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0 Abstract
This  study  thesis  focuses  on  the  power  consumption  of  different  combinations  of 
applications  on  simultaneously  multithreaded  and  multicore  microprocessors. 
Therefore, performance monitoring counters are examined for their usability to estimate 
and predict the performance and power on SMT and CMP systems. A wide range of 
different processor events has been investigated to find some, that can be used to gather 
information  about  the  behavior  of  the  two  architectures,  when  tasks  share  a 
microprocessor.  These events  are  be used for an energy aware scheduler  to  decide, 
which tasks should be executed at the same time. Such tuples of tasks can be chosen to 
prevent peaks in the energy consumption or to reduce the ratio of power per instruction.

1 Introduction
The  performance  of  microprocessors  can be  improved by  increasing  the  processors 
frequency at smaller component size, but this increases the power dissipation per area 
dramatically and requires expensive cooling devices. This is one cause for todays trend 
to  equip  even  private  personal  computer  with  more  than  one  single  processor  core 
instead of increasing the processor's  frequency or to  improve the performance by a 
better  utilization  of  components.  In  this  study thesis,  the  energetic  aspects  of  tasks 
running on such systems are investigated.

Performance monitoring counters are used in this work to analyze single applications as 
well as combinations of them. The application performance signature gained from this 
measurement is used to estimate the energy consumption of a single task or the whole 
microprocessor in real time. This approach is also topic of some related papers (see 
chapter 2). The goal here is to examine the possibility of predicting the energy and 
performance behavior of more than one application running on a microprocessor at the 
same time,  based  on  the  analysis  of  each  single  application.  An operation  system's 
scheduler should be able to use this information to limit the consumed energy by proper 
combinations  of  tasks,  which  are  executed  simultaneously  on  a  SMT  or  CMP 
architecture. Such a strategy can stabilize the energy consumption of a microprocessor 
within a close range. This improves the ability to limit the power more precisely by 
using clock modulation or frequency scaling. Another aspect is the energy spent for 
each micro operation, which is especially on SMT processors tightly coupled with the 
kind of tasks that are executed simultaneously.

The setup of the test environment is described throughout chapter 3. To include side 
effects of running applications on each other in the measurement and its interpretation, a 
bottom  up  approach  is  used:  many  of  the  available  events  are  counted  to  form a 
quantitative  weighted  model  of  the  microprocessor's  and  the  application's  behavior. 
Chapter  4 and 5 contain information about how it  was achieved to measure a large 
number of processor events and how the gathered data was interpreted and reduced 
afterwards.  After  that,  the  results  from  power  and  performance  measurement  are 
presented  (chapter  6)  and  their  connection  to  processor  events  (chapter  7).  The 
consequences for energy aware scheduling on SMT and CMP architectures in chapter 8. 
It shows how performance monitor counters can help a scheduler decide which tasks 
should run at the same time on such systems.
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2 Related work
This study thesis bases on the approach to relate consumed energy to processor events. 
Such  events  can  be  counted  by  many  of  todays  microprocessors  to  analyze  the 
performance  of  applications.[EDEA] describes  the  possibility  to  use  some  of  these 
countable  events  for  an  estimation  of  energy  a  whole  processor  or  a  single  task 
consumes in  real  time.  This  accounting  can be used to  limit  the  power  or  the heat 
dissipation using techniques like clock modulation or by inserting HLT cycles to the 
code  a  processor  executes.  Also  the  migration  of  tasks  within  distributed  or  multi 
processor systems can help to hold thermal limits for each component ([BPMP]). This 
work focuses on situations, where there are more tasks ready to run than a SMT or CMP 
system can execute at the same time. A scheduler can then choose which of them should 
be  executed  at  the  same  time  to  avoid  power  peaks  or  reduce  the  energy  a  task 
consumes throughout its lifetime.

3 Test and measure environment

3.1 Hardware
There were two computer systems with two different microprocessors available for this 
work. As SMT processor, an Intel Pentium 4 (Prescot) with Hyper-Threading enabled 
was used, whereas an  Intel Pentium D was used to represent a chip multi  processor 
(CMP). The hardware layout of these two processors is very similar and they use the 
same mechanism for performance monitor counting, which makes a good comparison 
of these two architectures  possible.  Other microprocessors  also offer event  counting 
facilities, but the available events as well as the interface of accessing them differs for 
many  microprocessors  and  manufacturers.  There  are  approaches  for  machine 
independent  event  measurement  like  [RABB],  but  the  processor  events  this  work 
focuses on can most likely be found on other architectures as well.

The power of the processors was measured by an external system, which was set up to 
sample  the  energy  consumption  at  5  kHz.  The  values  measured  this  way  are  the 
references for the correlations between performance monitor events and electric energy.

3.2 Usage of performance monitor counters
The Linux kernel 2.6.17.7 without forced preemption was used for the test computers. It 
was modified to support the access to performance monitor counters of the Pentium 4 
and Xeon processors in user space. There were some additional requirements for this 
mechanism. First of all, the processor's events must be counted per task. Therefore the 
task_struct was extended to hold the configuration and the results of the performance 
monitor counters. The scheduler sets up the events for the next task at task switch after 
saving the results for the previous task. These two actions will be explained a bit more 
detailed now.

The bottom up approach of this work as described in the introduction, requires to count 
many different events. The Pentium 4 and Xeon processors support a maximum of 18 
events to be counted simultaneously, but not every combination of them is possible. To 
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use more events per application, they are round robin scheduled per task on every task 
switch. It is possible, that some events are not counted, because they occur at a point of 
time,  where  the  schedule  monitors  other  events.  To  avoid,  that  this  influences  the 
results, an endless loop layout is used for the test applications as described in the next 
chapter. When transferring the conclusions of this study thesis to real world applications 
(see chapter 7 and 8), there are not that many events necessary, so they do not need this 
special kind of layout.

To relate the events to the time for which they were counted, a time value is also saved 
in the task_struct for every type of event. This is based on the time stamp counter event 
of  the  microprocessor,  which  is  read  at  task  switch  when  saving  the  performance 
monitor counters. For the interpretation of the time measured this way, it is important to 
know how the time stamp counter works on the target micro architecture.  On some 
processors this counter increments linear to time, on others linear to the clock rate of the 
processor, which may change. A cause for this change could be user- or kernel space 
power  management  software,  or  even  a  mechanism within  the  processor  itself  like 
Thermal  Monitor  1  or  2  that  throttles  the  processor,  when a  critical  temperature  is 
detected. On both of the test computers, the time stamp counter increments linear to 
time,  which is  also  the  planned mode of  operation for  future  processors  from Intel 
[IA32].

The performance monitor  counters can also help to detect  power state switches.  On 
Pentium 4  /  Xeon  processors  there  is  an  event  called  power_events,  that  causes  a 
counter to increment at every clock cycle. So the quantity of this event can be used to 
detect  changes in the processor's  clock rate.  This is  only possible if  the time stamp 
counter  increments  linear  to  time.  On  some  older  architectures  (like  P6)  it  also 
increments linear to the processor's clock, but not on the SMT and CMP systems used 
for this work. The overall power consumption is not the main scope of this study thesis. 
Since here the events had been measured per task and there was no power management 
software running, many of these things were not relevant. Anyway, to assure there were 
no power  state  changes while  one application from the test  suite  was  executed,  the 
power_events had been included in the test runs once per event schedule slice for each 
task. To set up the counters, a new entry in the proc filesystem was created, which can 
be used to configure a system wide default configuration. This is used for every new 
task but can be overwritten per task by another entry in the task's proc folder. It is also 
the place to read the counted events of a single task and the time for which they were 
monitored. To assure the consistence of the measured events, a mutex was used to lock 
the data while they are accessed by the scheduler or from user space.

3.3 Test suite
Eight applications are used to analyze  the energetic behavior of the SMT and CMP 
systems: int, float, fileread, memcp, memwr, random, randomloop and randomcall. All 
of them have got a similar layout. After initialization each application enters an endless 
loop in which it performs the job the specific test was designed for. At the end of each 
loop a counter within the application is incremented. When receiving a SIGPWR signal, 
the application prints this loop count together with its clock time. After that, the loop 
count  is  reset  and  the  clock  time  is  saved  to  be  subtracted  from  clock()  on  next 
SIGPWR. This way the applications in the test suite can give performance hints for 
every interval between two SIGPWR signals.
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The suite can be divided into three groups. The first group contains two applications 
which perform integer and floating point operations respectively. The do not use much 
memory for variables, no I/O and no conditional branches within the main loop. The 
second group consists  of three applications  that  mainly do I/O operations (from the 
processor's point of view). The first one reads a file from the hard disk to main memory 
over and over. The second application copies data from one to another location in main 
memory utilizing the standard library's memcp() call. The last member of this group is 
memwrite. It writes to main memory in a way that is very ineffective for  the benefits of 
the  cache  hierarchy.  The  third  group of  applications,  the  random group,  is  used  to 
analyze  the  efficiency  of  the  branch  prediction  unit  and  the  impacts  mispredicted 
branches have got to other applications running on the same chip.

SIMD instructions like MMX, SSE or their extensions are left out of this work. The 
cause for that is, that on one hand their limits are expected to be dominated by the bus 
and main memory system. On the other hand there might also be situations, where the 
SIMD facilities within the processor might limit the speed of processing. One possible 
scenario for the later one could be this one: two tasks, running on a SMT processor 
make heavy usage of these instruction on a limited amount of data. Since the data could 
be cached, the SIMD components of the processor could give the limit for these two 
tasks. To investigate scenarios like this would go far beyond the scope of this study 
thesis so the SIMD aspects of the processors had been ignored, although they could be 
very interesting for aspects of consumed energy.

4 Measurement procedure

4.1 A note on processor events
The Pentium 4 / Xeon processors offer a facility to count events that occur while the 
processor  is  working.  Some  of  the  model  specific  registers  are  used  to  select  and 
configure the events and the way they are counted. Other MSR's are used to count the 
events and can be read. The performance monitor counters of the used micro processor 
can count events when the path they are on is no more speculative. That means some 
events  can be  filtered  for  such,  that  occurred because  of  a  mispredicted branch,  or 
events that have been executed predicted. It is called “at retirement counting” and will 
be referred by this work in some places. Some events are called to be bogus in this 
context, when they occurred as a result of a branch misprediction. Events that arise on a 
predicted path are called to be non bogus. The SMT processor is able to filter some 
events by the thread that triggered them. These events are called “thread specific” while 
there are other events that can not be assigned to one of the threads. Such a type of 
events are called “thread independent” and can not directly be assigned to one specific 
task, if the  threads of the SMT processor are executing different tasks. For a more in 
deep description of performance monitor counters see [IA32].

With the modifications to the Linux kernel described in chapter 3, it is possible to set up 
and read processor events per task via the proc file system. They are coupled with a 
time  value  based  on  the  processor's  time  stamp  event.  In  this  study  thesis,  when 
referring to the quantity of a specific event,  there is always the ratio of one event's 
occurrences per time meant. Since the time stamp event increments at the speed of the 
processors frequency, these values are in the interval  of 0 to about 2 because some 
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events can occur more than one time per clock cycle. The superscalar design of the used 
processors can as, an example, finish more than one micro operation per clock cycle. It 
is important to know, that the quantities of events can not be compared for different 
processors directly, because even when both increment the time stamp at a constant rate, 
they could use different factors of linearity for that. Anyway, they give hints to compare 
different microprocessors when keeping that in mind and since the design of the two 
processors used in this work is very similar, they also showed to be.

4.2 The test runs
Each application from the test suite was first executed in a single instance on each of the 
test computers. During this runs, an extern data acquisition system was used to read the 
power consumption of the processor. It was made sure, that no other tasks ran at the 
same time, which used any significant time on the processor. Because of the loop layout 
of the applications from the test suite, it was possible to read very constant values for 
the  processor's  power  consumption.  After  that,  these  runs  were  repeated  for  every 
combination of two application from the suite running on the processor at  the same 
time.  Using  Linux's  CPU  affinity  feature,  they  were  bound  to  different  logical  or 
physical  cores. In this first test  phase,  also the performance of the applications was 
measured using their loop counters and clock values. The ratio of loop count to clock 
time will  be referred in this text as an application's  performance hint.  To ensure its 
accuracy and reproducibility, each test ran for about one minute, after which it showed 
to  be  stable  in  most  the  cases  (one  exception,  see  chapter  6).  The  values  of  these 
performance hints are not directly comparable for two applications, since they spend 
significantly different spans of time for one loop. But they can be used to compare the 
performance of an application when executed alone or in combination with others.

Processor  events  were  investigated  in  a  second  test  phase,  the  motivation  for  this 
approach will be explained now. As mentioned before, the idea was to create a model of 
the processor, weighted by a broad bandwidth of measured processor events. It should 
rate the importance of single events for criteria, that can not be measured directly like 
the influences of processor threads on each other. This huge number of events should 
also show the most significant relations between single events and energy or the effects 
two tasks have got on each other. Chapter 3.2 described how these events are scheduled 
for the performance monitor counter registers. As the layout of the applications from the 
test  suite  is  based on endless loops,  the quantity  of events (see chapter  4.1) should 
stabilize when running the test long enough. This is similar to the method used for the 
application's performance hints. The difference to this performance hints is, that there 
are some events, which occur very rarely and not at a constant rate. But these events 
should  not  be  ignored  in  this  test  phase  so  a  broadband  application  performance 
signature could be created.  Anyway,  running the tests  long enough could solve this 
problem, but how long is long enough for such kind of sporadic events? To find out, a 
monitoring tool was created, which read the quantity of events from the proc file system 
each t seconds while the tests were executed. It could be configured to save the last n 
results of all event's quantities and keep on monitoring, while all events in this n results 
are within a range of less than i percent difference. The values used for the second test 
phase were in most cases t = 5, n = 10 and i = 1. This means, that the monitor sampled 
the event's quantities every five seconds, compares them with the last ten results and 
continued until  the maximum value within this samples was smaller or equal to the 
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minimum value multiplied by 1,01. It showed, that the spans of time for which the tests 
had to run to reach the required accuracy was much longer than for the performance 
hints and that there also were high variances of this spans,  depending on the tested 
applications or their combinations. This monitoring tool, was the cause to measure the 
processor's power consumption and the performance monitor counters in two different 
test runs. To avoid the influence of the monitoring to the energy, the first run was made 
without it. But it should have had an effect small as possible to the performance monitor 
counters  as  well.  Therefore  the  monitor  was  bound  to  the  same  processor  as  the 
application to be monitored. Since the events were saved on task switch, it was made 
sure, that not even thread independent events (for the SMT processor) produced by the 
monitor were accounted for the application of interest, because they never ran at the 
same time on the microchip.

Anyway more task switches to another application means more stress for each of them 
as cache lines must be refilled for example. Therefore some of the tests were replayed 
without the monitor, but for the same span of time they ran before. The results showed, 
that there indeed were slight differences in the measured quantities of events. On the 
one hand, they were in the range of 1 percent or significant less, depending of the test 
application and the event. So the effect could be measured especially in cache hit and 
miss rates but far not that significant for events such as the quantity of front side bus 
activities. These side effects of the monitoring tool seemed to be acceptable, especially 
since the same parameters were used for all tests, and therefore all applications had a 
comparable penalty.

This  study  thesis  focuses  on  the  energetic  effects  which  could  be  achieved  by 
scheduling of tasks. It would probably be of interest to compare these to the magnitude 
of impact of hardware based methods. Therefore some tests have also been repeated at 
different processor clock modulations.

5 Data analysis and interpretation

5.1 Number of events
For a real world scheduler it would be a bad idea to watch too many events. One cause 
for that is that a very complex model would use much computation to be evaluated, 
which might not be very useful for a frequently invoked part in an operating system like 
the scheduler. Another aspect is, that there are not only applications around, which are 
based  on  an  endless  loop  layout  like  the  applications  from  the  test  suite.  So  the 
scheduling of tasks should be based on results from fine granular and real time updated 
records  to  handle  changes  of  an  application's  behavior.  Using  a  large  number  of 
processor events conflicts with this requirement, because the frequency each event is 
measured  declines  with  the  number  of  events  that  have  to  be  scheduled.  Anyway, 
scheduling of processor events might not be necessary, if there are just few events to 
monitor.  There  are  some  scenarios  for  which  an  offline  gathered  application's 
performance signature could be useful as well. On example is to create a schedule on a 
batch system, to plan the execution of different but relative homogeneous tasks. Then it 
could be help to have an idea what these different tasks mainly do to decide, which can 
be executed at the same time for an effective use of energy and system resources.
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5.2 Classification
For this study thesis it was required to reduce the number of events. The large number 
of them in the test runs was necessary to find out which ones are the best candidates for 
a  prediction  of  the  behavior  of  two  applications  with  respect  to  consumed  power. 
Excluding events does not necessarily mean to ignore the effect which triggered them. 
To heed this circumstance when preferring some of them, a classification is needed that 
should  reflect  the  physical  layout  of  a  processor  and  a  semantic  arrangement  of 
available events. An overview of the classification used in this work will be presented 
now.

● The number of µops (micro operations) executed by the microprocessor: these 
can be be divided into several sub groups. With at-retirement-counting, bogus 
operations can be distinguished from non bogus ones. Another point of interest 
might be which units of the processor are especially involved for their execution 
like the floating point unit or units for SIMD processing.

● The  cache  behavior  of  an  application:  in  particular  which  levels  of  the 
processor's cache hierarchy are involved, what are their hit and miss rates and 
how do translation look aside buffers perform.

● The processor's I/O: how much traffic is there on the bus (or buses in case there 
are more then one) as a result of cache misses, prefetches or other activities like 
DMA operations. 

● The application's predictability by the processor: especially how effective are the 
prediction units of the processor like the branch prediction. What is the best or 
worst case scenario for branch prediction and at which range are the ratios of 
predictions to mispredictions.

This list can give a general idea which kind of events were measured in the test phase of 
this work. Although many of the mentioned aspects are one to one covered by specific 
events  provided by the Pentium 4 /  Xeon architecture,  some must  be derived from 
others.  The  sum of  all  this  aspects  can  give  a  good  performance  overview (which 
performance monitor counters have initially been established for), but only some events 
should be used to gather information of a processor's energy (see chapter 5.1) plus some 
to predict these for the combination of applications.

One class of events from the list above was not relevant for this study thesis: SIMD 
instructions. As described in chapter 3.3, there also was no application in the test suite 
to cover this aspect.

5.3 Bottlenecks
The  speed  at  which  an  application  is  executed  on  a  microprocessor  is  limited  by 
different factors. The uppermost limit is given by the processor's clock speed and its 
pipeline layout. This means a processor can execute more than one instruction per clock 
cycle depending on the granularity of the pipeline, its functionality and the code to be 
executed.  In  many  cases,  this  upper  limit  is  not  reached  because,  as  an  example, 
operations depend on data from the main memory, which has to be delivered via the 
bus. Some of these data might be available from one level  of the processor's  intern 
cache hierarchy duo to prefetching mechanisms or because they are already present 
from earlier accesses to nearby addresses within the system's memory that are loaded to 
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the same cache line. In cases where an access to the bus has to be made, its speed or the 
one of the addressed resource limits the execution within the processor.

The speed of a task's execution is bound to one of these limits at all points of time. The 
kind of limit might (and in many cases will) change while the task runs. The idea for 
this work's goal to investigate the possibility of predicting the energetic behavior of 
tasks running together is to find events which show significant limits for each of them. 
They should then be used to make an assumption how the applications will influence 
each other and how this influences the processor's energy consumption.

There are two possible approaches to find the actual values for the limits that can be 
represented by processor events. The first one is to gather them from the specifications 
of a microprocessor and other system components. This seems to be a good idea in the 
first place, but in many cases it is very hard to achieve. If for example the number of 
clock cycles is known in which a second level cache line can be filled as well as the 
number of cache lines that can be filled simultaneously, then this information can give a 
maximum throughput of the cache, which will  most likely never be reached by real 
world applications. The first paragraph of this chapter showed other scenarios, which 
makes this strategy very unhandy. In this work, benchmarking is used to estimate limits 
represented by processor events, since the applications from the test suite are nothing 
else than benchmark tools for special aspects.

5.4 Procedure of data reduction
In the first test phase (chapter 4.2) the power of the processors and the applications 
performances were measured for all possible combinations from the test suite, including 
tests  for each application running alone.  These tests  have been repeated at  different 
clock rates. The result was a good base of data for the energy and performance behavior 
of the test suite. Each single run in the second test phase took significant more time to 
achieve the required accuracy.  Additional,  in this second phase not only two values 
were measured per test  but up to forty events.  To reduce the runs in this phase, an 
analysis of the energy and performance data was made. It showed the points of interest 
and gave reference values for energy predictions. So in the second test phase, not all 
combinations were necessary to investigate.  The quantities of events were measured 
only  for  each  application  running  on  a  processor  as  a  single  instance  and  as  two 
instances bound to different cores or processor threads. This made sense not only based 
on the data from the first phase, but also from a semantic point of view. The effects 
should be maximized by flooding the processor with code of one kind. Possible events 
indicating  bottlenecks should show up using this  procedure too.  In  addition to that, 
some hand picked tests were made where needed.

To analyze the data from the test runs, two aspects had been considered at all stages. 
One of them was the semantic of specific events and the knowledge of general functions 
and mechanisms within a microprocessor and of SMT and CMP architectures. The other 
aspect was the regard of events quantities. This was important for the approach to use a 
weighted model for the investigated processors as mentioned at the beginning of this 
text. It also showed to be very useful for a better understanding of some of the events. 
Although  there  are  plenty  of  information  available  regarding  the  general  setup  and 
usage  of  performance  monitor  counters,  the  processor  events  are  not  that  well 
documented. Based on these two aspects, it was searched for significant relations within 
the events quantities and between them and consumed energy (see chapter 7).
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6 Power and performance

6.1 Motivation
Energy awareness can mean different things, dependent on the scale at which consumed 
power  is  considered.  For  an  operating  system's  scheduler  there  are  two  reasonable 
focuses about energy: energy per time and energy per instruction. This chapter presents 
power and performance measurement results from the first test run which give hints 
about this general aspect for the SMT and CMP systems..

The data within this chapter refer to the highest energy level on the SMT (3 GHz) and 
the  CMP  (2,8  GHz)  processor.  Other  tests  showed,  that  the  effects  which  can  be 
observed here, become smaller at lower clock speeds. The diagrams presented in this 
chapter show the power or the performance off all applications from the test suite. They 
have all  got  a  similar  layout  and contain  data  for  all  possible  combinations  of  two 
applications from the test suite.

6.2 Power
The SMT and the CMP architectures show a very different energetic behavior when two 
tasks  are  running  at  the  same  time.  While  the  power  of  the  CMP  system  is  very 
symmetric  and  predictable  [Diagram  1],  the  SMT  processor  tends  to  have  a  more 
specific behavior when tasks are coupled [Diagram 2]. The interference of applications 
is more significant here, since the two processor threads share more resources.

Diagram 1: Power of task tuples CMP
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Diagram 2: Power of task tuples SMT
A  model  for  predicting  the  energy  consumption  of  two  tasks  will  be  described 
throughout  chapter  7.  One  tuple  of  tasks  is  of  special  interest  at  this  point:  the 
combination of two instances of memwrite. On the CMP system, this tuple consumes 
just few energy compared to other tuples of two tasks, but on the SMT processor its 
power was even the lowest, including all single instance runs.

6.3 Performance
The next diagram [Diagram 3] displays the performance of the applications, based on 
their  performance  hints.  The  Y-Axis  measures  the  speedup  factor  of  two instances 
compared  to  the  performance  of  a  single  instance  for  each  application.  These 
performance hints  are  calculated  based on the loop count  and the clock time of an 
application. Another diagram for the performance behavior of the CMP architecture, is 
not presented in this chapter, because all values are close to 1 (since the cores to not 
influence each other like processor threads). When handling the ratio of loop count to 
clock time on a SMT processor, there is one important thing to concern. If only one 
instance of an application is running, it can cover all the processors resources for the 
time  it  is  executed.  When  two  instances  or  two different  applications  are  executed 
simultaneously,  they have to share the processor's units within their clock time. This 
means  that  a  speedup factor  of  0,5  represents  the  case  when performance  equals  a 
processor without SMT enabled.
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Applications  from the  I/O  group  are  the  most  vulnerable  ones  for  heavy  losses  in 
performance when they are coupled with others. Two instances of memwrite have got a 
speedup of  around 0,15 compared to one instance. It explains the measured power of 
this  tuple  (chapter  6.2):  the  two instances  handicap  each  other  so  heavily,  that  the 
overall energy consumption of the processor is even below that of a single instance. 
While  most  applications  show  a  performance  loss  when  coupled  with  memewrite, 
especially the tests from the I/O group are slowed down significantly. This discourages 
the coupling of such tasks, since the losses in performance can hardly compensate the 
little amount of energy saved per time. The next chapter will present some more details 
about this aspect based on the analysis of processor events.

7 Processor events

7.1 Motivation and overview
Performance monitor counters can help a scheduler to decide which tasks should be 
coupled on SMT and CMP systems. Three of the aspects, which may be useful for such 
decisions will be covered in this chapter: the performance, the consumed energy and I/O 
operations. Performance is an important factor for energy awareness on SMT systems, 
when the coupling of tasks may lead to major drawbacks in performance. I/O operations 
and caching behavior on this architecture are important indicators for the side effects, 
that tasks could have on each other. The front side bus is an important shared resource 
on CMP systems as well, so there should exist knowledge about the magnitude of the 
interferences between active tasks on such an architecture. To couple tasks with respect 
to power, the probably most important factor is the energy consumption of single tasks. 
There  already  exist  some  work  about  task  based  power  estimation  using  the 
performance monitor counters ([EDEA]). But based on the results from the second test 
run  (where  processor  events  have  been  investigated),  a  different  model  for  energy 
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accounting was used here. For this work, there are two benefits that come from this new 
approach: it shows the relation between energy and performance on the one hand, and 
less  processor  events  are  involved  on  the  other  hand.  This  chapter  points  out  the 
processor events, that show a good correlation with these three aspects in the broadband 
analysis.

7.2 Hints about performance
The Pentium 4 /  Xeon processors  support  an at-retirement  event called uops_retired 
[IA32]. It counts how many micro operations had been retired within a clock cycle. 
Since it is an at-retirement event, the associated performance monitor counter can be 
configured to count bogus, non bogus or both kinds of events. When counting only the 
non bogus events, the number of micro operations are counted, that have been executed 
successfully. Bogus µops instead are operations that have been unnecessarily executed 
as a result of a mispredicted, so not taken branch. So the quantity of uops_retired is 
proportional  to  an application's  performance,  if  only non bogus events  are  counted. 
[Diagram 4] shows this relation. It displays the value of performance hints when one 
single instance of an application is executed (solo), divided by the performance hints 
when two instances exist on the same SMT processor (duo). These ratios are named 
PerfHints, while there are also data for uops_retired, that refer to the ratio of non bogus 
micro operations when one or two instances run. It shows the correlation between non 
bogus uops_retired events and an application's performance. On the CMP system, all 
values on the Y-axis are close to 1, since the applications do not interfere that much 
with each other.

One word to the results of the memwrite application is necessary. This application's 
loop count increments significant less often than the one of every other application in 
the  test  suite.  The  effect  was  even  much  stronger  when  running  two  instances  of 
memwrite. As you can see in the diagram: the performance of a single instance was 
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Diagram 4: Non bogus µops and performance
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about four times better, then when executed together with a second instance, which is 
based on the purpose it was designed for (see chapter 3.3). Therefore it shows a much 
bigger variance in the performance hints than all other applications. Longer runs could 
improve its accuracy, but since the performance was not the main concern of this study 
thesis, this case was (kept in mind but) accepted.

7.3 Counting Energy
The broadband counting of processor events showed the non bogus micro operations to 
be a very good indicator for an application's performance. We will now concern about 
the relation between consumed energy and processor events. The uops_retired events 
showed also to have got a strong relation to the processor's power. This makes sense, 
since more micro operations per time means more work to to for the microprocessor per 
time.  But also other aspects will  be discussed,  which are useful  to  consider  for the 
scheduling of tasks on SMT and CMP systems.

A processor consumes energy at a constant rate when it is executing no operations. This 
is the case, if it is halted for example or put to a deep sleep ACPI state. Linux 2.6.17.7, 
which was used for this work uses the MWAIT instruction within its idle thread if it is 
supported (which was the case for both systems). The MWAIT instruction can put the 
processor to an ACPI C state and use a monitor to return to normal operation mode. 
Within this state, a processor reduces its energy by one or more available strategies. The 
consumed energy of a processor equals about the multiplication product of its clock rate 
and the used voltage, so a processor can use techniques like frequency scaling or clock 
modulation to save power. At lower rates of speed, the transistors within a processor do 
not  have to switch so fast  anymore.  It  means,  that  they can be operated at  a lower 
voltage level, which reduces the energy further.

These  are  important  issues  to  consider  when  estimating  the  power  of  the  whole 
processor  using  performance  monitor  counters.  If  there  are  only  few  operations 
executed within a specific amount of time, this could on the one hand mean, that the 
processor was waiting for external resources at a high power level, or on the other hand, 
that it executed this few operations and then entered a lower power level. From the 
operation system's point of view it should be no problem to distinguish the idle thread 
which utilizes a power save state from other threads (or tasks). But this does not cover 
all  situations,  in  which  the  processor  enters  a  low power  state.  Power  management 
software could invoke a state switch or the processor itself to prevent damage due to 
overheating. The first case can be handled since the power management software should 
cooperate with the operating system, while in the latter case the thermal monitor can be 
configured to trigger an interrupt on state switch.

As mentioned above, the processor event which counts the retired micro operations can 
be  used to  monitor  the processor's  power.  But  there  is  a  difference in the  setup of 
uops_retired compared to the approach to measure an applications performance. There it 
was necessary to count only non bogus events, so micro operations which had not been 
executed based on a mispredicted branch decision. But all operations cause transistors 
to switches, including the ones on speculative paths. Therefore the uops_retired event 
must also be used to count bogus operations. There are two possible ways to achieve 
that. The first one is to set up one counter to count both, bogus and non bogus micro 
operations. The second approach is to use two counters, one for bogus and one for non 
bogus,  which  can  be  added.  That  way  it  is  possible  to  collect  information  on  the 
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processors energy consumption as well as performance hints. But this second approach 
is not necessarily the better one for task specific measurement. The uops_retired event is 
a thread specific event on SMT systems. So it can be used to count micro operations 
either  on one  of  two processor  threads,  or  the  other  one  or  both.  This  makes  nine 
possible setups from {t1, t2, both}x{non bogus, bogus, all} (t1 and t2 stand for each 
processor thread). But there are only two ESCR registers available on Pentium 4 / Xeon 
processors to count uops_retired events. This makes the first approach more attractive 
for task specific energy counting: for each of the processor threads, one register is set up 
to  count  bogous  and  non  bogus  events.  For  CMP  systems  this  limitation  is  not 
necessarily  given,  since  each  core  has  got  its  own  performance  monitor  counter's 
facilities.  Anyway also each single core of a CMP system might be able to support 
SMT.

7.4 uops_retired vs energy, general results
Diagram [Diagram 5] shows the general relation between the processor's power and the 
uops_retired event. The data was gathered on the SMT processor with one busy thread, 
but the CMP system shows a similar behavior (see chapter 7.6). The X-axis shows the 
number of retired bogus and non bogus micro operations per time stamp event. The Y-
axis shows the measured power of the processor in watt,  as acquired by an external 
system. There are four graphs: the three upper ones are the linear trends of the test 
applications uops_retired  events  versus  energy  at  different  clock  modulations.  This 
means, that each application from the test suite was executed at a given processor speed 
and  the  quantity  of  retired  micro  operations  was  measured.  The  trend  of  these 
uops_retired events in relation to the consumed power makes one of these graphs. The 
actual results which based the trends are left out here due to clarity but will be presented 
throughout this chapter, when some aspects will be covered more detailed. At this point, 
diagram [Diagram 5] shall give an idea about the magnitude of the power ranges of the 
used micro processor with different clock modulations. The lowermost graph is a bit 
different. It is the nearly constant energy the processor consumes when the system is 
mostly idle (for 99% and above). So it does not depend on retired micro operations, 
since the MWAIT instruction as used by the Linux idle thread gets involved here. This 
graph was inserted to the diagram to conclude the general energetic overview.

The diagram shows the relation between micro operations and consumed energy, and 
there is a nearly linear relation between these two values. The trends are displayed for 
the  ranges  at  which  the  tests  produced  results  for  uops_retired  events.  So  it  is 
understandable  that  the  graph  for  3  GHz  reaches  nearly  the  border  of  two  micro 
operations per time stamp event, while the graph for 1,5 GHz does not cross the border 
of one micro operation per time stamp event. The gradient of the graphs is similar for 
different clock modulations of the processor, but there is another significant value for 
these energy levels, which will be referred in the following as the energy level offset. It 
is the point at which a trend would theoretically cross the Y-axis so where uops_retired 
equals zero (this is why the lines are extended to the left). The power ranges that are 
displayed in [Diagram 5] will give a good base to compare the effects an energy aware 
scheduler can achieve to the limitation of energy as a result of clock modulation.
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Diagram 5: Energy levels and µops general

7.5 SMT specific aspects
There are two results from the test runs, which are interesting for scheduling and energy 
estimation based on performance monitor counters on SMT processors. The first one 
concerns  the  relation  between  uops_retired  and  the  processor's  power.  Diagram 
[Diagram 5] bases on data that were gathered in tests, where one application from the 
test suite was executed as a single instance, so the second thread of the SMT processor 
was idle. To show the relation of this two values when both thread are busy, another 
setup was used. Now each application was executed in two instances, each bound to 
another thread of the processor by using Linux's CPU affinity. Only the performance 
monitor  counters on thread one were configured to count the uops_retired event  for 
bogus and non bogus events for both threads. The monitoring tool was also bound to 
thread one, so the retired micro operations were only counted for this two instances of 
one application executed at the same time (the system had no other tasks which showed 
a  significant  activity).  The test  was  then repeated  with one  single  instance  of  each 
application, but still with uops_retired configured to count for both processor threads. 
For the case, another tasks runs on the second thread while this test, its micro operations 
should be counted too, since its energy consumption was also measured by the external 
acquisition system. This whole procedure was carried out at two different energy levels, 
at 3 GHz and at 1,5 GHz. The diagrams [Diagram 6 - Diagram 10] show the results of 
these tests. The keyword “solo” refers to results from tests where only one instance of 
an application was used, whereas “duo” marks results of two instances executed at the 
same time. The first four diagrams [Diagram 6 -  Diagram 9] show the results of each 
single test run, containing the actual measured data (which are connected for clarity) 
and  the  resulting  linear  trend.  This  demonstrates  the  actual  relations  between  the 
uops_retired event and the consumed energy of the processor, which were left out in 
chapter 7.4. The last diagram [Diagram 10] contains only the trends from the four tests.
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Diagram 6: Linear trend µops and energy
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Diagram 7: Linear trend µops and energy
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Diagram 8: Linear trend µops and energy
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Diagram 9: Linear trend µops and energy
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The  last  diagram  [Diagram 10]  points  out,  that  the  relation  between  retired  micro 
operations and the consumed energy differs on the SMT processor, depending on the 
load of the two threads. If both threads are used, each single micro operation should be 
associated to a higher energy then it would be if only one thread is busy. The trends 
differ from 2% at zero uops_retired up to 6,6% at two uops_retired per time stamp event 
at  3  GHz.  For  the  lower  energy  level  (1,5  GHz)  this  range  is  from  1,8%  (zero 
upos_retired/ts)  to  4,2% (one  uops_retired/ts).  This  result  should  be  considered  for 
energy estimation based on the retired micro operations. To get a hint about the load on 
each  of  the  processor's  threads,  the  uops_retired  event  itself  could  be  used,  if  it  is 
counted thread specific.

There  is  another  aspect  on  SMT processors  about  the  relation  between energy and 
performance. The processor switches between the two threads, so it is possible, that a 
result the first thread was waiting for will be available when the processor comes back 
to it. That way, the branch prediction might work better or the length of a mispredicted 
paths can be reduced compared to the case, where only one thread has got load. The 
following diagram [Diagram 11] shows the relation of four events measured at 3 GHz 
when an application is executed in a single instance compared to the case when it is 
executed in two instances at  once (duo/solo).  The micro operations (bogus and non 
bogus), the predicted and the mispredicted branches had been counted thread specific 
again, like in the most scenarios of this work, and only for one task in both cases. It is 
visible, that the ratio of bogus to non bogus operations is influenced by the load of the 
second thread as well as the ratio of predicted to mispredicted branches. Especially the 
I/O applications tend to drawbacks when they are coupled with other I/O tasks. If they 
are executed together with int, float or one of the random tasks, the prediction performs 
better.
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Diagram 10: Energy of SMT threads
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7.6 CMP specific aspects
The CMP system shows a similar relation between the uops_retired event and measured 
values for energy. The setup for the tests on this processor differs just slightly from the 
setup used for the SMT processor. Since each core within the CMP architecture has got 
its own performance monitor counter registers, the events had been set up for each task 
in the case, where two instances of an application from the test suite were executed. The 
uops_retired events from both task have been added after the test, which explains that 
their  quantity goes up to about four micro operations per clock cycle.  There is  one 
aspect, that is worth to be mentioned here. When only one core was used, there were 
three applications (marked in [Diagram 12], the point between memwrite and fileread 
represents  memcp),  which  consumed  more  power  than  a  linear  relation  between 
uops_retired and energy would predict. These three are the applications from the I/O 
class of the test suite. If the trend would only be based on the other five applications 
(trends in [Diagram 12] are based on all eight applications), the deviation of these three 
correlates  very well  with  their  quantity  of  the  FSB_data_activity  event.  This  effect 
however did not show up anymore, when the second core was busy to.

Like for the SMT processor (chapter  7.4),  there should be a some words about the 
energy level offsets. The power consumption of the chip multi processor is about 43 
watt when both cores are idle, while the energy level offsets are 70 watt for one idle 
core and 83 watt for both cores being busy. So from an energetic point of view, the 
processor uses a couple of shared resources for the cores. This encourages to use both 
cores for good energy per instruction ratios.
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7.7 Accuracy of energy estimation
The  processor  event  uops_retired  was  the  one  with  the  most  significant  single 
correlation to the consumed energy from the broadband test runs. This chapter pointed 
out some general results about this as well as some aspects, that have to be considered 
when  using  this  event  for  estimation  of  the  processors  energetic  behavior.  The 
measurements  also showed, that this correlation is  nearly proportional  [Diagram 6 - 
Diagram  9,  Diagram  12].  Therefore  the  trend  of  the  measured  data  was  used  to 
approximate straight line functions, which could be used correlate the consumed energy 
to  the  uops_retired  event.  The achieved  accuracy  of  this  approach  is  shown in  the 
following table [Table 1] mathematically rounded to magnitudes of 1%. It contains the 
percentages of how far the measured results differ from this trends in the maximum and 
the average for the SMT and CMP processor as well as the medians of these distances. 
The data used for this table is the same as used in the rest of this chapter, so at every 
energy level and processor there had been eight tests for single instances and for two 
instances. The errors for the SMT processor are based on the corresponding trends for 
the thread's load as described in chapter 7.5.

The uops_retired event can be used for fine granular energy estimations, since it occurs 
at a very high quantity. Further improvements of the accuracy might be achieved by 
correction factors based on other processor events. The different levels of the cache 
hierarchy, accesses to the front side bus or mispredicted branches (and their correction) 
could be used for that. Also the operations themselves can be classified as load, store, 
floating point or SIMD operations.  For this work,  the achieved accuracy for energy 
estimation is presumed to be good enough, for two reasons: first of all, there are other 
papers like [EDEA], which cover such aspects much more precisely. The second reason 
is due to the focus of this work on the combination of tasks and its impact to consumed 
energy. Most of the limited performance monitor counter registers should be available 
to support scheduling decisions. With a scheduling mechanism of processor events like 
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used in this work, the number of measured events is not a problem, but with every new 
slice  for  this  event  schedule,  the  granularity  of  the  measured  events  gets  worse. 
Although  the  accuracy  of  energy  estimation  based  on  processor  events  could  be 
improved,  this  simple  model  will  be  used  in  this  study  thesis  since  it  shows  clear 
relations of energy, ACPI P states and performance. Counting bogus and non bogus 
micro operations with an single register can also give hints about performance, but there 
are situations, where this is very inaccurate (the portion of bogus micro operations is 
about 16% for randomloop, 11% for randomcall  and 1,2% for random but all  other 
applications show a rate of  less than 1%).

Errors Max Min Average Median
SMT 3GHz solo 4% 0% 2% 2%
SMT 3GHZ duo 4% 0% 3% 3%
SMT  1,5GHz 
solo

2% 0% 1% 1%

SMT  1,5GHZ 
duo

3% 0% 2% 2%

CMP  2,8GHz 
solo

7% 0% 4% 4%

CMP  2,8GHZ 
duo

4% 0% 2% 1%

Table 1: Accuracy of energy estimation

7.8 Prediction, FSB, cache
The prediction of energy consumption for a specific tuple of tasks showed to be very 
useful for the CMP system, based on the model presented throughout this chapter. If an 
energy estimation of each single task was made, the resulting electric power of both 
tasks running simultaneously can be calculated for an energy level.  This is done by 
calculating the linear trend function for an specific energy level and reading its value for 
the expected quantity of micro operations. But the front side bus is one shared resource 
of the cores, that can lead to an under- or overestimation. One aspect is, that the activity 
of the FSB unit consumes energy too and information about this might be used for an 
improvement  of  energy  estimation  for  single  tasks.  When  the  coupling  of  tasks  is 
considered,  it  is  necessary to have some hints about  the expected behavior  of tasks 
within  this  new  tuple.  They  might  perform  better  or  worse  within  this  new  tuple 
compared to the situation the energy estimation is based on, which means they will 
consume more or less energy. To include the side effects of tasks on the performance of 
each  other  in  energy estimation  and prediction,  the  resources  of  the  system can be 
observed, that are or will be shared between them. An operation system could track the 
usage  of  system  components  like  data  stores  or  other  peripheral  devices.  The 
performance monitoring within the processor can not be used to distinguish between 
such devices, but they can be used to observe the overall activity of the front side bus. 
This helps to classify tasks as more or less dependent of this shared resource, which 
helps to improve the predictability of power for a tuple. If the energy of one task with 
much FSB accesses was estimated when it was running together with another strongly 
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I/O depending task, it will most probably perform better when executed with a task, that 
uses the bus less. But when the task performs better (more micro operations per time), it 
will also consume more energy and vice versa, which should be regarded for power 
prediction. The Pentium 4 / Xeon processors provide a range of processor events related 
to I/O operations. One processor event that showed to be most suitable for such a hint 
about performance effects based on the coupling of tasks is called FSB_data_activity. It 
counts  the  number  of  clock  cycles  the  front  side  bus  is  used,  driven  either  by  the 
processor or another resource (which includes another core on CMP systems). These 
two kinds of events can not be counted by one single model specific register on this 
architecture, so two performance monitor counters must be set up to include both kinds 
of accesses.

Interferences  between  tasks  are  more  significant  on  SMT  processors  since  more 
resources are shared by the processor's threads. Especially the common usage of the 
caches showed to be an important factor for this. This makes the predictability of energy 
less reliable, since even one available cache line fewer can lead to cache trashing. At the 
same time, this resource is very valuable for the ratio of energy per line of code, which 
makes it important for energy awareness. There are also some processor events, that can 
help to classify tasks by their cache usage. On the used systems, the second level cache 
and the third level cache (which was not actually available) can be watched for hits or 
misses, while the first level cache unit only provides information about misses. Hits on 
the first level might be derived from information of the other caches, combined with the 
tagging and filtering of micro operations for load and store operations (see [IA32]). A 
rating of tasks for their cache signature can be made based on such information. If one 
task shows only few hits and misses at one cache level, it will potentially leave more 
cache lines to another task executed at the same time (depending on the associativity, 
location of tasks in memory et cetera). Many hits or misses on the other hand do not 
necessarily mean, that many lines are used but improves the chance for that. There are 
other events and configurations available on Pentium 4 and Xeon processors, that allow 
to gather more detailed information about the cache usage, but such an analysis would 
go far beyond the scope of this work. Therefore, chapter 8 will present a classification 
based on hits and misses, that leads to good results for the coupling of tasks from the 
test suite.

8 Strategies for energy aware scheduling

8.1 Chapter overview
This chapter concludes the results of the measurement and outlines the consequences for 
a  scheduling mechanism. It  uses a separate examination of SMT and CMP relevant 
aspects. As shown in chapters 6 and 7, these two architectures differ significantly in the 
ability  of  controlling  the  consumed  energy  by  a  popper  combination  of  tasks.  The 
consequences for energy aware scheduling will be discussed in chapter 8.2, followed by 
a  description  of  the  strategies  for  the  combination  of  tasks  on  each  of  the  two 
architectures. These presented strategies are primarily based on results from the  tests of 
the  processor  events,  but  focus  more  on  scheduling  compared  to  chapter  7.  Events 
measured in the second testing phase have therefore been compared as indicators for the 
coupling of tasks as well as different methods to use these indicators.  The tuples of 
tasks from the test suite that would result by these strategies have then been rated by the 
energy consumption and performance measurement  from the first  testing phase (see 
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chapter  6).  The  most  promising  strategies  for  the  SMT  and  the  CMP  systems  are 
described  in  chapters  8.3  and  8.5.  Furthermore  there  is  a  discussion  about  how  a 
scheduler  can  account  thread  independent  events  to  single  tasks,  which  might  be 
necessarily on SMT (or hybrid) processors.

8.2 Power per time or power per instruction
The results from chapter 6.2 show the potential to reduce or limit the processor's energy 
consumption with a scheduling strategy. But when when considering this solution, the 
question is, if this approach makes sense or if it brings to much penalties, especially for 
the SMT processor. The answer can be found in chapter 6.3 when correlating the energy 
saving with the loss in performance. A limitation of energy can only be achieved by the 
combination of applications which handicap each others performance very strongly.

When this approach is inverted and good combinations for performance are focused, 
there  are  much better  results  for  energy per  instruction  then there  are  penalties  for 
energy per time. Chapter 7 did already show this relations which had been approved 
there on a wider base of data. When having a look at [Diagram 5] again the following 
conclusion can be made: if you could speed down an application by 100% (from two 
uops_retired to zero) the maximum rate of energy that could been saved is at about 
25%. This is the best possible result from the model of chapter 7, since there are just 
few applications which come close to the border of two micro operations per clock 
cycle. The cause for that is the high energy level offset. Now the conclusions for an 
energy aware scheduler of these results will be discussed. The SMT relevant aspects 
will be followed by the ones for CMP.

The general idea for energy aware scheduling on SMT processors as it  is presented 
within this study thesis is to maximize the number of micro operations per clock cycle 
at the highest allowed or lowest necessary energy level of a processor. It means to use 
tuples  of  tasks,  which  have got  the smallest  influence possible  on each other.  This 
influence takes place in shared, slow and / or limited resources of the processor or the 
whole system. So the queue of ready tasks should be searched to find couples, that are 
expected to work fine together. This could be done by greedy strategies like first fit or 
by more complex ones like introducing other queues to achieve a best fit over all the 
available  tasks  for  scheduling.  There  might  even be  situations,  when it  is  better  to 
execute just one single task on the processor. One example for such an scenario could 
be this: there is a task which reaches nearly the limit of possible micro operations per 
clock cycle. This task could show a high hit rate on the second level cache but only few 
misses. If all other ready tasks also show a significant use of the second level cache and 
also many misses but only few micro operations per cycle, they will most likely slow 
down this one task without much benefit for them self. Since this specific task already 
has got a good energy per instruction ratio it could be wise to give the whole processor 
to it for its  time slice.  This will  probably raise the bogus operations but make each 
operation less power consuming (see chapter 7.5).

For CMP systems, another strategy as for SMT processors is possible. The difference to 
the latter ones is that there are less shared resources within the processor, which makes 
the decisions of the scheduler less complex and could focus more on energy limitations 
by proper combination of tasks. Anyway if there are just ready tasks to choose from 
which  are  expected to show comparable  high energy consumptions,  there are some 
actions  possible  to  consider.  Since  the  cores  of  a  CMP could  in  most  cases  set  to 
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different energy levels independently, one or both of them could be throttled down, to 
match the expected energy consumption of two tasks. Another strategy could be to put 
one core completely to sleep and use just the other one, for example if there are few 
tasks and most of them are blocked most of the time.  [BPMP] shows the benefits of 
such a strategy if there are more available cores than busy tasks. Although there was no 
processor investigated in this work which combines the SMT and CMP aspects, it is 
imaginable that the presented strategy could be useful  for  such ones, especially for 
cases to decide if it is better to use just one core or just one thread per core.

When  the  best  tuples  are  found  and  the  power  consumption  for  each  of  these  is 
estimated, the energy could be limited by the use of an adequate energy level. There 
might be the case in which only some tuples within the planned schedule will break this 
limit. In that case these tuples could be grouped and executed at a lower level than the 
rest. This depends on the length of the time slice and the time it takes to throttle the 
processor.  Eventually these two groups could be executed in an alternating order on 
every schedule circle to minimize the number of energy level switches.

8.3 SMT scheduling
We will start here with the predictability of power and performance behavior. This has 
got two aspects: the estimation of energy for a specific energy level (ACPI P state) and 
the prediction of the influences of two tasks on each other. With the model from chapter 
7 to relate processor events to energy, a good assumption can be made for the energy 
consumption on different energy levels of the processor. When for example one tuple of 
tasks have an uops_retired quantity of 1,5 at 3 GHz, it would have a quantity of 0,75 at 
1,5 GHz. This means that it would consume about 63,5 Watt compared to 87 Watt when 
the clock is modulated down by a factor of 0,5. This makes it possible to choose a 
proper energy level so a tuple of tasks (or even one single one) holds a given energy 
limit.  The predictability of the consumed energy for a specific combination of tasks 
showed to be not that accurate on the SMT processor (see [Diagram 2]). Two examples 
should help to outline this. When executed alone, int has an energy consumption of 
about 72 watt, memwrite 69,5 and memcp 76 watt. But when executed as tuples, int and 
memwrite consume 77,5 watt whereas memcp and memwrite consume only 73 watt. 
This could be explained since memwrite and memcp show a high usage of the front side 
bus and the cache, so they handicap each other much more than int does (which shows 
less activity in both cases). Now to the second example. The most power consuming 
applications are random (86 watt) and randomloop (84 watt). But the combination of 
randomloop and randomcall is significant higher than the combination of randomloop 
and random. Based on the wide range measurement of processor events, it was possible 
to find the cause for many of these effects, but they differ from tuple to tuple especially 
in their magnitude of impact.

On the way to find combinations with respect to performance (chapter 8.2), there have 
been two ideas. First of all, only tasks should be coupled which are expected to not 
interfere which each other by showing significant usage of resources which could be a 
bottleneck. Second, to maximize performance applications should be coupled that way, 
that there are many micro operations within each tuple. The most important bottleneck 
was of cause the cache. On the Pentium 4 / Xeon architecture there are some ways to get 
information about it. It is possible to count misses of the first, second and third level 
cache as well as the hits of the second and third level. The first level cache misses did 
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not show to be that useful for information about the cache usage, so the second level 
was the most important unit to watch (the Pentium 4 used for this work did not have a 
third level cache). The hit rate on the second level gives good hints on the usage of the 
cache in most cases but the miss rate should also be watched, since also a cache miss 
fills up a cache line. With these two values, the applications from the test suite have 
been ordered by their cache usage. Then the application with the most significant cache 
signature could be coupled with the one with the least one. One word to the front side 
bus activities.  This  could be another  bottleneck,  but  comprehensions  with the CMP 
processor, where every thread has got its own cache showed, that it could nearly be 
neglected. The shared cache it the most fragile shared resource for performance on SMT 
processors. The front side bus events could also be seen as a kind of subclass of the 
cache usage:  a task with a high front side bus activity will  most likely have also a 
significant cache signature, but not necessarily vice versa. This must of cause not be 
true for tasks which invoke many DMA operations, which may block the bus without 
involving the processor's cache. Anyway, the cache seems to be the most weighty factor 
for the side effects of tasks on each other.

A  similar  approach  can  be  considered  when  looking  out  for  tuples,  that  should 
maximize the number of micro operations per time. The ready tasks can be ordered by 
the quantity of the uops_retired event and then the one from the top of the list could be 
coupled with the last one. Anyway,  it  showed, that there is another important  event 
which should be used when sorting such a list. This event is called uop_queue_writes 
and  counts  the  micro  operations  that  are  written  to  the  queue  of  the  processor.  It 
appeared that two applications which have a low quantity of uops_retired, but a high 
quantity of uop_queue_writes do not perform that good as tuples, which show fewer 
queue  writes.  So  the  micro  operation  queue  of  the  processor,  that  holds  delayed 
operations (e.g. until all operands are available) could also be assumed to be a kind of 
bottleneck.

When bringing the two aspects mentioned together, there are some algorithms which are 
tested for the applications from the test suite. It was assumed that there is one instance 
of each application ready to run and each would use a full time slice, so there are no 
decisions for overlapping tuples necessary. This is of cause a simplified model, since 
especially the task with I/O operations like fileread could block immediately after they 
got the CPU. These effects should be considered for a real world scheduling algorithm 
which can be developed by extending the algorithms presented here. One of the most 
promising algorithms for performance (energy per instruction) will be explained now. It 
is a two level strategy, which first sorts the ready queue by second level cache hits. This 
list is then split up in the middle, so there is one part which contains the tasks with few 
and one with much cache activity. The cache miss rate could be ignored in this case, 
because it  would not have had an effect  on which task is  in which part  of the list. 
Anyway this first step is used to separate the tasks by their cache usage. So they could 
for example be sorted by the result of (second level hits + 50 * second level misses). 
The  factor  of  about  50  should  (based  on  the  measurements)  weigh  the  misses  just 
slightly stronger than the hits  and will  result  in the same resulting list  parts  for the 
scenario used here. Now, after the tasks are classified by their cache usage, the second 
step is  to optimize  the rate of  micro operations.  As described above,  there  are two 
relevant  events  which  count  the  operations  themselves  and how many  of  them are 
enqueued.  So  each  of  the  two  parts  of  the  list  is  now  ordered  by 
(uops_retired/uop_queue_writes) separately.  The tuples to be used are now found by 
combining the first task from one part of the list with the last one from the other part of 
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the list, the second with the penultimate and so on. This strategy does not result in the 
theoretically achievable performance optimum for the test suite but shows good results 
compared to other investigated algorithms. It is also considerable to sort the task in the 
second stage by the quantity of uops_retired, but at least for this scenario an index based 
on  (uops_retired/uops_queue_writes)  produced  better  results,  also  compared  to 
strategies,  that  focus  only on the cache usage.  Strategies  that  combine tasks with a 
different quantity of retired micro operations will in most cases also prevent the worst 
case energy peaks (the presented strategy does it), but the limits of prediction on SMT 
systems does not make them very reliable  for keeping the consumed energy strictly 
below a given value, as it is possible with ACPI states.

8.4 Thread independent events on SMT processors
When scheduling decisions are based on processor events, there might arise a problem 
on SMT processors with thread independent events. These events can not be filtered by 
the processor thread that causes them and therefore it is hard to assign them directly to a 
specific task. The problem is solved if just one task is running on the processor. This 
can occur for example, if there is only one task in the ready list. When there are more 
ready tasks available, one possible solution could be to give the whole processor to a 
single task once in a while in order to measure these thread independent events. Since 
the lost in performance for a SMT processor is not that big if one thread is unused as it 
would be on a CMP architecture, this might be possible. It might also not be necessary 
to do so for all the time, since there might always occur the situation where only one 
task is ready. Other tasks might not use one full time slice and the measurement could 
take place only for an fraction of one full slice, which reduces the penalty further. But 
this approach does not only reduce the performance but also the fine granularity of the 
measurement. In addition, the behavior of the task might change when it is executed 
with another afterwards. To include these effects, another strategy will be described in 
the following.

In chapter 8.3 was described which events are most important for scheduling decisions 
on SMT processors. These are events counting micro operations relevant data on the 
one hand, and on the other hand events for gathering information about the cache usage. 
The  events  for  the  micro  operations  are  thread  specific,  so  they  do  not  cause  any 
trouble.  The cache relevant events however are thread independent,  so they can not 
directly  be  assigned  to  a  specific  task.  The  presented  strategy  for  selecting  tuples 
however does only use the cache fingerprint to distinguish two classes of tasks and does 
no strict order by the cache usage in the end. So this classification could be done not on 
based on tasks but on tuples. If one tuple shows a heavy usage of the cache, both tasks 
could be assumed to be cache relevant in the first place and vice versa. They will then 
be coupled with tasks of lesser cache usage next time. For each task there could be a 
statistic, if the tuples they are assigned to do always produce much cache activity or not. 
That way a good assumption of the relative cache usage per task could be made over 
two or just a few time slices. But this statistics should not cover too many schedule 
cycles since the idea about the locality of software could not be extended to the full 
lifetime of a task. In a real world scheduler, there will of cause be more overlapping 
tuples than in the model used here. Therefore such a kind of rating task tuples could 
even be more efficient. Think of tree tasks A, B and C. When A gets the CPU, B is 
already  running  and  this  tuple  shows  much  cache  activities.  The  while  A  is  still 
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executed by on SMT thread, B is replaced by C on the other thread. This new tuple of A 
and C do just few cache hits and misses, so it should not be a bad idea to classify B as 
heavy cache user.

8.5 CMP scheduling
The  scheduling  strategy  on  a  CMP architecture  offers  more  possibilities  and  better 
results in limiting the consumed energy by the combination of tasks that are executed on 
the cores at the same time. The two most important causes for that are, that there are 
many exclusive resources for each core including performance monitor counter facilities 
and the possibility of using core independent ACPI states. Based on the model from 
chapter  7  to  relate  energy  to  retired  micro  operations  there  are  good  predictions 
possible, how much energy a specific task tuple would consume. There is one resource 
which  is  shared  even  on  the  CMP architecture,  which  is  the  front  side  bus.  Three 
applications from the test suite were designed to measure the magnitude of impact this 
could have on the energetic behavior of applications but it showed, that an instance of 
memcp does not produce much front side bus activities, when it does not share its cache 
with another task like on the SMT processor. This leaves only fileread and memwrite, 
and therefore only tree possible combinations of their instances for measurement, which 
discourages a quantitative hypothesis about the impact of the front side bus. Anyway 
the available data show, that it might be possible to use the front side bus events of the 
processor to predict the magnitude this resource influences a specific task. The most 
promising  event  for  this  is  FSB_data_activity.  The  performance  monitor  counter 
assigned to this event can be configured to count events related to data on the bus which 
will be sampled by the processor or which will not be sampled, however not both at the 
same time. This makes it eventually necessary to use two counters to get an idea about 
the  traffic  on  the  bus,  but  this  would  for  example  prevent  the  usage  of 
global_power_events.  From the operating system's point of view, this must not be a 
problem, since clock modulations driven by the processor may arise an interrupt and 
changes of the energy level from within the operating system (e.g. idle thread, energy 
aware scheduler) or the user space should be noticeable anyway.

Although  the  scheduling  strategy  for  the  CMP  architecture  as  it  is  presented  here 
focuses on the limitation of energy, the performance should not be totally ignored. So 
there are two arguments to couple tasks which differ in their usage of the front side bus 
like the classification of the cache signature from chapter 8.3: the first one is to achieve 
a good energy per instruction rate and the second is to keep the influences of each task 
on one other small to improve the quality of prediction. To hold a specific energy limit 
after the tasks are classified that way, there are some strategies possible. Tasks with the 
lowest expected energy consumption could be coupled as long as they will hold the 
limit. When there are just tasks left which will break the limit, the proper energy level 
(ACPI P state) for one or both cores could be calculated to ensure the limit. In the next 
schedule circle the procedure could take place the other way round to an increased 
energy level. Another approach is to use a more best fit oriented algorithm which tries 
to find tuples in a way, so the limit will not be broken without a state change of the 
processor.  If  this  fails,  the  processor  can  be  set  to  another  energy  level.  These 
approaches depend on a fast responding state transition like clock modulation. If this is 
not available,  or the timer frequency is  very high, there could be another  approach, 
which bases on the ability to set the ACPI states of the cores independently. They could 
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be set to different energy levels and the most power consuming tasks could be assigned 
to the slower core. This implements a more fine granular limitation of energy than it 
would  be  possible  with  just  one  core,  especially  when combined with  the  assumed 
power consumption of each task. Although it prevents many state transitions compared 
to the first strategy, the two cores should change their role after some period of time to 
gain a better spreading of heat over the processor, which will result in a better efficiency 
of the cooling device and equal stress on the cores. The best strategy of the discussed 
ones depends not only on the overhead an energy level transition could eventually cost, 
but also on the timer frequency and the number of ready tasks running on a system. If 
there are only tasks ready, that show a huge variance in the durations until they become 
blocked, a first fit strategy which relies more on ACPI states to enforce energy limits 
would probably be the better choice than a best fit strategy which could produce more 
overhead. In situations where the tasks show a very homogeneous behavior over time, a 
best  fit  strategy,  focusing on a  proper coupling of tasks could do the trick.  For the 
scenario of chapter 8.3 (one instance of each of the test applications is ready to run), a 
schedule can be found that holds a limit of at least 8% below the most power consuming 
task tuples all the time. The strategy to find this schedule was, to classify the tasks by 
their front side bus activity, sorting them by quantity of micro operations, and coupling 
them like in chapter 8.3 (the first with the last and so on).

9 A brief overview
This study thesis showed the benefits that can be achieved by energy aware scheduling 
on SMT and CMP systems, but it also described, that the mechanisms and goals that 
should be used for these two architectures are different. On a SMT processor the main 
target  of  coupling  tasks  is  good performance,  since  this  results  in  good energy per 
instruction ratios,  while  power  limits  should be enforced by ACPI states.  For CMP 
systems,  an  energy aware  scheduler  can  prevent  energy  peaks  without  a  noticeable 
impact  to  performance.  Together  with the  good predictability  of  power  on  such an 
architecture, this can be used to hold energy per time limits without involving the clock 
rate of the CPU.
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