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Abstract

This work presents a novel approach to driver reuse and isolation. We propose to
deprivilege binary device drivers and to use the original kernel API to interface
with the reused drivers.

We isolate device drivers by running them as regular applications in user-
mode. The original environment is emulated to the reused device drivers.
The drivers run as kernel-mode drivers in their native environment. We use
lightweight virtualization to deprivilege device driver binaries and run them in
user-mode. To demonstrate our approach we have developed a reference system
that reuses Linux 2.6 device drivers on top of a microkernel-based component
operating system. We successfully reuse network device drivers. Measurements
show that our implementation achieves performance comparable to native Linux
systems. However, the CPU utilization of our implementation is significantly
lower than that of the Linux system. With roughly 23K source lines of code
needed for our emulation environment, the engineering effort is very low.
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Chapter 1

Introduction

1.1 Motivation

Managing hardware devices is one of the core tasks of an operating system.
Device management is usually done by device drivers. There exist a lot of
devices and writing device drivers for all of them from scratch takes a lot of
engineering effort. Especially new operating systems often lack support for a
wide range of devices. Existing operating systems such as Microsoft Windows
and Linux have build a big device driver base over years. It is therefore self-
evident to reuse drivers from Windows or Linux in a new operating system.
The engineering effort to reuse device drivers is only the engineering effort to
build a reuse environment. It is thus significantly lower than the effort to build
a complete driver base. In addition existing device driver’s are debugged. They
already deal with undocumented errors in certain device revisions. The bug rate
of these device drivers is much lower than the bug rate of new drivers. Thus
the bug rate of the reused drivers consists mainly of the bug rate of the reuse
environment. The code size of the reuse environment is smaller than the code
size of a complete driver base and therefore the bug rate of the reuse environment
is smaller than that of a newly written driver base.

Device drivers are usually written by device manufacturers. Such device
drivers are the intellectual property (IP) of the respective device manufacturers.
Most manufacturers do not want to publish the source code of a driver due to
IP concerns. A driver reuse solution must take that into account and support
the reuse of binary device drivers.

The cost for system downtime (e.g. for large servers) is increasing [16].
System failures are a major source for system downtime. Device drivers account
for a large number of system failures [11]. If device drivers execute in kernel
mode, driver errors directly affect the whole system. Device driver isolation
isolates a device driver from the kernel. If device drivers are isolated, errors in
a driver are also isolated from the rest of the system. Therefore device driver
isolation improves system dependability. All operating systems that provide
a big driver base (Microsoft Windows, Linux) use non-isolated kernel-mode
drivers. Full device driver isolation however requires device drivers to run in
user-mode. A reuse solution that wants to isolate drivers must also deal with
the deprivileging of device drivers from kernel- into user-mode.

13



14 CHAPTER 1. INTRODUCTION

Users of reused device drivers expect the drivers to perform as good as the
drivers in the original system. A driver reuse environment must aim to achieve
the same performance as the native environment.

A new software that wants to be widely adapted must be runnable on com-
mon platforms. A reuse environment must therefore be portable to e.g. Mi-
crosoft Windows or Linux. Its design has to be hypervisor independent.

1.2 State of the Art

There exist several approaches to driver reuse and/or isolation. Cohosting runs
two operating systems parallel in kernel-mode with one of them only donating
device drivers (donor OS) to the “real” system. Cohosted systems do not pro-
vide any isolation [2, 48]. Virtual machine based approaches add isolation to
cohosting. The donor OS runs in a virtual machine. The host OS communicates
with the donor OS in the virtual machine via special interfaces [21, 39]. While
virtual machine based approaches add isolation, they hurt the performance of
the system due to the overhead introduced by the virtual machines. Emula-
tion based approaches take device drivers out of the donor OS and transplant
them into the new OS. OSKit [18] and other approaches [4, 23] use a kernel-
mode emulation environment and kernel-mode device drivers. Because they run
in kernel-mode these environments and the drivers are not isolated. Nooks [49]
uses kernel-mode drivers but provides a week form of isolation by putting the OS
kernel and drivers into different address spaces. The address spaces only isolate
kernel memory from driver memory, they fail to protect against non-memory re-
lated driver faults. A known technique to driver isolation are user-mode device
drivers [17,20,27,40,46]. User-mode device drivers completely isolate the driver
from the operating system. However all these approaches require to rewrite
drivers from scratch. Writing all drivers from scratch imposes a high engineer-
ing effort. Van Maren et al. [44] and other projects [25, 36] use emulation to
run kernel-mode device drivers in user-mode. They alter the source code of the
drivers to deprivilege them and to adapt them to their emulation environment.
None of these approaches delivered good performance results. In addition they
are unable to use binary device drivers because of the source code alterations.

1.3 Approach

The lack of a solution that reuses and isolates binary device drivers with good
performance motivated our approach. In this work we present a novel approach
to binary device driver reuse and isolation. We suggest to use emulation and
user-mode device drivers.

We reuse kernel-mode device drivers in user-mode (deprivileging). To make
kernel-mode drivers runnable without altering their source code we use lightweight
virtualization. Lightweight virtualization works on virtualized driver binaries.
A virtualized driver binary must conform to a virtualization standard [3,38,47]
that supports in-place virtualization. A virtualized driver binary therefore uses
two APIs, the original OS kernel’s API and a virtualization API. In-place virtu-
alization is a fast virtualization technique that allows to perform virtualization
in the same address space as the guest OS. Because device drivers use only very
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few privileged instructions our virtualization layer is very lightweight.
We reuse device drivers via emulation. We emulate an OS kernel environ-

ment to the deprivileged driver. The driver uses the original operating systems’s
kernel API to communicate with the emulation environment.

We implemented our approach on top of the L4 microkernel [41] and reused
Linux network device drivers. Linux allows to load device drivers at runtime via
the module interface. We use that module interface to cut off the drivers from
the Linux kernel. We construct our emulation environment using a bottom up
approach starting with the functions that the driver modules import. Step by
step we filled in missing functionality.

To evaluate our approach we use a UDP packet generator. A client runs
our system and transmits packets from the generator via the network. On the
server side an application measured the throughput of the received packets.
In addition to the network throughput we also measured the CPU utilization
during the send phase.

The structure of this thesis is as follows: In chapter 2 we discuss background
and work related to our approach. In chapter 3 we analyze the Linux kernel
and present the design of our work. Chapter 4 gives details on interesting im-
plementation issues of our emulation environment. In chapter 5 we evaluate our
prototype and present our test results. Finally chapter 6 summarizes important
aspects of our approach and discusses if we met our goals.
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Chapter 2

Related Work

In this chapter we first present background material about virtual machines
and device drivers. Afterwards we describe past approaches to reuse drivers
and improvement system dependability.

2.1 Virtual Machines

Virtual machines evolved from the idea of executing multiple operating systems
on a single hardware platform with strong isolation between them. A virtual
machine is a software abstraction of a hardware platform. The logic that im-
plements virtual machines is called the virtual machine monitor (VMM). An
operating system that runs inside a virtual machine is called a guest operating
system (guest OS). The operating system that the virtual machine runs on is
called the host OS.

An OS uses special instructions called privileged instructions to communi-
cate with the system and to access operating system specific functionality of
the processor. To help isolate the operating system kernel from the rest of the
system modern processors implement different privilege levels. Depending on
the privilege level in which code executes it has access to privileged instructions.
Operating systems are designed with the prerequisite that they run in the high-
est privilege level of the system (privileged mode). To ensure isolation between
virtual machines and protection of the host OS, the VMM can not allow a guest
OS to execute in privileged mode. The execution of a guest OS in a less privi-
leged mode (user mode) is called deprivileging of the guest OS. The process of
changing a guest OS to make it runnable in user mode is called virtualization.
The virtualization process depends on the underlying processor architecture.
On some architectures only privileged instructions have to be virtualized. The
instruction set of some architectures (e.g. the Intel IA32 instruction set [30])
however contains instructions that have a different behavior when executed in
user mode instead of privileged mode. These instructions are called sensitive
instructions. In contrast to privileged instructions which cause a synchronous
interrupt when executed in user mode, sensitive instructions e.g. return differ-
ent values. Due to that behavior sensitive instructions are harder to virtualize
than privileged instructions because there is no processor mechanism that can
be used to catch their execution.

17



18 CHAPTER 2. RELATED WORK

In the following we will discuss approaches to virtualization with respect to
Intel’s IA32 architecture. The virtualization techniques apply to every other
processor with an instruction set that contains privileged and sensitive instruc-
tions. Figure 2.1 presents an overview of current virtualization approaches.
Pure virtualization operates on unmodified guest operating systems. Virtual-

VMMBinary
Translator
Guest OS

Kernel

VM
Support

Modified
Guest OS

VMM

Kernel Kernel

Modified
Guest OS

VMM

VM
Support

Kernel
Mode

User
Mode

VM
Support

(1) (2) (3)

Figure 2.1: Virtualization Approaches
(1) Pure Virtualization (2) Para/Pre- Virtualization (3) In-Place

Virtualization

ization and emulation is performed at runtime. Para- and pre-virtualization
virtualize a guest OS by modifying it. Only emulation has to be done during
runtime. In-place virtualization operates in the same address space as the guest
OS.

2.1.1 Simulation

Simulators like QEMU [7] or bochs [35] emulate the complete instruction set
of a CPU in software. Simulators are hardware-independent, they can be run
on CPUs other than the one they emulate (e.g. QEMU emulates Intel’s IA32
instruction set but also runs on the Power PC). While simulators are a hardware-
independent approach, their major drawback is the performance overhead that
is caused by the complete emulation. A simulator needs to fetch, decode and
emulate every instruction in software. The simulation engineering effort depends
on the size of the instruction set of the emulated CPU.

2.1.2 In-Place Virtualization

In-Place virtualization [38] moves the virtual machine monitor (VMM) into the
same address space as the guest OS. Calls to emulation functions in the VMM do
not need context switches anymore. Instead a local jump to the emulation code
is sufficient. In-place virtualization reduces the emulation overhead significantly.
The problem is that the VMM code has to be protected against the modifications
by untrusted code. Guest OSs assume full access to their address space. To be
able to use in-place virtualization the guest OS has to be aware of the VMM.
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2.1.3 Pure Virtualization

Pure virtualization utilizes an unmodified operating system. If the processor
architecture’s instruction set contains only privileged instructions which cause
a switch to privileged mode when executed in user mode the VMM may catch
these switches, emulate the instruction and continues execution. On processor
architecture’s with sensitive instructions however this approach is impossible
because sensitive instructions execute in user mode with a different result in-
stead of causing a switch to privileged mode. VMware builds virtual machines
that use binary translation [1] to implement pure virtualization on architectures
that contain sensitive instructions. Binary translation parses the guest code at
runtime, passes all non-sensitive instructions through to the processor and em-
ulates the sensitive instructions. While this approach has less overhead than a
simulator, there is still a significant overhead caused by the binary translation.
First of all parsing the guest code introduces overhead. Second, the guest OS
assumes full control over the address space. However the VMM needs to reserve
a region of the address space of the guest for the binary translator. The code
in the region must be sufficiently big to contain code that parses the guest code
and switches to a different address space where the VMM emulates the instruc-
tion. Emulation of a sensitive instruction in this scenario can be sometimes
done in-place (in the same address space) but may also lead to at least two
context switches between the guest OS and the VMM. The code parsing and
the context switches lead to performance degradation.

2.1.4 Para-Virtualization

Para-virtualization [52] like implemented by [24] or [6] does not require emula-
tion of sensitive instructions. Instead a new software interface (paravirt inter-
face) is defined that resembles the original hardware interface without privileged
and sensitive instructions. Instead the paravirt interface defines in addition
functions that directly call into the VMM. The simplest paravirt interface re-
places privileged and sensitive instructions with similar code in the VMM. How-
ever the para-virtualization technique allows the introduction of new functional-
ity that is not defined in the original hardware interface. The new functionality
can significantly increase performance. The downside of para-virtualization is
the high engineering effort to port an existing operating system to the new par-
avirt interface. Another problem of para-virtualization is the need to access the
source code of the guest OS. If the source code of an operating system is not
available and the manufacturer is not willing to make the necessary modifica-
tions the operating system can not be run in the para-virtualization environ-
ment. There are ongoing efforts to specify a virtualization standard [3,47]. Such
a standard would allow interoperability between para-virtualization VMMs and
lower the engineering effort for operating system manufacturers because they
have to port their OS to one interface instead of many different ones. Para-
virtualization has a much higher performance than pure-virtualization because
it avoids the overhead of binary translation. In addition, the paravirt interface
can reduce the context switches between the VMM and a guest OS.
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2.1.5 Pre-Virtualization

Pre-virtualization [38] was developed to lower the engineering effort needed to
para-virtualize an OS while still maintaining the performance of para-virtualization
implementations. Pre-virtualization automates the virtualization process. In-
stead of finding and changing occurrences of sensitive instructions manually,
a parser is injected into the compilation chain. The parser locates sensitive
instructions and adds a pad of no-operation instructions after each sensitive in-
struction. In addition the parser adds annotations about the location of sensitive
instructions to the final binary. A VMM uses the no-operation pad to rewrite the
sensitive instruction with emulation code. One problem for pre-virtualization
are memory sensitive operations. In contrast to regular sensitive instructions
which can be easily extracted out of the source code, memory sensitive opera-
tions like writing the page-tables are hard to find. Because of these problems
the guest OS still has to be modified manually. However the engineering effort
to do so is several magnitudes lower than the effort for para-virtualization [38].

2.2 Device Driver

A device driver is software that manages a device. It exports an abstract in-
terface to users of the device. The users do not need to know device internals,
instead they use the abstract interface. It is the duty of the device driver to
map calls to the abstract interface onto device operations.

Modern operating systems treat device drivers as black boxes. They allow
users to load additional device drivers at runtime. Device drivers use a special
interface to communicate with the operating system. This interface is defined
in the device driver application programming interface (driver API). The driver
API is either a formal specification or implicitly defined by a set of functions that
a kernel exports for use by device drivers. Closed source operating systems such
as Microsoft Windows use the formal specification approach. The advantage of
a well-defined API is durability. The API usually does not change for years.
Open source operating systems (e.g. Linux, *BSD) use the implicit approach.
The disadvantage of the implicit approaches is that the driver API can change
with every new version of the OS. Every time the API changes, all drivers have
to be adapted to the new API.

In traditional operating systems, drivers execute in kernel mode. Consider-
ing that research shows that drivers account for a large fraction of operating
system errors [11] kernel mode drivers represent a severe risk to system depend-
ability.

2.2.1 Device Communication

Device drivers communicate with a device via I/O registers or device specific
memory. I/O registers on the IA-32 architecture are accessed via the I/O space.
The I/O space is partitioned into I/O ports. Each I/O port maps directly to
one device register. The IA-32 architecture provides special instructions IN and
OUT to read/write to /from I/O ports. Device specific memory can be mapped
into an address space. Code accesses device specific memory with the same
instructions as conventional memory.
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DEV

DEV

DEV

CPU Int. handler
Int. handler
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INT #
INT line

01 process top half
02 schedule bottom half
03 enable INT line

bottom half

waitqueue

Figure 2.2: Simplified Interrupt Handling
The diagram shows a simplified view on interrupt handling from the perspective
of a driver [31]. A device signals an interrupt via an interrupt line to the CPU.
The interrupt number is defined by the interrupt line. The CPU looks up the
interrupt handler in the interrupt lookup table using the interrupt number. Only
the top half of an interrupt handler is registered with the CPU. The top half
handler queues bottom halves during execution. The bottom halves are usually
executed when no interrupt is pending.

Devices use asynchronous events (interrupts) to communicate with the sys-
tem. Figure 2.2 shows a simplified diagram of the interrupt handling process.
If e.g. a device is ready to perform a data transfer, it signals an interrupt to
the processor. An interrupt is identified by its interrupt number. The processor
then executes code that has been registered for that interrupt number. This
code is called an interrupt handler. When an interrupt handler starts to exe-
cute, the interrupt line for its device is disabled. It is the duty of the interrupt
handler to enable the interrupt line again when the system is in a state where it
is ready to receive more interrupts from its device. Interrupts can happen very
frequently, often multiple times each second. If an interrupt handler takes too
long to execute, the system will lose interrupts. To circumvent the loss of inter-
rupts, interrupt handlers are divided into a top- and a bottom half handler [15].
The top half contains only the code that is necessary to bring the system into
a state where it can receive further interrupts. All other work that would be
necessary is deferred to the bottom half handler. The bottom half handler is
usually executed after all top half handlers have finished executing.

Not all devices use interrupts to signal events. For these devices a driver has
to poll the device regularly to examine if action is needed.

2.3 Driver Reuse

Driver reuse refers to the process of taking drivers from one operating system
(donor OS) for use in another OS (parasite OS). There are three different ap-
proaches to driver reuse. The first approach is called cohosting. The cohosting
approach runs two operating systems in parallel in privileged mode. One is
the donor OS and one is the parasite OS. The parasite OS uses the donor OS
to manage devices. The second approach transplants the device drivers of the
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Figure 2.3: Approaches to Driver Reuse
(1) Co-hosting (2) Emulation in kernel-mode (3) Emulation in user-mode (4)
Virtual machine based

donor OS into the parasite OS. The parasite OS emulates the donor OS to the
drivers. The third approach runs the donor OS inside a virtual machine. The
parasite OS communicates with the virtual machine to access a device through
a loadable kernel module. In the following we will explain the three approaches
in detail.

2.3.1 Cohosting

The cohosting approach [2,48] runs two operating systems parallel to each other
in privileged mode. One of them acts as the donor operating system. It provides
all the drivers. Cohosting separates the privileged mode into two worlds, the
donor world and the parasite world. A switch between the two worlds (world-
switch) is very similar to a context switch and equally costly. The parasite OS
loads a kernel extension (bridge extension) into the donor OS to make the it
aware of the parasite OS. In order to maintain full control over the donor OS
the parasite OS has to have full control over interrupts. Some interrupts like
e.g. timer interrupts are shared between the parasite and the donor OS. They
are first handled in the parasite OS and then forwarded to the donor OS. All
other device interrupts are directly handled by the donor OS [48]. The bridge
extension in the donor OS ensures that a device driver in the donor OS transfers
data to the parasite OS instead of to the donor OS if needed. If a program inside
the parasite OS wants to send data to a device, the parasite OS first transfers
the data to the bridge extensions which in turn pushes the data down to the
donor OS device driver. World-switches between the worlds of both OSs are
needed in device to system and system to device communication. These world-
switches introduce additional overhead on a critical path. The donor OS and
the parasite OS both execute in privileged mode. This co-location is very likely
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Table 2.1: Approaches to driver reuse via virtual machines

Feature LeVasseur et al. [39] Fraser et al. [21]
bridge interface customized unified
# of virtual machines
dedicated to driver OS multiple multiple
virtualization technique para-virtualization para-virtualization
modification of device drivers unmodified unmodified

to produce unpredictable side effects because at least the donor OS assumes full
control over all system resources.

2.3.2 Virtual Machines

The need for better isolation between reused device drivers and the OS kernel
inspired two approaches from LeVasseur et al. [39] and Fraser et al. [21] to
achieve driver reuse through the use of virtual machines. Both approaches
move a complete operating system kernel with additional drivers into a virtual
machine. The operating system in the virtual machine is stripped down to
the minimum functionality that is needed to run the OS kernel and drivers.
Drivers inside the virtual machine use the hardware interface to access devices
(pass-through access). Similar to cohosting a bridge extension is added to the
donor OS kernel. The bridge extension is fully aware of the fact that it is
running inside a virtualized environment. It uses special interfaces in the virtual
machine monitor to transfer data to and from the virtualized OS. Table 2.1
outlines the differences between ref. [39] and ref. [21]. How the bridge interface is
implemented depends on the trade-off between higher performance (customized
interface) and lower engineering effort (unified interface). Because use of only
one virtual machine would introduce a scalability problem on multiprocessor
systems both approaches principally allow the use of multiple virtual machines.
Both implementations show that the use of a dedicated virtualized driver OS
implies a significantly higher CPU load. The high CPU load lowers performance.

2.3.3 Emulation

Various approaches [4,14,18,23,25,36,44] tried to achieve performance by trans-
planting drivers from the donor OS into the parasite OS. Instead of reusing the
whole kernel and driver code base of the donor OS the parasite OS emulates
the donor OS kernel personality to the drivers. An OS personality consists of
a core kernel API, a driver API and an execution environment. Interfaces be-
long to the core kernel API if they are used by every kernel extension, not only
device drivers. The driver API defines interfaces that are solely used by device
driver kernel extensions. The driver API not only defines interfaces that device
drivers use to call into the kernel, it also specifies a device driver model. A
device driver model defines the behavior of device drivers and the kernel during
driver to kernel and kernel to driver interaction. It also defines operations com-
mon to devices across device classes that the kernel is aware of. The execution
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environment specifies the address space layout and the stack and thread layout.
Mach 4.0 [23], OSKit [18] and K42 [4] reuse Linux [42] device drivers. They

leave the drivers in privilege mode and co-locate them with the new kernel.
Between the new kernel and the Linux drivers an emulation layer emulates the
Linux OS personality to the drivers. [23] and [4] are focused on the respective
kernels Mach 4.0 [43] and K42 [33]. Both approaches are highly kernel dependent
and not usable in different kernels. These dependencies make them unusable
for future operating systems that follow a different design. OSKit [18] focused
on research operating system. They designed a complete reuse system for OS
components. These components are not only device drivers, but also e.g. file
system drivers or a TCP/IP stack. They merged the interfaces of different ker-
nels into unified interfaces. The emulation layer around the reused components
maps calls to the original interface into calls to the unified interface. OSKit is
designed to be hypervisor independent. Each component can work without the
help of other components. The conversion to the unified interface introduces
overhead e.g. additional memory copies if a reused component uses a buffer
that is incompatible with the buffer of the unified interface.

Van Maren [44], Helmuth [25] and Lee [36] are approaches to user-mode
driver reuse of kernel mode drivers. Van Maren attempts to port OSKit into
user-mode on top of the Fluke [19,32] microkernel. The design is driven by the
architecture of the Fluke microkernel. Device drivers are implemented as user-
mode servers. Interrupts are delivered to user-mode threads via IPC. There exist
one thread for each interrupt vector. An interrupt line is disabled by the kernel
when an interrupt is signaled on that line. The line is re-enabled from user-
mode using a system call. The performance is poor compared to kernel-mode
drivers [44]. Especially under high interrupt loads the performance of the fluke
microkernel becomes a limiting factor. Helmuth and Lee both implement their
approaches on top of the L4 [41] microkernel. Although Helmuth reuses Linux
and Lee reuses I/O kit device drivers their design is very similar. Dedicated
threads receive interrupts via IPC. An interrupt line is disabled by the kernel
upon reception of a signal.The interrupt line is re-enabled by the kernel upon
reception of a special IPC from user-mode. Helmuth’s implementation covers
only one sound card device driver. Therefore we can not make a statement
about performance nor about completeness of the approach. Like Van Maren’s
the Lee’s implementation suffers a performance degradation compared to native
drivers. We suspect that the reason is the para-virtualized Linux kernel that
they use to emulate a Linux user-mode environment.

2.4 System Dependability

The cost for system failures is constantly rising [49]. One step to reduce the
likelihood of system failures and to improve system dependability is to protect
the system against device drivers. Traditional operating systems execute drivers
in the same privileged mode as the kernel. In this scheme, a bug in a driver
is very likely to crash the whole system. Given the fact that drivers have a
bug rate three to seven times higher [11] than kernel code the need to protect
against drivers is evident. A first step to achieve protection is to isolate device
drivers from the rest of the operating system [21].
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Figure 2.4: Approaches to Improve System Dependability
(1) show the Nooks [49] approach. Core kernel and drivers all execute in privi-
leged mode. (2) shows virtual machine based approaches [21,39]. Device drivers
are completely isolated from the system. (3) is the architecture as used by user-
mode device drivers. Drivers are also completely isolated.

2.4.1 Nooks

The Nooks project [49] leaves drivers in kernel-mode but puts them in protection
domains. The core kernel and all extensions execute in different protection
domains. A protection domain in Nooks is simply an address space. Core
kernel and extensions communicate via synchronous IPC. An interposition layer
ensures data integrity across protection domains.

The Nooks approach does not provide full isolation of device drivers. Device
drivers are still able to circumvent the scheduling mechanisms of the kernel.
In addition drivers can still use all privileged instructions, which can lead to
potential deadlocks of the OS.

2.4.2 Virtual Machines

A virtual machine (VM) emulates a hardware interface specifically it intercepts
all attempts to access devices in the system. Thus Code inside a VM is com-
pletely isolated from the rest of the OS. [21,39] not only allow driver reuse but
also improve system dependability through the use of virtual machines. These
approaches need a high engineering effort and have a significant performance
overhead.

2.4.3 User-mode device drivers

A common approach to protect the OS against device drivers is to move drivers
from kernel into user-mode [17, 20, 22, 27, 40, 44, 46]. Drivers in user-mode are
completely isolated from the OS kernel. In addition if the hardware supports
it, devices can be protected against device drivers too. However all approaches
(except for the virtual machine based approaches above) to user-mode device
drivers so far required to rewrite device drivers from scratch which imposes a
high engineering effort.
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Chapter 3

Linux Driver Support

Design details of the emulation environment depend on the donor operating
system. We reuse Linux 2.6 device drivers. In this chapter we describe interfaces
of the Linux kernel from the perspective of device drivers. Device drivers only
use a limited set of all kernel interfaces, thus the description is not complete.
Further information about the Linux kernel and the Linux device drivers is
available from [9,13].

3.1 Driver Architecture

The Linux driver architecture is divided into several components (see Figure
3.1). At the bottom of the Linux device driver stack is the hardware abstraction
layer (HAL). The HAL makes the basic hardware platform (processor, interrupt
& memory controller) accessible via a unified interface. Bus drivers manage bus
devices via the HAL. They offer interfaces to enumerate and access devices on
the bus. Device drivers rely on bus drivers to manage devices. Buses provide
unique identifiers (ID) for each connected device. A device driver registers itself
with every bus that might have attached devices that the device driver wants
to manage. Along with the registration the device driver provides the IDs of its
manageable devices. The Linux kernel ensures that the drivers get attached to
every matching device on a bus. Device drivers are either used by other modules
or they directly expose themselves to user-space via Linux’s user-space device
interface. User-mode applications use system calls to utilize device drivers or
modules in the kernel.

3.1.1 Kernel Extensions

Linux allows extension of the kernel at runtime. These loadable components are
called modules. The Linux kernel exports a set of functions for use by modules.
These symbols and the symbols that modules export are managed in a global flat
symbol namespace. Modules are dynamic link libraries with additional symbol
export information. When a module is loaded, Linux matches the undefined
symbols of the module with the symbol namespace. If the namespace contains
all needed symbols, the module is linked into the kernel’s address space. From
that point module and kernel code are not treated separately. Module code
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Figure 3.1: Linux Driver Architecture
Linux kernel extensions are called modules. Modules can be anything, from file
system drivers over device drivers or bus drivers. Modules can be recursively
stacked upon each other. Not every module exposes itself to user space. Only
the topmost modules in the module stack communicate with user space via well
defined interfaces.
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has the same rights as static kernel code. Linux does not provide standardized
mechanisms for stacking of modules. Stacking of modules is solely done via
linking to symbols in the symbol namespace. There are no predefined data
structures for data transfer between stacked modules.

User-space applications access modules via Linux’s system call interface.
Device drivers are usually represented by special file nodes to user-space. An
open on the file node is mapped to an open call on the device and so on. However
device file nodes support a special interface called ioctl. The ioctl interface
allows a driver to provide functionality beyond the file interface. Each ioctl call
contains at least a function number and a parameter. Those parameters are
directly transferred to the driver. The function number corresponds to special
functions in the driver like e.g. setting certain device parameter. The parameter
can also be a pointer to user-space memory. Linux allows drivers to read and
write arbitrary user-space memory. This allows a driver to exchange information
with user-space applications.

3.1.2 Device Driver

Linux distinguishes between three main classes of devices: character- , block-
and network devices. Character devices send and receive data as a stream of
bytes, one at a time. Examples are the serial port or printers. A block device
sends and receives data in blocks of bytes. A classic example for block devices
are disks. The blocks have a fixed size. For performance reasons, the block
size is always a power of 2. The smallest block size that Linux supports is
512 byte. Communication with character and block devices is straight forward.
Upon reception of a system call, the driver issues a read or write request to the
device. It then blocks and waits for an interrupt to arrive from that device.
Other user-space requests are queued in the meantime. Upon completion of the
I/O request, the device signals an interrupt. The driver receives the interrupt
and completes the data transfer. Interrupts for character and block devices
never occur unexpected, asynchronous to a user-request. They always occur
synchronously after the device driver has issued an I/O request.

From a data-size perspective, network devices are block devices. They work
with dynamic block sizes. However due to the nature of networks, they can
receive data asynchronously and thus signal interrupts at any time. A network
device driver has to be able to transfer data from the device without any user-
space application waiting for it. This asynchronous data transfer is achieved
through queuing. Linux maintains a packet queue for each device. Arriving
packets are queued here for further processing by e.g. the next component in the
network stack. User-space applications usually do not operate on network device
file nodes. They use another special file type called sockets. Sockets are an
abstract interface that allows buffered communication between two endpoints.
E.g. a send operation on a socket in the network case usually corresponds to one
or more send request issued by the driver to the device. Ref. [9] contains further
information about the socket concept. The driver does not need to know about
sockets. During e.g. a send operation, the message is processed by various layers
in the network stack [50] until finally the bottom-most layer pushes the packets
to the network driver.
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3.2 Kernel API

We categorized all interfaces to the kernel API that are used by but are not
specific to device drivers.

3.2.1 Processes and Scheduling

Device drivers use threads for example as servers that process requests to the
driver. Requests are queued and the thread processes them one after another.
The notions of tasks, processes and threads are not clearly defined in the Linux
kernel. Every thread e.g. not only has a thread control block (called thread info)
but also a task control block (called task struct) associated with it. Since the
non existing naming scheme can lead to confusion we introduce terms that we
will use throughout this thesis to describe these abstractions. We will call thread
of execution a thread. There can be multiple executing threads in one address
space. A process consists of an address space and all threads that execute inside
that address space. Linux threads have three different states: running, waiting
and blocked (see Figure 3.2). Running means that the thread currently executes
on a CPU. A waiting thread would be able to execute but all CPU’s are used
by other threads. The thread waits to be scheduled. Blocked means that the
thread is waiting for an external event. Such a thread can not be scheduled.
Threads give their CPU away (yield) through a call to the scheduler.

Running Waiting Blocked

Figure 3.2: Linux Thread States

3.2.2 Synchronization

The Linux kernel allows multiple parallel threads of execution inside the kernel.
If these threads access shared data, they need synchronization mechanisms to
protect the data. The simplest protection mechanisms that Linux supports are
to switch off asynchronous events and spin locks. Switching off asynchronous
events is achieved by disabling interrupt delivery. This is dangerous because if
a bug occurs while interrupts are disabled the system may easily remain locked.
Disabling interrupts is processor local. On multiprocessor systems other pro-
cessors still execute regularly. That means that on multiprocessor systems a
system global synchronization mechanism is needed. This global synchroniza-
tion is achieved on Linux through the use of spin locks. Spin locks are only used
on multiprocessor systems as they can easily lead to deadlocks on uniprocessor
systems. Upon the basic synchronization mechanisms, Linux provides more con-
venient and less error prone solutions: Semaphores, Mutexes and Completions.
Semaphores under Linux follow the classical semaphore scheme as described by
Dijkstra. The up and down operations can be blocking or non-blocking. In the
blocking case the down operation is guaranteed to succeed. If a semaphore that
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a thread tries to acquire is locked, the thread is blocked and woken up by the
up operation. It then checks again if the semaphore is locked and continues or
blocks again accordingly. Mutual exclusions (mutex) under Linux are simply
semaphores with a count of one. That means that at any given time, only one
thread holds a semaphore lock. Completions are a lightweight mechanism that
allows one thread to tell the other that a specific task is completed [13].

3.2.3 Timing

Timing refers to the concepts of delays and delayed work. The difference in
the Linux kernel is that delays are blocking and delayed work is not. Delays
are implemented as busy waiting loops. Thus delays should only be used for
short time periods like a fraction of a second. Longer delays cause unnecessary
processor overhead. However the advantage of delays is their accuracy, usually
in the range of microseconds.

Delayed work is based on the timer interrupt. That means that every time
the timer interrupt fires, the timer handler checks if the time for a specific
delayed work item is used up. If so, it schedules execution of the delayed work.
Device drivers use delays for example to make sure that a device has loaded a
value into its registers. Delayed work is usually used for periodic tasks, e.g. to
implement watchdogs [53].

3.2.4 Deferred Work

During execution a driver might want to defer work to a later point in time,
e.g. during interrupt handling. Modern driver’s interrupt handling routines are
separated into two halves, a top and a bottom half [15]. The top half executes
only the parts that are absolutely necessary to process the interrupt and defers
the rest of the work to be done to a bottom half handler. The bottom halves
are executed by the softirq thread. The softirq thread checks regularly if any
deferred work is pending. In addition, a signal to the softirq thread immediately
triggers deferred work execution if no interrupt handler is running.

3.2.5 Memory

Linux differentiates between three types of physical memory: DMA capable,
normal and high memory. The types are directly coupled to Linux’s address
space layout (Figure 3.3. On modern systems, all physical memory is usable
for DMA and thus the DMA and normal memory zone are equal. On older
systems however, only a small area at the beginning of the physical address
space is usable for DMA. Linux reserves the virtual memory between three and
four gigabyte for the kernel (kernel region). Physical memory is mapped into
the kernel region continuously starting at address zero. If the physical memory
is bigger than the kernel region the upper, not directly accessible parts, are
accessed via special mappings. DMA capable memory refers to all memory
mapped into the kernel region that can be used for DMA access. High memory
is physical memory that is not mapped into the kernel region and has to be
accessed via specifically created mappings. Normal memory is all memory that
is not DMA or high memory.
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Figure 3.3: Linux Memory Layout
DMA Capable and a part of regular physical memory are mapped directly into
the address space. High mem is mapped into the address space on demand.

There are three different aspects of memory management that drivers use:
heap management, memory mappings and direct memory access (DMA). Heap
management allocates arbitrary sized chunks of memory. Linux puts no size or
alignment restrictions on memory allocated from the heap. However the kernel
heap is restricted in its overall size. Memory mappings reserve whole pages for
use by the driver. Therefore the supported granularity is the smallest page size
that the hardware platform supports. There are special allocation functions
that allow the reservation of continuous pages. Direct memory access is used to
speed up data transfer between a device and the system. Instead of having the
driver read all data out of device registers via I/O ports, the device accesses the
physical memory directly via the bus. The driver translates the virtual address
of the buffer that the device should use into a physical address and hands the
physical over to the device during the I/O request.

3.3 Device Driver Model

A device driver model defines drivers from a kernel’s point of view. It aggregates
common mechanisms and abstractions for drivers into a unified model. The
Linux driver model supports the following tasks [13]:

User-space Communication Linux provides a special virtual file system
called sysfs. It is tightly coupled to the device model. It provides mechanisms
for exposing device information to user-space and for user-space to driver com-
munication.

Device Class Management Device classes abstract device specifics and ag-
gregate functions that a group of devices supports into a device class. A driver
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assigns a device to a class. The standard functions of that device can then be
easily used by other kernel-code without specific knowledge of the device.

Power Management & System Shutdown To be able to shutdown devices
or to switch the power state of a device, the Linux kernel maintains a tree like
structure of device dependencies apart from hardware dependent mechanisms
like e.g. ACPI [26]. The device model also provides a hardware independent,
unified interface for power management and shutdown that a driver has to
implement.

Hotplugging Hotplugging is a widely used concept in modern computer hard-
ware. The hotplugging model has to deal with the addition and removal of de-
vices during runtime. It uses the dependency tracking mechanism of the device
model to notify components about the addition or removal of devices.

Object Lifecycle Management Hotplugging, power management and sys-
tem shutdown need proper object lifecycle management. For example the kernel
has to ensure that an object is not destroyed until the last entity that uses has
shut down. The Linux device model provides automated mechanisms to control
creation and destructions of dynamic objects that are used by several compo-
nents.

3.3.1 Communication with hardware

Device drivers communicate with devices via I/O ports or device specific mem-
ory. Drivers access I/O ports via the hardware interface provided by the pro-
cessor. Device memory must be mapped into a driver’s address space. Linux
provides functions that deal with access management and mapping of I/O ports
and device memory.

3.3.2 Interrupt Handling

The Linux kernel manages the interrupt controller. Drivers register interrupt
handler with the interrupt number of their device and hand over a function
pointer. The function pointer points to the driver’s top half interrupt handler.
It is possible that multiple drivers register for one interrupt number (shared
interrupts). Linux maintains an array with all registered interrupt handlers. If
an interrupt is received, it calls all handlers that are registered for that interrupt
number. It is the duty of the handler to check if the interrupt was sent by
its device. The interrupt handler signals via a return value if it handled the
interrupt or not.

3.4 Execution Environment

Linux maintains a kernel space stack for every thread in the system (kernel
threads). The stacks have a fixed size and are aligned to their size. The thread
control block (TCB) is located at the bottom of a stack. Thus accessing the
TCB of a thread is done by masking out bits of the current stack address. The
stacks are not protected against overflows. Linux also provides a process control
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block (PCB) for every process in the system. Every TCB contains a pointer to
the PCB of the process that the thread belongs too.



Chapter 4

Design

4.1 Requirements and Goals

First, we define the requirements and goals of our design. Most notably our
design should provide:

Isolation We want to improve system dependability by isolating the device
drivers we use. We want to do so without hurting compatibility with existing
driver APIs. Improved system dependability with equally good performance
will give as an advantage over traditional operating systems.

Performance Our approach is specifically targeted towards production based
systems. On such systems we have to compete with established operating sys-
tems such as Linux or Microsoft Windows. Thus our approach needs to perform
equally good concerning e.g. network throughput.

Low Engineering Effort Previous approaches to driver reuse had perfor-
mance problems [21, 39] or required driver developers to completely rewrite
their drivers [17, 20, 22, 27, 40, 44, 46]. Completely rewriting a driver requires a
huge engineering effort for a large driver base. We put almost no engineering
effort on the driver writer’s and thus on the device manufacturer’s side.

Hypervisor Independence To be widely adapted a novel approach must be
usable on different operating systems not only an esoteric research system. Our
design should be completely independent of the underlying system. We will
show that Linux and Microsoft Windows would both be feasible for approach.

4.2 Overview

We reuse kernel-mode device drivers in user-mode. In a first step the device
drivers are deprivileged using a novel lightweight in-place virtualization solu-
tion. To run the drivers we emulate the personality of the donor OS to the
device drivers. The reused drivers run together with the virtual machine moni-
tor (VMM) and the donor OS emulation in a protection domain called a device
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driver environment (DD/Env). Figure 4.1 presents an overview of our reuse
environment. Device driver environments (DD/Env) run on top of a base envi-
ronment. The base environment has no knowledge about devices in the system.
It partitions the I/O space to provide access management for device registers
and device specific memory. A DD/Env contains the reused driver and emula-
tion code. It runs as a regular user-mode application inside a protection domain.
It exports the interfaces of the driver to clients. Clients can be applications or
other DD/Envs. Applications use the abstract service interfaces of the DD/Env
to communicate with devices.

Device Device System Platform

Hypervisor

DD/Env

DD/Env

Applic. Applic.

uses

Figure 4.1: Component Overview
Device driver environments (DD/Envs) contain the reused driver. They offer
services to applications and other DD/Envs. DD/Envs have exclusive access to
devices.

4.2.1 Base Environment

The base environment is the only hypervisor dependent layer in our design. It
converts operations such as mapping a physical page into a driver’s address space
into one or multiple calls to the underlying hypervisor. A base environment
provides the following services: memory management, I/O space partitioning,
CPU management and PCI management. Depending on the underlying kernel,
most of this functionality may be implemented in kernel-mode. For example [12]
describes kernel extensions for Linux to support user-mode device drivers. The
base environment manages memory, CPU and the I/O space through protection
domains. Each protection domain has one address space, one I/O space and one
or more threads. Address spaces are used to manage physical to virtual memory
mappings. The base environment provides mechanisms to map physical pages
to address spaces in user-mode. The I/O space of a protection domain maps
a subset of the global system I/O space for use by code inside the protection
domain. Rights to access an I/O port are local to a protection domain. Access
rights can be either shared or exclusive to the protection domain. A global
management instance ensures proper management and setup of access rights.
Threads are used to manage the CPU resource. We require our base environment
to provide kernel-mode threads because we do not want a thread to block all
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other threads in its protection domain when blocked in the kernel. In addition
to protection domains, the base environment also manages the PCI subsystem.
The PCI subsystem is used to find devices and to communicate with devices on
the PCI bus.

Base Environment on L4

We use the L4 microkernel [41] in our approach. L4 runs as a privileged hyper-
visor in kernel-mode. It provides address spaces and threads. All other tasks
are performed in user-mode (Figure 4.2). We provide memory management

Hypervisor Kernel mode
User modePhy. Mem. DSM

I/O

PCI

DD/Env DD/Env

DD/Env

Figure 4.2: Example system based on L4
The L4 microkernel runs as a privileged hypervisor. User-mode servers build
the base environment.

and paging through dataspaces.
A dataspace is a container that abstracts memory objects such as files, phys-

ical memory, shared memory regions [5]. A dataspace can contain any memory
that is mappable or can be made mappable. If a thread wants to access data
in a dataspace, the dataspace is attached, e.g. mapped into it. We fill address
spaces by attaching dataspaces to them. For example to run an application, we
attach dataspaces that contain the application code and data, heap and stack
memory. Dataspaces are implemented by dataspace managers. A dataspace
manager is simply a task that implements the dataspace protocol. Dataspace
managers map regions of the dataspace either direct (the client ask for the re-
gion) or indirect (the client causes a page fault in a region that is attached to
a dataspace manager). The dataspace protocol allows clients to pin a page and
ask for its physical address. These mechanisms allow clients to use DMA

Partitioning of the global system I/O space is done by the I/O server. An
application (e.g. a device driver) asks the I/O server to setup permissions to
access an I/O port. Depending on whether the application is allowed to access
the I/O port and the type (shared or exclusive) and state (reserved or free) of
the I/O port, the I/O server grants access to the I/O port to the application.

The PCI server provides operations such as finding a specific device on the
bus or communicate with devices via the bus.

4.2.2 Device Driver Environment

Device driver environments (DD/Env) run in user-mode inside protection do-
mains. They consist of the virtualized device driver, a lightweight virtual ma-
chine monitor and the OS personality emulation. They offer the device driver
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interface as services to applications. Since DD/Envs are regular applications,
they can make use of the services of other DD/Envs if necessary. This allows
stacking of DD/Envs.

4.2.3 Applications

Besides DD/Env other applications execute in the system. They use services of
the DD/Envs or embed DD/Envs to communicate with hardware devices.

4.3 User-mode Device Drivers

We achieve isolation through the use of user-mode device drivers. We deprivilege
kernel-mode device drivers and reuse them in user-mode. Our emulation envi-
ronment maps calls to the original kernel-mode API into calls to our user-mode
environment. That means that our user-mode environment has to be flexible
enough to support any possible kernel-mode API. We achieve this flexibility by
providing only a minimal set of mechanisms for memory and device manage-
ment in the environment. All other functions and policies are implemented in
the emulation environment.

There are two possible designs for user-mode device drivers (Figure 4.3) [17].
In the first design the driver is implemented in its own protection domain. It
acts as a server that reacts to requests from (client) applications. The system is
fully isolated from the driver with that design. However if multiple drivers and
applications are stacked, the multiple protection domain crossings increase CPU
load and decrease performance. Thus we also allow to embed drivers into ap-
plications. Embedding drivers means that on a driver failure we have to restart
the whole application, not only the driver. These restarts are only possible if
the application’s interface is well enough defined to store the application’s state
between a restart.

Kernel space
User space

Device Driver

APP APP APP

Hypervisor Hypervisor

Application

DD

(1) (2)

Figure 4.3: User Mode Device Driver
(1) Device driver acts as a server for applications (2) Device driver embedded
into an application

Our framework does not enforce the usage of a specific design approach. We
explicitly allow both scenarios. Different users have different needs. We believe
that the trade-off between isolation and performance should be decided by the
user and not by us.



4.4. LIGHTWEIGHT VIRTUALIZATION 39

4.4 Lightweight Virtualization

To run kernel mode drivers in user-mode we deprivilege them. The deprivileging
is done in two step. The first step is applied by the driver manufacturer. Au-
tomated preprocessing converts the device driver to confirm to a virtualization
standard. In our work we used pre-virtualization [38], however our design works
with every other standard such as VMI [3] or paravirt-ops [47] too. Virtualiza-
tion preprocessing produces a binary that is dynamically linkable to our in-place
virtual machine monitor (VMM). Because drivers only use a few privileged in-
structions the VMM is very thin and lightweight. Our VMM only emulates
asynchronous events. Pre-virtualization adds a byte pad of no-operations in-
structions after every privileged instructions. Additionally pre-virtualization
adds information about the location of the privileged instruction to the binary.
During the loading process of the binary our VMM locates the privileged in-
structions and replaces the byte pad with emulation code. Because we only
emulate asynchronous events, the VMM has a very small size. Thus privileged
instructions are emulated with the lowest possible overhead.

Emulation of the interrupt delivery flag A disabled interrupt flag means
the currently running code will not be preempted under normal circumstances.
If it is interrupted (e.g. on the x86 architecture via a non-maskable interrupt)
it is the duty of the interrupt handler to ensure data integrity. We do not stop
execution of all driver threads if the emulated interrupt flag is disabled. Instead
we treat the code that is executed between the disable and enable interrupts
instructions as a critical section. To protect the critical section, we use a global
lock (interrupt lock). Every function that tries to read or write the interrupt
flag has to acquire the interrupt lock beforehand. If a thread wants to save the
interrupt flag, we acquire the lock, save the flag and release the lock. However
if a thread disables interrupts, we only acquire the lock. We release it when
interrupts are enabled again.

4.5 Linux Kernel Emulation

In the following section we describe the design of our Linux kernel emulation.
Our emulation completely replaces the Linux kernel’s memory management and
scheduling functions. The replacement of Linux’s memory management allows
us to define our own address space layout.

4.5.1 Emulation Obstacles

Emulation of the Linux kernel to drivers imposes several problems, most of them
are inherited from the fact that the Linux kernel uses an ad-hoc API approach.
The Linux APIs are not documented and not formally specified. Linux simply
exports a set of functions and variables that a driver can import. In the following
we will give a detailed view on the problems and restrictions that the Linux API
has with respect to emulation.

Emulation of the Linux kernel APIs is difficult because of several reasons:
Missing modularization, encapsulation and documentation. Modularization is
often broken in favor of gaining performance e.g. through the use of inlined
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functions or direct pointer access. Export of global variables and compiled in
constants break encapsulation. Missing documentation about assumptions and
side effects complicates the emulation task even more. These missing features
have two reasons, the lack of a formalized API specification and the Linux
approach to open source development.

Binary Modules

We use binary Linux device driver modules. That means that we can’t make
any changes to a driver’s source code. We are bound to conform to Linux’s
kernel API. For example unlike past approaches [25, 36, 44] we have to emulate
every variable that a driver might import.

Full exposure of structures

Linux fully exposes data structures to device drivers. Drivers can access every
field in the structure. These accesses are a problem for emulation. The emula-
tion layer has to ensure that at any time the fields contain correct information.
Given the fact that most structures are undocumented this can be a error prone
task. Most drivers do not use the kernel related fields. However we have to
protect our device driver environment against false accesses e.g. by catching
access to pointers that we do not emulate. Another problem that arises from
these accesses is that some structures force us to exactly emulate internal kernel
functions. For example the page struct assumes a specific address space layout.
This is explicitly bad for us because to speed up emulation we want to avoid
duplicating the Linux virtual memory management.

Function inlining

Linux defines parts of its APIs as inline functions. The functions are automat-
ically added to the driver code during compilation. Most times, an interface is
partially defined via inline functions and partially in code modules. This mix-
ture of inlined and non-inlined function causes difficulties for emulation. We
have to completely emulate the behavior of the non-inlined function with all
undocumented assumptions of the inlined functions. E.g. if an inlined func-
tion assumes that a specific lock is held when it is called, we have to ensure
that the lock is held under every circumstance that may lead to a call to that
function. These assumptions prevents us from using optimized functions that
would have the same effect to the driver. An example are semaphores. The
semaphore struct is fully exposed to drivers. All down operations are inlined
for performance reasons. If a inlined down operation fails it calls an in-kernel
function that deals with the failure. If the down and up operations would not
be aligned, there would be no need to expose the semaphore struct to drivers.
Instead the driver would use an abstract semaphore interface that would allow
the interface implementation to implement optimized semaphore code.

Size and alignment restrictions

Another issue for emulation are undocumented size and alignment restrictions.
Especially when it comes to size and alignment restrictions, the ad-hoc API
approach of Linux shows its weakness. Some data structures in the Linux kernel
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have size or alignment restrictions that are not even documented in the source
code. An example are kernel thread stacks. Their size is fixed, usually to 8Kb.
However some inline function and macros, e.g. the macro that returns a pointer
to the TCB at the bottom of the stack, assume that the bottom address of a
stack is also aligned to the size of the stack. Such assumptions are hard to find
and hard to debug on errors.

Compiled in constants

Linux provides kernel extensions with compiled in constants. They are usually
defined via the C preprocessor and pulled into the driver binary during com-
pilation. Compiled in constants represent compile time policies. An example
is the length of the periodic timer interrupt. Emulation code might want to
change some of the policies for optimization reasons. However with compiled in
constants this is not possible without changing the Linux source code.

Global Variables

Besides regular functions, Linux also exports global variables for use by kernel
extensions. Often kernel code makes assumptions about the values of these
variables or side effects of changes of the variables. These assumptions and side
effects are undocumented and complicate the emulation of global variables. For
example although it is not necessary for our timekeeping architecture we have
to increment a special variable (jiffies) with each timer tick because device
drivers use it to determine packet timeouts.

4.5.2 Code Reuse

Wherever possible we try to reuse original Linux kernel code if it meets the
following criterion:

1. The code does not pull in memory management or scheduling related code

2. The code is runnable in user-mode

The first criterion ensures that we are able to use our own memory manage-
ment code, which is trimmed for our user-mode interface and thus faster than
the Linux code which is optimized for bare hardware. The first criterion also
prevents unmodified reuse of source code that makes any assumptions about
the address space layout. The second criterion prevents the reuse of code that
contains sensitive instructions. Such code would either throw an exception when
run in user-mode or even worse produce unpredictable side effects. We want to
avoid both and thus we disallow the use of sensitive instructions.

4.5.3 Memory Management

Linux’s memory management is written to run on bare hardware. For example
it contains a lot of code that deals with the management of page frames and
virtual memory. We do not need such code in our emulation environment. Thus
we decided to not reuse Linux’s memory management code at all. Instead we
emulate Linux’s memory allocation behavior.
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To emulate Linux’s memory management, our allocator has to fulfill the
following requirements and restrictions:

• Allocate physical and I/O memory on a per page basis. If more than one
page is requested, the pages have to be contiguous.

• Allocate conventional and physical memory in arbitrary sized chunks. If
physical memory is allocated and a chunk spans over more than one page,
the pages have to be contiguous (I). The caller of the allocation function
may specify a special flag indicating that allocated physical memory has
to be suitable for direct memory access (DMA).

We rely on the base environment to allocate memory on a per page basis. The
base environment serves physical, conventional and I/O memory pages. If a
driver requests a whole page, we map it into the driver’s address space using
the base environment. Conventional memory allocation has no special restric-
tions. We use a standard memory allocator to serve conventional memory. The
conventional memory allocator retrieves conventional memory from the base
environment on a per page basis and serves it in arbitrary chunks. Conven-
tional memory is not suitable for DMA and might get swapped out by the
base environment to backing store. Because it might get swapped, access to
conventional memory is potentially slow which makes it unusable in fast paths
(e.g. a driver’s interrupt routine). In contrast to conventional memory, physical
memory is guaranteed to remain mapped until it is released. The drawback to
conventional memory is that physical memory is a limited resource. Allocation
of physical memory in arbitrary sized chunks, is also more restricted than al-
location of conventional memory. Our physical memory allocation consists of
two independent parts: Allocation of pre-defined memory blocks and allocation
of memory blocks with no prior knowledge of their size. To allocate memory
blocks of pre-defined size we use a slab-like [8] allocator. If we have no prior
knowledge of the memory block to be allocated we use a simple algorithm: If we
have enough free space on a page for the block, we allocate it there. If the block
would span over multiple pages, we request enough pages that meet restriction
(I) and allocate the block on the new pages. If there is free space on the new
pages left, we add it to our free space.

Direct memory access (DMA) is highly hardware dependent. E.g. on a sys-
tem with an ISA bus, only the lower 16MB of the physical memory are suitable
for DMA. We rely on the base environment to page-wise allocate DMA-able
memory. If the requester requests DMA-able memory, our memory allocator
takes memory out of the DMA pool instead of the regular physical memory
pool. The DMA pool is backed by the base environment. Linux allows driver’s
to build their own DMA pools. These DMA pools are not allocated using the
regular kernel allocator. Instead they use memory mappings to acquire physical
pages suitable for DMA. DMA pools are not resizable. They serve chunks of
DMA-able memory in a fixed size. We reused Linux’s management code for
DMA and replaced the code to establish memory mappings with calls to the
base environment.

4.5.4 Processes and Scheduling

We mirror Linux threads using threads of the base environment. Each Linux
thread corresponds to a thread in the base environment. We replace Linux’s



4.5. LINUX KERNEL EMULATION 43

scheduling with the scheduling of the base environment. Linux compiles infor-
mation about the stack layout into drivers. To reuse drivers we have to ensure
that the stack layout of our threads is the same as the stack layout of a Linux
thread. Specifically that means that the stack size and alignment has to be the
same. We emulate the thread states using the base environment. During thread
execution, we ensure that the thread state information in Linux’s thread control
block (TCB) is always correct from Linux’s perspective. Initially a thread is in
the running state. If a thread asks the scheduler to put it into the waiting state,
it wants to yield the CPU. We emulate yielding the CPU by indicating to the
base environments scheduler that we voluntarily give up the rest of our time
slice. We do not have to change the thread state here because if the thread is
allowed to execute again, it will be in the running state. If a thread requests to
be blocked, we use a base environment call to the scheduler to block it. Simi-
larly if another thread unblocks it, we call to the base environment’s scheduler
to unblock it.

4.5.5 Synchronization

We emulate disabling of interrupts, spin-locks, semaphores and completions.
Disabling interrupts is handled by the virtual machine monitor (VMM). Spin-
locks use the following algorithm:

1. Disable interrupt delivery

2. If (multiprocessor system) acquire lock

Following Linux’s spin-lock semantics, on uniprocessor systems, only interrupt
delivery is switched off. The real lock is only acquired on multiprocessor systems.
Acquiring the lock is not necessary on uniprocessor systems because disabling
interrupt delivery stops execution preemption.

There are three different types of semaphores, blocking, interruptible and
non-blocking semaphores (See Figure 4.4). Semaphores consist of a count that
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Figure 4.4: Linux Semaphore Emulation
(1) Blocking semaphore (2) Interruptible semaphore (3) Non-blocking
semaphore

is atomically decremented if a thread tries to acquire the semaphore. The count
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is atomically incremented when the semaphore is released. If the count is zero,
the semaphore is locked. The three versions (blocking, interruptible and non-
blocking) only differ in the case where the semaphore is locked. The blocking
version blocks the caller until the semaphore is released by another thread.
There is no other way of waking up the blocked caller. The interruptible version
blocks the caller until another thread releases the semaphore or the blocked
caller receives a signal. The non-blocking version does not block the caller that
tries to acquire the semaphore but returns an error code that signals success or
failure of the acquire operation.

Completions are similar to blocking semaphores with an initial count of zero.
When a caller enters the completion we block him until another thread releases
the completion.

4.5.6 Interrupts

The base environment delivers interrupts to user-mode. We use a dedicated
thread for each interrupt source (interrupt thread). Each interrupt thread has
a handler assigned to it. Upon reception of an interrupt, the interrupt executes
the handler. When the handler is done executing, the interrupt thread blocks
again and waits for the next interrupt. The interrupt threads have the highest
priority in our emulation environment (Figure 4.5). We use strict priority
scheduling. That means that at any time the threads with the highest priority
always run. The second highest priority in our emulation environment has the
softirq thread. It executes any pending deferred work. The lowest priority have
the worker threads. They execute all regular code. Drivers register interrupt

INT INT INT

Prio

Highest

SoftIRQHigh

Worker Worker WorkerNormal

Figure 4.5: Linux Interrupt Priority Emulation
We use strict priority scheduling. Each interrupt thread is dedicated to one
interrupt source. The softirq thread regularly checks for scheduled softirqs and
executes them if necessary. The softirq thread runs if no interrupt thread is
active. The worker threads are allowed to execute when no interrupt or softirq
thread is runnable.

handlers with the kernel. Figure 4.6 outlines the execution flow during an
interrupt.

An interrupt handler is characterized by an interrupt number, a function
and flags. The interrupt number corresponds to the devices interrupt line, that
the device driver wants to receive interrupts from. The function has to be
executed by the interrupt handling code upon reception of interrupt. The flags
specify whether the interrupt handler is capable of sharing an interrupt with
another interrupt handler or if it expects interrupt delivery to be disabled upon
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execution. To emulate Linux’s interrupt handling, we maintain a global array
per protection domain. Each entry in the array corresponds to an interrupt line
number. We maintain a list of interrupt handlers per entry. Because interrupt
arrays are local to each protection domain, we do no allow shared interrupts
across protection domains. When an interrupt is received we call each interrupt
handler from the list in the corresponding array entry until one of them signals
that the interrupt was handled.

Device Base
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IRQ signal
interrupt

Interrupt
Handler Lookup Linux

Handler;
Disable INT if
necessaryLinux

Handler
Interrupt
Handler returnblock

Figure 4.6: Linux Interrupt Handling Emulation

Emulation of the timer interrupt Instead of using the programmable in-
terrupt controller to receive timer interrupts, we rely on the delay mechanism
of the base environment. We dedicate a thread with interrupt priority to the
timer interrupt. The thread periodically executes Linux’s timer interrupt han-
dler. The delay period equals the timer tick period that Linux would use. The
timer interrupt handler performs the following tasks:

1. Update timekeeping

(a) Update timer tick count

(b) Update the time elapsed since system startup

(c) Update time and date

2. Update timers

Linux abstracts timers from the underlying hardware, which allows us to reuse
the timer code unmodified. However parts of the timekeeping architecture are
highly hardware dependent, so we completely emulate these parts. The time-
keeping architecture uses special timing objects. There is only one timing object
instantiated per system during runtime. A timing object has to provide the fol-
lowing functions:

• Mark offset

• Get offset

Mark offset is invoked by the timer interrupt handler, it records the exact time
of the last tick. Get offset, e.g. invoked by drivers, returns the time elapsed
since the last tick. For our emulation purposes we construct and instantiate our
own timing object. The mark offset function returns an increasing time value
with microsecond granularity. We use the base environment to get that value.
The get offset function of our timing object returns the number of microseconds
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elapsed since the last call to mark offset. The rest of the timekeeping code, that
update the different timekeeping variables is hardware independent so we reuse
it unmodified.



Chapter 5

Implementation

As a proof of concept we implemented our approach on the x86 architecture
with L4 as a hypervisor and Linux 2.6 as the donor OS.

5.1 Overview

We implemented a simplified version of our design for Linux network drivers
(Figure 5.1). L4 runs as a privileged hypervisor in kernel mode. On top of L4
two dataspace managers manage physical memory and grub modules. We moved
the I/O and PCI management into the same address space as the network device
driver environment (DD/Env). The inclusion of the I/O and PCI management
does not enhance performance because they are only used during initialization
of a driver to setup proper access to resources. Especially they are not used on
data transfer paths.

Kernel mode
User mode

System PlatformNetwork

dsm_phys dsm_grub

PCI

L4

Network DD/Env

I/O

dsm_bios

Figure 5.1: Implementation Overview
L4 runs as a privileged hypervisor in kernel mode. Three dataspace managers
(DSM) provide access to physical memory, bios memory and to grub modules.
I/O and PCI management are implemented in the same protection domain as
the network device driver environment.

47
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5.2 Base Environment

Our base environment consists of the L4 microkernel [41] as a privileged hyper-
visor in kernel-mode and several user-mode servers. L4 provides two abstrac-
tions, address spaces and threads, and two mechanisms, mappings and inter
process communication (IPC). L4 mappings allow to map one or more pages
that are mapped in the source address space into a region in the destination
address space. Via these mappings the address spaces are constructed hierar-
chical starting with a source address space that contains all physical memory
mappings. In addition to page mappings L4 also supports I/O page mappings.
An I/O page describes a continuous region in the I/O space of the system. Like
memory pages, I/O pages are mapped from a source space in which they are
already mapped into a destination space. I/O spaces are also constructed hi-
erarchical starting with one source space that contains all I/O space mappings
after the start of the system.

If a thread accesses a memory page or an I/O page that is not mapped into
its space the kernel generates a page fault or I/O page fault IPC. The fault IPC
is send to the pager of the faulting thread. The pager of a thread is a thread
in a different space that is specified during thread creation. After receiving the
memory or I/O fault IPC, the pager is allowed to map memory or I/O pages
anywhere in the faulting thread’s space.

Software generated interrupts (exceptions) and hardware interrupts are also
send by the kernel via special IPCs to dedicated threads. Each hardware inter-
rupt number is represented by a special thread. An IPC to the thread enables
the interrupt line that belongs to the interrupt number. In addition a thread
registers with these threads to receive hardware interrupt requests (IRQ) from a
device connected to the interrupt line. After reception of such an IRQ message,
the interrupt line is disabled. It has to be enabled by the thread who received
the IRQ message.

5.2.1 Virtual Memory

Our virtual memory framework is based on the dataspace concept [5]. Our
dataspace implementation provides two entities: dataspace managers and region
mappers. Dataspace managers implement data spaces. They make dataspaces
accessible via the dataspace manager (DSM) interface 5.2. Our generic DSM
interface consists of five operations open, close, pin, unpin and map. Open
checks if the caller has the right to access the dataspace and returns a handle
to the dataspace. The handles are local to each DSM. The map call requests
pages of the dataspace that has been previously opened to be mapped into
the callers address space. The pin operation pins a specific page to the callers
address space and returns the physical address of the page. Accordingly by
calling unpin the caller signals that a specific page is not needed to be pinned
anymore. The close operation makes the handle invalid and unpins and unmaps
all pages that have been previously mapped. Region mappers rely on the L4
pager concept. A pager is a thread that receives page faults caused by other
threads in the system. The page faults are delivered by L4 via IPC. The pager
then handles the page fault e.g. it responds via a mapping or it destroys the
thread. Region mappers implement the following calls: pagefault, addRegion,
removeRegion, virtToPhys and physToVirt. The pagefault operation follow L4’s
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fault protocol [34]. A thread uses addRegion to add a region of a dataspace to
its address space. Addregion does not map any pages. Pages are mapped into
the regions explicitly via the map operation or implicitly by the pager upon
a page fault in the region. RemoveRegion removes a region from the caller’s
address space and unmaps all pages in the region. VirtToPhys and physToVirt
translate virtual addresses into physical ones and reverse. A common operation

dataspace
manager
address space

dataspaces

A1 A2

address
spaces

Figure 5.2: Dataspaces

for a driver is to share a buffer with an application and a device. With our
dataspace implementation, the following operations are necessary to setup the
shared buffer and use it. First the buffer has to be allocated. To do that, the
driver opens a handle with the dataspace manager for physical memory. Then
it calls addRegion with that handle. To share the buffer the driver maps it into
the applications address space. To be able to do DMA operations on the buffer
the driver pins the buffer and receives the physical addresses of the pages. In a
last step, the driver programs the device to do DMA using the received physical
addresses.

5.2.2 I/O space partitioning

We construct address spaces via virtual memory mappings. Accordingly we
construct the I/O space of a space as a subset of the global system I/O space.
We extended the functionality of our region mappers to deal with I/O pages.
Threads can register and release access to regions of global I/O space with the
region mapper. If an I/O fault occurs inside such a region, the region mapper
maps the I/O page into the faulting thread’s I/O space. Access to the I/O space
is always exclusive in our environment.
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5.2.3 Dataspaces

Our base environment manages four dataspaces, physical memory, device mem-
ory, grub module memory and bios memory. Physical and device memory are
both managed by a single dataspace manager (physmem DSM). The physmem
DSM uses a buddy allocator to efficiently keep track of free physical memory.
The grub module dataspace contains all modules that were provided by the
Grub [10] bootloader. These modules are all executable binaries in the ELF [51]
format. The bios dataspace contains all pages that are related to the system’s
BIOS e.g. BIOS tables.

5.3 Device Driver Environment

A device driver environment consists of three software layers the emulation
layer, the virtual machine layer and the driver layer (Figure 5.3). All layers
are in the same address space. The emulation layer emulates the Linux kernel
to drivers. The virtual machine layer implements an in-place virtual machine
monitor based on pre-virtualization. The driver layer loads and executes the
reused Linux driver module.

Emulation Layer

Driver Layer

Virtualization Layer

Figure 5.3: Software Layers in a Device Driver Environment

5.3.1 Emulation Layer

The emulation layer emulates all parts of the Linux kernel API, that are needed
to run the driver.

Processes and Scheduling

We support only a very small subset of Linux’s process model. We do not
emulate the creation of additional processes because of the difficulties with ad-
dress space creation and scheduling that would evolve. All device drivers we
investigated do not use these functions. As stated earlier, Linux mixes up the
notions process, task and thread. A thread has an associated thread info and
task struct block. Linux uses the thread info block to store architecture depen-
dent thread data and the task struct block to store architecture independent
thread data. In the following we will call the combination of both structures
the thread control block (TCB).
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Threads We mirror Linux threads using L4 threads. Linux threads use stacks
with a fixed size and a start address that is aligned to the size. The TCB is
located at the bottom of a thread’s stack. To access the TCB, Linux masks out
bits of the stack address. The code for TCB access is inlined into the driver
module. This inlining forces us to use the same stack layout as Linux.

Thread state transition To transition to a different thread state, a thread
has to perform two operations. First it sets the thread state variable in the
TCB to the desired thread state (RUNNING / INTERRUPTIBLE / UNIN-
TERRUPTIBLE). In the second step it calls the schedule() function. The
schedule function then determines the desired thread state from the TCB and
puts the thread into that state. The states have the following meanings in the
schedule function: RUNNING means that the thread freely gives up its remain-
ing time slice (yield). INTERRUPTIBLE means that the thread wants to block
until another thread wakes it up or it receives a signal. UNINTERRUPTIBLE
means that the thread blocks until another thread wakes it up. In our emula-
tion implementation we do not emulate signals because they are not used by our
device drivers. Thus the INTERRUPTIBLE and UNINTERRUPTIBLE states
are treated the same. Figure 5.4 shows the pseudo code of our schedule im-
plementation. If the thread’s state is set to RUNNING, we call L4 Yield which

switch(THREAD_STATE) {
  case RUNNING:
    L4_Yield()
  case INTERRUPTIBLE:
    WAIT_FOR_IPC
  case UNINTERRUPTIBLE:
    WAIT_FOR_IPC
}

Figure 5.4: Linux schedule() Emulation

voluntarily releases the rest of the thread’s time slice. If the state is INTER-
RUPTIBLE or UNINTERRUPTIBLE, we block the thread by waiting for a
wakeup IPC message. To wake up a thread, we send an IPC message to that
thread.

Wait queues Whenever a thread needs to be blocked and queued in a data
structure, Linux uses wait queues. Wait queues consist of a FIFO list of the
waiting threads and of a spin-lock that protects the list. If a thread wants to
be enqueued, it first acquires the spin-lock, adds itself to the list, releases the
spin-lock and then blocks. When a thread wakes up the threads in the list, it
grabs the spin-lock, removes and wakes up one or more threads from the list
and releases the spin-lock after it is finished.

Synchronization

Linux synchronization mechanisms that are used by device drivers are spin-locks,
semaphores, completions. Linux spin-locks are completely inlined into the code
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via the C preprocessor. The inlining forces us to implement spin-locks in exactly
the same way as Linux does. Spin-locks on uniprocessor systems don’t acquire
a lock, they simply switch off interrupts. On multiprocessor systems however
they have a lock attached. A lock value of 1 means that the lock is acquired and
a value of 0 that the lock is free to take. There are two versions of the acquire
routine. The first version only tries to grab the lock one time and returns an
error value indicating success or failure. The second version tries to grab the
lock in a busy waiting loop. It only returns if it succeeds.

Semaphores are partially implemented inlined and and partially inside the
Linux kernel. We have to emulate the kernel side. The inlined part of a
semaphore first tries to acquire the semaphore. If it fails, it calls one of the
kernel functions. The inlined code uses a special calling convention so the first
thing that the fail-over code does is to convert the registers into the regular C
calling convention. After that depending on the type of the acquire call, the
caller is blocked (if the call was a blocking or interruptible call), or we return
an error value that indicates the failure of the acquire operation.

Completions implement the scheme were one thread wants to wait for an-
other thread to reach a certain point of execution. A completion is similar
to a semaphore with an initial count of 0. If a thread calls the completion’s
wait routine it is blocked and queued in the completions wait queue. Another
thread then wakes up dequeues the threads in the completions waiting queue,
indicating that it reached the desired execution point.

Deferred Work

Linux supports three different types of deferred work, softirqs, tasklets and work
queues. Softirqs are statically allocated and defined during compile time. They
have assigned priorities and are limited to 32. We manage softirqs in a static
array. They are executed by a dedicated thread (softirq thread). The softirq
thread has a higher priority than regular code but a lower priority than interrupt
handling code. To raise a softirq, we set the according flag in the softirq status
word and send a message to the softirq thread. The softirq thread then checks
the whole array for pending softirqs and executes them. In addition the softirq
thread checks every second if any softirqs are pending.

There are two different types of tasklets, high priority and regular tasklets.
They are implemented on top of softirqs. Because we emulate softirqs, we can
reuse the complete tasklet code.

In contrast to softirqs, code deferred to a work queue runs at the same
priority as regular code. For each instantiated work queue, we create a dedicated
thread. If no work is pending, the thread blocks without a timeout and waits
for new work to get enqueued. To enqueue work, a thread enqueues the work
item atomically into the work queue and wakes up the work queue thread. The
work queue thread then executed any items that are marked for immediate
execution. If pending work queue item has an associated delay, the work queue
thread sleeps for the delayed time and checks again when it wakes up.

Page Frames

Every physical page frame in the Linux kernel has an associated page descriptor.
These descriptors are stored in an array starting at mem map. The function
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alloc pages allocates one or more physically contiguous pages and returns a
pointer to the descriptor of the page with the lowest address. Page descriptors
are stored in the mem map array in the same order as they lie in the physical
address space (Figure 5.5). The page descriptor for the page frame with address

page
descr.

page
descr.

page
descr.

... page
descr.

mem_map

entry # 0 1 2 n

physical
address
space

Figure 5.5: Correlation between mem map and page frames

0x0 is in the first entry, the one with address 0x1000 in the second entry and
so forth. The page frame number (pfn) for a given page descriptor is calculated
via the formula pfn = (page descriptor - mem map). The mem map array only
allows to calculate the page descriptor from a given physical address. To get
the page descriptor for a virtual address, the virtual address first has to be
translated into a physical address.

5.3.2 Driver Layer

The driver layer’s purpose is to load and run Linux device driver modules. A
module is a binary file that conforms to the ELF [51] file format. It is relocatable
and dynamic linkable. In addition to the standard ELF sections, a module
contains two sections called ksymtab and ksymtab gpl. These sections contain
size and value of symbols that the module exports for use by other modules. To
emulate Linux’s symbol namespace we maintain a hash table with all symbols
that have been exported. The loading of a module works as follows:

1. Copy the binary to memory

2. Find and resolve all undefined symbols

3. Copy and link all needed sections

4. Apply relocations

5. Export all symbols from the special export sections

6. Release the previously allocated memory

7. Initialize the module

If not all symbols can be resolved, the loading process is stopped. We maintain
the symbol namespace per address space. Thus it is not possible to use exported
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symbols from other address spaces. That means that modules that depend upon
each other (e.g. the USB module stack) have to be loaded in the same address
space. However such modules usually heavily interact with each other and
thus putting them in different address spaces would cause severe performance
overhead. Linux defines a special function that all modules have to provide
called init module. This function is called to initialized the module.

5.3.3 Virtual machine Layer

We use pre-virtualization [38] to virtualize the drivers. Our virtual machine
monitor (VMM) only virtualizes interrupt delivery. The VMM adds another
step to the module loading process. After the undefined symbols in the module
are resolved and all sections have been relocated, it rewrites the pads that where
generated in the pre-virtualization step. To help locating the pads, the binary
has an additional section with the addresses of all pads. For each pad, the VMM
first scans the code to determine the instruction. After the instruction has been
identified, the VMM rewrites the binary with emulation code. The emulation
code calls functions of the VMM instead of the privileged instructions. Figure
5.6 lists the privileged instructions that device drivers use and the corresponding
emulation function. We pass through the IN and OUT instructions. We only

IN/OUT none
CLI VMM DisableInterrupts

STI VMM EnableInterrupts

PUSHF VMM Pushf

POPF VMM Popf

Figure 5.6: Privileged Instructions and the Corresponding Emulation Functions

have to emulate the delivery of interrupts locally in the driver’s address space.
We use a mutual exclusion semaphore (mutex) for emulation. If a driver wants
to disable interrupts we try to acquire the mutex. If the mutex is already taken,
the thread is blocked and waits for a wakeup message. When the thread who has
locked the mutex releases it, the blocked threads are woken up and can try to
acquire the mutex again. However we do not expect that case to happen often
because usually we have one device driver per address space which drives one
device. More instances of a driver can be running in different address spaces,
driving different devices but that does not affect local interrupt delivery.

The pushf instruction pushes the content of the EFLAGS register on the
stack. The EFLAGS register contains a bit indicating whether interrupts are
enabled or disabled. We set that bit according to the current state in the VMM.

The counterpart to the pushf instruction is the popf instruction. It pops the
top word of the stack into the EFLAGS register. If the bit in the stack word
indicates that interrupts should be enabled, we enable interrupts in the VMM
again like a real CPU would.

The mutex has to be acquired by all instructions who read or write the
interrupt flag. If e.g. the pushf emulation does not acquire the mutex there
exists a race condition. The usual sequence to disable and enable interrupts is:

1. PUSHF
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2. CLI

3. POPF

The pushf instruction stores the interrupt flag state on the stack, cli disables
interrupts and popf restores the state that was stored on the stack. The fol-
lowing instruction sequence between two threads (A and B) leads to a race
condition if the mutex is not also acquired by the pushf emulation: (A) dis-
ables interrupts via cli, (B) stores the state (interrupts disabled) via pushf, (A)
enables interrupts, (B) disables interrupts, (B) executes popf which does not
enable interrupts because the wrong state was stored before. To avoid that race
condition we acquire the mutex if a thread executes pushf and when interrupts
are disabled.

5.4 Networking

Our networking implementation is based on the Internet protocol suite [37].
The Internet protocol suite defines five layers (see Figure 5.7).

DataApplication Layer

DataTransport Layer Transport
Header

DataNetwork Layer Transport
Header

Network
Header

DataLink Layer Transport
Header

Network
Header

Frame
Header

Frame
Footer

Physical Layer                             Transmit Frame

Figure 5.7: The Five Layers of the Internet Protocol Suite

Physical Layer The physical layer is the bottom most layer in the protocol
suite. It encodes and transmits data over a physical network. It sends and
receives data from devices that are physically connected with the host.

Data Link Layer The physical layer does not alter packets, it only transmits
them. During transmission, the duty of the data link layer is to convert packets
into a format usable by the physical layer. Usually it just adds a header to the
packet. If a packet is received, the data link layer simply pushes it up to the
next layer. The data link layer expects packets to have the correct size for use in
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the physical network. Especially it does not split up packets with a size bigger
than the maximum transfer unit of the network device.

Network Layer The purpose of the network layer is to transfer and receive
packets within a logical network. A logical network spans one or more physical
networks. It converts packets that are pushed down by the upper layers into
one or more packets usable in the link layer (fragmentation). If packets are
pushed up by the link layer during a receive operation, the network layer may
hold packets that are fragmented until it is able to reassemble them.

Transport Layer The transport layer adds quality of service (QoS) features
to the data transfer. Which features are supported depends on the actual proto-
col that is used. QoS features are for example congestion control, data transfer
control, ordered data transfer, . . . .

Application Layer The application layer implements a session based man-
agement layer on connections. Optionally it includes a presentation layer that
e.g. converts data into a specific format.

In our implementation we focused on the data link and physical layer. The
reused driver together with the network device builds the physical layer. For
the data link layer we implemented the Ethernet protocol [28].

5.4.1 Overview

Figure 5.8 presents an overview of our networking implementation. We use a
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Figure 5.8: Linux Interrupt Handling Emulation
(1) Packet Transmission (2) Packet Reception

per device transmit and receive packet queue. In the transmit case, one or more



5.4. NETWORKING 57

threads enqueue packets on the transmit queue. To transmit the packet, they
call a function in the device driver that starts the transmission in the device.
In the receive case, the device triggers an IRQ upon packet reception. The
interrupt handler of the device driver calls a predefined receive function to deal
with the new packet. The receive function queues the received packet in the
receive queue.

5.4.2 Packet Representation

Linux network device drivers use the sk buff data structure to represent network
packets. Thus we have to use these packets in our network stack too to avoid
additional data copies caused by packet conversions. Figure 5.9 shows the
layout of a regular, not fragmented sk buff. Data in an sk buff is described by

struct sk_buff {
  ...
  unsigned char *head;
  unsigned char *data;
  unsigned char *tail;
  unsigned char *end;
}

 
tail

room

packet
data

head
room

Figure 5.9: Linux Packet Buffer Layout

four pointers a head, data, tail and end pointer. The head pointer always points
to the start of the data area. The data pointer points to the start of the packet
data. The room between the head pointer and the data pointer is called the
head room. It is reserved space for the various layer headers. The tail pointer
determines the start of the tail room, the area that is available for packet data.
The end pointer always points to the end of the data area. Initially the head,
data and tail pointer all point to the beginning of the data area and the end
pointer points to the end. Figure 5.10 shows operations on the packet buffer.
Through all operations, the head and end pointer remain constant. The reserve
operation operates on empty buffers. It reserves space for layer headers at the
start of the buffer. It increases the headroom and decreases the available tail
room. The put operations reserves space for packet data in the buffer. It leaves
the data pointer but decreases the tail pointer. The space between data and tail
pointer is now known to contain packet data. A push operation reserves space
in the head room e.g. for the header of a layer. It increases the data pointer and
leaves the tail pointer untouched. The size of a sk buff is annotated in the len
parameter. It is updated through the various operations. For non-fragmented
buffers it always equals data - tail.

We use UDP in the transport layer, IPv4 in the network layer and Ethernet in
the data link and physical layer. First alloc skb is called to allocate and create
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Figure 5.10: Linux Packet Buffer Operations

a new sk buff. Next we reserve space for the UDP, IP and Ethernet header via
skb reserve. Now that we reserved the header space we can reserve space for
packet data in the buffer. Packet data is reserved via skb put which returns
a pointer to the data area. We use that pointer to copy data into the buffer.
Next we create an UDP header. We reserve space for the header via skb push

and write the necessary data. The next step is executed in the network layer.
The network layer has to check if the size of the buffer exceeds the maximum
transfer unit of the network device. If it does, the network layer has to split
up the buffer into two buffers. We assume for simplicity reasons that the buffer
meets the size requirements. We reserve space for the IP header via skb push

and fill in the header. The data link layer now adds the Ethernet header and
calls queues the buffer into the transmit queue. If the thread that operates the
transmit queue is blocked, the link layer wakes it up. The transmit thread then
dequeues the packet and calls the hard start xmit function of the device driver.
The hard start xmit function programs the device to transmit the buffer via the
physical network.

Additional Variables In addition to the pointers that define the data of a
packet, the sk buff structure contains more variables. Table 5.1 outlines the
variables that are important for our implementation. See [9] for a complete
reference. The len field is automatically updated during data operations on the
buffer. The other fields have to be set explicitly by the respective layers.

Fragmented Packets Fragmented packets in this paragraph means packets
fragmented in the physical address space, not packet fragmentation as it is
performed by the network layer. Modern network devices support a feature
called scatter-gather I/O. Scatter-gather I/O describes the ability to gather
multiple chunks of data that are scattered over the physical address space via
DMA into one data chunk in the network device’s memory. The data is then
transmitted like every regular packet. Linux supports fragmented packets via
the sk buff data structure. A fragmented packet describes only the first part
of the packet data via the operations described above. In addition it contains
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Table 5.1: Important Variables of the sk buff struct

h Points to the header of the transport layer
nh Points to the header of the network layer
mac Points to the header of the data link layer
len length of data in the packet
data len If non-zero data len indicates that this packet is fragmented
ip summed Indicates what type of checksumming has to be done for the

packet (software / hardware / none)

Table 5.2: Network packet fragment descriptor

page Pointer to the page descriptor of the page frame that con-
tains the fragment

page offset Offset to this fragment’s data in the page frame
size Size of the fragment’s data

an array of fragment descriptors that describe the position of each fragment.
Table 5.2 shows the fields of a fragment descriptor. The page descriptor is
used to calculate the physical or virtual address of the page page frame. The
position of the fragment’s data is thus calculated with pos = get address(page
descriptor) + page offset. If a packet is fragmented, the data len field in the
packet’s buffer descriptor is non-zero. The data len field contains the overall
length of the packet data described by the packet’s fragment descriptors.
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Chapter 6

Evaluation

6.1 Test Overview

We compared our driver reuse environment against a Linux 2.6 system. The
tests were performed on a Pentium 4 machine with 256 Mb RAM. The Intel
Pentium 4 CPU we used has a clock speed of 1.5GHz, a 12Kb I-Cache, 8Kb
D-Cache and a 256Kb unified L2 cache.

6.1.1 Test Environments

Linux For our Linux test systems we used Knoppix [45]. Knoppix is a Linux
distribution that boots from a CD. Thus the tests were easily reproducible. We
stopped all network unrelated services on the system to minimize the overhead
caused by programs not related to our test.

Driver Reuse Our driver reuse environment used a current version of L4Ka::
Pistachio. L4Ka::Pistachio is the latest L4 microkernel that is developed at the
University of Karlsruhe. On top of L4 runs our base environment and driver
reuse environment. The driver environment reused drivers from Linux 2.6.9.

6.1.2 CPU Related Measuring

The Pentium 4 can be configured to count CPU related data using the time
stamp counter (TSC). Measurable data are the number of clock cycles, the
number of active clock cycles, the number of data- and instruction translation
look-aside buffer (TLB) misses and the number of L2 cache misses. All numbers
are set to 0 at system startup and updated with every clock cycle. To measure
a specific value, we read the value at the start of a benchmark and read the
value at the end of a benchmark. We subtracted the start from the end value
to calculate the usage during the benchmark.

We calculated the CPU utilization by dividing the number of active clock
cycles that elapsed during the benchmark through the elapsed number of overall
clock cycles.

61
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6.2 Software Engineering

6.2.1 Engineering Effort

We used the number of source lines of code as a metric for engineering effort.
Figure 6.1 shows the overall, core related, network related and PCI related lines
of code in Linux 2.6.19 and our driver reuse environment.

PCI

 Network

Core

 Overall

0 25000 50000 75000 100000 125000 150000 175000 200000

Linux 2.6.19

Driver Reuse

[SLOC] (< better)

Figure 6.1: Source Lines of Code
Generated using David A. Wheelers ’SLOCCount’

We calculated the overall source lines of code from three subsets. The core
subset contained all code for initialization and management tasks not related
to a specific subsystem (e.g. memory management, scheduling). The network
subset consisted of all code related to the data link layer such as device man-
agement and the Ethernet implementation. All code that manages the PCI
subsystem belonged to the PCI subset.

The whole Linux kernel consists of roughly 5 million lines of code. For our
calculation we only accounted the parts that are directly related to the three
subsets. For example we left out all device driver and file system code. The
overall code size of our reuse environment is 23420 source lines of code (SLOC).
Compared to Linux’s 183837 SLOC our code size is 8 times smaller which has
two reasons. First we did not reuse Linux’s initialization, memory management
and scheduling code. All these tasks are easier to implement on top of a micro-
kernel than on bare hardware and thus need less code. Second we only emulated
Linux’s network subsystem. The engineering effort to emulate a certain Linux
subsystem is smaller than the overall Linux code size related to that subsystem.
The core and PCI related code in our reuse environment account for 70% of
the overall code size. These parts are independent of the network subsystem
and can be reused for implementations of different subsystems. With only 23K
SLOC for our reference implementation the engineering effort to implement our
approach in a production environment is very low.

Completeness We measured the completeness of our implementation using
the symbols that drivers import from the kernel (see Figure 6.2). To calculate
the number of all imported symbols of a driver class we summed up all undefined
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symbols in the class’s modules. We identified the not implemented symbols
by matching the symbols that our emulation environment exports with the
symbols imported by the modules. The unmatched symbols were counted as
undefined. Although we only implemented the functions needed by the tulip and
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Imported
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Figure 6.2: Symbols Imported by Linux Drivers
The overall size is the size of the superset of the symbols of all four driver

classes. Some symbols are used by more than one class and thus the overall
size is smaller than the sum of the size of all classes.

e1000 network driver, our implementation covers the network driver class almost
completely. Because there are only few undefined symbols, the engineering effort
to add new network drivers is close to zero. In addition we already emulate 60%
of all symbols (247 out of 405) needed by all USB, IDE and SCSI drivers. Thus
the engineering effort to implement the emulation operations for more driver
classes will be lower than the effort needed for this first implementation.

Correctness Our design puts device drivers into multiple applications (de-
composition). This decomposition eases debugging because bugs and errors are
easier to match to a specific driver. In addition the small size of the decomposed
software modules lowers the complexity of each module and thus lowers its bug
rate.

6.2.2 Memory Footprint

We calculated the memory footprint of the Linux kernel and our driver reuse
environment by adding up the memory size of all loadable sections in each binary
(Figure 6.3). Due to its monolithic design the size of the Linux kernel is bigger
than the size of our reuse environment. Our environment is ten times smaller
than the Linux kernel. The small size significantly reduces the cache miss rate
of our environment.

6.3 Transmission Test

In this section we present data gathered during a streaming send test. We
measured the network throughput as well as the CPU utilization and CPU
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Figure 6.3: Memory Footprint of the Program Binaries

cache related data.

6.3.1 Overview

For our streaming send test we connected two systems (sender and receiver)
directly through a Gigabit Ethernet network. In a contiguous loop, the sender
sent packets over the network, and the receiver counted the amount of the
received data and calculated the throughput. On the sender side we calculated
the CPU utilization and cache miss rates. We used a Linux 2.6.19 system on
the receiver side throughout the test. On the sender side we used the same
Linux 2.6.19 system in a first test and our reuse environment in a second test.
Afterwards we compared our results against the Linux environment.

6.3.2 Test Assembling

On both, the sender and the receiver side we used a network card based on
Intel’s e1000 chipset. Our sender sends UDP packets over the network. The
packets have the maximum size that fits into one Ethernet frame to avoid side
effects due to IP fragmentation.

On the receive side we used a 256Kb socket buffer to avoid packet loss. The
receiver waited in the receiver loop (see Figure 6.4) until a predefined number
of packets was received. The throughput was calculated by dividing the amount
of data received through the time that was needed to receive the packets.

The Linux sender (see Figure 6.5) sent the packets through a socket. Each
packet was allocated on the heap. Afterwards the sender wrote a signature into
the packet and sent it through the socket. After the send operation completed,
the packet was freed.

For the send test with our reuse environment we used a packet generator that
was embedded into the driver environment (see Figure 6.6). After allocating the
packet the generator added a signature and the UDP, IP and Ethernet headers.
The generated packet was sent using the device driver’s transmit function.
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start timing;
WHILE (num_packets < max_packets) {

receive next packet;
num_packets++;

}
stop timing;
calculate throughput;

Figure 6.4: Streaming Send Test Receiver Loop

start performance counter;
WHILE (num_packets < max_packets) {
  allocate memory for packet;
  write signature into packet data;
  send packet through socket;
  free packet memory;
}
end performance counter;

Figure 6.5: Streaming Send Test Linux Sender Loop

start performance counter;
WHILE (num_packets < max_packets) {
  allocate memory for packet;
  write signature into packet data;
  add UDP, IP and Ethernet header;
  call driver's transmit function;
  free packet memory;
}
end performance counter;

Figure 6.6: Streaming Send Test Packet Generator Loop
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6.3.3 Throughput

Figure 6.7 shows the network throughput of Linux and of our reuse implemen-
tation. Linux achieves 50.2Mb/s, our reuse environment 46.8Mb/s. The gap
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Figure 6.7: Streaming Send Test Network Throughput

comes from different queuing strategies. Linux adds an extra queue before the
device driver’s packet queue. The driver’s packet queue is small and fills up fast.
The extra queue is used to queue packets that can not be added to the driver’s
packet queue. Thus a thread may continue queuing packets even if the driver’s
queue is full.

Due to time constraints we were unable to add an extra queue in our im-
plementation. If the driver’s queue is full, we yield the CPU and wait for the
queue to be available again. During this waiting process, we block and do not
generate any new packets. Figure 6.8 shows the time needed for each operation
in the packet generator loop when generating 100000 packets. We were spend-
ing a large fraction of the overall time blocked, waiting for the driver’s queue to
empty. An extra queue together with a special queuing thread would allow us
to queue packets and continue execution. If we make sure that the extra queue
is never empty, the driver’s queue will be continuously filled by the queuing
thread and thus the throughput would be higher.

6.3.4 CPU Utilization

An important indicator for the possibility of future optimizations of an imple-
mentation is the CPU utilization. Figure 6.9 shows the CPU utilization of Linux
and of our reuse implementation during the send test. The CPU utilization of
the Linux implementation (77.2%) is significantly higher than ours (25.1%).
One reason are the different queuing strategies. Another reason however is the
high L2 cache miss rate of Linux (see Figure 6.10).

6.3.5 Cache Usage

In this section, we discuss the L2, Instruction-Tlb and Data-Tlb miss rates of
Linux’s and our implementation.
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Figure 6.8: Time for Packet Generator Operations
Overall: Time needed for 100000 loops. Allocation: Time needed for packet
allocation. Headers: Time needed to generate and write the UDP, IP and Eth-
ernet header. Send: Time spent in device driver’s transmit function. Blocked:
Time spent waiting for driver’s packet queue to be empty.
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Figure 6.9: Streaming Send Test CPU Utilization
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Figure 6.10 shows the number of L2 cache misses during the sender loop
(100000 packets). Linux’s L2 cache miss rate is eight times higher (2996151)
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Figure 6.10: Streaming Send Test L2 Cache Misses

than the L2 cache miss rate of our implementation (390229). We had no time
to investigate the runtime memory footprint of Linux but we suppose that it
is higher than the one of our system because Linux is a full featured operating
system and our implementation is only a test environment for research purposes.
However, the test shows that L2 cache misses can have a significant performance
impact.

Translation Lookaside Buffer In addition to the L2 cache miss rate we
measured the miss rates of the instruction- and the data translation lookaside
buffer (TLB) (see Figure 6.11). Our implementation has a higher miss rate on
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Figure 6.11: Streaming Send Test TLB Cache Misses

both caches. The higher rates are due to our design. We use user-mode device
drivers. Every interrupt and exception may potentially lead to an address-
space switch and thus to a TLB flush. However the low CPU utilization of
our implementation shows that the higher TLB miss rate has only little or no
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performance impact. We do not expect the performance impact to be higher
on different CPUs because of the Pentium 4’s Netburst [29] architecture that is
known to have a high penalty for TLB flushes.
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Chapter 7

Conclusion and Future
Work

The goal of this thesis was to show that it is possible to reuse and isolate binary
kernel-mode device drivers and that the reused drivers are as performant as in
their native environment. The second goal was to reduce the engineering effort
needed to reuse the device drivers and to show that the engineering effort to
implement the emulation environment for the drivers is small. Furthermore we
requested the design proposed in this thesis to be hypervisor independent.

No previous approach to device driver reuse and isolation managed to meet
these requirements. Some approaches provide unmodified driver reuse but not
isolation. Others provide isolation and unmodified driver reuse but fail to deliver
good performance. Finally there are approaches that isolate device drivers but
require high engineering effort.

This thesis introduces a new approach to device driver reuse that performs
well and has a low engineering effort. Drivers are isolated by running them inside
lightweight virtual machines in user-mode. Reuse of device drivers is done by
emulating a kernel environment to the drivers. The proposed design uses a base
environment to achieve hypervisor independence. Device driver environments
depend on the interface of the base environment instead of a specific hypervisor
interface.

The evaluation of our reference implementation proves that our unoptimized
systems has a performance comparable to that of a Linux system. The con-
ducted benchmarks show that due to the low CPU utilization of our system
there is enough room for future optimization. We verified that the engineering
effort to develop our approach or to add additional drivers is low by compar-
ing the amount of source lines of code and the unimplemented symbols of our
implementation.

We consider our work as a starting point for new operating systems and as
a motivation for existing operating systems to move more device drivers into
user-mode. We believe that we created an environment that is easily extensible
to incorporate additional device driver classes. Although we have shown that
our approach works well with a UDP implementation, it is important to prove
that we can also achieve high throughput with a full featured TCP/IP stack
which is known to have higher interrupt rates. In this thesis we focused on a
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specific donor operating system. Although we see no further issues, future work
should show that our approach is feasible for other donor operating systems as
well.
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