR_UNSEGMENTED and L2CAP_SAR_START and put the other two (the last
frame and all continuation frames) into a default case.

Receiving an unsegmented frame can be processed straight forward by adjusting
the Bu�erSeq value to be the ExpectedTxSeq one, passing the entire information pay-
load to the upper layer and transmitting an S-frame as an acknowledgement to the
remote peer.

The rest of the function covers the reception of segmented SDUs only. Receiving a
start frame requires the SDU length field to be considered and extracted. Building a
complete SDU from ground up requires us to have an associated socket buffer avail-
able. We declared such a socket buffer in our socket specific structure. The first action
to be taken consists of an appropriate error check, because in case we are demanded
to build a new SDU from multiple segments but the last reassembling process was
not finished correctly, we have to make sure to reset the socket specific SDU buffer.

Under normal circumstances we will now allocate enough buffer space for the en-
tire SDU and copy the first part of the segmented SDU into the newly allocated buffer.
Furthermore the socket bound variable sdu_len is set to the value of the given SDU
length minus the length of the first part of the SDU that was just copied into the buffer.
This will help us to ensure that we will never accept segments of length bigger than
the size of the allocated buffer. Finally the value of Bu�erSeq is adjusted to the one of
ExpectedTxSeq and an S-frame is sent as an acknowledgement.
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The default case handles both the reception of continuation frames and end frames.
The first part consists of two error checks. If there is no remaining space in our al-
located SDU buffer (sdu_len is 0) we break off the function and return an error. The
second condition applies if the frame’s length (skb->len) is claimed to be larger than
the remaining length of the allocated buffer. This causes our implementation to cancel
the SDU reassembling process, free the corresponding socket buffer, reset its values,
and to break off the function immediately.

If none of the above stated error conditions apply we copy the information payload
into the SDU socket buffer, adjust all values accordingly, and transmit an S-frame as
an acknowledgement to the remote peer. In case this is an end frame and the SDU
is now complete in terms of a completely filled buffer, we pass the entire SDU to the
upper layer, free the corresponding buffer afterwards, and reset the values:

memcpy(skb_put(l2cap_pi(sk)->sdu , skb ->len), skb ->data , skb ->

len);

l2cap_pi(sk)->sdu_len -= skb ->len;

l2cap_pi(sk)->buffer_seq = l2cap_pi(sk)->exp_txseq;

if (l2cap_send_sframe(sk, l2cap_pi(sk)->buffer_seq))

return -6;

/* last frame for sdu */

if (( L2CAP_GET_SAR(control) == L2CAP_SAR_END) &&

(l2cap_pi(sk)->sdu_len == 0)) {

if (sock_queue_rcv_skb(sk, l2cap_pi(sk)->sdu))

return -1;

kfree_skb(l2cap_pi(sk)->sdu);

l2cap_pi(sk)->sdu = NULL;

l2cap_pi(sk)->sdu_len = 0;

}

4.3. Transmitting Data

Sending data is initially invoked by calling the socket specific sendmsg() function from
userspace. This call matches a signal handler function in the L2CAP layer called
l2cap_sock_sendmsg(). Besides some typical basic error checking a lock is acquired
for the corresponding socket before the actual implementation of frame transmission
takes place. The existing implementation already covered basic L2CAP mode by in-
voking l2cap_do_send() with the message msg as the information payload.

Building an equivalent functionality for flow control mode required a complete
different approach to fulfill the needs. Fundamental differences covered the way in
which frames are created and passed to the lower layer. Basic L2CAP mode uses B-
frames which are basically identical—no control field or frame check sequence at the
end of a frame is in use, and no SDU length field is to be used for one specific frame.
The technique of the existing implementation makes use of a list of fragments in the
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socket buffer shared info structure where the entire message is separated into multiple
fragments of information payload fields.

Instead of rewriting the existing function we decided to split the functionality of
segmenting the SDU and building the actual I-frames into two seperate and new
functions, called l2cap_segment_sdu() and l2cap_do_send_rfc(). Depending on the
connection’s mode, the corresponding control flow takes place:

if (l2cap_pi(sk)->mode == L2CAP_MODE_FLOW) {

err = l2cap_segment_sdu(sk, msg , len);

if (err < 0)

goto out;

if (l2cap_do_send_rfc(sk) < 0)

err = -1;

} else {

err = l2cap_do_send(sk, msg , len);

}

The function l2cap_segment_sdu() is the counter-part to the function that handles
the reassembling process, l2cap_reassemble_sdu(). At first we store the value of the
minimum between the length of the message and the size of the MTU minus the
L2CAP header into a variable called count. This variable is needed to keep track
of the remaining length of the message that has not yet been put into information
payload fields of I-frames.

The first part of the function covers the case in which one single I-frame is enough
to hold the entire message. This applies whenever the length of the message equals
the size of count. In such a case the way to process the I-frame is pretty much straight
forward. We allocate enough space for a socket buffer, create the L2CAP header
and the individual control field, copy the message from userspace into the buffer
via memcpy_fromiovec() and calculate the frame check sequence over the header, the
control field and the information payload field. Finally we increase the value of Next-
TxSeq by one and store the created socket buffer at the end of a transmit queue. Once
we did all these steps we break out of this function immediately.

It is a whole different story once we need to send a message that exceeds the size of
count. In such a case we need to segment the SDU and create a bunch of individual
I-frames. This enforces us to make use of the SAR bits in the control field and use
the SDU length field in the very first I-frame. Before we start actually building all the
I-frames we adjust the value of count by decreasing it by two bytes and increasing the
size of the virtual header’s length by two bytes—this is due to the fact that we need
two more bytes for the SDU length field and have therefore two bytes less for the in-
formation payload field. Furhter more the SAR bits are initialized to L2CAP_SAR_START.

The basic idea on how the segmentation is handled is based on a while loop over
the remaining length of the message. The while loop starts with a socket buffer al-
location of size count plus the header’s length. After that the header is created and
put into the first four bytes of the newly allocated socket buffer. Afterwards the in-
dividual control field is created and put at the following two bytes. If this is the first
frame in the series of segments (the SAR bits are set to L2CAP_SAR_START), then the next
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two bytes are filled with the actual length of the SDU. Now count bytes can be copied
from userspace into the socket buffer’s information payload field:

/* Information payload */

if (memcpy_fromiovec(skb_put(skb , count), msg ->msg_iov , count

)) {

err = -EFAULT;

goto fail;

}

After that the frame check sequence is calculated and put at the last two bytes of the
socket buffer. The value of NextTxSeq is increased by one and the socket buffer is put
at the end of the TxQueue. We have to re-adjust some variables to ensure the loop is
entered with valid values.

After the SDU has been segmented into multiple I-frames which are stored in
the TxQueue, l2cap_do_send_rfc() is invoked to actually send the I-frames awaiting
transmission. This function was written so that it can easily be invoked not only by
l2cap_sock_sendmsg as part of a normal transmission process, but also by the expira-
tion of a retransmission timer.

The function has a local variable occupied that computes the value of frames that
have been sent but not yet been acknowledged by subtracting the ExpectedAckSeq
from NextTxSeq. If the receiver’s TxWindow is full (occupied equals the value of otxw)
or if there are no frames in our TxQueue that need to be sent, we exit this function.

But whenever we are allowed to send frames and we currently have one or more
I-frames in our queue, we dequeue those ones and pass them to the lower layer by
invoking hci_send_acl():

while ((pi->tx_queue_frames > 0) && (pi->otxw > occupied)) {

skb = skb_dequeue (&pi->tx_queue);

if (skb == NULL)

goto fail;

if ((err = hci_send_acl(conn ->hcon , skb , 0)) < 0)

goto fail;

pi->tx_queue_frames --;

occupied ++;

}

4.3.1. Sending Acknowledgments

Acknowledgements can either be sent implicitly by using I-frames and their ReqSeq
values in the control field, or by using S-frames explicitly for the purpose of pure ac-
knowledgements. The latter functionality was implemented by this work. The func-
tion that is invoked on the expiration of the monitor timer or within the reassembly
function is called l2cap_send_sframe().
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S-frames are simple structures. Figure 4.1 illustrates the four different fields, each
16 bits wide, that compose one S-frame. Note that no information payload field is
present and we therefore have a fixed length for the entire frame. Building such a
frame consists of allocating the necessary socket buffer, creating the L2CAP header
and the individual control field. Figure 4.2 illustrates, that the control field for an
S-frame in flow control mode consists only of the ReqSeq bits and the last bit which is
set to one.3 Finally the frame check sequence is computed over all preceeding bytes
and attached to the socket buffer. Then the buffer can be passed to the lower layer by
calling hci_send_acl(), and the monitor timer is restarted.

4.3.2. Monitor and Retransmission Timer

The monitor and retransmission timers prevent us of from getting stuck in a deadlock
by resending necessary acknowledgement frames to the remote peer, and by trans-
mitting I-frames continuously in case sent acknowledgements from the remote peer
got lost.

The monitor timer will ensure periodic traffic between both peers as long as the
connection is held in an open state which keeps sequence numbers synchronized.
The monitor timer is of even more interest in retransmission mode where a specific
bit can be used for signalling purposes.

The retransmission timer on the other hand is used to continue tranmission of I-
frames by the sender even if the current monitored TxWindow of the remote’s receiv-
ing peer is full. This situation shall prevent us from a deadlock in case either an
acknowledgement frame got lost on its way or one of the already sent I-frames was
corrupted and could not be acknowledged but does neither occupy a space in the
receiver’s TxWindow.

Both timers are defined in l2cap_sock_init:

init_timer (& l2cap_pi(sk)->ret_timer);

l2cap_pi(sk)->ret_timer.function =

l2cap_retransmission_timer;

l2cap_pi(sk)->ret_timer.data = (unsigned long)l2cap_pi(sk);

init_timer (& l2cap_pi(sk)->mon_timer);

l2cap_pi(sk)->mon_timer.function = l2cap_monitor_timer;

l2cap_pi(sk)->mon_timer.data = (unsigned long)l2cap_pi(sk);

The signal handler l2cap_retransmission_timer increases the value of ExpectedAck-
Seq by one and starts the monitor timer in case no more I-frames await transmission.
This condition applies whenever ExpectedAckSeq equals NextTxSeq. If there are still
I-frames that need to be sent the retransmission timer is started a socket lock is ac-
quired and l2cap_do_send_rfc() is called to transmit the next I-frame (this can be
done because ExpectedAckSeq is now increased).

3The value of the S bits would have to be implemented in retransmission mode, but this is outside
the scope of this work.
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The monitor timer’s signal handler is called l2cap_monitor_timer. All its minimal
functionality is based on inquiring transmission of an S-frame to re-acknowledge the
last valid and in-sequence I-frame received by the remote peer with ExpectedTxSeq as
its ReqSeq value, and finally restart the monitor timer.

Starting both timers is achieved by l2cap_start_ret_timer for the retransmission
timer, and l2cap_start_mon_timer for the monitor timer respectively. The timeout
with which they are called is already converted so that it can be compared to the
current kernel’s jiffies value, e.g.:

l2cap_start_mon_timer(sk, pi->imon_to * HZ / 1000);
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5.1. Testing and Analysis

The GNU/Linux system is based on a monolithic kernel, and to work inside ker-
nelspace is always critical and must be done cautiously. The L2CAP layer of Linux’
Bluetooth subsystem is a seperate module that allows it to be dynamically linked to
or removed from the running kernel. But due to the monolithic structure of the kernel
itself, a failure in kernelspace, like a NULL pointer dereference, a deadlock or a race
condition, can cause fatal exceptions that usually stall the entire system.

Debugging in kernel mode can be done in various ways, although none of them is
very comfortable and all debugging facilities have their own drawbacks. We didn’t
make any use of one of the unofficial kernel debuggers whenever we encountered
problems. Instead we used the module’s built-in debugging output with extended
printk() statements.

This was sufficient as long as we didn’t make any serious faults. And in fact we
didn’t encounter any of the more annoying faults like the aforementioned NULL
pointer dereferences or equivalent. But one troublemaker stalled the whole devel-
opment process for a big amount of time. By changing from one kernel version to
another that used the PREEMPT option of the kernel’s configuration to make the ker-
nel preemptible, the entire system crashed reproducibly. Difficult enough to locate
the error because the system just hangs and the X terminals were not fast enough to
catch and print the debugging output.

Fortunately the Linux kernel provides its developers the facility to work on the
framebuffer console where output is immediately dumped if the console log level is
set to an appropriate value.1 To work only with the console can be tricky when the
monitor and/or the console’s screen resolution is not big enough to show all neces-
sary information on one page because scrolling is not possible and there is no way to
copy the messages into any file or onto another computer. This task may be achieved
when working with a serial connection but there was no serial connector available on
the main development computer.

Intensive testing was accomplished in each phase of the implementation. The test-
ing environment consisted of two Acer notebooks (Acer Travelmate 803LMiB and

1The Linux kernel offers the so-called SysRq keys, that can be usually accessed by pressing Alt + Print
+ Function simultaneously, e.g. setting the loglevel to 8 to print all warnings and other non-critical
messages.
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Acer Travelmate 3002WTMi) with integrated Bluetooth adapters, two mobile phones
(Siemens S55 and S75), and an external USB Bluetooth adapter (Cellink BTA-6030).
There exist multiple different Bluetooth software stacks in many different versions.
We couldn’t take all in considerations, but we were able to test our implementation
against the two Siemens ones, the Toshiba stack for Windows in versions 3.03.13 and
4.20.01, the original Windows XP stack and finally the stack that comes shipped with
Apple’s operating system Mac OS X 10.4 (Tiger) on PowerPC.

Especially the Apple iMac G4 that we could use as a test machine enabled us to
ensure proper and endianess-aware data transmission, because this iMac still uses a
big endian PowerPC microarchitecture whereas the laptops are Intel x86 little endian
machines.

Interesting, but even frustrating enough, was the determination that none of all
the available test machines from different venturers was able to use flow control
mode. The Siemens S55—probably the device with the oldest software stack on it—
returned on an information request about support of extended features (like flow
control mode) a corresponding information response that stated no success as a re-
sult. Stacks like the ones from Toshiba and Apple claimed to use extended features
but did not offer any bits inside the data field of the extended features bitmask:

l2cap_information_rsp: type 0x0002 result 0x00 ident 2

Extended Features Mask: 00 00 00 00

The closest candidate of all these devices was definitely the Siemens S75 mobile
phone which not only claimed to support extended features, but also returned a
bitmask, indicating support for every currently available extended feature (0x0007
). Sadly though, it stubbornly refused to configure any flow control feature, by re-
sponding to an appropriate configuration request with a failure for unacceptable pa-
rameters, indicating only concrete support for Basic L2CAP Mode in the response’s
retransmission and flow control option.

The test cases consisted of sending and retrieving files between a Linux computer
with a patched kernel and the aforementioned devices. The kernel we used to accom-
plish this task changed over time as new kernel versions were released. The plain
vanilla kernel was patched with the official patchset of the BlueZ project, which in-
tegrates code that is considered to be experimental but is supposed to be integrated
into the main kernel tree once it is stable. Such a patched kernel was compiled and
started before we built our own L2CAP module against the respective kernel head-
ers and linked the binary module dynamically to the kernel.2 Sending and retrieving
files was used as an easy method that makes intensive use of the L2CAP layer.

The test results that we achieved with other devices were more or less useful. They
helped definitely to encounter device specific behaviour during the configuration
process. It was amazing to realize in how many ways devices from different man-
ufactures can behave, although all are based on the same specification. As a conse-
quence of the absence of flow control capability in all our devices, intensive test cases

2See Appendix B for a detailed description of this procedure.
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for this last part could not be created. Finally the only tests that worked as expected
could be achieved with two patched Linux PCs.

L2CAP flow control mode is definitely a nice feature and may be of even more
interest in industrial environments which are limited by resource (e.g. only slow
embedded processors) or if the device has to handle multiple high bandwidth con-
nections under tough conditions like large distances with walls between the devices
or similar scenarios.

It can be proven that flow control is in action if both the information response and
the configuration response are returned with appropriate values.

5.2. Conclusion and Future Work

The implementation of Flow Control Mode for Linux’ Bluetooth L2CAP layer was a
major task that significantly enlarged the existing functionality. It was an advantage
to work on an existing piece of software that was well written and structured. This
prevented the undertaking of writing the code for the entire layer from ground up.

Future work may be based at first on finding bugs and improving the code before
this part finds its way into the main kernel tree. Besides that, Flow Control Mode
for Linux’ L2CAP layer can be considered as being complete. However there is some
more work that can be done, that is closely related to this implementation. One part
covers the Retransmission Mode that makes use of multiple functions and paradigms
that were now already—at least partly—implemented. Retransmission Mode is a
very interesting feature to provide users reliable channels. Linux’ L2CAP layer lacks
only the lately introduced functionality like Retransmission Mode, Quality of Service
Mode, or the Flush Timeout option.
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A. Architectures' Data Types

The following table1 covers architectural design differences and their implementa-
tions within the Linux kernel.

Architecture Description Word sizeof(int) sizeof(long)

alpha Alpha Processor 64 Bit 4 8

arm Arm (old version) 32 Bit 4 4

arm26 Arm, StrongARM 32 Bit 4 4

i386 Intel x86 32 Bit 4 4

ia64 IA-64 64 Bit 4 8

m68k Motorola 68xxx 32 Bit 4 4

mips MIPS 32 or 64 Bit 4 4/8

ppc PowerPC 32 Bit 4 4

ppc64 PPC64 64 Bit 4 8

sparc Sun Sparc 32 Bit 4 4

sparc64 Ultra-Sparc 64 Bit 4 8

x86_64 AMD64/EMT64 64 Bit 4 8

Table A.1.: Only some of the more popular architectures and their design differences

1The complete set for all architectures can be found in [Quade and Kunst, 2006, Chapter 9.3]
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During the time of this development the patches created for testing purposes had to
be applied to a recent kernel version with included latest patchsets of Linux’ Blue-
tooth maintainer Marcel Holtmann. This means a vanilla kernel like 2.6.17.x had to
be patched first of all with the most recent patch of the bluez.org website (e.g. patch-
2.6.17-mh5), before we could create our own patch covering the two files l2cap.c and
l2cap.h.

The patched vanilla kernel (e.g. linux-2.6.17mh5) had to be compiled. This was
done using Ubuntu Dapper Drake 6.06 via the following commands:

$ tar xjf linux -2.6.17. tar.bz2

$ cd linux -2.6.17

linux -2.6.17$ patch -p1 < ../patch -2.6.17 - mh5

linux -2.6.17$ cp /boot/config -2.6.15 -26 -686 .config

linux -2.6.17$ make oldconfig

[...]

[edit some config options manually]

linux -2.6.17$ fakeroot make -kpkg kernel_image modules_image

--initrd --revision mh5 binary

[...]

linux -2.6.17$ cd ..

$ sudo dpkg -i kernel -image -2.6.17 mh5_i386.deb

After completing this step the new kernel has to be booted. Within this image we
can compile and load our L2CAP module dynamically via insmod. The development
took place within the directory /home/martin/kernel. To compile the necessary kernel
module we used the following Makefile:

ifneq ($(KERNELRELEASE),)

obj -m := l2cap.o

else

modules: l2cap.c

$(MAKE) -C /lib/modules/$(shell uname -r)/build M=$(shell

pwd) modules

install: l2cap.ko

install -d $(DESTDIR)/lib/modules/$(shell uname -r)/kernel/

net/bluetooth
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install -m 644 -c nozomi.ko $(DESTDIR)/lib/modules/$(shell

uname -r)/kernel/net/bluetooth

/sbin/depmod -e

uninstall:

rm -rf $(DESTDIR)/lib/modules/$(shell uname -r)/kernel/net/

bluetooth/l2cap.ko

/sbin/depmod -e

clean:

rm -rf *.ko *.o *.mod.c .*.d .*.cmd .tmp_versions Modules.

symvers

endif

With the help of this Makefile we compiled the module by issuing a make modules

command.
If no warnings or errors appeared we were able to load and test the module. But

to do so, we had to make sure no L2CAP module was already running with respect
to dependencies. Therefore we created a small shell script that helped unloading and
reloading the necessary modules as well as setting up the Bluetooth adapter:

#!/bin/bash

/etc/init.d/bluez -utils stop

modprobe crc16

rmmod rfcomm

rmmod l2cap

insmod /home/martin/kernel/l2cap.ko

/etc/init.d/bluez -utils start

hciconfig hci0 up

B.1. Bluetooth Adapters Used

The three adapters we used had different hardware capabilites. The output of the
command hciconfig -a is shown for all three adapters. The first one is about the
integrated Bluetooth adapter of the Acer Travelmate 3002WTMi, the second one cov-
ers the integrated Bluetooth adapter of the Acer Travelmate 803LMiB and finally the
third one shows the output for the external Cellink BTA-6030 USB adapter:

hci0: Type: USB

BD Address: 00:0B:6B:5F:8E:27 ACL MTU: 377:10 SCO MTU: 64:8

UP RUNNING PSCAN ISCAN

RX bytes :968409 acl :65326 sco:0 events :18614 errors :0

TX bytes :8249626 acl :120935 sco:0 commands :145 errors :0

Features: 0xff 0xff 0x0d 0x38 0x08 0x08 0x00 0x00

Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
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Link policy: RSWITCH HOLD SNIFF PARK

Link mode: SLAVE ACCEPT

Name: 'karin -laptop -0'

Class: 0x3e0100

Service Classes: Networking , Rendering , Capturing

Device Class: Computer , Uncategorized

HCI Ver: 1.2 (0x2) HCI Rev: 0x69 LMP Ver: 1.2 (0x2) LMP

Subver: 0x694a

Manufacturer: Broadcom Corporation (15)

hci0: Type: USB

BD Address: 00:02:8A:9E:93:1D ACL MTU: 192:8 SCO MTU:

64:8

UP RUNNING PSCAN ISCAN

RX bytes :385 acl:0 sco:0 events :18 errors :0

TX bytes :319 acl:0 sco:0 commands :17 errors :0

Features: 0xff 0xff 0x0f 0x00 0x00 0x00 0x00 0x00

Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3

Link policy: RSWITCH HOLD SNIFF PARK

Link mode: SLAVE ACCEPT

Name: 'bart -0'

Class: 0x3e0100

Service Classes: Networking , Rendering , Capturing

Device Class: Computer , Uncategorized

HCI Ver: 1.1 (0x1) HCI Rev: 0x20d LMP Ver: 1.1 (0x1)

LMP Subver: 0x20d

Manufacturer: Cambridge Silicon Radio (10)

hci1: Type: USB

BD Address: 00:0A:94:02: F2:1F ACL MTU: 384:8 SCO MTU:

64:8

UP RUNNING PSCAN ISCAN

RX bytes :385 acl:0 sco:0 events :18 errors :0

TX bytes :319 acl:0 sco:0 commands :17 errors :0

Features: 0xff 0xff 0x8f 0xfe 0x9b 0xf9 0x00 0x80

Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3

Link policy: RSWITCH HOLD SNIFF PARK

Link mode: SLAVE ACCEPT

Name: 'bart -1'

Class: 0x3e0100

Service Classes: Networking , Rendering , Capturing

Device Class: Computer , Uncategorized

HCI Ver: 1.1 (0x1) HCI Rev: 0x7a6 LMP Ver: 1.1 (0x1)

LMP Subver: 0x7a6

Manufacturer: Cambridge Silicon Radio (10)
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