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Abstract

There have been numerous attempts to decompose operating systems into multiple
servers running on top of a microkernel. Decomposition offers a lot of advan-
tages, such as better security and robustness, flexibility with respect to changing
requirements, reusability of servers in different contexts, and maintainability due
to clearly defined roles and interfaces. Yet, multi-server operating systems often
turn out to be significantly more complex than their monolithic counterparts. This
architectural overhead increases disproportionally to the number of components,
thereby imposing a limit on the achievable granularity.

A major factor is the programming model which all microkernels explicitly
or implicitly enforce on servers designed for them. A server always consists of
both the code that performs its particular task within the operating system, and
the glue code that maps the nature of the task onto the concepts of the underlying
microkernel. If a multi-server OS turns out to be more complex than a monolithic
OS performing the same tasks, then all of the additional complexity stems from the
necessary glue code.

We postulate that fine-grained decomposition can be achieved by defining a
suitable programming model for servers, designed in a way that minimizes the
amount of glue code required. The key to this approach is our definition of servers
as light-weight, universal components, which, instead of glue code, contain ad-
ditional information describing their role and interaction. In this thesis, we build
a prototype multi-server OS to evaluate in how far the model improves operating
system decomposition.

The results are largely positive: The programming model has turned out to be
suitable for various different types of system components. The components in our
system are as fine-grained as possible from a technical point of view. Although
a direct translation of existing interfaces to our programming model can be prob-
lematic, existing code can feasibly be reused when adapted to our own interfaces.
However, the performance of our system is not satisfactory yet, possibly requiring
modifications to the programming model.
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Chapter 1

Introduction

The kernel of an operating system is its central piece of software, which is “manda-
tory and common to all other software” [32]. As such, its correct, robust, secure,
and efficient implementation is critical to all other software. In a system designed
for multiple programs or users operating independently from each other, this im-
plies that it at least needs to manage and partition the available hardware resources.

The most straightforward way to restrict each program’s allowed operations is
to implement an abstraction layer on top of the hardware, such that the operations
of this layer do not allow any uncontrolled interference between programs and/or
users. Traditional operating system kernels include abstraction layers for most
pieces of hardware, such as processes and threads for memory and CPU time, files
for storage space, sockets for networking, etc. These kernels are called “mono-
lithic;” their use is still very common.

The implementation of high-level abstractions generally makes modern mono-
lithic kernels very large, which can render them inflexible (e.g. with respect to
changing abstractions) and insecure (because a single error in the kernel can com-
promise the entire system) [32]. One alternative approach is that of a microkernel,
which provides lower-level abstractions than traditional kernels and is therefore
smaller and more flexible. In a microkernel-based system, higher-level abstrac-
tions can be implemented by “servers,” which do not need to be part of the kernel
as long as the security guarantees of an equivalent monolithic kernel still hold for
the “multi-server” system.

In a monolithic kernel, a single error can compromise the security and robust-
ness of the entire system. In a multi-server system, an error in a server is not a
security issue, unless the server itself is critical for security. Moreover, it affects
only those other servers that depend on the failing server’s correct operation. Only
errors in the underlying microkernel are necessarily critical for the security of the
entire system. The possibility of such errors can be reduced over time because of a
microkernel’s small size and relative immutability [33], or the kernel’s correctness
can even be verified mathematically [15].

Like regular programs, servers are able to interact via mechanisms provided
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Figure 1.1: Monolithic vs. multi-server operating systems

by the kernel. In its most rigorous form, a microkernel implements little func-
tionality beyond secure interaction. If all interaction of a server with its outside
world is managed by a central entity, the server is effectively a reusable, sepa-
rately maintainable component (see figure 1.1). Thus, a modular system structure
is guaranteed – a property which is usually difficult to achieve.

Both the possible effects of errors and the potential for reuse in a changing
environment depend on the size of individual servers, i.e. on the granularity of
the system. However, a fine-granular system implies a high amount of interac-
tion between servers, the performance cost of which is not zero. In the so-called
“first-generation” microkernels, every interaction was rather expensive, enforcing a
coarse-grained system structure and even compromises to the microkernel concept.
“Second-generation” microkernels have been designed with the primary goal of re-
ducing this overhead [31], so that fine-granular multi-server systems are feasible
today, from this perspective.

Several microkernel-based operating systems have been developed from
scratch, for example MINIX [24], QNX [29], Hurd [12], and K42 [5], with vary-
ing degrees of granularity and rigor. However, the idea of decomposing an exist-
ing monolithic system into multiple servers, as put forward by the SawMill [21]
project, was not met with equal success so far. Since novel operating systems can
gain acceptance only by supporting a wide range of existing hardware, software,
and standards [37], reuse of existing pieces of software is a crucial requirement.

1.1 Problem Definition

Kernel programming tends to differ from application programming in many as-
pects; most prominently the widespread use of hardware-related low-level opera-
tions, but also the specifics of memory management, multi-processor support, stack
space availability, module loading, etc. Since many of these aspects are conse-
quences of the fact that the code is executed in the processor’s kernel mode, server
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programming on a microkernel does not necessarily inherit the differences; i.e.,
server programming can often be more similar to application programming than to
kernel programming [4]. While this similarity is generally considered a positive
facet of microkernels, it also poses two problems:

• Existing kernel code cannot be converted verbatim into server code. In some
cases, the kernel-specific peculiarities are simply not necessary in user mode,
but in other cases (e.g. multi-processor support), they need to be taken into
account in a different manner.

• In a kernel, all code is able to access the entire kernel data directly, as well
as (usually) all of the data in the address space of the program which exe-
cuted a system call. For a server running in user mode, the latter is never
true, and the former is true only for the code and data of a single server. In
other words, even though the conversion of existing kernel code into a single
server has been proven to be feasible (see section 2.5), decomposition into
multiple servers is a separate issue (see section 2.3.2). Without such decom-
position, however, much of the purported security, robustness, flexibility, and
maintainability of microkernel-based systems is lost.

Since these two problems are inherent in the transition from a monolithic kernel
to a multi-server system, solving them completely would be a utopia. Instead, the
goal of this thesis is to explore ways to alleviate them, in light of the chance that
the benefits of a multi-server system will outweigh the remaining difficulties.

1.2 Problem Analysis

The decomposition of existing kernel code into multiple servers can be regarded as
a combination of two separate processes: First, the existing code is stripped of all
immediate dependencies on the rest of the kernel, including hardware-specific low-
level operations, special characteristics of the kernel, and also other modules which
are intended to be decoupled into different servers. Second, the result is converted
into an actual server according to the underlying microkernel. In other words, it is
adapted to the microkernel’s “programming model,” which we define as everything
that distinguishes servers developed for different microkernels. While the former
process fully reflects the inherent problems in the transition from a monolithic to a
multi-server system, the latter largely depends on the details of the programming
model, and therefore on the specific microkernel in use.

These two processes are never separate from each other. In fact, their interme-
diate product – the kernel code free of all dependencies – is not even a tangible
entity, since effectively all machine-readable code (as opposed to pseudocode) de-
pends on a programming model of some sort. (For example, for a regular appli-
cation, the programming model consists of the APIs and OS properties it depends
on. The distinctive features of a specific monolithic kernel can also be regarded as
a programming model.)

3
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As the programming models enforced by existing microkernels are governed
by the kernels’ capabilities and specialties, they are usually not very generic, as
evidenced by the observation that the transition from one microkernel to another
essentially entails a rewrite of the entire operating system [1]. A generic pro-
gramming model is desirable in order to shorten the path between the (abstract)
dependency-free code and the actual servers. A shorter path implies less devel-
opment effort for the decomposition of existing code, as well as a less complex
result.

Therefore, we aim to define a microkernel API in such a way that the
resulting programming model is as generic as possible. The code of each
server developed according to this API should only solve the particular task
for which the server is designed, and be largely free of microkernel-specific
programming paradigms.

Existing microkernels do not provide a completely satisfactory solution be-
cause their server programming models are a consequence of their APIs, not vice
versa. The corresponding server code needs to solve two separate problems at
once: the actual task of the server, and the concrete realization of that task in terms
of the microkernel API. Fine-grained decomposition on such a microkernel is a
tedious process because each individual component must be reshaped to match the
server model.

Our solution is essentially the design of a new server model, without direct ref-
erences to microkernel-specific concepts, but with a consideration for microkernel-
specific requirements. The primary requirements we have identified – server inter-
action, object identification, and object lifetime management – directly lead to the
abstractions we use in our server model, which are “servers,” “services,” “service
calls,” and “server references.”

Our servers are light-weight passive objects that can be called in a very natu-
ral fashion (unlike the process model used in most microkernels). The program-
ming model is rich enough so that most of the programming paradigms of modular
monolithic systems can be realized, but close enough to the hardware to be usable
as a microkernel API.

To evaluate our model, we have built a prototype kernel and multi-server OS.
We can show that fine-grained decomposition is possible with relatively little ad-
ditional effort. For conceptual reasons, a direct conversion of existing interfaces
from monolithic code to our server model is not always possible. However, we are
able to reuse large parts of existing code by adapting it to our own interfaces. The
performance of our system still needs to be improved, but calculations indicate that
the large overhead we experience is not a direct result of the server model.

In chapter 3, we will describe our analysis of the requirements on server models
in general, and then develop an actual model that meets these requirements as
generically as possible. In chapter 4, we will describe the concrete system we
have built to evaluate the model. Finally, in chapter 5, we will analyze the model
with respect to our goals.
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Chapter 2

Background and Related Work

In this chapter, we will present the concepts behind microkernels and multi-server
operating systems, as well as concrete examples that are relevant to our design.

2.1 Microkernels

Fundamentally, the concept of an operating system “kernel” is a consequence of
processor design. In most common processor architectures, the processor knows
(at least) two modes, one of which is the “kernel” or “supervisor” mode. Code that
runs in kernel mode is “trusted” because it has access to the entire set of processor
features. The kernel can restrict the privileges of “user” (i.e. non-kernel) code, but
to do so, it needs to be fully privileged itself.

Operating system kernels must contain all of the code that is necessary so
that different user “applications” can interfere with each other only via controlled
mechanisms. Especially, this property can be ensured only if access to all hardware
is managed and controlled by the kernel. Traditionally, this requirement has led to
kernels that include device drivers and file systems as means of multiplexing the
hardware, and that implement complex abstractions to manage user-level code.

Since all kernel code runs with full privileges, each driver and each feature
of such a “monolithic” kernel can compromise the operation and security of the
entire operating system. Moreover, different OS kernels typically provide different
abstractions to user applications, and the abstractions used by a general-purpose
kernel may not fit the needs of a special application.

The microkernel approach is an attempt to solve these problems by executing
as much code as possible in user mode instead of kernel mode. For example, de-
vice drivers and file systems, but also other kernel components, do not necessarily
require full privileges. Instead of directly managing and controlling all hardware,
a microkernel effectively delegates this task to individual user-mode “servers.”

5
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2.1.1 Mach

Mach [4] is a popular early-generation microkernel developed at the Carnegie Mel-
lon University in Pittsburgh. Originally, it was designed as a single operating sys-
tem kernel compatible with BSD Unix, with additional support for multiple threads
within an address space, as well as asynchronous, buffered IPC (inter-process com-
munication) facilities. It can be described as a microkernel because the BSD com-
patibility layer was largely separate from the rest of the kernel, and was moved to
user space in later versions of Mach [40].

Mach introduced the concept of implementing core system services, such as
tasks, files, and networking, as servers in user space [40], similarly to daemons in
a Unix system. Servers can also act as external pagers for memory objects [39],
which allows for swapping and memory-mapped files to be implemented at user
level. However, device drivers are integrated into the kernel, which distinguishes
Mach from many later microkernels.

Communication between different servers in Mach is controlled by capabili-
ties, called “ports.” Since a server cannot interact with any other server without
possessing a port to it, this model also provides the foundation for the confinement
of servers, i.e. for the implementation of security policies. Our system follows a
similar approach: “server references” are capabilities to a set of functions imple-
mented by a server. A major difference is that Mach IPC is unidirectional, requiring
a special reply port for the return message of a remote procedure call, whereas our
communication model is based directly on function calls, and returning to the caller
of a function is an integral part of the model.

There exists a research effort by the University of Utah to extend Mach into a
similar direction, by introducing support for a “migrating” thread model, in which a
thread that performs a remote procedure call transitions into the called server [20].
This work resulted in substantial performance improvements and a simpler system
interface. However, since the migrating thread model was introduced into a system
originally based on static threads, it also caused conflicts with existing user-level
thread code. In our system, we employ a migrating thread model because our
communication primitives are derived from function calls, which are normally not
associated with thread switches. Special user-level thread code is not required
because the kernel is able to provide concurrency to servers in a transparent fashion.

Variants of the Mach microkernel are in use today as the foundation for the
GNU Hurd [12] and Apple Mac OS X [34] operating systems.

2.1.2 L4

L4 is a microkernel designed to be as small as possible, to achieve the desired
performance and flexibility, and to be able to ensure correctness [33]. The first
version was developed by Jochen Liedtke at GMD Germany in response to the
slowness and inflexibility of Mach. Since then, several microkernel variants based
on the L4 API have been created for different environments.

6
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The main argument for making the microkernel as small as possible is the cache
footprint of common microkernel operations. To further reduce this footprint com-
pared to Mach, L4 uses synchronous, unbuffered IPC, as opposed to asynchronous,
buffered IPC in Mach. This concept has influenced later microkernels such as the
one used in MINIX 3 [24].

Since our function-call-based communication is inherently synchronous, we
can hope to achieve a similarly small cache footprint. One important difference is
that in our case, the call and return paths are entirely separate, which, in theory,
can double the overall communication-related cache footprint. However, in terms
of code, the return path is substantially simpler than the call path, and in terms of
data, there is a large overlap with the call path.

As opposed to L4, our kernel is not designed to be as small as possible. We
actually implemented parts of our API on top of L4 before deciding to write our
own kernel, so we know that a larger kernel is not required in principle. In practice,
an L4-based implementation of the API is slower than a direct implementation, as
all communication must be managed by a central entity – which is not a problem
if that entity is the kernel. Therefore, we possibly face a tradeoff between per-
formance and kernel size. We declare that for most purposes, a small kernel is
secondary to an efficient kernel.

We do share another, similar goal with L4: the desire for a policy-free kernel.
Every policy that is fixed in the kernel limits the types of systems that can be
built on top. The original L4 kernel made two compromises in this respect: It
contained a fixed scheduler [42], and it did not support capability-based security.
In our system, all servers, including schedulers, can run either in kernel mode or in
user mode. Moreover, user-mode servers can access other servers via unforgeable
server references only, which means that server references are capabilities.

One of the elementary features of L4 is the recursive construction of address
spaces. Threads can send page mappings to other threads via IPC, and later revoke
them asynchronously in a recursive fashion. Each thread has a pager that handles
its page faults by mapping the corresponding page, or by asking another task to
map the page.

Our system supports the same mapping functionality as L4, but instead of trans-
ferring mappings from one address space to another, servers attach “data spaces”
(similar to those in SawMill [7]) to their own address spaces. Data spaces are im-
plemented by supplying data to handle page faults, but the data originates from
another data space instead of the address space of the pager. This concept also
exists in the Grasshopper [13] operating system under the name of “containers.”

2.1.3 Pebble

Pebble [11] is a component system designed for embedded systems. Pebble com-
ponents are intended to be fine-grained and isolated; therefore cross-domain com-
munication performance is critical. For this reason, communication between com-
ponents is implemented using dynamically generated “portal” code. This code

7
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switches the current protection domain and passes data between the domains, but
does not change the current thread.

Our communication primitives are similar to those in Pebble in that conceptu-
ally, a cross-domain call does not involve a thread switch. Moreover, the primitives
in both systems are designed so that the kernel can generate efficient communica-
tion code when servers are loaded. The details are somewhat different: For ex-
ample, Pebble components can transfer memory mappings, whereas our servers
can transfer server references and raw data only. While Pebble employs a single
scheduler, schedulers can be stacked hierarchically in our system.

The main difference between our design and existing microkernel APIs is that
we focus on the programming model implied by the API, not the features of the API
itself. The capabilities of our system do not necessarily extend beyond what already
exists. We do, however, believe that our system is the first where the server pro-
gramming model has been designed from the ground up, resulting in very generic,
light-weight, reusable servers.

2.2 Extensible Kernels

Technologically, extensible kernels are similar to microkernels in that system ser-
vices are lifted from kernel mode to user mode, or are at least replaceable. The
difference is mainly conceptual: While microkernels are designed to build an en-
tire operating system out of servers, extensible kernels aim to give as much control
as possible to individual applications.

2.2.1 Exokernels

The term “exokernel” was coined at M.I.T. in response to first-generation micro-
kernels. The goal of the exokernel approach is to securely multiplex the underlying
hardware in a way that allows for user-level “library operating systems” to man-
age it according to their own special requirements [17]. Instead of communicating
with servers that implement high-level abstractions such as files and networking, a
library OS accesses the hardware at the lowest level at which secure multiplexing
is possible.

Compared to microkernels, exokernels follow the goals of flexibility and per-
formance in a stricter sense, according to the statement that “mechanism is policy,”
i.e. that any kind of abstraction restricts implementation strategies for its users. For
this purpose, however, exokernels must include drivers for all of the hardware that
is to be multiplexed. In addition, complex software support is necessary for hard-
ware that does not lend itself well to multiplexing. An example is a user-extensible
network packet filter, which, for each packet, determines the correct library OS to
forward it to.

Although exokernels provide functionality on which IPC primitives can be
built, existing library operating systems are monolithic. Decomposition of oper-
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ating systems on top of an exokernel has not been studied. Instead, the exokernel
approach as a whole is more similar to virtualization (see section 2.5), since the
interface offered by an exokernel resembles the hardware interface.

2.2.2 SPIN and VINO

The SPIN [9] and VINO [16] kernels more closely resemble monolithic kernels
but are extensible by user-level code, under the assumption that a fixed kernel is
inappropriate in many situations. SPIN loads extensions into the kernel, but uses
a type-safe language with built-in threads to ensure that malfunctioning extensions
cannot crash the rest of the system. VINO extensions are regular C++ code but
secured by a trusted sandboxing compiler and a run-time transaction system in the
kernel to recover from crashes.

From a design point of view, there is little difference between servers running
at user level and kernel extensions. After all, even kernel extensions must be pro-
grammed according to some low-level kernel interface, which fundamentally cor-
responds to a microkernel API. To us, the question whether an extension or server
is loaded at user level or at kernel level is secondary, as long as a system is properly
decomposed.

However, the concepts of microkernels vs. extensible kernels do exhibit differ-
ences in terms of rigor with respect to decomposition: In a microkernel, all parts of
a system are replaceable and logically independent from each other (although the
granularity varies). In an extensible kernel, the typical application/kernel boundary
remains, except that applications are able to replace or augment certain parts of the
kernel. Thus, the modularization aspect is not part of the overall system design, in
favor of application-specific code.

2.3 System Decomposition

Like every large program, an operating system is usually composed of vaguely in-
dependent parts. An OS-specific natural boundary is the user/kernel mode interface
(although the terms “kernel” and “operating system” are sometimes used synony-
mously). Kernels are additionally divided into independently compiled modules.
For example, in the Linux kernel, these modules can also be loaded dynamically at
run time.

Since their interfaces are not formalized, such modules can usually not be
reused across different operating systems. Moreover, data structures may be ac-
cessed from several modules, which implies that modules generally cannot be
loaded into different protection domains. Therefore, systems which use such an
approach are not fully decomposed from our point of view.

There exist several approaches towards decomposing systems in a stricter sense.
Two of them are especially interesting for this thesis:
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2.3.1 OSKit

OSKit [19] is an operating system framework created at the University of Utah,
with the goal of easing the development of new operating systems. For this pur-
pose, it contains reusable code covering many aspects of OS programming, con-
cerning both hardware support and generic low-level OS functionality.

The majority of OSKit code consists of device drivers and other modules ex-
tracted from general-purpose operating systems such as FreeBSD and Linux. These
modules are converted into a common format, to facilitate reuse in new operating
systems. User-visible interfaces are largely based on COM [36], with only a few
additional plain functions. The infrastructure required by the module implementa-
tions is provided by core OSKit libraries.

Our system shares some common goals with OSKit, particularly the intention
of extracting and modifying components from existing operating systems for the
purpose of easy reuse. Compared to servers in existing multi-server operating sys-
tems, OSKit components are much closer to the original kernel modules, which
simplifies their integration and the exchange of future updates. In this respect,
servers in our system are similar to OSKit components.

The most important difference is that OSKit components are not designed with
isolation in mind. For example, they cannot automatically communicate via ad-
dress space boundaries, and some aspects of the interfaces such as explicit ref-
erence counting assume a trust relationship between a component and its users.
OSKit components assume that they are able to perform basic operations up to low-
level I/O via the core OSKit functions. Concurrency and interrupts are handled in
the same fashion as in the original monolithic systems from which the components
were derived. For all of these reasons, OSKit components cannot be isolated from
the rest of the system like servers in a multi-server OS.

2.3.2 SawMill

The SawMill [21] project at IBM Research developed and tested a methodology
for the decomposition of an existing OS into a multi-server system on top of a mi-
crokernel. The project defined an architecture for a multi-server OS, and explored
methods for reducing the number of cross-domain calls and the amount of data
copied between protection domains.

The SawMill design decisions were evaluated by converting the Linux kernel
into a server running on top of the L4 microkernel, and then partitioning the file
system and IP network layers according to the SawMill principles.

Decomposition according to SawMill differs significantly from the form of de-
composition presented in this thesis. In SawMill, decomposition was tackled from
a full-system perspective, with a strong focus on L4-based multi-server OS devel-
opment. Consequently, the main result was a multi-server architecture designed to
support efficient partitioning, whereas the individual servers were secondary. In
contrast, our approach focuses on extracting individual components from existing
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operating systems, in such a way that they can work together even though they are
protected from each other. The overall system architecture, though important, does
not reflect on our individual servers.

This difference follows from the fact that our goals do not exactly match those
of the SawMill project. The idea behind SawMill was to decompose an entire exist-
ing system while preserving the internal data structures and interfaces. Therefore,
one of the major issues, especially in terms of security, was “control data” accessed
by multiple servers. In our thesis, we aim for reuse of existing kernel components.
Since we consequently adapt the components to our own interfaces, this particular
problem does not arise. In fact, control data partitioned among multiple servers
would significantly impact reusability of these servers.

As a result of the different goals, the SawMill approach mainly consists of
mechanisms that enable decomposition, whereas our approach focuses on abstrac-
tions for decomposition.

Nevertheless, some insights from the SawMill projects are applicable to our
system. For instance, when designing our interfaces, we make sure that it is possi-
ble for a client to obtain direct connections to servers handling its requests, instead
of having to make calls through multiple layers of abstraction. Our system sup-
ports this paradigm especially well because servers can return secure references to
other servers. For example, when a client requests a file via a virtual file system
server, that server can pass the request on to the physical file server, and return the
resulting server reference. As a result, the virtual file system server is no longer
involved in actual file accesses.

2.4 Multi-Server Operating Systems

Several microkernel-based multi-server operating systems have been developed
from scratch. An advantage to the decomposition of existing systems is that multi-
server principles can be applied more rigorously.

2.4.1 Workplace OS

The IBM Workplace OS [26] was a general-purpose end-user operating system de-
signed as a replacement for several other IBM systems. A multi-server structure
was chosen in order to support multiple OS personalities, and as a means to di-
viding the system into separately marketable parts. However, despite substantial
development costs, the system was never sold in significant numbers.

Workplace OS was based on a heavily modified Mach microkernel [18]. In
addition to microkernel-based separation, it made use of fine-grained C++ objects
within servers and within the kernel. This practice resulted in both complex and
inefficient code; the available reports [18, 26] recommend against doing the same
in future operating systems.
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Since we aim for both fine-grained decomposition and the separation of per-
sonality-specific code from the rest of the system, our system is at risk of repeating
the mistakes that led to the failure of Workplace OS, in theory. Therefore, we
will analyze the differences between our approach and the approach taken by the
Workplace project:

• We decompose systems into fine-grained servers with well-defined inter-
faces. Ideally, each of them provides a specific piece of functionality only,
whereas all of the dependencies on other code are reflected in its interface.
In particular, servers never depend on the existence of a common library.

• After developing servers in this manner, we can load them into different
address spaces, into the same address space, or into the kernel. This way, we
hope to avoid implicit performance limitations in the code.

• Our interfaces can be reworked and adapted over time. Since each server has
relatively few dependencies, the resulting changes are always confined to a
small subset of other servers. In the Workplace OS, the C++ library could
not be modified easily due to its ubiquitous use.

• Likewise, a problem with Workplace OS was that specific requirements of
all personalities, such as memory management and file system semantics,
needed to be implemented in “personality-neutral” code. In contrast, our
system does not depend on a fixed block of such personality-neutral code.
Due to fine-grained decomposition, OS personality servers can be supplied
with server implementations that fit their needs exactly, if required. For ex-
ample, if a personality places special restrictions on the file system, it can
depend on a specialized file system interface, which is then backed by a spe-
cialized file system implementation. (Obviously, personality-neutral code
should be favored if possible.)

• Virtualization (see section 2.5) has become a widespread method of sup-
porting multiple OS personalities on a single machine, which shows that
multiple personalities are not a problem per se. The main difference is that
the interfaces are closer to the actual hardware, so that the incompatibilities
that were difficult to accommodate in Workplace OS are not visible. With
fine-grained decomposition, we can freely choose the level of interfaces to
support – including hardware interfaces, if necessary.

To conclude, we still believe that fine-grained OS decomposition and multiple
concurrent personalities are feasible. The specific path taken by the Workplace
project – the development of a complex support layer on top of Mach, instead of
individual simple components – appears to have been responsible for the difficul-
ties. Without the Workplace OS source code, we cannot prove this claim. However,
reports strongly suggest that the Workplace OS code was overly complex because
of the overall OS structure. In contrast, we design our server programming model
specifically so that the code of each server can be written to fulfill one particular
task, independently of the global operating system structure.
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2.4.2 Hurd

The GNU Hurd [12] is a multi-server OS designed as a Unix kernel replacement.
It is based on Mach, though several attempts have been made at porting the system
to different microkernels for performance reasons [1].

The main reason for choosing a multi-server architecture was the desire to ex-
tend the file system hierarchy without special privileges. In a monolithic kernel
with built-in file systems, an error in a file system can potentially crash the system
or compromise security; therefore file system operations usually require special
privileges. In contrast, if file systems are implemented as user-level servers on a
microkernel, they can be isolated so that all file system operations can be made
available to users without introducing any security issues.

Although the Hurd achieved this particular goal, current developers acknowl-
edge that the system suffers from the inefficiency of the Mach kernel, and that
Mach also has a number of other shortcomings that severely hinder development
of the Hurd as planned [43]. Without going into detail, it is evident that the Hurd,
too, emphasizes on the entire system structure instead of the tasks carried out by
individual servers. Therefore, our remarks about Workplace OS should be equally
valid for the Hurd.

2.4.3 K42

K42 [5] is a prototype operating system developed by IBM Research in collab-
oration with several universities. Its goals are diverse, ranging from high-level
objectives such as customizability for future research, to the solution of concrete
operating system problems such as multiprocessor scalability.

The design decisions of K42 closely follow its goals. For example, an object-
oriented microkernel-based multi-server system design was chosen to improve cus-
tomizability, since servers can be replaced more easily than parts of a monolithic
kernel. For good performance especially on multiprocessor systems, K42 employs
a new “clustered object” concept. Such objects are automatically distributed across
servers based on dependencies between object accesses. The IPC system is closely
tied to a C++-based interface system, following the goal of an object-oriented de-
sign; in particular, communication is based on a client/server model using C++
function calls.

K42 has a built-in process concept, which is tied to its memory-management
model. Processes can be either K42 servers or programs designed for another op-
erating system; in particular, K42 is designed for binary compatibility with Linux
applications.

All of these decisions heavily influence the server programming model of K42.
For example, servers have to be aware of the clustered object concept, which cannot
be found in any traditional OS – whether monolithic or microkernel-based. More
strikingly, the fact that both K42 servers and Linux programs are essentially han-
dled in the same manner leads to the requirement that both types of processes are
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compatible in certain fundamental ways. A concrete instance of such a compatibil-
ity problem has been observed in the Linux multi-threading implementation [27].

Thus, while K42 is a notable example of a large multi-server system with a
wide range of features, its programming model is far from generic, but rather de-
pendent on very specific design decisions, limiting reusability. To us, it shows that
in order to achieve our goal of a server programming model that is as generic as
possible, we need to focus on the programming model itself, instead of starting
with a list of design criteria for a particular system.

As a consequence, the resulting multi-server system may not be particularly
outstanding when measured according to the goals of K42. However, we hope to
arrive at a very cleanly and fine-granularly decomposed operating system, which
can greatly increase the chance that individual parts are reusable in different con-
texts.

2.4.4 MINIX 3

MINIX 3 [24], developed at Vrije Universiteit Amsterdam, is a POSIX-compatible
multi-server system designed towards the goal of reliability. A microkernel-based
design was chosen to prevent bugs in drivers and other traditional kernel com-
ponents from crashing the system. In particular, failing servers can be restarted
transparently to the rest of the system.

Essentially, the discussion about K42 applies to MINIX as well: For servers to
be restarted transparently, their state (as well as the global system state associated
with them) must survive such a restarting operation. Most types of system com-
ponents are inherently stateful, and there is no canonical representation of their
state (for example, consider open files in a file system implementation). There-
fore, servers must be programmed specifically to support state restoration. In other
words, the transparent restart feature becomes an integral part of the server pro-
gramming model.

Decomposition in MINIX is less fine-granular than what we would like to
achieve, due to the fact that MINIX servers are processes which need to com-
municate explicitly by sending and receiving messages. Current servers are not
multiprocessor-aware because each of them executes a single event loop to pro-
cess incoming requests. However, contrary to earlier versions, MINIX 3 supports
user-space drivers, each in a separate address space, without any prohibitive per-
formance overhead.

2.4.5 Singularity

Singularity [25] is a Microsoft Research operating system prototype aiming for de-
pendability. It is essentially a multi-server system, except that servers are isolated
using language-based (and thus, software-based) techniques instead of hardware
mechanisms. The use of a safe language simplifies component development and
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also improves the performance of cross-domain calls compared to hardware isola-
tion.

Compared to our decomposition approach, language-based isolation is cer-
tainly more rigorous, and in some sense superior. In Singularity, protocols between
communication partners are formalized in a machine-readable format, so that the
implementation can be verified at compile time. However, using a fixed, special-
ized language has the strong drawback of not being able to reuse existing code in
any straightforward way.

Even in Singularity, all system components are processes which communicate
explicitly. When developing system components using a specialized language, the
fact that every component is a process may not be directly visible. Still, processes
are different from simple objects in several aspects such as threading and callbacks.
This fact always needs to be considered, for example when designing communi-
cation protocols. It undoubtedly complicates Singularity’s programming model,
though we cannot assess the exact consequences due to the limited amount of in-
formation available.

2.5 Virtualization

We mention virtualization because in technical terms, there are many similarities
between virtualized operating systems and multi-server systems. Most notably,
guest operating systems run in isolated protection domains (in user mode or a ded-
icated hardware virtualization mode). Various projects, including several L4-based
virtualization approaches, have shown that microkernels can be used as virtual-
machine hypervisors [22, 30]. Similarly, some hypervisors feature “hypercalls”
resembling IPC, blurring the distinction between microkernels and hypervisors.

Thus, virtualized operating systems can be regarded as large servers, even if
they were originally not written that way. This is especially apparent in the case
of paravirtualization [22]: When an existing kernel is ported to run on top of a
microkernel, it is essentially adapted to the server programming model of the mi-
crokernel.

Virtualization fully meets one of our goals: The only way a guest operating
system can interact with its environment is via a well-defined interface: the hard-
ware interface, which is the only interface that all operating systems adhere to.
At the same time, virtualization completely avoids decomposition. To bring both
goals together, the hardware interface is not sufficient; therefore we need formal-
ized software interfaces between our components.

2.6 Summary

Operating system decomposition has been the subject of many research projects.
Roughly, past approaches fall into one of three categories:
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1. Source-code level decomposition. Most major operating system kernels
are developed similarly to large applications, i.e. partitioned into modules
that interact via more or less well-defined interfaces. Often, such modules
can be loaded at run time (e.g. in the Linux and Windows kernels).
If the traditional static or dynamic linking method is used, dependencies be-
tween modules are implicit – any module can depend on functions or vari-
ables implemented in any other module. In an operating system kernel, this
includes low-level functionality such as resource acquisition, paging, I/O,
interrupt handling, timing, concurrency, synchronization, and debugging.
In addition, any module may depend on higher-level kernel data structures
such as files and processes.
The OSKit project falls into this category as well, except that interaction
is managed by COM interfaces. While the use of COM ensures that in-
terfaces are well-defined and thus components are exchangeable, the ma-
jor limitation of source-code level decomposition remains: All modules or
components must be loaded in such a way that they can share code and data
addresses (i.e., into the same address space, or into the kernel).

2. Wrapping of individual modules. Since every module or component has
both a source-code and a binary interface defined by its external references,
extracting and reusing individual modules/components from a larger oper-
ating system kernel is possible in most cases. Examples include the use of
Linux device drivers in Hurd [2] and K42 [6] (at the source code level), the
NDISWrapper Linux module to load binary Wireless LAN drivers written
for the Windows kernel [3], and an L4-based project to reuse Linux binary
drivers [38], among many others. Unless the wrapped module contains priv-
ileged processor instructions, the module and its wrapper can generally be
executed at user level, in an isolated address space.
Since this kind of decomposition involves developing a separate wrapper
for every different module interface, it is suitable only in cases where ei-
ther several modules implement and use the same interfaces, or the module
in question implements complex functionality behind a simple interface.
Otherwise, the benefit of module reuse is quickly outweighed by the effort
required to implement the wrapper.
Virtualization is the use of the same technique at a lower level. In that sense,
the guest operating system takes the role of the module being wrapped, and
its interface is defined by standardized hardware behavior. Although vir-
tualization does not contribute to system decomposition, its success shows
that this approach to reuse is well understood.

3. Full decomposition. Decomposing an entire kernel into isolated, self-con-
tained components requires major source code modifications. In general,
the interface of every module must be redesigned to replace all implicit
assumptions about the rest of the system by explicit communication code.
Contrary to an interface in a monolithic kernel, the communication code
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must differentiate between data that is copied or mapped, and mere refer-
ences to objects (which are then subject to further communication).
This type of decomposition was attempted for the Linux kernel in the
L4-based SawMill project. The same interface design issues also apply
to multi-server operating systems developed largely from scratch, such as
MINIX, Hurd, and K42.
Major benefits of a fully decomposed system over wrapping of individual
modules are better maintainability and a lower barrier to further modifica-
tion and extension. Essentially, the source code modifications can be re-
garded as a port from the original system to a new multi-server OS. How-
ever, the modifications have to be repeated for every component. Moreover,
since the details of communication and data transfer depend on the specific
microkernel in use, and additional assumptions about the overall system
structure are introduced into the source code, reusability is generally not
improved.

Our approach to system decomposition can be described as a combination of
all three variants. The goal is to arrive at a fully decomposed system with as few
source code modifications as possible, and without the reusability problems caused
by dependencies on the microkernel and the system structure.

For an existing operating system that is divided into modules, module wrapping
requires the fewest source code modifications, if any. The reason why module
wrapping does not lead to a fully decomposed system is that a separate wrapper is
needed for every different type of module. We propose making minimal changes
to the module interfaces such that the modules can be wrapped and combined with
other modules automatically.

This involves converting the modules to components with well-defined inter-
faces (akin to OSKit), under the additional constraint that components may reside
in different address spaces and are generally untrusted. Moreover, the interfaces
must be defined in a way that enables the system to “wrap” the components auto-
matically, i.e. to manage communication and data transfer between components, as
well as other inter-component aspects such as security and component lifetime. In
effect, this means that we design a microkernel API, except that we start with an
intended server programming model and derive all API elements from this model.

17



CHAPTER 2. BACKGROUND AND RELATED WORK

18



Chapter 3

Design

Every microkernel implicitly defines a programming model for server code that is
influenced by the features of the kernel. When existing operating system code is
converted into servers, it must be adapted to this programming model, resulting
in additional development effort and code complexity – which is acceptable for a
single server but places a limit on fine-grained decomposition into multiple servers.
To alleviate this problem, we define a generic server programming model that is
not based on the features of any particular microkernel but on constructs used in
monolithic kernels. After that, we build a kernel according to the server model.

3.1 Analysis

A central concept of our thesis is the “programming model” of operating-system
code. By “programming model,” we essentially mean all aspects of the code that
are unrelated to the problem the code is intended to solve. More specifically, all
machine-readable code is embedded in an environment consisting at least of the
programming language and libraries in use. In a monolithic kernel, the specific
kernel conventions and features are part of the programming model, and in a multi-
server system, the model is governed mainly by the features of the microkernel in
use.

As a result, the programming models of monolithic kernel code and multi-
server code differ substantially, leading to the aforementioned problems concerning
the fine-grained decomposition of existing code. We aim to bridge this gap by
defining a new server programming model. Consequently, the first step has been to
analyze the minimum requirements on such a server model.

The main requirements we have identified are server interaction, object identi-
fication, and object lifetime management. The abstractions of our server model –
“servers,” “services,” “service calls,” and “server references,” as described in sec-
tion 3.2 – are directly derived from these requirements. In the following sections,
we will describe the requirements, and how they relate to monolithic kernel code.
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3.1.1 Server Interaction

Interaction between servers is perhaps the single most important aspect of a server
programming model, both because it is a frequent operation (especially in fine-
granular systems) and because existing microkernels exhibit a lot of diversity in
this respect (see chapter 2). In general, servers need to be able to

1. cause the controlled execution of code within another server,
2. transfer a potentially large amount of data between each other,
3. retain state between interactions (consider, for example, a server querying

another server for information, and resuming its current operation when that
information arrives), and

4. accept interaction initiated by other servers in the case described in point 3.
Traditionally, the answer to points 1 and 2 has been that servers pass messages

to each other, in a format defined by the microkernel. Such messages, however, are
neither part of the programming model of any monolithic kernel, nor defined in a
universally accepted fashion. Point 3 is usually achieved by making the operation
block until the result arrives, so that all information stored on the stack is still
available afterwards. Since this solution matches the way function calls and local
variables are handled in all modern programming languages, it is very natural and
thus a good candidate for our programming model as well. On the other hand,
if point 3 is solved in this way, existing microkernels require the explicit use of
threads for point 4, contrary to monolithic kernels.

3.1.2 Object Identification

A less obvious commonly used mechanism is the identification of objects (where
the term “object” is meant as a placeholder for anything that can be identified, such
as a data structure). To clarify this, we first consider monolithic kernels, to observe
that the most common concept for object identification is that of a pointer.

In fact, pointers serve a twofold role. The main reason for their existence is to
be dereferenced, in order to examine or modify the data they point to. However,
according to the principle of modularity, such use of a pointer should be restricted
to a single module (and this makes the module a natural candidate for conversion
into an individual server). At other places, pointers are not dereferenced but used
to identify the object they point to. Consider the following (hypothetical and ab-
breviated) example:

File *openFile(const char *name);
void readFile(File *file, ...);

Process *createProcess(File *file)
{

readFile(file, ...);
...

}
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void runProgram(const char *name)
{

File *file = openFile(name);
Process *process = createProcess(file);
...

}

The file pointer is never dereferenced in the createProcess and
runProgram functions, but passed as an opaque argument from runProgram to
createProcess and finally readFile. Such use of pointers is common in regu-
lar applications as well as kernel code, since in a single address space, the address
of an object uniquely identifies it – except that the programmer manually needs to
ensure that no pointer references an object that no longer exists.

If the hypothetical operating system of the example above is decomposed such
that runProgram, createProcess, and readFile end up in different servers,
pointers can no longer be used for identification. The use of pointers would force
the servers to be in the same address space, which is contrary to the goal of inde-
pendence. The programming model must therefore include a different mechanism
for the identification of objects across multiple servers. Still, for every object, one
server must be able to inspect and modify its state directly, i.e. use pointers accord-
ing to their main role. This makes every object a part of a specific server.

It should be noted that although existing microkernels do not directly define
such a mechanism, there are many ways to uniquely identify objects without any
support from the kernel, as long as servers can be identified uniquely. The specific
mechanism in use effectively becomes part of the programming model.

3.1.3 Object Lifetime

An aspect strongly related to the identification of objects is the management of
their lifetime. In a monolithic kernel, global policies exist for the construction and
destruction of objects. These policies can generally not be enforced by individual
independent servers in a multi-server system.

A common policy is that objects are guaranteed to exist as long as there is
a reference to them (such as a pointer in a monolithic kernel). In other cases,
objects are destroyed explicitly, and references (if any) are purged in the process.
A programming model should accommodate both cases.

Again, mechanisms for object lifetime management are traditionally not part
of the microkernel itself.

3.1.4 Other

Other aspects that concern multiple servers and hence require consideration in the
server model include parallel code execution (e.g. on multi-processor systems),
error handling, global security policies, and compatibility with legacy code. We
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will not discuss them at this point because they are less relevant in the introduction
of our server model – although they are equally important for the model as a whole.

3.2 Concepts

The main idea of our design is that we derive the concepts we use directly from
the requirements discussed above. We do not make any references to hardware
concepts such as address spaces, or to traditional operating system concepts such
as processes. Instead, servers, their interaction, the identification of objects, etc.
are “first-class” elements of the server model.

In other words, our server model is mainly a formalization of natural concepts
in a multi-server system. However, this formalization leads to very specific code
and data, which we are able to serialize as concrete server files, so that a collection
of such files can be used as a multi-server system.

Specifically, our server model, called “Binary Service Specification” or “BSS,”
employs the following basic abstractions:

• Servers are the components of a system.
• Each server implements a service consisting of one or more service func-

tions.
• Servers use server references to identify other servers and perform service

calls to their functions.
We will explain the development of our server model by means of an exam-

ple of a common type of component within every operating system, namely a file
system implementation. (By “file system,” we mean the implementation of a spe-
cific data layout on a storage medium, as opposed to the file system hierarchy of
an operating system.) File systems are a good choice of example because they
place a lot of demands on the server model, such as the ability to map parts of
files to other servers, including automatically when a part is accessed, or the ability
to handle several requests in parallel (especially in case one request requires data
to be loaded from a disk while another can be handled directly from a cache in
memory).

Our most fundamental abstraction is a “server,” which is our term for a self-
contained entity consisting of code and data. The “server” abstraction relates to the
concepts of objects, modules, or components in a traditional application or OS. In
this sense, a server most closely resembles a component, as:

• a server communicates with other code via well-defined interfaces only (un-
like an object), and

• a server can be instantiated multiple times (unlike a module).
In our example, the file system classifies as a server (see figure 3.1). Com-

munication with applications (or with an intermediate “virtual file system” layer)
is bound to well-defined interfaces in every operating system, as is communica-
tion with the storage medium driver. The server may also have to interact with
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Figure 3.1: File system as a server with interfaces to other servers

other parts of the system, such as the memory subsystem. For this to happen, those
other parts must also be realized as servers. The same file system server can be
instantiated several times, for example for each partition of a disk.

In section 2.6, we presented an approach to system decomposition that consists
of “wrapping” individual modules. We stated that this approach is applicable to
virtually every module in every OS, but that individual modules must be wrapped
manually in that case. We declared that our approach employs the same technique,
except that BSS servers are wrapped and combined with each other automatically.

Thus, the entire interface of a BSS server must be defined in a machine-readable
fashion. More precisely, whenever an operation performed by a server involves
interaction with another server, the microkernel (or, more generally, the BSS im-
plementation) must be able to:

• intercept this operation (which is the essence of “wrapping”),
• interpret as much of the semantics of the operation as necessary,
• determine the target server, and
• invoke the target server in a way that is consistent with the semantics of the

operation.
For example, the common practice of accessing the same data from multiple

modules is problematic, as these operations cannot be intercepted (aside from the
fact that this practice breaks encapsulation). Instead, each BSS server possesses
local data that no other server can access directly. Other servers need to explicitly
invoke the server in possession of the data.

In a file system, this data would, for example, include file metadata such as
names and inode numbers. In a monolithic kernel, such data may be available for
access from any module, whereas in our model, all accesses across servers must be
explicit operations (see figure 3.2).

Regular function calls are interceptable using various different methods. How-
ever, plain function calls do not exhibit the other necessary properties: They neither
identify a target server, nor do they carry enough semantic information to invoke
the potential target server if that server is not in the same address space.

Consequently, we augment the function calls with the necessary information.
Since we want to employ this principle as the basis of potentially frequent commu-
nication between servers, we make sure that we can interpret all of the information
at the time when we instantiate a server, instead of processing it during each call.
This leads to the other three basic abstractions:
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Figure 3.2: Data access across servers

A “service” is a collection of functions with well-defined semantics (an “in-
terface” in component terminology). Services are declared in a machine-readable
format that contains enough information to intercept function calls and invoke a
target server in a different address space. Such a call is called a “service call.”
A dedicated parameter of each function specifies the target server; its argument is
called a “server reference.”

To relate these concepts to our example: Prior to implementing the file system
server, we need to define a service (interface) for file systems in general. It consists
of functions, one of which might be related to the query of file metadata, as outlined
above. The description of the service must contain enough information to transfer
the resulting metadata (e.g. a file name string) to the calling server, in light of the
fact that the caller cannot access any of the file system server’s data directly.

Finally, we adopt the common notion of “threads,” as an abstraction of proces-
sors in coherent-memory multiprocessor systems. In microkernels such as Mach
(in its original form), L4, K42, MINIX, and many more, the thread model diverges
from virtual processors. For example, threads are usually bound to a single address
space, and often used as a communication endpoint [4, 28]. However, in BSS,
communication between servers follows the semantics of regular function calls as
closely as possible, and function calls normally do not involve any thread switches.
Accordingly, in the BSS thread model, threads are not bound to a single server, but
enter and leave servers via service calls.

This difference has a strong influence on the design of a file system server.
Rather than explicitly starting multiple threads to handle file operations in parallel,
the file system passively awaits calls from other servers, which are automatically
handled concurrently because they originate in different threads (see figure 3.3).

We will now describe the abstractions in more detail:

3.3 Servers

A server is primarily a reusable block of raw machine code. Reusability in this
case means that the code makes no hidden assumptions about the environment it
runs in – which simply cannot be true for pure machine code. To achieve this, the
code is supplemented with additional information that enables the kernel to

• invoke the server correctly, and
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Figure 3.3: Semantics of threads and service calls

• perform appropriate actions whenever the server needs to interact with other
servers, or with the kernel itself.

In other words, all assumptions are formalized in a format that the kernel can
interpret in order to actually fulfill the assumptions. The exact data we need is
very BSS-specific, but in contrast, the code is roughly equivalent to the implemen-
tation of a class in an object-oriented programming language, albeit with special
restrictions according to the requirements of full decomposition.

To formalize invocation of the server, a server data structure contains:

• An indicator for the calling convention (stack and register layout) the server
expects for incoming and outgoing calls. This parameter can be chosen by
the user based on the capabilities of the compiler and the kernel.

• A description of the implemented service. The description includes signa-
tures (parameter and return value descriptions) of all functions defined by
the service, and also an ID number that (in most cases) uniquely identifies
the service.
The kernel needs this information in order to transfer data correctly between
this server and other servers in the context of service calls. For example, in
the case of a file system metadata query mentioned above, the query involves
a transfer of data from the callee to the caller. Although the data transfer se-
mantics are fully defined by the server model (see section 3.3.2), not every
call actually involves such a transfer. The signature of a function indicates
how the server expects the kernel to behave when calling the function. The
caller of a function specifies a signature as well, which must match.

• For each implemented service function, an offset into the code block corre-
sponding to the first instruction of that function.

• A value that indicates the amount of private data required by the server. The
kernel must allocate a block of data of this size, and pass the address to every
service function it invokes. To the server programmer, the address appears
as the first argument of the function, or as the this pointer in C++.
The private data of a file system would, for example, include global informa-
tion such as superblock data, and also temporary state such as a list of open
files.
(If the memory requirements of a server are dynamic, the server can use
memory management facilities implemented at a higher level (see section
3.5.3). However, in most cases, dynamic needs naturally correspond to the
creation of new servers (see also 3.3.4)).
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• Offsets of optional constructor and destructor functions, which are called
when the server is instantiated or destroyed, respectively.

• The amount of stack space required. In traditional module-based kernels,
programmers implicitly assume that they are able to allocate a certain amount
of space on the stack, depending on constraints defined by the kernel. Since
BSS servers are self-contained, this implicit assumption must be made ex-
plicit.

• Optional relocation data, so that the server can be loaded at different virtual
addresses.

• Thread-related attributes of the server (see section 3.4.1). The attributes de-
fine whether the server is programmed in a thread-safe fashion, and which
synchronization mechanisms are used. In addition, the server can allow or
prohibit callbacks, i.e. whether an outgoing call of the server may again re-
sult in an incoming call from the same thread. Moreover, the server must
specify the maximum required stack size (for a single invocation).

The manner in which a server interacts with the kernel and with other servers is
the main difference between a server and a regular class. In normal code, external
symbols refer to functions defined in other modules, and pointers refer to other
objects at run time. In our case, the external symbols are replaced by service and
system calls, and opaque values (“server references”) are used as a substitute for
pointers.

Thus, to formalize interaction with the kernel and other servers, the contents of
the server data structure, as outlined above, need to be extended so that all calls are
interceptable by and meaningful to the kernel. The additional contents are:

• A list of “required services.” Server code assumes that the fixed server ref-
erences 0, 1, 2, etc. refer to servers implementing these services (see section
3.3.3). Required services roughly correspond to constructor parameters of a
class.
A file system generally requires a “block device” service, which denotes the
physical medium or partition the file system resides on. In addition to that,
the list of required services specifies all resources the implementation needs,
such as anonymous memory.

• A list of the code offsets of all service calls. This list also includes the
corresponding service IDs and function signatures. To intercept service calls,
the system needs to modify the code at these addresses to call system-defined
stub functions. Such modification corresponds to the resolution of external
references in regular code.

• A list of calls to functions which implement BSS-specific functionality such
as synchronization, error handling, and debugging. The functions take the
role of system calls in a usual system. (In the file format, this list is actually
integrated into the service call list.)
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3.3.1 Services

A service is an interface implemented or required by a server. Independently of
BSS, an interface in a component architecture always consists of two separate as-
pects: the formal, machine-readable interface declaration, and an informal descrip-
tion of the intent of the interface within the context of the problem domain.

A BSS service encompasses both aspects; however, at the binary level, an ID
number is the only indicator of the intent. It serves several purposes:

• It identifies the service within the context of server code. For example, a
server can query another server for a specific service, using the ID as an
argument.

• It is used in the list of required services of a server, each of which must be
resolved when the server is loaded.

• For each service call, the service ID is stored in the server file, in addition
to the signature of the function. Provided that service IDs are unique, this
information frees the kernel from having to perform conformance checks on
every invocation.

• If a service function contains server reference parameters or return values,
the corresponding service IDs are considered part of the signature.

For each of these purposes, service IDs should be unique in a single system,
but uniqueness is not a strict requirement. In other words, service IDs are merely
hints; the user is responsible for making sure that any two communicating servers
use the same IDs for the same services.

Therefore, service IDs are not a fundamental aspect of BSS in the sense that
the kernel does not necessarily associate any specific information with a particular
service ID. Nevertheless, their inclusion in BSS is justified by the following points:

• They enable the kernel to move conformance checks from invocation time to
load time if they are unique.

• There is no other way to define a list of required services of a server, as
the signatures of functions alone do not portray the meaning of a service.
Although the required service IDs are opaque to the kernel, the loader of a
server can use them to determine which server references to provide.

• Some services, for example those related to memory management, server
loading, threads, hardware access, etc., are “predefined” as an appendix to
the server model (see section 3.5). These services are intended to be part
of the specification and therefore invariable, although updated versions can
always be defined with different IDs. The IDs of predefined services may be
built into the kernel.

Apart from its ID, a service consists of a list of functions, which are identified
by their index at the binary level. Functions can have one or more parameters and
return values, which the kernel must know about in order to properly transfer data
between servers. For this purpose, the relevant information about parameters and
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return values is summarized into a single value called the “signature” of the service
function.

Not all usual types of function parameters make sense in the context of server
communication. Parameters and return values of regular functions can be classified
roughly into three categories:

1. Value parameters and results. These have scalar types of fixed size, such as
integers and bit fields.

2. Opaque pointer parameters and return values. Many functions in modular
code take pointer arguments and return pointers without ever dereferenc-
ing them. The pointers are only used as references to objects, not as actual
memory addresses; they might be stored locally and/or passed to other func-
tions.

3. Pointers which are dereferenced in the function, i.e. which point to data that
is read or modified by the function on behalf of the caller. The caller and
callee must agree on the data layout in memory.

The restrictions we place on the types of parameters and return values consti-
tute one of the most visible aspects of the BSS server model. Since every server
both implements and uses many service functions, the versatility of these functions
has a major influence on the complexity of server code. Therefore, we explicitly
support all of the three categories above:

1. Value parameters and results are unproblematic across server boundaries,
since the kernel simply needs to read and write the values according to the
signature of the function and the specified calling convention. To simplify
the definition of a signature, we restrict ourselves to two different sizes.
Furthermore, on 32-bit architectures, the two sizes are actually equal. On
architectures with more address bits, we want to be able to handle values
with the same high number of bits (e.g. offsets and sizes), but do not nec-
essarily want to force the larger address size on all data types, possibly
compromising efficiency.

2. In BSS, the use of opaque pointers is not possible across server boundaries.
However, due to the goal of minimum possible granularity, we can assume
that the referenced objects are always servers. Since references to servers
are managed by the kernel, we can allow reference parameters and return
values, as a replacement for such use of pointers.

3. Pointers to arbitrary data structures cannot be supported, as servers can ac-
cess only their own data, but not the data of their callers (which may reside
in a different address space). Still, for the data structures that are flat, i.e.
do not themselves contain any additional pointers, the kernel can copy data
between servers to give the appearance of regular pointer parameters. Such
parameters can be regarded as an extension of value parameters and return
values to support arbitrary data sizes. The kernel needs to know the copy-
ing direction(s), which are part of the signature, and the data size, which is
specified at run time as another argument (for flexibility).
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In a file system, all types of parameters are common. For example, a function
that “opens” a file given a file name will take the file name as a pointer argument
with inbound direction. Its return value would normally be a pointer to a file data
structure, or an opaque file handle. According to the reasoning above, in BSS,
the server model must allow the realization of files as individual servers; then, the
“open” function can return a reference to such a server.

3.3.2 Service Calls

A service call is the invocation of a service function. Service calls are the only
means of communication between servers. From the perspective of the calling
server, a service call involves setting up the arguments according to the calling
convention, particularly including the reference to the target server, and executing
a call processor instruction to a specific address. Since no meaningful target
address is known at compile time, the location of the call instruction is recorded in
the server file, so the address can be set up by the kernel at load time.

Like regular function calls, and unlike IPC in other microkernels, execution
in the calling servers does not continue until the service function returns. There
are no asynchronous or non-blocking service calls. From the perspective of non-
multi-server code, service calls are virtually equivalent to regular function calls
in this respect. Since regular function are not associated with thread switches but
regarded as operations within a single thread, our notion of a “thread” covers the
entire chain of service calls from their originating server to the server whose code
is executed on the processor. Analogously to a function call stack in a regular
program, every BSS thread possesses a service call stack.

In terms of microkernel design, such synchronous and blocking behavior nor-
mally constitutes a security problem in light of the possibility that the callee might
never return. In BSS, a server waiting for a service call to return is entirely unaf-
fected by this fact under one condition: It must be “thread-safe” in the sense that
other servers can call functions of this server in the mean time. For this reason, and
also as a simplification over traditional server design, BSS is designed such that
every server can be programmed in a thread-safe fashion, integrating concurrency
into the core server model (see section 3.4).

In practice, the situation just described is not always a security issue even in
traditional multi-server systems, since the calling server may not be able to con-
tinue working properly if the call does not return. A file system, for instance, is
crucially dependent on the underlying disk driver; a failure of this driver inevitably
results in the inability to access files.

In contrast, a more representative case is a virtual file system server, which
forwards file requests to one of several actual file systems (see figure 3.4). If one
of the individual file systems fails, requests to the other file systems should not be
affected. Since the virtual file system server does not need to maintain any state
across different threads, it is indifferent to threads that fail to return from outgoing
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Figure 3.4: Virtual file system as proxy

service calls – as long as the kernel does not limit the number of threads that can
enter a server.

3.3.3 Server References

As we already mentioned, server references act as opaque handles used in servers
to point to other servers. They are used to define the target servers of service
calls (akin to object references in object-oriented programming languages) and can
be passed to other servers via service call arguments and return values. Since
the server model is designed so that individual servers are as independent of their
environment as possible, it is not guaranteed that server references valid in one
server are valid in another. When they are used in service calls, the kernel possesses
enough information to convert the arguments and return values accordingly.

For this purpose, the kernel needs to associate some state with the references
of each server, which leads to the question about the lifetime of references. The
following cases are common:

• A server calls another server and obtains a reference to a third server as a
result of the call. It uses the reference (e.g. calls the associated server) within
the same function, then returns from the function without “remembering” the
reference as part of its own state. For example, a server might open a file to
read its data. After the operation is finished, the file reference is no longer
needed.

• A server calls another server, obtaining a server reference. However, it does
not actually use the reference, but returns it as a result of the service function.
In other words, the server acts as a proxy, merely passing the reference on. A
typical example is the “open” function of a virtual file system, as discussed
above (see figure 3.4). The case also occurs frequently in connection with
local servers (see section 3.3.4).

• A server obtains a server reference and stores it in its own private data struc-
ture. The reference is used and possibly returned from different service func-
tions; its lifetime exceeds the duration of a single service function. In a file
system, the root directory may be such a case.

Clearly, we need to distinguish only two different cases: Either a reference is
stored in the server’s private data structure, then its lifetime is usually that of the
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server; or it is used in a single service function, then its lifetime ends when the
function returns (even if it is actually the return value of the function).

To accommodate these two cases, we define two different types of server refer-
ences, called “permanent” and “temporary.” All references obtained from service
calls are temporary. This means their scope is the service function where the refer-
ence is obtained; when this function returns, the reference is no longer valid. For
the most part, temporary references free server programmers from having to con-
sider the lifetime of references. For references that are stored in the server data
structure, there exists a system call converting temporary references to permanent
references, whose lifetime is that of the server. In addition, all references can be
“released” when they are no longer needed, to avoid resource exhaustion.

Since server references as an aspect of the server model require the kernel to
maintain lists of the referenced servers, every kernel implementing the model in-
herently knows for each server whether it is still referenced from at least one other
server. Therefore, the kernel is able to destroy servers automatically when they are
no longer referenced (although circular references can prevent servers from being
destroyed this way).

Such automatic destruction is of great value: Consider again the file system
server returning references to file servers from its “open” function. Rather than
implementing a corresponding “close” function, the file system can rely on the au-
tomatic destruction of these individual file servers when they are no longer needed.

3.3.4 Local Servers

If a server wishes to return a server reference from a function, it can obtain that ref-
erence from a call to another server, or by loading a server file (which, ultimately, is
a service call as well; see section 3.5.1). In either case, it can talk to the referenced
server only via service calls. Very often, this is too restrictive, since both objects
are essentially part of a larger data structure.

The case of files in a file system is especially apparent: The file system data on
a disk is a single data structure with a global consistency requirement. Individual
files cannot be treated entirely separately from the rest of the file system, for exam-
ple because they can grow and shrink and thus occupy variable space on the disk
(among a lot of other reasons). In other words, the files are an inextricable part of
the surrounding file system data structure.

Such a situation occurs in virtually every sufficiently complex server. Con-
sequently, it qualifies for inclusion into the server model, in the form of “local
servers.” A local server takes on two different roles: When a server creates a local
server, the local server appears as a regular object, which can be accessed directly
using a pointer. However, the local server also implements a BSS service, and it is
possible to obtain a server reference to it which is indistinguishable from a server
reference to a non-local server.

For a server developer designing a set of services for a particular field, the exis-
tence of local servers ensures that every set of services can really be implemented.
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For instance, if a file system service has an “open” function returning a file server
reference, that service could never be implemented without local servers because
encapsulating all of the file logic within a separate server would be impossible.

3.4 Threads

In section 3.3.2, we stated that from a server programmer perspective, service calls
are similar to regular function calls. Since function calls do not involve thread
switches, we define our notion of a thread orthogonally to service calls. Thus, a
threads does not belong to a single server; any thread can potentially enter any
other server, provided that the concrete system setup permits it.

Such thread behavior does not imply that a server has to be aware of the differ-
ent threads that enter the server via service calls. With the exception of callbacks,
all threads entering a server are equivalent from that server’s point of view. In fact,
there is no need to include a facility to name threads in the server model. Servers
are completely passive, ready to be called from any thread.

The kernel then needs to ensure that all threads really are equivalent from the
point of view of every server, which has nontrivial implications for scheduling (see
section 3.4.2). Threads do not, however, need to be equivalent at a global level. For
example, they may be scheduled entirely differently, as long as they are running in
different servers.

3.4.1 Synchronization

If multiple threads can enter the same server simultaneously, race conditions need
to be prevented. At first sight, such synchronization requirements seem to place an
additional burden on server programmers, compared to traditional microkernel de-
signs. However, with appropriate support from the server model, synchronization
is not a problem:

• In contrast to monolithic operating systems, properly decomposed multi-
server systems do not have any global synchronization requirements. Secure
decomposition implies that every function of every server can be called at
any time without causing damage to the server. If the multi-server system is
designed correctly, then race conditions can occur only in individual servers,
corrupting their private data structures. Thus, synchronization can always be
handled locally.

• Not all servers need to be thread-safe. Since the kernel manages service
calls, it can serialize calls at the request of the callee. To simplify server
development, such a feature is included in the server model. Without ker-
nel support, the same effect can be achieved on the server side by placing
appropriate synchronization mechanisms around all service functions.

• The ability to intercept service calls places the kernel in a particularly conve-
nient position to synchronize threads: It can ensure that only a single thread
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Figure 3.5: Automatic thread synchronization based on service calls

can run in a server at a given time, while permitting another thread to enter
the server whenever the server executes a service call. In other words, the
server is locked whenever it is executing code, but unlocked at each service
call; all blocks of code between service calls are critical sections (see figure
3.5). This way, synchronization happens automatically without intervention
from the server programmer. The programmer does, however, need to en-
sure that the server is in a consistent state at each invocation of a service call,
so that other threads entering the server do not cause crashes or read invalid
data. Moreover, the state after each service call is not necessarily the same as
before the call, as another thread may have manipulated it. In practice, these
two conditions rarely cause any difficulties; very often, all of the state ma-
nipulation within a function happens at the beginning or at the end, without
any intermediate service calls.

Not all cases are covered by the kernel-managed synchronization models de-
scribed above. If a server performs long parallelizable calculations (unlikely in
an operating system, but there is no reason why application-level code cannot be
realized as BSS servers), then all automatic synchronization would result in a com-
plete serialization of the calculations. Hence, such a server needs finer control over
critical sections. Since the implementation of critical sections without any ker-
nel intervention is problematic, “lock” and “unlock” system calls are introduced
in BSS. These system calls do not necessarily need to enter the kernel at all, but
the kernel is free to supply an implementation that matches the kernel’s SMP and
scheduling behavior.

3.4.2 Scheduling

The thread concept used in BSS has several different implications for thread sched-
uling. First of all, unlike IPC in other microkernel-based systems, service calls are
orthogonal to scheduling in the sense that a service call or return operation does not
imply a scheduling decision. In the context of fine-grained system decomposition,
this aspect is an important efficiency criterion. No decision is required or even
appropriate because the target server always acts on behalf of the caller, carrying
out part of the caller’s operation. If, for example, scheduling priorities exist in a
system, and a high-priority thread calls a file system server to perform an operation
on a file, it would be unnatural if the thread were descheduled because the file
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server has a lower priority of some sort.
The fact that threads represent operations spanning multiple servers and can be

scheduled as a whole simplifies scheduling, but also places restrictions on schedul-
ing operations because of the requirement that all threads entering a server must
be equivalent from the server’s point of view. In particular, the thread cannot be
preempted because it has a low priority; doing that would leave the target server
in a locked state and prevent other threads from entering it, enabling the caller to
perform a denial-of-service attack.

The solution is not entirely obvious, but can be derived from the way this situ-
ation is handled in a monolithic kernel: At user level, threads have different prior-
ities, but once a thread enters the kernel, it usually cannot be preempted (except at
certain safe places). This is not a problem if the length of all operations is bounded,
which can be ensured indirectly by limiting the resources of the application.

In BSS, certain service calls, such as file operations, are directly equivalent to
system calls in a monolithic kernel, and thus can be handled in the same manner in
terms of scheduling. The general criterion that can be applied is that all outgoing
service calls of a server correspond to system calls in a monolithic kernel, except if
the target server was loaded (directly or indirectly) by the caller itself. Accordingly,
in BSS, each server can potentially schedule every thread it creates, as long as the
thread is running within one of the servers under its own control.

To handle the case when the thread leaves its originating server (corresponding
to a system call in a monolithic kernel), the concept of a thread hierarchy is intro-
duced: When a server creates a thread, this thread is not scheduled per se. Instead,
scheduling always happens within the context of a lower-level thread (the lowest-
level threads being the actual CPUs of the system). When the higher-level thread
makes a call that prevents the thread from being preempted, the scheduler of the
lower-level thread can still preempt both threads at the same time.

Although the concept is more complex than scheduling in most other systems,
it is important to note that this complexity does not reflect on the individual servers.
A server file is essentially a passive block of code that may be loaded into memory
and executed at will; in this sense, servers can always be preempted. The schedul-
ing issue arises only if a single kernel is responsible for loading all servers and
managing their interaction, and only if the scheduling behavior must fulfill some
system-wide security policy.

That is also the reason why scheduling is not covered in detail in this thesis. In a
particular microkernel, scheduling is an important design factor, determining prop-
erties such as real-time support. However, according to our modularity criterion,
each individual server should be entirely indifferent to scheduling. Thus, schedul-
ing is deliberately not a core part of the server model. Still, we need to make sure
that the fact that threads are not bound to a single server does not implicitly cause
any problems with respect to scheduling.

One consequence of the omission of scheduling from the server model is that
developers of multi-server systems cannot rely on pre-existing scheduling facilities,
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as present in most microkernels. One cannot, for example, program some servers,
let them start threads with certain priorities, and then examine the run-time per-
formance of the resulting system. Instead, programmers are forced to separate the
development of individual servers from the design of the overall system structure,
and scheduling belongs to the latter. The question whether this restriction has a
positive or negative impact on system development is debatable.

3.4.3 Error Handling

Error handling is a thread-related issue because an error is always associated with
a specific operation, represented by a service call, and thus local to a thread. Error
handling is part of the server model because a single error concerns several servers,
in particular the caller and callee of a service function.

Most of the time, when a server receives an error as a result of a service call,
its only sensible reaction is to report the error to its own caller. In high-level pro-
gramming languages, exceptions exist for this purpose: When a function throws an
exception, the exception is propagated along the entire call stack, until it arrives at
a place where the error can be handled in a reasonable manner.

In kernel code, exceptions are typically avoided because of their performance
impact, which occurs even if no exception is actually thrown. The overhead is
caused by the requirement to manually release all of the resources obtained by
the affected functions. Without extensive help from the compiler, the only way to
ensure correct resource deallocation is typically to catch and re-throw exceptions
in every function.

In BSS, the situation is different because for each service function, the kernel
already maintains a list of resources that need to be released when the function
returns (in the form of server references). Thus, if exceptions are part of the server
model, they free most servers from having to handle errors at all, while neither
the kernel nor the servers need to maintain any additional state. In fact, due to the
elimination of error checks, the use of exceptions can have a positive impact on
performance.

Consequently, the server model contains three system calls related to error han-
dling: To “catch” (i.e. handle) errors, a server can tell the kernel about the begin-
ning and end of a “try” block. If an error occurs within this block, the kernel
resumes execution in the server in the appropriate “catch” block. The third system
call “throws” an error, i.e. aborts the current service function immediately, as well
as all of the service functions in the service call stack where no “try” block exists.

3.5 Predefined Services

All BSS servers specify their requirements in the form of “required services” which
must be resolved to server references at load time. This raises the question of
who resolves the references of the first servers loaded at boot time, i.e. the servers
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implementing basic system facilities. The requirements of these servers correspond
to the raw hardware resources of the system, such as physical memory, processor
time, I/O capabilities, and so on.

Most microkernels have APIs covering all hardware resources. The most basic
servers then manage and abstract those resources, providing higher-level interfaces
to the rest of the system. In BSS, we can take a different route, simplifying the
implementation of both the microkernel and the basic servers: For servers, all ref-
erences are opaque, they merely represent “something that can be used in service
calls.” The actual interpretation of the references is entirely kernel-specific. Thus,
the kernel itself can hand out references to internal “servers,” which act as regu-
lar servers in all aspects, except that they are implemented inside the kernel. This
also eliminates the need to define a special security mechanism for hardware re-
sources: Servers only can use these resources directly if they are in possession of
an appropriate reference.

Such kernel servers are sufficient to replace the entire microkernel API. Fur-
thermore, the services they implement can often be specified in a way that is gen-
eral enough even for higher-level purposes. For example, physical memory can
be represented in exactly the same way as regular anonymous memory, provided
the kernel contains basic memory management functionality (which is required
anyway, for kernel memory). The generality of low-level services has the added
benefit that the basic system servers are also very general and reusable.

Predefined services take the form of an appendix to the server model. They
represent an attempt to standardize basic facilities, but their use is entirely optional.
Here, we will explain a selection of significant predefined services:

3.5.1 Server Loading

The most basic capability of any kernel implementing BSS is the ability to load
server files. Given a reference to a block of data (see section 3.5.3), the “server
loader” service can be used to load the data as a server and obtain a server reference.

In the process, the calling server needs to resolve the required services of the
loaded server. This is done by specifying a “query server” which must return a
server reference for each individual required service. The calling server can im-
plement the query server as a local server of its own, but usually a more generic,
globally defined query server suffices.

3.5.2 Threads

There are two predefined services for thread management. For regular servers, a
simple “thread factory” service can be used to formalize the creation of separate
threads of execution. Threads are created by specifying a function to execute, in
the form of a server reference.

The second (lower-level) service enables the definition of schedulers. Threads
created using this service are never executed automatically. Instead, they must be
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Kernel Physical memory

Server Data space

Figure 3.6: Page fault handling involving multiple data spaces

executed explicitly (dispatched) within the context of another thread. The service
also includes facilities to preempt threads and to manage their state and accounting
information. A scheduler can use this service to implement the higher-level “thread
factory” service above. In order to actually preempt threads, a scheduler can reg-
ister itself as a timer interrupt handler, and then call the preemption function from
the context of the interrupt.

3.5.3 Memory Management

Facilities to allocate and map blocks of memory are important for any microkernel.
Although mapping operations directly affect the address spaces of servers, they
are not directly included in the server model. Instead, the facility to map data
is provided as a pseudo-service which only the kernel itself can implement. For
the kernel, there is no fundamental difference between this service and any other
service, except that its implementation involves manipulating the caller’s address
space.

The actual data to map is represented by a separate “data space” service, which
the “map” function takes as an argument. (The name “data space” comes from
the SawMill operating system [7].) That service, which can be implemented by
any server, formalizes accesses to data, thereby enabling the mapping of pages
on demand based on page faults. The implementation of a data space involves
redirecting every access to another data space, until a kernel-internal data space
representing physical memory is reached (see figure 3.6). Although the data spaces
themselves do not transfer any data, they indirectly tell the kernel which data to
map.

The exact definition of these services has evolved significantly during the de-
velopment of the server model, to support the secure and efficient implemen-
tation of diverse memory management subsystems such as anonymous memory
with swapping and copy-on-write capabilities, memory-mapped files, and address
spaces for legacy applications.
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3.5.4 Legacy Compatibility

Traditionally, all applications running on a multi-server system are servers of their
own, indistinguishable from other servers as far as the microkernel is concerned. If
the microkernel API already includes the concept of address spaces and supports
trapping of exceptions and system calls (as in L4 [28]), legacy applications can of-
ten be loaded and executed without modification. Otherwise they must be compiled
specifically for the microkernel and multi-server system (as seen in MINIX [24]
and Hurd [12], for instance).

BSS itself does not feature address spaces as a central concept. However, since
the BSS server model differs significantly from the way regular applications are
written, and because the importance of legacy compatibility cannot be overstated,
the conversion of applications into BSS servers is often not an option.

Still, even though address spaces are not a central concept, they can be defined
using appropriate services. In particular, data spaces are well-suited to describe the
contents of address spaces, and all architecture-specific features can be included
in the service definitions. To execute code within such an address space, a simple
service call is sufficient, which returns when the execution is stopped (from a dif-
ferent thread, or from a system call or exception handler). Trapping of system calls
and exceptions is easily mapped to callbacks.

3.6 Limitations

Our server model is intended to replace traditional microkernel design principles.
First and foremost, this means that we must be able to develop a kernel that imple-
ments the model efficiently. If the abstractions used in the model are too high-level,
we may end up with fine-grained, independent servers which meet all of our goals
but require too many resources to actually be useful as an operating system. During
the evolution of microkernels, their developers have realized that efficiency must
be taken into account throughout the entire design process [31], but our case is
special: Since we primarily designed a programming model without a specific mi-
crokernel in mind, we are concerned with the potential efficiency of the model’s
implementation, i.e. with the resource requirements and performance overhead that
is implicit in the model, without reference to any particular implementation.

In section 3.1, we analyzed the basic requirements on a server model, which
are essentially the least common denominator of all microkernel features. Actual
microkernels offer far more specific functionality:

• Isolation: Minimizing the effect of a server malfunction.
• Separation: Splitting the system into separately administrated parts. This

implies that servers can be created and destroyed independently of each
other, and that resource utilization is strictly confined.

• Modularity: Restricting interaction between servers to well-defined inter-
faces.
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• Security: Providing the necessary infrastructure so that multi-server systems
can implement diverse security policies.

• Portability: Abstracting certain aspects of the hardware in a way that leads
to portable servers.

• Hardware access: Letting multi-server systems leverage as many features of
the hardware as possible.

• Real-time support (in some systems): Limiting the run-time of kernel op-
erations, and providing the necessary scheduling framework for real-time
multi-server systems.

In order for our programming model to act as a replacement for a microker-
nel API, we are ultimately concerned with the same goals, even though not all of
these features are integral parts of our model. In fact, we consider all features ex-
cept modularity and portability to be orthogonal to our server model, i.e. an actual
microkernel implementing our server model is able to offer any subset of them in-
dependently of any server code. (While modularity was an explicit goal, portability
of server code followed rather naturally.)

More specifically, we considered the goals of isolation, security, access to all
hardware features, and real-time support when designing our server model (but not
separation). However, they are only potentially covered by our model; use of the
server model alone does not guarantee any of these properties (just as two servers
adhering to an existing microkernel API are not necessarily isolated from each
other; it is the actual kernel which ensures isolation and must be implemented ac-
cordingly). The consideration of these goals differentiates our programming model
from regular module or component architectures. Yet, in contrast to microkernel
APIs, the goals are not directly reflected in the model. Rather than that, for ex-
ample, our specific approach to modularity ensures that two servers can be loaded
into two separate protection domains (address spaces), and thus isolated from each
other. The model does not, however, specify that this is indeed the case.

Because of this difference, the server model alone is not a substitute for an
entire microkernel specification. A corresponding microkernel specification would
also define that kernel’s specific set of features and guarantees. (Strictly speak-
ing, this is true for existing microkernels as well; for example, (earlier versions
of) L4Ka and Fiasco implement the same API [28], but Fiasco provides real-time
guarantees beyond those of L4Ka.)

Another difference is that other microkernels are designed to give the user com-
plete control over the servers that are loaded at any time, similarly to the way entire
operating systems let the user manage processes. In our server model, servers are
deliberately not modeled as independently running processes, therefore such a fea-
ture is not immediately realizable in the same form, although other variants are
unproblematic: For example, a “device manager” server could permit an admin-
istrator to load an unload drivers for specific devices, and then hand references to
those drivers out to other servers. The difference stems from the fact that BSS
servers are always loaded within a particular context, instead of being a global part
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of a system.
More generally, the server model itself does not directly include any form of

global resource management. Since fine-grained servers also require fine-grained
resources, management of these resources naturally involves more layers of indi-
rection. Fundamentally, every server manages the resources of all servers that it
loads (if any), using its own resources as a basis. (Practically, few servers directly
load other servers.) On the one hand, this restricts the user from managing most
individual servers. On the other hand, given an appropriate hierarchy of servers,
management of a few servers is sufficient to restrict the resources of all of their
“children.”

In any case, both from a developer and from a user perspective, the model
deviates from traditional operating system concepts. One way to interpret this
deviation is that the model disposes of established abstractions such as files and
processes, and even threads and address spaces, operating at a lower level. From
another point of view, these abstractions are simply not a core part of the model,
but still available in the special cases where they are needed; server developers are
simply forced to make all such requirements explicit instead of relying on a fixed
set of microkernel features.
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Implementation

In this chapter, we will describe the most significant aspects of the implementa-
tion of our prototype multi-server system. The system consists of an IA-32 kernel
that is able to load BSS server files, 31 individual servers, and test programs for
various features (which are actually realized as servers implementing a dedicated
“executable” service).

The main implementation goal was to build a system that would allow us to
evaluate the server model with respect to several different criteria:

• The system’s set of features should be large and diverse enough to be able to
determine whether the abstractions of the server model are sufficient.

• We should be able to test in how far the reuse of existing operating system
code is possible.

• At least some features of the system should be benchmarkable, so that we
can estimate the performance overhead caused by our design.

Therefore, we decided to keep the kernel as simple as possible, and to focus
on a set of servers implementing a particular widely-used feature. We chose the
networking subsystem because it places a lot of demands on the server model due
to high-volume data transfers, and because it enables us to measure and compare
its performance using external equipment.

4.1 Kernel

When developing a kernel that is able to load BSS servers, the first implementation
decision is whether servers execute in user mode or kernel mode. While other
microkernel APIs define abstractions that implicitly assume user-mode servers, our
server code makes few assumptions about its environment, in particular whether
the code is running in user or kernel mode.

Since we wanted to keep the kernel as simple as possible, we decided to load
servers into kernel mode. The decision does not rule out the possibility of user-
mode servers; in fact, our system would enable us to develop a specific kernel-
mode server to load servers into separate address spaces and interact with them.
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However, since we did not consider this issue to be of vital importance, all servers
currently run in kernel mode.

The main reason why a kernel-mode implementation is simpler is that the entire
kernel can use “low-level” mechanisms corresponding to the concepts of our server
model:

4.1.1 Servers

Servers are represented by compound data structures, each consisting of a fixed-
size “system” part and a variable-size “user” part. The system part contains a
list of function pointers for the service functions, a pointer to a “parent” server,
a reference counter, and an optional destructor function pointer. The user part
contains the internal data of the server.

This data structure can be used to represent both regular and local servers, and
also server-like objects defined internally by the kernel. The kernel can invoke a
server function by making an indirect call to one of the functions in the list and
passing a pointer to the user part of the server as the first argument.

The actual service call arguments of the server model are divided into three
classes: raw data, (temporary) server references, and pointers (see section 3.3.1).
In our implementation, temporary references, which are opaque to servers, are
internally realized as pointers to server data structures. Therefore, no processing is
needed for service call arguments: Both local references and pointers are equally
valid in all servers. In particular, although the server model stipulates that data
must be transferred from one server to another when pointer arguments are used,
we never actually need to perform any copying operations, since the data transfer
semantics are trivially fulfilled if we use the same pointers.

When we load a server file, we set up a server data structure so that the func-
tion pointers correspond to the entry points defined in the server file. We cannot,
however, let the kernel jump to these entry points directly: First, we always need
to know which server is currently running, so we need to change an internal vari-
able automatically before we enter a server. Second, whenever a service function
returns, we need to clean up all temporary references it has acquired. To handle
both of these requirements, we dynamically generate a short code sequence that
registers the server as running, calls the actual server function of the loaded server,
and then jumps to a globally defined cleanup function. If the calling convention
includes arguments on the stack (on IA-32, this is the case if there are more than
two arguments in addition to the server pointer, by default), we also need to copy
these arguments to a different place on the stack before making the call. The reason
is that the first copy of the arguments is already followed by a return address.

Furthermore, we need to relocate all outgoing calls of the server as part of the
loading process. The calls that are defined are either system calls or service calls,
system calls being related to permanent and temporary references, error handling,
thread synchronization, and debug output. For error handling and debug output,
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we basically “wire” the calls to the internal kernel facilities. In contrast, references
and synchronization are always specific to a particular server: If a server converts
a temporary reference to a permanent one, the permanent reference is tied to the
server and must be released automatically when the server is destroyed. Therefore,
the loader extends the data structure of each regular (i.e. non-local) server with a
permanent reference list. For the rest of the kernel, the list is simply part of the
“user data” of the server; only the loader and the dynamically generated system-
call code are aware of its contents.

Similarly, we must generate code for the outgoing service calls of the server,
since the server code itself does not have any knowledge about the internal server
data structures of the kernel, particularly the function pointer lists. In a server
file, all service calls are realized as direct calls to a relocatable address, whereas
in our implementation, we always need to load the appropriate function pointer
from the data structure of the target server, set up the first argument to point to the
server’s user data, and then call the function indirectly via its pointer. Moreover, for
simplicity, we directly support the use of both temporary and permanent references
as target servers. For calls to permanent references, we first need to load the pointer
to the target server data structure from the caller’s reference list; this is also done
in the dynamically generated code.

In short, when we load a server, we essentially adapt it to our internal represen-
tation of BSS concepts, by generating a “wrapper” around it that makes it appear
exactly like an internal kernel component.

4.1.2 Threads

Our kernel directly employs threads as a concept. They are represented by data
structures with a fixed alignment in memory, followed by their stack (in the direc-
tion of stack growth). This way, a pointer to the current thread data can always
be obtained quickly by masking the stack pointer. After the stack, there is an un-
mapped page as a rudimentary protection against stack overflows.

These thread data structures actually correspond to thread contexts in BSS ter-
minology (see section 3.4.2). There is no in-kernel scheduler, but only a main
thread (for bootstrapping) as well as a single thread for each CPU in the system
(although multiple CPUs are not supported yet). All other thread contexts must be
executed (directly or indirectly) within one of these threads. There is a “dispatch”
kernel function which carries out this operation by saving the current stack pointer
in the current thread’s data structure, registering the current thread as a “host” in
the target thread’s structure, and loading the stack pointer from the target thread’s
structure.

This scheme makes blocking operations very simple to implement: Instead of
switching to some global scheduler, a thread can block itself simply by returning
to its host thread, i.e. by saving the current stack pointer to its own data structure
and loading the previously saved stack pointer from the host data structure. From
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the host thread’s point of view, this operation appears as if the “dispatch” function
had returned normally. Once a thread is unblocked, it can be dispatched again.

The thread data structure carries all data that BSS defines as being “thread-
local.” Most notably, this includes a stack of temporary references, as a list of
pointers to servers whose reference counter is decreased when the corresponding
service function returns. Furthermore, all errors are local to a thread. When an
error is thrown, either from a server or from within the fixed kernel code, the kernel
restores some of the processor state from a location on the stack, pointed to by the
thread data.

4.1.3 Memory

The kernel needs to be able to allocate fine-grained variable-size blocks of memory
for server data structures. At the moment, a fixed-size chunk of kernel memory is
reserved for this purpose, to keep the implementation as simple as possible. It
is part of the kernel executable; thus, it is a contiguous part of physical memory,
mapped directly into the region of virtual addresses belonging to the kernel. Such
memory is never handed out to regular servers.

In contrast, BSS stipulates that memory is represented by “data space” servers
(see section 3.5.3). BSS defines a service to map arbitrary portions of data spaces
into a server’s address space – which, in this context, does not necessarily refer
to a hardware address space, but simply means that the server can access the data
using pointers. Since all servers execute in kernel mode and can therefore use
kernel pointers, the kernel can implement this service easily. The only catch is that
the data spaces to be mapped are not necessarily kernel servers; they can be regular
servers that redirect accesses to kernel data spaces. Different regions of a data space
may be redirected to different kernel data spaces. Thus, in some cases, the actual
physical memory belonging to a data space may not be contiguous. Consequently,
to obtain a valid pointer to the entire memory represented by a data space, the
kernel must create a contiguous view of the data space contents in virtual memory.
This also requires that kernel data spaces representing physical memory are always
page-aligned.

4.1.4 Hardware Interaction

The kernel exports both IA-32 legacy I/O and memory-mapped I/O capabilities
as kernel servers. Moreover, it delivers interrupts to registered servers. From an
implementation perspective, only interrupts are somewhat complicated.

Unlike other microkernels, our kernel does not manage the interrupt controller
present in a system. So, instead of providing IRQs as an abstraction, it enables
servers to register interrupt handlers directly in the IA-32 interrupt descriptor table
(IDT). More precisely, when a server requests to associate a certain IDT entry with
an interrupt handler server, the kernel builds a custom IA-32 interrupt handler that,
after setting up appropriate thread-related state, directly calls this particular server.
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In our implementation, we reuse the thread data structure of the thread that
was running before the interrupt occurred, for efficiency reasons. However, this is
transparent to the interrupt handler server: For example, when an error is thrown
inside the interrupt handler and not caught, the interrupt is aborted, but the thread
resumes normally. From a logical point of view, each interrupt is essentially a
thread of its own, with two special properties: First, as long as an interrupt handler
is executed, interrupts are disabled – even when the thread enters user level. If
interrupts were re-enabled before the interrupt handler has instructed the device
to clear the interrupt, the same interrupt would occur again immediately. Second,
interrupt-handling code is not allowed not block.

There are three different possibilities for enabling and disabling interrupts in
the kernel: The first is a fully preemptible kernel, where interrupts are enabled
virtually at all times. Since, with the appropriate protection mechanisms in place,
BSS servers can always be preempted, full preemptibility is well-suited for a kernel
implementing BSS. The downside is that it is quite complicated to implement. A
simpler scheme is to enable interrupts briefly on every service call, when the kernel
is in a well-defined state and no server locks can be held. Finally, we can enable
interrupts only when the processor is either idle or running in user mode.

We decided on the last option because it is trivial to implement, and because
it does not cause any overhead. This way, in-kernel scheduling is always coopera-
tive, but we would not gain anything with respect to our goals if we implemented
preemptive scheduling in the prototype. Moreover, very little kernel code directly
depends on this decision; changing the interrupt-handling code to support one of
the other two possibilities is quite feasible.

4.2 Bootstrapping

When we developed the system, it soon became apparent that we needed to load
and connect servers in a way that is not hard-coded, since with more and more
servers, the system structure becomes somewhat complicated and volatile. Also,
most of the time, the reason we need to load a server is that some other server
which we want to load requires the service implemented by the first server. We
can even view the entire system as a single executable server (similarly to an “init”
process in a traditional system) whose required services are resolved in such a way
that the appropriate system servers, drivers, etc. are loaded.

When we load a server, its required services are resolved by a “query” server
we specify. What we needed, then, was a query server that would load other server
files, as configured by the user. Therefore, we implemented a file parser that reads
configuration files in a specific format, and implements a query server for each
configuration file. The features of this format have evolved over time; for example,
it is possible to load other configuration files and use them to resolve the required
services of servers that are loaded. Every subsystem is now fully described by
such configuration files; no server other than the configuration file parser ever loads
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server files.
When booting the kernel, the user needs to specify three file names: The “init”

executable, the configuration file parser, and the main configuration file, which
resolves the required services of the init executable. Other servers are automatically
loaded as needed, based on the main configuration file.

4.3 Driver Framework

The core of the driver framework is a “PC hardware” server, which knows about the
components of a standard PC, and loads (or rather, requests) drivers for individual
components. Examples include the standard PS/2 keyboard (as present or emulated
in every PC), the screen in text or standard VGA mode, PIT and RTC timers, and
also the PCI bus (if present).

The PCI bus driver, in turn, scans the bus for devices, configures devices if
necessary, and attempts to locate a driver for each device, based on the vendor
and device ID and other information specified by PCI. For this purpose, the con-
figuration file system has proven to be useful as a driver database: None of the
information about suitable drivers for specific devices is encoded directly in any
server; instead, we were able to realize the search for a suitable driver as a series
of service queries, which can be handled by regular configuration files.

4.4 Network Device Driver

For a realistic evaluation of networking capabilities in our system, we decided to
port an Ethernet adapter driver from the Linux kernel. We chose the Realtek RTL-
8139 100 MBit/s adapter [41] because of its widespread availability and because it
is supported by the QEMU [8] emulator.

The interface of an Ethernet driver mainly consists of functionality for packet
sending and receiving. Ethernet packets contain hardware address fields for the
sender and receiver, a higher-level protocol (or “type”) identifier, the actual data,
and a checksum. The RTL-8139 chip handles checksums automatically; all of the
other fields are read and written directly from/to DMA buffers in the order they
appear in the Ethernet packet (or “frame”).

Therefore, it makes sense to pass the data received from the device directly to
the next layer of the networking subsystem, and to pass Ethernet packets built by
that layer directly to the device. Consequently, when defining an “Ethernet” BSS
service, we decided not to treat the different fields of each packet separately, but to
handle Ethernet packets (without checksums) as raw data.

When sending packets, this raises the question of where these packets are allo-
cated. In our system, not all memory can be used for DMA, since data spaces can
be user-defined and therefore are not necessarily contiguous in physical memory
(see section 3.5.3). DMA-capable memory is allocated using a specific service,
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which also returns the physical address of the memory so that this address can be
written into a device register. As a special restriction, the RTL-8139 chip can han-
dle exactly four send buffers, whose addresses must be set at initialization time.
Therefore, if we want to avoid having to copy packets to driver-internal buffers
prior to sending, the driver itself must be responsible for the allocation of send
buffers, and must hand them out to the next layer when they become available
(after a send operation).

The natural way of defining an appropriate “Ethernet” service is to include
three functions: One of them retrieves a single packet from the device, and blocks
if no such packet has arrived yet, another allocates an empty packet to be sent,
and the third sends a packet. In our implementation, such a definition would work
well, but it would not be future-proof: If, as intended, the device driver and the rest
of the networking code were loaded into different address spaces, every function
call would entail an address space switch, resulting in a significant performance
overhead for every individual packet.

Therefore, the service we defined does not directly include these functions. In-
stead, it contains three functions returning server references, which can, indirectly,
be used in the same manner. The corresponding services define generic “queue”
functionality, which can be implemented outside of the driver, and especially in
the kernel. To the user of the “Ethernet” service, this is transparent, except for the
additional indirection. The driver, however, can request queue servers via its re-
quirements, use one end of each queue for itself, and hand out the other end via its
interface. This way, references to the packets are accumulated in the queue server,
so the number of address space switches can be reduced.

4.5 TCP/IP Stack

In the rest of the networking subsystem, we encounter the same situation if we at-
tempt to divide the networking code into different servers according to networking
layers and protocols. Therefore, we decided to continue the same scheme along
the entire networking hierarchy. Specifically:

• Incoming Ethernet packets must be distributed to different servers based on
the protocol (“type”) field (IPv4, IPv6, ARP, etc.). Since we want the de-
vice driver to handle packets transparently, a dedicated server is responsible
for the registration of protocol servers and distribution of packets to those
servers.
However, since the vast majority of packets carries the same protocol (IPv4
at the moment, possibly IPv6 in the future), the distribution process adds
unnecessary overhead. Therefore, we decided on a compromise: The driver
can, at the developer’s discretion, forward packets of a certain type directly
to the corresponding server, by requesting special queues from the distribu-
tion server. The actual registration of protocols, as well as the distribution
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of less-frequent packets, is still handled in the dedicated server. This ap-
proach eliminates the overhead for frequently-used protocols while keeping
the amount of specialized code in the driver minimal.

• The next server in the chain, in our case an IPv4 implementation, still re-
ceives and sends raw Ethernet packets, albeit with a fixed protocol ID. Thus,
its purpose is not only the implementation of an IPv4 layer, but specifically
the implementation of IPv4 on top of Ethernet. In addition to dealing with
Ethernet IP packets, the server answers ARP queries for its own address(es)
and sends out ARP requests for addresses on the local network.
Since IP routing is not Ethernet-specific and possibly concerns several de-
vices, we defined our services so that it can be implemented as a separate
server. This prompted us to introduce the concept of “endpoints” describing
servers on the local network. In the Ethernet-specific IPv4 implementation,
an endpoint corresponds to a specific hardware address.
The service implemented by the IPv4 server (i.e. the IPv4 service, without
reference to the Ethernet protocol), is defined in the same spirit as the Ether-
net service: IPv4 packets are transferred via queues and treated as raw data.
The IPv4 implementation does, however, reassemble fragmented incoming
IP packets.

• Similarly to the Ethernet-specific IPv4 implementation, our TCP implemen-
tation is specific to IPv4, as it needs to deal with raw IP packets. It enables
the user to open TCP connections and to set up TCP servers on specific ports.
Connections are represented as pairs of streams, which, like queues, can ac-
cumulate data to reduce the number of potential address space switches.

We had originally planned to reuse most of the code from the lwIP [14] project
in our TCP/IP implementation. However, the decomposed networking subsystem,
as described above, has little in common with the design of lwIP. We regard de-
composition as more important than the reuse of existing code, especially since in
this case, the distinction between the IP layer and the TCP (or UDP, ICMP, etc.)
layer is already inherent in the protocol. Therefore, we implemented the (relatively
simple) IP layer without code from lwIP, but reused individual pieces of code from
lwIP in the TCP layer. The code we were able to reuse concerns the Nagle [14]
algorithm and the congestion control implementation, which determines how much
data to send at any given time.
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Evaluation

In this chapter, we will evaluate the server model described in chapter 3 with re-
spect to our goals. Since the abstract goal of “improving operating system decom-
position” is largely immune to direct empirical analysis, we have built a concrete
prototype system as an example, as described in chapter 4. Our experience with
the implementation of this prototype system serves as an indicator for the fitness
of the server model for the purpose of system decomposition. Furthermore, during
the development of the prototype system, we were able to identify concrete aspects
of the server model that needed (or still need) improvement.

5.1 Goals

Our server model was designed specifically for the purpose of fine-grained decom-
position of operating systems. We can break down this goal into several aspects,
and determine our success with respect to each:

• First of all, the model needs to have sufficient expressive power to develop
real operating systems.

• At the same time, it must operate on a level low enough to be implemented
by a microkernel.

• It should support fine-grained modularity, with servers that are strictly sepa-
rate from each other, with little architectural overhead.

• Fine-grained modularity also requires that the model can be implemented
very efficiently.

• Software interfaces used in existing operating system code must be formal-
izable as services according to the model.

• And finally, we want to be able to convert existing code from other operating
systems into servers with as little effort as possible.
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5.2 Methodology

Most of the subgoals above are of qualitative nature. To determine whether we
were able to achieve them, we will analyze our prototype implementation, and
compare it to alternatives where such a comparison is feasible. Quantitative mea-
surement is possible when determining the system’s granularity, for example in
terms of the average size of a server. However, such a figure is not particularly
meaningful without an estimation of the overhead caused by modularization, in
terms of both effort and efficiency. For lack of a direct comparison, we need to
make subjective statements about both kinds of overhead.

Our main focus lies in the effort and increase in code complexity involved with
the conversion of existing code into BSS servers. To this end, we have ported a
network device driver and a TCP/IP stack from two different sources, as examples
representing more general classes of OS components. However, “complexity” it-
self is a relatively vaguely defined term: To us, it basically means the difference
between “ideal” code that solves a particular, precisely specified problem, and the
actual server code which is adapted to the restrictions of our programming model.

It is evident that established software complexity metrics such as Cyclomatic
Complexity [35] are not very useful for our analysis, due to a very narrow definition
of “complexity.” We could, in theory, calculate the cyclomatic complexity of the
original and ported code – and arrive at exactly the same values, as the cyclomatic
complexity metric assesses the complexity of the abstract problem solved by the
code. All of the changes we needed to make, however, are on a more architectural
level; they manifest themselves in modifications to data structures and functions,
as well as single lines of code, but not to branches and loops.

The situation is further complicated by the fact that the original code is written
according to a specific programming model, without consideration for microker-
nel issues. Especially, it is not the “ideal” code which we would like to measure
against; it is simply not possible to write code which only solves a particular, pre-
cisely specified problem. For evidence, consider how little code device drivers for
the same device, but written for different operating systems, have in common, even
though they solve exactly the same problem.

Although this does not prevent us from comparing the original and ported code
and quantifying the changes we needed to make, it shows that we must also take
into account why we needed to make a change. Most of the time, the situation
is ambivalent: It is obvious that a certain implementation detail works only in a
monolithic kernel, but still not all possible microkernel-compatible solutions are
equal in terms of complexity.

This type of complexity is more subtle and less well-suited for quantitative
analysis. It is known by the name of “accidental complexity” [10], as opposed to
the “essential complexity” originating from the problem to be solved. The original
use of the term refers to programming languages, and how well an abstract solution
to a problem can be translated into specific language constructs. In any multi-server
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system, the server model as defined by the microkernel introduces an additional
requirement for such a translation: The resulting code must not only solve the
problem, but follow the specific paradigms of the server model in doing so.

Thus, we can analyze our server model in the same way in which we would
analyze a programming language – except that no obvious or generally accepted
metric exists for this purpose. Therefore, we confine ourselves to the example
of the network device driver, but tackle the question from multiple sides: First
of all, we count and classify the modifications we needed to make. Secondly,
for individual results of such modifications, we determine which constructs would
have been necessary on a traditional microkernel. And thirdly, we check how much
of the newly introduced code has a direct relation to the problem domain, and how
much is introduced merely to meet the requirements of our server model.

5.3 Results

We analyze our model based on each individual subgoal as described in section
5.1.

5.3.1 Expressiveness

The basic requirement for a microkernel specification is that actual operating sys-
tems can be developed on top of it. We do not necessarily refer to multi-server sys-
tems or even to systems which follow any existing paradigms, but a server model
must at least enable the definition of mechanisms for hardware access, as an inter-
face between the microkernel and the system.

In principle, the fact that we were able to build a prototype operating system,
with selected but diverse features found in other systems, shows that the server
model fits this requirement. On the hardware side, we are able to access the screen,
keyboard, and serial console directly and via BIOS calls, and we have developed
drivers for the PCI subsystem and a network device. On the software side, in
addition to our test programs, our system contains a (partial) emulation layer for
the Linux ABI. All of our servers are thread-safe, which was easy to ensure because
of the automatic synchronization based on service calls (see section 3.4.1).

We shall, however, describe how individual hardware features can be expressed
in terms of services:

• The kernel gives a server access to a CPU by calling a specific service func-
tion. (There is no restriction in the model that would prevent upcalls from
the kernel into servers.) For the first CPU, the kernel simply calls the main
server. For each additional CPU, the main server creates a local server and
asks the kernel to call this server from a separate thread. Since the server
can be declared thread-safe, server code can be executed simultaneously on
multiple CPUs.
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• All physical memory is exported in terms of data spaces (see section 3.5.3).
The server can use a service call to map and unmap parts of it in its address
space.

• I/O (both IA-32 legacy I/O and memory-mapped I/O) can be abstracted using
simple function calls, and therefore is implemented as a regular service.

• There is no difference between memory used for DMA and other types of
memory, except that a fixed physical address is needed and that special mem-
ory attributes may need to be set in hardware.

• Interrupts can, at the lowest level, be mapped to function calls from the ker-
nel to a registered server. The functions are called directly from the kernel
interrupt handler.

• The creation of hardware address spaces, and the execution of user-level
code in those address spaces, is definable as a service (see section 3.5.4).
Data spaces can describe the contents of address spaces. System calls, soft-
ware interrupts, and exceptions happening in an address space result in ser-
vice calls to a registered server. All specialties of an architecture can be
supported.

In short, services and service calls are sufficiently expressive to define a hard-
ware abstraction layer. If the entire operating system is built as a single server, it
can essentially be programmed like a monolithic operating system.

5.3.2 Implementability

The server model must be implementable by a microkernel. Therefore is must rely
on abstractions that are simple and low-level enough for the implementing kernel
to actually deserve that name.

This issue has two sides: While the general abstractions used in the server
model (servers, services, references, etc.) are defined on a significantly higher
level than usual microkernel primitives, the kernel can abstract the hardware at a
very low level, as described above. For instance, there is no need for in-kernel
scheduling or sophisticated interrupt logic.

The first result is that we have successfully designed and implemented a kernel
which can load servers written according to our server model. At a code size of
53 KiB, we would classify it as a microkernel. This shows that the concepts of
the server model are not too high-level for a light-weight implementation. We do,
however, need to put this result into perspective:

• The implementation loads all servers into the kernel. Under this design deci-
sion, we were able to design the entire kernel according to a lower-level vari-
ant of the server model: The kernel internally uses mechanisms for thread-
ing, error handling, reference counting, etc. which are compatible with the
concepts of the server model. A user-level implementation would have been
significantly more complex, especially because a lot of special optimizations
are needed to achieve acceptable performance at user level.
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• Several aspects of the model are not exactly implemented as intended due to
a lack of development resources. For example, preemption of servers is not
possible (resulting in cooperative multithreading), the references of every
server are stored in fixed-size arrays, and the thread stack size is simply
chosen sufficiently large instead of an intended automatic stack switching on
service calls. Non-essential hardware features, such as multiple CPUs, are
not supported.

On the other hand, even the kernel-mode implementation is reasonably fault-
tolerant: Most invalid memory accesses are automatically translated into regular
BSS errors; they do not necessarily crash the kernel (or even the server which
caused them, whether that is desirable or not). Stack overflows are not fatal either;
the worst scenario is that some resources allocated by the function causing the
overflow are not deallocated properly.

Testing the server model in practice revealed several details that needed modi-
fication:

• Originally, the server model did not contain the concept of permanent vs.
temporary references (see section 3.3.3); in our current terms, every refer-
ence was “permanent” – its lifetime was that of the server. As it turned out,
in a fine-granular system, passing references from one server to another be-
comes a very frequent operation. As an extreme example, in our networking
framework, every packet is modeled as a data space, which is a (possibly
local or kernel-internal) server.
Passing a permanent reference from one server to another means that the ker-
nel needs to update the reference table associated with the receiving server,
i.e. search for a free entry and fill it appropriately. Furthermore, it must in-
crease the referenced server’s reference counter. On multiprocessor systems,
both operations must happen atomically, causing some overhead due to lock-
ing.
In contrast, temporary references can be managed in a thread-local data
structure, avoiding both costly searches and locking. Moreover, when a tem-
porary reference is used as an argument or return value, the reference counter
does not need to be modified. Aside from these technological advantages,
temporary references also lead to simpler server code because they do not
need to be released explicitly.

• We took several attempts trying to find a good solution for error handling
(see section 3.4.3). The dilemma is that while errors can happen at any time,
often as part of normal system behavior (e.g. “file not found”), the caller of
a function is usually prepared to deal only with a very limited set of errors
(none, most of the time). Our exception-based approach at error handling
provides a good way to abort an operation when an error occurs, but the
situation when the caller of a function expects the function to fail is more
complicated, since it is difficult to specify exactly how the caller expects the
function to fail.
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We decided that when a server throws an error, it should be able to attach all
possibly useful information to the error (and this is still the case). Originally,
we forwarded this information to the server that caught the error, under the
assumption that this server would either analyze the information and con-
tinue or display the information to the user and abort. Transferring the infor-
mation from one server to another turned out to be somewhat problematic, as
the information needed to be stored at a thread-local location, without even
knowing its size in advance. In practice, we never found any use for the ad-
ditional information obtained from caught errors, except for a standardized
error ID number. Consequently, in our current model, the rest of the data
is no longer involved in the error handling process. Instead, the system can
transfer it to a central entity responsible for the display and recording of er-
ror messages.
In two minor points, the current situation is still not fully satisfactory: First,
there is no 1:1 correspondence between our error IDs and POSIX error codes
(nor do we believe there should be). If the caller is a POSIX emulation layer
(for example, our Linux ABI implementation), it needs to convert the codes
before passing them to the application, which can lead to nonstandard results.
One possible solution is that when a server throws an error, it always spec-
ifies a POSIX error code in addition to the BSS error ID, with overridable
compile-time defaults. That way, when an existing POSIX-based system is
decomposed, the error codes will stay the same.
Second, an error ID can only be a hint at the actual error that happened. For
example, when calling an “open” function of a file system, a “file not found”
error does not necessarily refer to the file being opened. In theory, it can also
refer to some internal file, for example a server that needs to be loaded to
handle the call. Ideally, there would be a distinction between such “internal”
errors and regular errors, but there are no obvious criteria to determine the
boundary where an error turns from “regular” to “internal”.

• The preferred synchronization method, where servers are always locked
when they are executing code but unlocked at each service call (see sec-
tion 3.4.1), works well in many common cases but fails when several service
calls are required to perform a single atomic operation. Even though such
a situation should never occur in high-level code, it becomes common if
all I/O accesses are mapped to service calls, since many interdependent I/O
operations are often necessary for a single hardware action. Since I/O ser-
vices are usually (but not always) implemented directly by the kernel, and
are always intended to execute quickly, keeping the server locked is unprob-
lematic. Therefore, we decided to simply mark certain services as atomic,
instructing the kernel not to release the lock of the calling server.

• Currently, a server is never destroyed automatically as long as another server
holds a reference to it (see section 3.3.3). This model can be implemented
easily using a reference counter for each server. However, circular references
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can prevent servers from being destroyed. At first, none of the services we
defined required the use of circular references, but as the system evolved,
such references became common: Quite often, in low-level code, a server
offers another server to register itself in some way. Internally, the registra-
tion process involves obtaining a permanent reference to the registered server
– while at the same time, the registered server already possesses a reference
to the callee. The most prominent example is the registration of interrupt
handlers with an interrupt controller driver, where it is also apparent that
technically, the behavior makes sense: As long as a server is registered as
an interrupt handler, the interrupt controller driver needs to be able to call it
whenever an interrupt occurs.
Since the problem is deeply rooted in the BSS design and implementation,
we decided to ignore it for this thesis. To solve the problem, the reference
from the interrupt controller driver to the registered handler must, in some
sense, be “weak:” Its presence must not affect the reference counter of the
registered handler, so that when the handler (or its parent, if it is a local
server) is destroyed, the reference becomes invalid. Some notification mech-
anism for the referencing server is necessary; an interrupt controller driver
would, for instance, disable the corresponding interrupt.

5.3.3 Fine-grainedness

Fine-grained modularity was the main focus of our microkernel API, under the
assumption that a rigorously decomposed system provides a good basis for further
development towards other design goals (see section 3.6).

Subjectively, we can say that whenever we identified a part of a server that
did not need to share any state with the rest of the server, we were able to split
that part off into a separate server (or to implement the component as two separate
servers in the first place). Especially, if the part in question used only a subset of
the server’s resources, the server model and the concrete services permitted us to
limit the new server’s resources in such a way that the server was confined exactly
to its particular task.

We can also attest that encapsulating a server in this way does not lead to
any substantial increase in code size. Part of the reason is that the “outer” server
does not need to deal with actual server files; this job is handled generically by a
carefully designed configuration mechanism. Another contributing factor is that
the split-off candidates are often local servers, defined in their own compilation
unit, and implementing services that are already defined.

To assess the granularity we achieved, we measured the minimum, maximum,
and average sizes of our prototype servers, both in lines of code and in bytes of the
resulting binary. In addition, we can regard local servers as sub-modules: On the
one hand, there is no well-defined interface between a server and its local servers,
but on the other hand, local servers are defined as separate compilation units (files).
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Minimum Maximum Average

Files/Server 1 10 3.6
LOC/File 6 620 86
LOC/Server 27 1363 306
Bytes/Server 280 13588 2907

Table 5.1: Minimum, maximum, and average server sizes in our prototype system

Therefore, we also determined the number of files per server and the lines of code
per file (i.e. per regular or local server). The results are shown in table 5.1.

We left the configuration file parser (see section 4.2) out of the analysis. Since
the configuration files include names of services and functions, the parser contains
a database of all services that are defined. The database is generated automatically;
thus, it should not count towards the lines of code, but it does result in a binary
size of almost 100 KiB – making the server substantially larger than any other.
Moreover, we did not count our test executables as servers, since they would skew
the result in the other direction.

If the resulting numbers are any indication, we have achieved our goal of fine-
grained modularity. A particularly interesting observation is that some empirical
evidence suggests an optimal component size of approximately 250 to 400 LOC,
depending on the programming language [23]. In the study, the optimal size is
determined by measuring the relative number of defects per LOC, depending on
the component granularity. A “component” is characterized by a well-defined in-
terface, so in our case, a complete server would classify as a component, whereas
a local server would not. It seems that our average number of lines of code per
server (306) matches the empirical optimal component size quite well, although
we arrived at our server size simply by decomposing the system at all places where
it made sense from a technological point of view. Of course, a single empirical
study may not be representative, but it does suggest that we have arrived at a limit
where even more fine-grained decomposition would no longer improve a system.

The largest server in all terms (except for the aforementioned configuration
file parser) belongs to the Linux ABI compatibility layer. The reason that we are
not able to decompose this server further is that the Linux ABI itself inherits all
of the complicated requirements prescribed by the POSIX standard. In particular,
there are strong dependencies between all abstractions defined by POSIX, such
as processes, files, memory management, synchronization, etc. (fork and exec

semantics are a prime example.) The fact that this is the largest server, i.e. that
all other servers are smaller, indicates that we were able to avoid such complex
dependencies in the rest of our multi-server system.

Our numbers have to be taken with a grain of salt, though, since the implemen-
tation of many servers is incomplete and/or not scalable. In a real-world system,
servers will likely be substantially larger. However, in most cases, the correspond-
ing services are already sufficient; only the implementation of certain servers needs
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Pentium 4 Core 2

Indirect function call/return 11 9
Service call/return 46 23
Temporary save/release 60 31
Permanent save/release 70 + 4x 23 + 2x

Table 5.2: Number of cycles of common BSS operations

to be completed. If we do that, the resulting system cannot be said to be less well-
structured than the current prototype system, since the structure of a system is
defined by its interfaces, not its implementation.

In any case, fine-grained decomposition of our networking subsystem already
exhibits a practical benefit: In a system with several network devices, we are able
to (but do not necessarily have to) load entirely separate TCP/IP stacks for each
device. For example, if one device belongs to an internal network, we can ensure
by design that certain network services are visible only on that network, whereas
in most systems, this is a matter of application and/or firewall configuration.

5.3.4 Efficiency

In order for fine-grained decomposition to be viable, it must be efficient. In fact,
some multi-server operating systems on first-generation microkernels are said to
have failed mainly because of the performance overhead of communication be-
tween servers (see section 2.4.1).

In these systems, the overhead actually comes from two sources: Since servers
run in separate hardware protection domains, there is a certain hardware cost as-
sociated with every transition between servers. Moreover, the IPC mechanism de-
fined by a microkernel API always has an inherent minimum performance over-
head, depending, for example, on the complexity of the mechanism.

In our implementation, we restricted ourselves to servers running in kernel
mode, although our server model is specifically designed so that servers can be
loaded into different protection domains (address spaces). The kernel-mode im-
plementation is unaffected by the hardware cost of address-space switching, as
only a single address space is ever involved. Thus, the performance numbers we
obtain purely describe the overhead of our implementation.

First, we measured the cost of the most common operations of the server model,
when executed repeatedly on our prototype kernel. The results on an Intel Pentium
4 and Core 2 system are shown in table 5.2. The specific operations are:

• Calling a service function. We create a server with a service function that
immediately returns. The function does not have any parameters or return
values. (On the IA-32 architecture, up to two arguments and return values
can be passed in registers and therefore do not alter the service call path.) We
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Pentium 4 Core 2

BSS 9.83 10.18
Linux 10.84 10.15

(a) Throughput (MiB/s)

Pentium 4 Core 2

BSS 41% 21%
Linux 16% 4%

(b) CPU load

Table 5.3: TCP/IP performance (100 MBit/s full-duplex)

read the time stamp counter of the CPU, call the service function repeatedly,
and read the time stamp counter again, to calculate the average number of
cycles for a complete round-trip call/return operation.

• Obtaining and releasing a temporary reference. An existing permanent ref-
erence is converted into a temporary reference, and the temporary reference
is immediately released again. As a consequence, the kernel needs to update
the reference counter of the target server and update the temporary reference
stack of the thread.

• Obtaining and releasing a permanent reference. A temporary reference is
converted into a permanent reference, which is immediately released again.
As a consequence, the kernel needs to update the reference counter of the
target server and update the permanent reference table of the server. In our
current implementation, the exact number of cycles depends on the other
references the server possesses; it can increase substantially if there is an
unused entry in the table followed by a lot of used entries (denoted by x in
the table).

We also determined the number of cycles consumed by a repeated regular (non-
BSS) indirect function call. A service call currently takes approximately 2.5 to 4
times as many cycles as a regular call (at least in this particular case). The main
reason is that the kernel needs to keep track of the currently running server and
clean up temporary references when a service function returns. The number of
cycles can possibly be reduced slightly by inlining some of the code responsible
for this, but in general, the data provides a good estimate for the minimum overhead
of the operations defined by the server model.

The exact impact of these numbers obviously depends on the frequency of
service calls. Therefore, we have used our TCP/IP stack as an example to evaluate
the actual performance of our system. Table 5.3 shows the TCP/IP throughput
and corresponding CPU load for our system in comparison with Linux. While the
difference in throughput is likely a result of Linux’s TCP/IP implementation using
the link more efficiently, the high CPU load in our system is not acceptable.

The reason for this discrepancy can lie either in the TCP/IP implementation, in
the overhead of service calls and other operations, or in a more general infelicity
of our implementation that causes a large performance penalty in the processor.
Therefore, we measured the duration of all lengthy operations (such as memory
copying) and estimated the service call overhead based on the numbers above. The
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idle
service calls
references
memcpy
allocation
other

59%

33%

5% 1%
1%

1%

Figure 5.1: Estimated distribution of TCP/IP overhead

result for the Pentium 4 case is shown in figure 5.1. (We should remark that the
amount of data that is copied is no larger than in a monolithic kernel.)

The calculated overhead caused by BSS operations only accounts for a CPU
load of approximately 2% (i.e. 5% of the total load). This estimation indicates that
the actual server model is not responsible for the inefficiency – but neither are the
operations which are known to take some nontrivial amount of time. (We should
add that we were able to identify one aspect of the server model which caused a
high overhead: In outgoing pointer arguments, if the caller specified the transfer
size in advance but the callee wished to fill only a portion of the buffer, the callee
was forced to overwrite the rest of the buffer with zeros for security purposes. This
problem has been fixed.) Further research is needed to find out what, exactly, leads
to the high CPU load.

Fine-grained decomposition in general may be a factor, for example due to in-
efficient use of the instruction and data caches. Indeed, the Pentium 4 performance
measurement counters indicate L1 load misses every 70 instructions on average.
However, with the CPU instrumentation facilities that are available, we cannot find
out exactly how many cycles are wasted due to these misses. Further, more tightly
controlled experiments (i.e. servers that are less complex than a TCP/IP stack)
would be necessary to find out the actual cause of the performance overhead. At
the moment, we can only conclude that a substantial overall performance improve-
ment is needed.

5.3.5 Interface Portability

Decomposition of existing operating system code can be divided into two aspects:
A formalization of internal interfaces as services according to the server model,
and an adaption of the actual code to the modified interfaces and the microkernel
API. At first, we will briefly discuss how well interfaces can be converted from a
monolithic kernel.

Clearly, not all possible interfaces are directly translatable to a multi-server
system. The most problematic case we encountered is a frequent construct in the
Linux kernel: Linux modules rarely implement a specified interface directly; in-
stead, they have a single initialization function which is called at load time. This
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function then registers a structure containing function pointers with some kernel
subsystem, instructing the kernel to call the functions on specific events (e.g. when
a device is found). Often, those functions will do the same for a different interface
(e.g. to register a high-level abstraction of the device, or an interrupt handler).

In general, this construct translates to the creation of a local server, implement-
ing the service corresponding to the monolithic interface. However, we strongly
want to avoid loading drivers when no corresponding device is present; therefore,
rather than exporting a global initialization function, our drivers directly export
the corresponding high-level interface. Moreover, in Linux, some of the function
pointer structures are built dynamically at run time, whereas our local servers are
always defined at compile time. As a result, the conversion is not as straightfor-
ward as we would like. It does have the positive impact of reducing the code size,
since the initialization and structure-building code is no longer needed.

A different kind of conversion problem became apparent in the control flow
of the networking subsystem: In the lwIP TCP/IP stack, each network packet suc-
cessively travels through all layers between the hardware and the application. The
transition from one layer to the next is a simple function call. Therefore, the pro-
cessing order is fixed (unless each packet is handled by a separate thread, which
is unrealistic). Although in principle, this behavior can be translated to our server
model quite easily, we also have to consider the possibility that each of the servers
involved is loaded into its own address space.

To accommodate that case, we want to handle as many packets as possible
in one layer before dealing with the same packets in the next layer. Instead of
using function calls to pass packets from one layer to the next, we need to store
the packets in queues and use individual threads in each server to dequeue and
process them. The resulting interfaces are so substantially different from those in
the original code that no interface reuse was possible.

5.3.6 Code Portability

We were able to achieve better results reusing individual pieces of code, partic-
ularly in the network device driver we ported. Figure 5.2 shows the amount of
unmodified, adapted, and new code in the resulting server. 75% of the code was
reusable either without modification or with an – often straightforward – adaption
to the server model (for example, the use of specific BSS services instead of direct
calls to kernel subsystems).

To us, a more interesting question is whether the new code constitutes an im-
provement over existing server models in terms of the aforementioned “accidental
complexity” pseudo-metric. In order to answer this question, we categorize the
added code according to its purpose. For each category, we discuss why it is
necessary, and how the same problem would have to be solved on a traditional
microkernel:

• The list of required services is unique to a BSS server. In the driver, we need
to reference several basic OS services such as anonymous memory, DMA,
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original
modified
new

503 (59%)

132 (16%)
213 (25%)

Figure 5.2: Code reuse in the RTL-8139 driver

short-time delays, etc. Moreover, the actual PCI device is represented by a
required service.
Having such a list is unavoidable unless all of these features are part of the
server model itself (as it is, in part, the case for other microkernels). We
believe that an explicit list actually makes the driver more generic, as all
requirements are well-defined. Memory, DMA, and delays are all part of
the problem domain. Moreover, these code lines are not instructions but
metadata. Their exact format constitutes accidental complexity, but their
content is essential.
In microkernels that do not feature requirement lists, there needs to be actual
code in each server to determine which other servers to talk to. Such code
has no connection to the problem domain and is therefore less acceptable.

• We need to create three different local servers: An interrupt handler, a thread
that waits for packets to be sent, and a server that represents the Ethernet link
(because the link is a separate concept in the “Ethernet device” service we
have defined). Each of these servers has its own local data, leaving us with
two options: Either we distribute the driver’s state across the different local
servers as appropriate, or we use only the main server and keep a pointer to
it in all of the other servers. Distributing the state makes sense because some
of the state is used mainly in one of the servers (for example, in the interrupt
handler). However, if we also want to access that state from the main server,
we need to store a reference to the local server in the main server data, lead-
ing to additional code.
The fact that we have four different data structures – while the original code
has only one – can be regarded as a shortcoming of our server model. A rem-
edy is certainly possible; in principle, there is no reason why the data struc-
tures of the main server and its local servers cannot be the same. It would,
however, make the implementation more complex and possibly slower, as
regular and local servers could no longer be treated the same way (see sec-
tion 4.1.1). Moreover, distributing the state across the local servers makes
the internal code of a server more modular, which has proven to have a pos-
itive impact in all cases except for the reuse of existing code. Therefore we
regard the (relatively little) additional complexity as being justified.
On a traditional microkernel, the equivalent of a local server would be a

61



CHAPTER 5. EVALUATION

communication endpoint, such as a port in Mach or a thread in L4. The ex-
act problem does not arise because no state is explicitly associated with such
an endpoint. However, the problem is not actually the existence of the data
structure but the fact that the functions defined in a local server are given a
pointer to it (instead of a pointer to the main server). Thus, in a traditional
microkernel, the problem becomes an IDL issue. In fact, we would certainly
be able to solve the problem exclusively on the server side by generating the
appropriate server code in an IDL-like fashion, as an alternative to changing
the server model – if we actually regarded it as a problem.

• As we mentioned before, we needed to change the networking architecture
from a function-based to a queue-based model. 79 lines of code (37% of all
new code, 9% of all driver code) are a direct consequence of this change.
We must admit that in our eyes, this code counts as “accidental complexity,”
since it is not needed in a monolithic kernel (though it did permit us to re-
move some other code). Indeed, by changing the way in which packets are
handled, we introduced bugs in the driver at first, due to ambiguous hard-
ware specifications. However, as much as we would like to avoid making
such changes, performance concerns force us to if we want to isolate the
driver from other networking code at some point.
It is important to note that this dilemma applies equally to other micro-
kernels, since there is a fixed minimum overhead associated with hardware
address-space changes. In fact, in microkernels with synchronous IPC (e.g.
L4), the burden of implementing a queuing infrastructure lies on the driver
itself (for example, using shared memory).

• We needed to make one particular addition to deal with a special situation
that occurs only in our system: If there is no space left in the receive queue
when a packet is inserted, the queue implementation throws an error. For
performance reasons, we did not want to insert any code in the interrupt han-
dler to catch this error. However, the interrupt must be acknowledged after
all packets have been processed. This means that if we decide not to catch
the error, the interrupt is not acknowledged and simply triggers again, possi-
bly causing a live lock (depending on how, exactly, interrupts are handled).
Our solution is to disable the interrupt for some time when we detect the
problem via a receive buffer overflow. The question whether this constitutes
accidental complexity is difficult to answer: On the one hand, it would not
be necessary if we simply caught (i.e. ignored) the error, which makes sense
because packets that cannot be delivered should be dropped. On the other
hand, temporarily disabling the interrupt is certainly meaningful in the prob-
lem domain. In any case, the change is only a performance optimization.

To conclude, while interface reuse is problematic, code reuse works well, with
a certain amount of additional complexity that cannot be avoided. Much of that
complexity is the result of multi-server-specific performance considerations. At
the same time, some of the original code is no longer needed.
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We can also attest that the requirement to define all interfaces in terms of the
rather restrictive server model has always led to a system structure that subjectively
seems very easy to understand. For every server, the expected behavior is fully de-
fined by the service it implements. This property greatly simplifies the conversion
of code from an existing system, as the expected result of the conversion is well-
specified in advance.
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Conclusion

In this thesis, we aimed to show that fine-grained decomposition of operating sys-
tems into multiple servers running on top of a microkernel is feasible. Since the
server programming models of existing microkernels bring about a lot of additional
code complexity when systems are decomposed into small servers, we defined a
new server model called “BSS” based on simple abstractions specifically designed
for decomposition. To evaluate the model, we implemented a prototype operating
system consisting of a kernel and several servers.

The results are encouraging: Our server model proved suitable for the imple-
mentation of a wide range of system components. Whenever we encountered a
situation where a part of a server was largely independent of the rest of the server,
we were able to split this part off into a server of its own – often without any signif-
icant effort. This point is strengthened further by a close correspondence between
the average code size of a server in our system and the optimal module size in
software projects according to an empirical study.

Unlike any other system we are aware of, BSS servers are completely self-
contained: Their purpose is precisely defined by the service they implement, and
all of the requirements on their environment are specified formally. Knowledge
of the overall system structure is not necessary in order to understand and modify
each individual server of a system. No hidden interdependencies between servers
can exist.

They are also thread-safe, based on our novel approach to synchronization:
Only one thread executes code of a particular server at a given time, but whenever
the server makes a call to another server, a different thread can enter the first server.
This approach makes explicit locks unnecessary while still leveraging the perfor-
mance benefits of a threaded system. Its simplicity can be a reason to consider BSS
server development even more convenient than monolithic kernel development in
this regard.

A somewhat alarming result is that our system is about three to four times
slower at processing network packets than the Linux kernel, even though all of our
code runs in kernel mode. Calculations based on our microbenchmarks indicate
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that this discrepancy is probably not caused by common operations of our pro-
gramming model, but we were not able to determine the exact cause. We cannot
rule out the possibility that the act of decomposition itself – in our strict sense of
the term – is responsible for the high overhead.

We succeeded in reusing most of the code of a network device driver and cer-
tain parts of a TCP/IP stack, but discovered that interfaces in monolithic kernel
code cannot be translated to services in any straightforward fashion, especially
when performance considerations have to be taken into account. To decompose
the TCP/IP stack into separate servers for the IP and TCP layers, we essentially
had to rewrite the IP layer and large parts of the TCP layer. We do not consider
these problems to be specific to our server model, but rather conclude that a one-
to-one translation from monolithic to multi-server code is simply not possible in
some cases.

However, we should remark that in the resulting system, network layers are
indeed separated more strictly than in the original code. This leads us to the obser-
vation that we cannot really measure the most positive aspect of our programming
model: the fact (or belief) that individual servers from a decomposed operating
system are more generic than the system they were derived from. Even though we
were not able to eliminate all instances of “accidental complexity” in our system,
the most important benefit of BSS can be summarized as follows:

Few components in the software world are completely self-contained, isolat-
able, and reusable in any given context. BSS servers are, to the maximum extent
we deem possible.

6.1 Future Work

We have established the feasibility of fine-grained decomposition in principle. We
also have reason to believe that our results scale up to operating systems large
enough to be of practical value. However, in a practical system, a performance
overhead as high as we measured would usually not be acceptable. Since all oper-
ating system research is ultimately concerned with practical application, we regard
this as the most important aspect of our thesis that requires further research. Inde-
pendently of BSS, our results even raise the question whether such a high overhead
might be unavoidable in fine-grained multi-server systems.

Assuming the performance problems can be fixed, our server model still needs
to be improved in several details (see section 5.3.2). We are confident that, after
these modifications are carried out, the model will at some point reach a “stable”
state characterized by the ability to define any type of OS component in terms of
servers. In theory, this makes BSS a potential candidate for standardization, for
example as an OS-independent driver framework.

Since BSS servers do not contain any microkernel-specific code, they can be
loaded on top of virtually any other operating system. Although not relevant to this
thesis, we have implemented appropriate run-time systems on top of Linux and
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L4. This shows that BSS can be used as a generic component framework, even
though it was designed specifically for the development of operating systems. An
advantage of BSS over other frameworks is that servers can be used across different
platforms without recompilation, as long as the CPU architecture is the same. On
the down side, BSS servers require a rather extensive support layer, compared to
simple language-based approaches without the requirement of (potential) isolation.
Nevertheless, a port of this layer to other operating systems may not be a bad
investment.

An even more far-fetched idea is the definition of a custom programming lan-
guage for BSS servers. Currently, we map certain concepts such as services and
server references to regular programming languages (presently C and C++) as well
as possible. The exact mapping is the main source of “accidental complexity”
within BSS. In a programming language with integrated BSS support, even the
distinction between temporary and permanent references would no longer be nec-
essary, as the compiler could infer the type of a reference automatically.

Since the server model specifies rather precisely how a server must or must
not behave, even the definition of a safe programming language for BSS does not
seem entirely out of reach. This would take BSS closer to the Microsoft Singularity
project (see section 2.4.5), except that BSS would still operate at the machine-code
level and employ simpler abstractions.

In any case, even in its current state, we see BSS as a contribution to the OS
research community that enables the development of diverse operating systems
without starting entirely from scratch. We believe that most of the design criteria
of existing research systems can be met by BSS-based systems. For this reason, a
pool of BSS servers implementing various system components would be valuable
for OS research in general.
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