
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Design and Implementation of

Energy Containers in TinyOS

Sören Finster

Diploma Thesis

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa

Betreuender Mitarbeiter: Dipl.-Inf. Simon Kellner

July 14, 2008

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine

anderen als die angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited

sources have been used.

Karlsruhe, July 14, 2008

Sören Finster

Abstract

With the advent of database interfaces to sensor nets, a demand for

online energy accounting emerged. Information about the energy

consumption of queries can be used to optimize them for energy

efficiency or to bill the issuer of the query.

In this thesis, the concept of Resource Containers is adapted to the

requirements of sensor networks. The designed and implemented

system provides application developers with the possibility to as-

sign a control flow to an energy container. The control flow is then

tracked by the system and all emerging energy consumption is ac-

cumulated in the assigned energy container.

The online energy measurement system employed in this thesis is

an early development version of a new system. The provided in-

terface was not yet capable of differentiating energy consumption

by hardware component. The developed energy container system

therefore provides only limited accuracy. With later versions of the

energy measurement system this shortcoming is easily addressable.

The developed system meets the specified design goals: low mem-

ory consumption, small program memory footprint, portability and

easy integration in existing applications.

Zusammenfassung

Mit dem Einsatz von Sensornetzen als datenbankartige Infor-

mationsquellen ist der Bedarf an Energieverbrauchsmessungen

während des Betriebes entstanden. Informationen über den En-

ergieverbrauch einer Abfrage können dazu benutzt werden, Abfra-

gen energieeffizienter zu gestalten oder die verbrauchte Energie in

Rechnung zu stellen.

In dieser Arbeit wird das Konzept der Ressource Container an die

Bedürfnisse eines Einsatzes in Sensornetzen angepasst. Mit dem

entworfenen und implementierten System können Anwendungsent-

wickler einem Kontrollfluss einen Energiecontainer zuweisen. Das

System verfolgt dann diesen Kontrollfluss und fügt dessen Energie-

verbrauch dem zugewiesenen Container hinzu.

Die in dieser Arbeit verwendete frühe Version eines neuen Sys-

tems zur Energieverbrauchsmessung stellt noch nicht die nötigen

Schnittstellen bereit um eine genaue Zuweisung der Energiever-

brauchswerte von Hardwarekomponenten zu ermöglichen. Das hier

entwickelte System bietet daher nur eine begrenzte Genauigkeit, die

mit späteren Versionen des Messsystems deutlich verbessert werden

kann.

Das hier entwickelte System erfüllt die aufgestellten Design-Ziele:

geringer Speicherverbrauch, geringe Codegröße, Portierbarkeit und

einfache Integration in bestehende Anwendungen.

Contents

1 Introduction 13

1.1 Sensor Networks as Data Providers 13

1.2 Energy Containers . 14

2 Related Work 15

2.1 Resource Containers . 15

2.2 Energy as Resource . 16

2.3 Online Energy Accounting on Sensor Nodes 16

3 Background Information 17

3.1 TinyOS . 17

3.2 NesC . 17

3.3 Component-based Architecture . 18

3.4 Generic Components . 21

3.5 Parameterized Interfaces . 21

3.6 Tasks . 24

3.7 Synchronous and Asynchronous Context 24

3.8 Abstraction Layers . 26

4 The Problem of Energy Containers in TinyOS 27

4.1 Hardware specific Issues . 28

4.2 Operating System specific Issues . 28

10 Contents

5 Designing Energy Containers 31

5.1 Design Goals . 31

5.2 General Architecture . 32

5.3 Application Programming Interface 34

5.4 Energy Container Management . 35

5.5 Information Monitoring . 35

5.6 Information Acquisition . 36

6 Implementation 37

6.1 Conditional Integration of Probes . 37

6.2 Interfacing the Energy Measurement System 38

6.3 Information Acquisition and Management in the Scheduler 38

6.4 Information Acquisition and Management in the Timer Subsystem . . 42

6.5 Information Acquisition and Management in Device Drivers 49

6.6 Energy Container Management . 55

7 Evaluation and Discussion 61

7.1 Overhead Estimation . 61

7.2 Discussion . 63

8 Future Work 65

8.1 Tighter Coupling with the Energy Measurement System 65

8.2 Energy Container Hierarchy . 65

9 Conclusions 67

Bibliography 70

1. Introduction

In today’s sensor networks, energy is the most critical resource. A comparison of a

standard battery pack to the node it supports shows that it not only outweighs the

node by far but is also much bigger in its dimensions.

There are approaches to alternative energy supplies like solar power, but most of

them cannot produce energy at a constant rate through day and night. There is

always the need for an energy storage, which adds considerably to the size and

weight of a sensor node.

If a single sensor node inside a sensor network runs out of energy, the whole network

is at risk. A premature depleted node likely had a greater workload than other nodes

in the network. If this higher load was crucial for the survival of the network – like

being the only interconnect between two groups of sensors – the whole network could

be rendered useless although most nodes have enough energy left to continue their

service.

Network lifetime can be extended by the detection of energy consumption hot spots

and the distribution of workload to less strained nodes. The detection of such hot

spots in energy networks needs online energy accounting on sensor nodes.

1.1 Sensor Networks as Data Providers

Most sensor network applications are programmed for a very specific purpose. But

there are projects which change the idea of a sensor network from a single purpose

device to a multi-purpose data provider. This is the scenario of the ZeuS project

[zeu] which provides the context for this diploma thesis.

A sensor network is seen as a cluster of nodes in which every node can participate by

providing computing capabilities, sensing capabilities or routing capabilities. Most

14 1. Introduction

often all nodes in the network can provide all those services and the decision which

services of which node get used depends on the locality of the node.

Such a cluster is seen as an entity which accepts queries and returns the results.

Queries are written in a special purpose query language which enables the distribu-

tion of queries not only in location but also in time. A query could, e.g. consist

of one temperature measurement per second on all nodes for the duration of one

minute. The desired result would then be the average temperature in the sensor

network. Since not all nodes are necessarily involved in a query, and queries can

also be distributed over time, it is possible to have several simultaneous queries in

the network.

This model changes the purpose of single nodes. They no longer have exact prede-

fined instructions but receive their instructions through queries.

The owner of such a sensor network has a big interest in the energy consumption of

queries. Since energy is a valuable resource it is important to track its consumption

for billing or optimizing a query. But since multiple queries can be active on a single

node at the same time, the ability to annotate a query with its induced energy

consumption becomes vital.

1.2 Energy Containers

In this thesis, an extension to TinyOS, the standard operating system in wireless

sensor networks, is introduced. This extension enables tracking of control flow inside

a sensor node. Energy consumption induced by a control flow can be assigned to it.

It uses a new operating system abstraction called energy containers which collect

information about consumed energy. An application can create such a container

and all further energy consumption is accumulated in it. The container contents

can be queried and so, an application could include the energy consumption of the

processing of a query in its response.

2. Related Work

Since the field of online energy accounting on sensor nodes is very new, there is

only few related work. Therefore, most work referenced in this chapter is related to

resource containers and online energy accounting on desktop hardware.

2.1 Resource Containers

Resource containers, which were intruduced in [BDM99] are an operating system

abstraction which provides fine-grained resource management in server systems. In

this concept, focus is set on fair sharing of available resources among server processes.

The notion resources is understood as classical operating system resources like cpu

cycles, disk activity or network usage.

A resource container in the spirit of this work is a logical entity which contains all

system resources which are used by an application. Attached to a container are also

attributes which are used for scheduling, like limitations to resource usage or quality

of service parameters. Scheduling is not only changed to respect the attributes of

resource containers but it is also suggested that cpu scheduling could happen with

resource containers as schedulable entity.

Although resource containers are an important source of inspiration for energy con-

tainers, the concepts are very different. Resource containers rely on an operating

system with strong abstractions of the CPU (e.g. threads) and well defined bar-

riers between user space and kernel space. In sensor networks, operating systems

are often not much more than a thin layer between hardware and user applications.

Particularly abstraction of the CPU is not common in such operating systems.

16 2. Related Work

2.2 Energy as Resource

In [Bel01] online energy accounting on commodity hardware was introduced. This

made energy a first class operating system resource like cpu time or network usage.

Information about energy consumption of specific threads is obtained by evaluating

the contents of performance counters integrated in CPUs.

The inclusion of the newly available information in the resource container concept

was suggested in this work and later implemented in [Wai03]. In this diploma thesis,

resource containers in combination with online energy accounting are used to extend

an operating system so that not only the consumed energy could be accounted to

its source but also restrictions on the consumption of energy could be enforced. The

enforcement employs throttling entities that exceed their limit.

Energy containers differ from this concept in the concentration on monitoring of

consumed energy. Energy containers are neither used to manage energy resources

nor to enforce limitations.

2.3 Online Energy Accounting on Sensor Nodes

The techniques for online energy accounting on server hardware cannot be used

for online energy accounting on sensor nodes. The CPUs on sensor nodes are very

basic and do not support performance counters. But due to the simplicity of sensor

network hardware, other possibilities for online energy accounting emerge.

In [DOTH07] a first approach towards online energy accounting on sensor nodes

is made. In this work, the energy estimation is based on the fact that hardware

components are continously switched on and off. The time a hardware component

spent online in conjunction with the average current draw of that component is used

to estimate the consumed energy. This approach assumes that hardware components

consume constant energy while they are switched on.

In [KB07] an accounting infrastructure for sensor nodes is introduced which con-

siders hardware components with multiple states of different energy consumption

characteristics. This work already outlines a connection to resource containers on

sensor nodes. An idea which is further discussed in [Kel07] which provides the ideas

realized in this thesis.

3. Background Information

In this chapter I will give a brief introduction of TinyOS, its component-based

architecture and the used programming language. With a strong background in

TinyOS version 2 it is safe to skip this chapter. However I recommend reading it for

a better understanding of the design decisions later on. A thorough introduction to

programming TinyOS can be found in [Lev06].

3.1 TinyOS

TinyOS is a popular open-source operating system for wireless embedded sensor

networks. It includes an extensive library of components which enables developers

to rapidly design and implement sensor network applications without the initial

effort of writing device drivers or network stacks.

As its name implies TinyOS is a minimal operating system. The application in

sensor networks enforces severe memory and code-size constraints which is why

it bears very little resemblance with commodity operating systems. Since most

sensor network hardware does not support advanced memory concepts like virtual

memory, there is no distinction between kernel-space and user-space. TinyOS uses

a component-based architecture to compensate for these missing features and hides

this one address-space approach from the developer.

3.2 NesC

TinyOS is programmed in a dialect of C called nesC [GLvB+03]. It is focused on

development of software for sensor networks.

18 3. Background Information

NesC was custom-built for the development of TinyOS. The tight coupling between

programming language and operating system prevents distinction between operating

system and programming language features.

The nesC compiler produces one file with C code from several nesC source files. The

C code is then compiled by a GCC1 version for the used platform.

3.3 Component-based Architecture

The actual assembly of a sensor network node was the inspiration for TinyOS’s

component-based architecture. The basic idea was to abstract functionality into an

independent unit and connect this unit as black box via well defined interfaces to

other units, much like actual hardware chips on sensor nodes are wired to other

chips onboard. The initial abstraction level of hardware chips soon evolved into a

finer-grained abstraction. In todays TinyOS even single general purpose I/O-pins

are represented as components.

The source code files of TinyOS and TinyOS-applications can be classified into

four different categories: interfaces, modules, configurations and header files. A

component is represented either by a module or by a configuration.

The source file naming convention changed from the last letter determining its type

in TinyOS 1 to the last letter determining the nature of a file in TinyOS 2. A file

ending on “P” is considered private and a file ending on “C” is considered public.

Interfaces define the wiring possibilities between two components. They are com-

pletely independet from components and are defined in seperate files. TinyOS dif-

ferentiates between two types of communication between components: commands

and events. When a component declares to use a specific interface, it can call the

defined commands and must respond to the defined events. On the other hand, if

a component provides an interface, it has to implement commands and can signal

events.

In listing 3.1 an example interface is given. A component which uses this interface

can call the read command and has to implement the readDone function which is

called with the result as argument when it is available.

This interruption of control flow is called a split-phase interface and plays an im-

portant role in the development of energy containers. Although both, commands

and events, have return values and data can be transferred by them, this practise is

discouraged and return values are mainly used for status indications.

1An open-source C compiler

3.3. Component-based Architecture 19

interface Read {
command e r r o r t read () ;

event void readDone (e r r o r t r e s u l t , v a l t va l) ;

}

Listing 3.1: A Simplified read interface

When a module is defined, used interfaces have to be listed in the module section of

the file. The necessary function implementations are then defined in the implemen-

tation section. Every function is prefixed by the name of the interface it is defined

in. If a component uses more than one interface of the same type, it can assign them

different names in the module section and further on refer to them with their new

name. In listing 3.2 an example module is given. It uses the interface Boot2 to get

an event when the sensor node finished its boot process.

Variables which are defined outside of event or command implementations, like tmp3

in the example, are local to the component: they can be accessed from every function

in that file but not from other components.

Configuration files are used to wire components together via their interfaces. In

this example case, the component uses two interfaces and therefore two wirings

have to appear in a corresponding configuration. A configuration file itself is also a

component and therefore can use and provide interfaces which must be stated in the

configuration section. The implementation section then specifies which components

are used and how they get wired together.

A configuration file for the exemplary component given in listing 3.2 can be seen

in listing 3.3. It neither uses nor provides interfaces which is why the configuration

section is empty. It refers to three components: ExampleP4, a component which

provides the Boot interface called MainC and a component which provides the Read

interface called ReadImplementorC. The two interfaces of ExampleP get wired to the

corresponding interfaces of the other components via the -> operator.

Configuration files instantiate components by referring to them. Normal components

are singleton objects. If a configuration file refers to them at one point, all further

appearance in configuration files is without effect since the component is already

2Interfaces are further on written in italic script
3Code excerpts are written in bold type
4Names of components are written in a typewriter font

20 3. Background Information

module ExampleP {
uses interface Read ;

uses interface Boot ;

}

implementation {

v a l t tmp ;

event void Boot . booted () {
ca l l Read . read () ;

}

event void Read . readDone (e r r o r t r e s u l t , v a l t va l) {
tmp = val ;

}
}

Listing 3.2: The ExampleP component

configuration ExampleC

{
}
implementation

{
components MainC , ExampleP , ReadImplementorC ;

ExampleP . Boot −> MainC . Boot ;

ExampleP . Read −> ReadImplementorC . Read ;

}

Listing 3.3: The ExampleC component

3.4. Generic Components 21

included for compilation. The wirings though are handled as usual and establish

connections. Exceptions to this scheme are generic components which are covered

in section 3.4.

Header files are C header files and mostly contain only preprocessor directives for

constants or macros.

3.4 Generic Components

With TinyOS 2 the limitations of the component-based architecture with single-

ton components was addressed and an extension called generic components was

introduced. This extension is comparable to classes in object-oriented programming

languages. A generic component can be instantiated multiple times and every in-

stance is independent of the other instances. This enabled the development of helper

components like BitVectorC or QueueC which provide universally usable implemen-

tations of common problems.

The development of generic components differs only slightly from normal compo-

nents. The only differences are the keyword generic before the module or configu-

ration keyword and the possibility to pass arguments to the instantiation. A simple

generic component can be seen in listing 3.4.

When a generic component is used in configuration files, its name is prepended

with the new keyword. The newly generated component is only addressable in the

configuration file which instantiated it. Although the nesC compiler just copies the

source of the generic component and generates a normal component with a unique

name, that name is not known prior to compilation.

This is of importance to the development of energy containers since often a generic

component is subject to extension or modification. Then the problem is to make

sure that added interfaces are accessible from outside the component. This involves

the modification of the configuration file which instantiates the generic component.

3.5 Parameterized Interfaces

It is often necessary that multiple components wire to one interface of a specific

component. This is, for example, the case with the component which implements

the control for the onboard LEDs. When a component wants to switch a specific

LED on or off, it uses the LedsC component. When multiple components want to

do that, they all wire to LedsC and since the Leds interface only includes commands

it is possible that they all share the same interface. But if the interface contained

22 3. Background Information

g e n e r i c module ToggleFl ip f lopC () {
provides interface Togg l eF l i p f l op ;

}
implementation {

u i n t 8 t s t a t e = 0 ;

command u i n t 8 t Togg l eF l i p f l op . s t a t e () {
return s t a t e ;

}

command u i n t 8 t Togg l eF l i p f l op . t o g g l e () {
i f (s t a t e == 0) {

s t a t e = 1 ;

return 0 ;

} else {
s t a t e = 0 ;

return 1 ;

}
}

}

Listing 3.4: Example of a simple generic component

3.5. Parameterized Interfaces 23

module ParameterizedC {
provides interface Read [u i n t 8 t id] ;

}
implementation {

command e r r o r t Read . read [u i n t 8 t id] () {
v a l t data = sample () ;

signal Read . readDone [id] (data) ;

}
}

Listing 3.5: Example of a component providing a parameterized interface

events, LedsC could not signal a specific client. All events would get signalled to all

components which are wired to the interface. Often, this is not desirable.

When a component should be able to signal specific clients it must provide an

interface for each client. But when writing an application, the exact number of

clients is seldom known, and the definition of a great number of interfaces is rather

awkward. Therefore, nesC supports a concept called parameterized interfaces.

Instead of providing multiple interfaces, a component can provide one parameterized

interface. Basically, this means that the same interface is provided multiple times

and the selection of the correct one is possible through a parameter. A component

providing a parameterized Read interface can be seen in listing 3.5.

An interface is parameterized by appending the parameter in brackets. This para-

meter is then used by configuration files to select a specific instance of the interface.

The parameter is made available in function bodies as normal variable and can be

used as parameter for the signaling of results.

One remaining problem is how a configuration file can decide which parameter it

should use to wire a component to the interface. For this purpose nesC provides

a special compile time function called unique(). It takes a string as argument

and returns a unique integer for every invocation with the same string. Together

with uniqueCount(), which returns the number of invocations of unique() calls

for a specific string, these two functions enable the efficient use of parameterized

interfaces.

24 3. Background Information

Another problem which arises with the usage of parameterized interfaces is the sig-

naling on unwired interfaces. Since the parameter to the interface can be calculated

at runtime, it is possible that an application signals an event on a parameterized

interface which is not wired to another component. To solve this problem, a com-

ponent which provides a parameterized interface must define default handlers for its

events. These default handlers are called when an event is signaled on an unwired

parameterized interface.

3.6 Tasks

The execution of a command or an event handler cannot be interrupted from another

command or event handler. Long running command bodies or event handlers thus

delay further execution and should therefore be avoided. If long running code is

required, TinyOS provides the concept of a task which can be used in this case.

Tasks are defined like commands but instead of the command keyword the task

keyword is used. Inside the tasks body can be anything which can be in a normal

command body. Particularly references to component variables or helper functions

defined in the component.

The execution of a task is scheduled via a post call with the name of the task as

argument. This hands the task over to the scheduler which will start it later. A task

itself is not interruptible by another task or by normal commands or events. That

is why moving a long running computation inside a task does not solve the problem

on its own. The computation must be split up in smaller parts.

In listing 3.6 such a long running computation is wrapped in a task. It approximates

the root of a function. The task consists of one step of the process. When the result

is good enough, it is returned, otherwise, the task posts itself again and continues

the calculation at a later point in time. The idea is that tasks can take turns on the

CPU. This concept is comparable to cooperative scheduling.

Tasks have a second important function: the transition between asynchronous con-

text and synchronous context.

3.7 Synchronous and Asynchronous Context

As mentioned earlier, tasks cannot get interrupted by other tasks or normal com-

mands or event handlers. This is because they run in synchronous context, a concept

of TinyOS to approach the problem of race conditions.

Code which is marked as asynchronous is always at risk of getting interrupted from

other code or from itself. To prevent race conditions, nesC provides the atomic

3.7. Synchronous and Asynchronous Context 25

task improve I t e ra t i on () {
tmp = func t i on (l e f t + (r ight− l e f t) / 2) ;

i f (tmp > 0) {
r i g h t = tmp ;

} else {
l e f t = tmp ;

}
i f (goodEnough (tmp)) {

proce s s (tmp) ;

} else {
post improve I t e ra t i on () ;

}
}

Listing 3.6: Example of a long running computation in a task

statement which guarantees that access to the variables in the enclosed code happen

atomically. It does not guarantee that the atomic sections get not interrupted, it

just promises, that the contained data operations cannot get flawed through race

conditions.

All interrupts and low-level hardware events happen in asynchronous context. To

prevent propagation of the risk of race conditions into synchronous code, asyn-

chronous code is not allowed to call synchronous code. This forms a kind of one-way

barrier since synchronous code is allowed to call asynchronous code. The only way

to get through that barrier from the asynchronous side is the posting of a task. This

operation is marked asynchronous and causes a later execution of synchronous code.

Therefore every low-level software which happens to need interrupts has to define a

task which it uses to propagate data into synchronous context.

This concept enables a programming environment in which the developer can pro-

gram easily without keeping race conditions in mind. But it also poses the risk of

introducing long delays through excessive event handlers or commands. Most de-

velopers are used to preemptive schedulers, so this concept usually needs some time

to get used to. To ease this, a thread concept which does not rely on cooperative

scheduling is currently in development.

26 3. Background Information

3.8 Abstraction Layers

TinyOS employs a hardware abstraction architecture to support different platforms

and provide portable applications at the same time. It uses a three-layer design to

gradually adapt the hardware capabilities to platform independent interfaces.

The lowest layer is formed by the Hardware Presentation Layer (HPL) which is

tightly coupled to the hardware. HPL components just provide an abstraction on

language level. They offer an interface which exposes all hardware capabilities.

As HPL components are stateless they can do only a bare minimum of hardware

interaction like clearing flags and copying single values.

The Hardware Adaption Layer (HAL) is the middle layer. In contrast to HPL com-

ponents HAL components are allowed to keep state. They use the simple interfaces

provided by HPL components to provide the best possible abstraction of the spe-

cific hardware. HAL components should provide the complete feature set of the

hardware.

The top of the hadware abstraction architecture is formed by the Hardware Inter-

face Layer (HIL). In this layer, platform dependent abstractions from the HAL are

converted in platform independent abstractions. In this process hardware features

can get lost and HIL components should only provide the typical hardware services

needed in sensor network applications.

A more thorough discussion of the hardware abstraction architecture of TinyOS can

be found in [HPH+].

4. The Problem of Energy

Containers in TinyOS

In this thesis I will provide the design and an implementation of the energy container

concept in TinyOS as discussed in [Kel07].

The energy container concept enables the application developer to precisely track

energy consumption within a sensor node in terms of high level abstractions like

query processing. As soon as a query arrives at a sensor node the energy container

implementation can track energy consumption of all activities which are triggered

on behalf of the query. After query processing is completed and the application is

ready to send out results, a short call to the energy container implementation will

provide a precise account of energy consumed during the whole query processing.

Application developers are not responsible to track activities on the sensor node

and assign them to queries. Once set up, the energy container implementation will

follow the control flow of an application and relate future activities to the correct

sources.

Energy containers rely on an accurate online energy accounting infrastructure. A

very promising approach for TinyOS is described in [KB07].

As of now, measuring energy consumption of sensor networks needed additional

hardware and was time-consuming and tedious. Hence most often only one sensor

node was measured and used for hand-optimizing the energy consumption of an

application. This approach prevented a large scale survey of power requirements

of sensor networks and made it difficult to relate energy consumption to certain

activities on a sensor node. Furthermore the collected data needed processing and

interpretation and therefore did not provide immediate feedback. This resulted in

slower development cycles.

28 4. The Problem of Energy Containers in TinyOS

With online energy accounting and energy containers it is possible to accurately

relate energy consumption to activities within a sensor node and to get a bird’s eye

view on the energy condition of a whole sensor network. With immediate feedback on

energy demands of queries, the energy container concept enables a fast development

cycle for query design. The amount of available data also enables detection of

interdependencies between nodes.

But also per-node application development benefits from Energy Containers. The

accurate reports on energy consumption can reveal bugs and ineffecient implemen-

tations more easily since energy consumption of certain routines can be monitored

independently from other activities on a sensor node.

The addition of online energy accounting and energy containers adds a valuable

instrument to the development toolchain of sensor network applications.

4.1 Hardware specific Issues

The design and implementation in this thesis concentrates on a high-level implemen-

tation of energy containers which is portable to arbitrary platforms running TinyOS.

The unavoidable platform specific decisions target the MICAz platform [Cro] which

is one of the most common platforms for developing sensor network applications

with TinyOS. The provided implementation is also done for the MICAz.

The hardware capabilities of this platform are limited by the processor which is an

ATmega128L manufactured by ATMEL [ATM]. It is a RISC processor with four

kilobytes of random access memory and 128 kilobytes of in-system flash program

memory. Its clock frequency is software adjustable up to eight MHz.

The limitation of random access memory and the lack of memory virtualization

create an environment in which the occupation of every single byte of random access

memory must be well thought out. But also the restriction of program memory,

although less severe, must be considered.

4.2 Operating System specific Issues

TinyOS is programmed in a dialect of C called nesC [GLvB+03] which was custom-

build for the development of TinyOS. Many concepts of TinyOS are realized with

special features of the nesC programming language which cannot be found in stan-

dard programming languages.

The tight coupling between language and operating system complicates understand-

ing and extending the operating system.

4.2. Operating System specific Issues 29

A case in which the restriction to nesC causes difficulties in Energy Container deve-

lopment is with the anonymity of generic components which is outlined in section 3.4.

This thesis is about the extension of TinyOS with the energy container concept.

Therefore, modifications of the fundamental concepts of the operating system are

out of scope of this work.

30 4. The Problem of Energy Containers in TinyOS

5. Designing Energy Containers

The design process of energy containers for TinyOS crossed several abstraction layers

from application programming interface down to device drivers. I start this chapter

with a short overview of the goals I had in mind while working on the design. This is

followed by a section about the general architecture of the designed energy container

system. Then I will elaborate on the different design issues in a top-down approach

starting with the application programming interface.

5.1 Design Goals

The design of energy containers in TinyOS is not only about the general issues to get

a functional implementation but also about the usability for application developers

and the maintainability for operating system developers.

General Issues

Since memory is spare on sensor nodes the implementation should be lightweight in

memory consumption. Data structures should use as little memory as possible and

unavoidable static memory allocations should be configurable via global parameters.

Therefore the application developer can fine tune memory consumption with his

deeper knowledge of the application.

Another big constraint in sensor nodes is computing power. Especially in time

critical applications the limited speed of the main processor poses the risk of late-

ness. Additional code can prolong reaction times and make the development of such

applications much harder. Since there are also calls to the energy container imple-

mentation from device drivers and interrupts the calls should have an upper limit

in execution time.

32 5. Designing Energy Containers

When these design goals are reached the additional energy consumption through the

inclusion of energy containers should already be at its minimum. Nevertheless it is

important to keep an eye on the introduced energy overhead.

Application Developers View

To get not only a theoretical solution to this problem but also a practical one which

proves itself in application it is important to provide easy access to the energy

container infrastructure.

It should be possible to introduce the energy container concept into an existing

project without any problems. The necessary changes to the codebase should be

small.

Given that developers will want to test their applications without using energy

containers but with the TinyOS installation which will be used later, the implemen-

tation should support the exclusion of energy containers and their overhead without

changing the whole application.

OS Developers View

The implementation should be as platform independent as possible. Complete plat-

form independence is not feasible since some low level interaction with device drivers

is needed to monitor spontaneous energy consumption. Yet the higher level concepts

should retain platform independence where possible to ease porting the implemen-

tation to new hardware platforms. Since other platforms may require a different ap-

proach towards energy measurement the implementation of energy containers should

be independent from the underlying energy measurement component. Therefore it

must not use implementation specific information but limit itself to the usage of the

provided interface.

5.2 General Architecture

An implementation of an energy container concept fulfills two main functions. It

tracks the control flow of the application to correctly correlate the energy consump-

tion with its causes and it manages and accounts the records about the consumed

energy.

To separate the development of those different tasks I chose to use a layered approach

to the problem. The top layer is responsible for accounting and management and the

lower layer implements control flow tracking. Because of easier portability the lower

layer itself is divided in two layers which results in an overall three-layer architecture

depicted in figure 5.1.

5.2. General Architecture 33

Information Acquisition

Information Monitoring

Energy Container Management

Information about
control flow

Instructions Status

Figure 5.1: Architecture of an energy container system

To track the control flow of an application correctly it is necessary to get notified

when the application is interrupted or interrupts itself and also to get notified when

it will start processing again. This task is accomplished by the lowest layer of the

architecture – the Information Acquisition Layer. Since the desired information is in

most cases only available in the components which provide the non-linear behavior

this layer is inside of theses components. This makes the Information Acquisition

Layer the most hardware dependent layer and includes the modification of standard

TinyOS components.

The split of the control flow tracking task in two layers allows to minimize the

modifications to standard components. Since the Information Monitoring Layer is

responsible for data interpretation, the Information Acquisition Layer only collects

it. This results in the insertion of hooks inside of standard components which hand

the required information out to the Information Monitoring Layer. Thus component

specific modifications are kept at a minimum and should seldom exceed a few addi-

tional lines. Due to the minimal and non-intrusive nature of these modifications I

call them probes.

The Information Monitoring Layer consists of several components of which each

communicates with an installed probe via a specific interface. There must not nec-

essarily be exactly one monitoring component per probe. It is possible to accumulate

34 5. Designing Energy Containers

several probes into one monitoring component, however, the very specific nature of

the collected data suggest a similarly specific monitoring logic.

The monitoring components interpret the provided information and decide what

needs to be saved for later usage and what can be safely discarded. Since this decision

is based on the node-wide status of the energy container system, the monitoring

components can query the energy container management for, e.g. the currently

active energy container.

The Energy Container Management layer is mostly concerned with the high-level

management of energy containers. It is not provided with information from the un-

derlying layers but only accepts instructions about changes to the node-wide status.

5.3 Application Programming Interface

The central component of the energy container implementation is the ECManagerC

component. By referencing this component in a configuration file the application

developer causes the inclusion of the complete energy container infrastructure. EC-

ManagerC provides the interface listed in listing 5.1.

interface ECManagement {
command e c i d s ta r tMon i to r ing () ;

command void startMonitor ingOn (e c i d id) ;

command energy t getCurrentConta iner () ;

command e c i d getCurrentConta inerId () ;

command energy t getConta iner (e c i d id) ;

command void switchToContainer (e c i d id) ;

command void attachToContainer (e c i d id) ;

command void stopMonitor ing (e c i d id) ;

command void emptyContainer (e c i d id) ;

}

Listing 5.1: ECManagement interface definition

It is notable that the interface to the ECManagement interface only includes com-

mands and therefore is not split-phase like most TinyOS interfaces. This is necessary

since the expected usage of energy containers in applications is reduced to two calls

which need immediate results:

The first call should set up the environment to track the control flow and account

the consumed energy to an energy container. The second call is made when the

5.4. Energy Container Management 35

application reaches a state where the main work is done. This call returns the

amount of energy accounted on the current energy container. This energy bill can

then be sent back to the principal along with the results of the query. The commands

in question are startMonitoring() and getCurrentContainer(). After that, the

used container can be discarded by calling stopMonitoring() or reused through the

startMonitoringOn() command.

This approach is very easy and unobtrusive when the requests return immediately

but would get difficult if a split-phase interface was used. There would not be

a significant performance penalty in using a split-phase interface but application

development would be much harder.

The additional commands in ECManagement provide applications with a more so-

phisticated use of the energy container concept. Although an application could use

those commands to work more sophisticated with energy containers the two afore-

mentioned commands should suffice for most areas of application. They relieve the

application developer completely from caring about energy containers and their data

structures and enable him to concentrate on application development.

5.4 Energy Container Management

The management of energy containers is done completely inside of one component.

This component offers the application programming interface and also provides the

interface needed from the underlying Information Monitoring Layer. Although the

monitoring layer consists of multiple components, the management just offers one

generalized interface to them.

The management component is responsible for the allocation and maintenance of

energy containers. It would be possible to allocate energy containers dynamically but

in general the number of needed energy containers should be closely estimatable by

the application developer. In this design the energy container management allocates

static memory for a fixed number of energy containers. How much energy containers

are allocated is configurable via a global constant.

In addition to the general purpose energy containers, the management component

also maintains a root container which measures the complete energy used by the

sensor node. This enables some rough estimations about battery life and sensor

network durability.

5.5 Information Monitoring

The Information Monitoring Layer contains most of the logic involved in control

flow tracking. When an application is about to hand off its control of the processor

36 5. Designing Energy Containers

it usually takes measures to get the control back at later point in time. These

measures are for example the programming of a timer or the posting of a task. The

components in the Information Monitoring Layer get notified about those measures

and must make sure that they can reestablish the currently active energy container

when control is handed back to the application.

In most cases components which notify the monitoring components provide an identi-

fier with which the monitoring components can associate the currently active energy

container. When the application is about to get restarted, the monitoring compo-

nents get notified again with the same identifier. So they can look up this identifier

and set the corresponding energy container active.

For performance reasons the needed memory for the identifier / energy container

relation is statically allocated where possible. This saves the burden of dynamic

memory management and since the number of identifiers is available at compile

time in most cases, no memory is unnecessarily allocated.

5.6 Information Acquisition

The information about the control flow is collected via small probes which get in-

serted in standard TinyOS components or reside in special proxy components if the

insertion in standard components is problematic. This can happen if the compo-

nents in question are hardware dependent and hardware independence is possible

without much overhead or if the modification of standard components would get too

complicated and difficult to maintain.

6. Implementation

In contrast to the design chapter, the implementation chapter is structured in a

bottom-up approach.

At first I will explain an implementation technique which allows easy conditional

integration of probes into the build process and the interface of the energy measure-

ment system.

I continue with the implementation of probes in standard TinyOS components and

the corresponding monitoring components. Since the implementation is very specific

to the component in which the probe is inserted, I will provide three distinctive

approaches. This covers the timer subsystem, the scheduler and device drivers.

After that the implementation of the energy container management layer is covered.

6.1 Conditional Integration of Probes

The overhead introduced into standard TinyOS components by the insertion of

probes should be negligible and even not existent when the energy container infra-

structure is not used by the application. This would be possible through conditional

compilation which would require modifications to the build system and the usage of

command-line options.

Instead of that, I chose to use an implementation technique which relies on the

optimization capabilities of GCC. This means that the code of the probes always

gets translated by the nesC compiler but can be optimized away by GCC when the

probes are not used.

In listing 6.8 on page 48 the interface between a probe and the corresponding moni-

toring component can be seen. This interface is provided by the probe and uses only

38 6. Implementation

events to deliver information. As with parameterized interfaces it is also possible

to define default event handlers with normal interfaces. By defining those default

handlers for every event the probe can deliver, it is no longer necessary to wire the

monitoring component to the probe. As can be seen in listing 6.7 (page 47) all

default events are empty. In the resulting C source, the nesC compiler still inserts

calls to the interface functions but since they have no body, GCC optimizes them

away completely. After optimization by GCC there is no overhead in keeping the

probes in the standard components.

6.2 Interfacing the Energy Measurement System

The energy measurement system used in this thesis is an early development version

of the system proposed in [KB07]. It offers the function sampleComp() which

returns the energy spent since the last call to this function.

The used version of the energy measurement system implements this function only in

synchronous context. This shortcoming is mitigated in later versions of the system.

6.3 Information Acquisition and Management in

the Scheduler

In TinyOS, tasks are the main environment for application specific code. For most

applications it is not necessary to implement routines which execute in asynchronous

context.

Tasks are always defined in context of a component and they can only be posted

from inside of the component they are defined in. These limitations result from how

tasks are implemented in TinyOS:

When a component defines a task via the task keyword the provided name is used to

extend the list of interfaces of the component with a TaskBasic interface with that

name. The task’s body is used for the body of the event handler for the runTask

event. The newly added TaskBasic interface is then wired to TinySchedulerC using

a unique() call. Every occurrence of post in the component is then exchanged with

a call to the postTask command of the corresponding TaskBasic interface. This

transformation can be seen in listing 6.2 which is the equivalent to the normal task

definition in listing 6.1.

The implementation of tasks differs significantly from common approaches. It is

optimized for performance and low memory consumption. To reach these goals it

sacrifices most of the common features of task concepts. There is no representation

6.3. Information Acquisition and Management in the Scheduler 39

task improve I t e ra t i on () {
tmp = func t i on (l e f t + (r ight− l e f t) / 2) ;

i f (tmp > 0) {
r i g h t = tmp ;

} else {
l e f t = tmp ;

}
i f (goodEnough (tmp)) {

proce s s (tmp) ;

} else {
post improve I t e ra t i on () ;

}
}

Listing 6.1: Task definition before transformation

module { uses interface TaskBasic as improve I t e ra t i on }
. . .

event void improve I t e ra t i on . runTask () {
tmp = func t i on (l e f t + (r ight− l e f t) / 2) ;

i f (tmp > 0) {
r i g h t = tmp ;

} else {
l e f t = tmp ;

}
i f (goodEnough (tmp)) {

proce s s (tmp) ;

} else {
ca l l improve I t e ra t i on . postTask () ;

}
}

Listing 6.2: Task definition after transformation

40 6. Implementation

of a task other than the id of the parameterized interface to which the tasks body is

connected. Tasks do not get interrupted by other tasks or the scheduler. They have

to give up control of the CPU by themselves and repost themselves if there is more

work to be done.

The duty of the scheduler is to record calls to postTask using the parameter of

the interface and then signal a runTask event on the same interface when the task

is at the head of the queue. This can be done with a minimum of memory usage

because the scheduler knows in advance how many tasks can be posted. The memory

consumption of the standard TinyOS scheduler is only one byte per task and two

bytes constant.

The scheduler acts as gateway between asynchronous and synchronous code, there-

fore postTask is defined as async. In its body, synchronous commands cannot be

called. The postTask command uses an atomic section to insert the new task into

the queue. The task is then called by the taskloop which is in synchronous context.

It is important to note that the scheduler can run out of ready tasks and then

puts the CPU in a sleep mode. This event must be propagated to the management

component since the accounting for the energy consumption during sleep modes

must be handled separately.

Extending the standard scheduler with probes is straightforward but there are two

specific features which must be handled. The scheduler does not only start tasks

on its own behalf but also has to provide the command runNextTask(bool sleep)

which is mainly used while initializing the mote or during simulation on a desktop

computer. If there is a next task, this command always runs it and returns TRUE.

If there is no task in the queue the sleep parameter determines if the scheduler

should wait until a task is available or return FALSE. Since this command is used

during the boot process and it is not possible to initialize the energy container

system before runNextTask() is called for the first time, it cannot be monitored. If

it was monitored, the calls made during the initialization process would operate on

uninitialized memory.

The omission of this command is no problem since it is not used anymore during

normal operation.

The second feature is the asynchronous characteristic of postTask. Since this com-

mand is defined as asynchronous it is not possible to leave asynchronous context

without posting a task. The consequences are that all work which must be done at

the posting of a task has to be asynchronous. This propagates up to the monitoring

component and from there, up to the energy container management component.

6.3. Information Acquisition and Management in the Scheduler 41

interface SchedulerMonitor {
event void s ta r t ingTask (u i n t 8 t id) ;

event void g o i n g I d l e () ;

async event void queueingTask (u i n t 8 t id) ;

}

Listing 6.3: The SchedulerMonitor interface

command void Scheduler . taskLoop () {
for (; ;) {

u i n t 8 t nextTask ;

atomic {
while ((nextTask = popTask ()) == NO TASK) {

signal SchedulerMonitor . g o i n g I d l e () ;

ca l l McuSleep . s l e e p () ;

}
}
signal SchedulerMonitor . s ta r t ingTask (nextTask) ;

signal TaskBasic . runTask [nextTask] () ;

}
}

Listing 6.4: The modified scheduler loop

Since only the currently active energy container id is needed to establish a correct

relation, only the function to fetch this value has to be made asynchronous.

The interface between the probe and its monitoring component is called Scheduler-

Monitor and can be seen in listing 6.3.

An excerpt of the modified scheduler taskloop can be seen in listing 6.4. Only two

lines with signals to the SchedulerMonitor interface were added.

The monitoring component for the task probe uses the same technique the scheduler

uses to reduce its memory consumption. The maximum number of tasks in the

system is acquired through the use of uniqueCount() and then used to allocate an

42 6. Implementation

array of the correct size. The index of this array reflects the id of a task while the

contents at this index reflect the associated energy container id.

In listing 6.5 the source code of the monitoring component can be seen.

The implementation of the goingIdle event is of specific interest. It ensures that

no energy container gets charged for idle energy consumption. Before changing

the active energy container, this function checks if another monitoring component

set a flag to prevent interference with hardware activity. This problem is further

addressed in sections 6.5 and 6.6.

6.4 Information Acquisition and Management in

the Timer Subsystem

Apart from tasks, timers are the second most used source of control flow interruption.

Timers are usually programmed via a call to the startPeriodic or startOneShot

command. Both take as parameter a time interval the timer waits until it fires. By

using the timer interface, an application has to implement the fired event which gets

called when the timer fires. This call happens in a synchronous context since the

underlying timer implementation posts a task which signals the event. Therefore

it is not possible to interrupt a fired event with another one. This is especially

important for periodic timers since this means that a time-demanding handling of

the fired event could postpone the next fired event. This leads to a periodic timer

with an effective cycle period of the time it takes to handle the fired event. Since

the rearrangement of resource container contexts can only take place between the

hardware signal and the event handling by the application, it is desirable to keep

that overhead as low as possible.

From a higher perspective the task concept bears resemblance with the timer con-

cept. Both defer code execution until later, although timers provide the possibility

to exactly define the point in time while the task concept just guarantees that it will

happen. A call to postTask is equivalent to startOneShot with the difference that

startOneShot accepts a parameter which specifies the time it should wait until it

signals a fired event.

Currently all platforms of TinyOS use a single hardware timer and virtualize it to

support arbitrary numbers of timers. The interface presented to the application de-

veloper consists of a generic component (TimerMilliC) which just wires the provided

timer interface via a unique() call to the parameterized timer interface of the under-

lying TimerMilliP component. TimerMilliP takes care of initialization and wiring

of HilTimerMilliC which is, as the name suggests, in the hardware interface layer

6.4. Information Acquisition and Management in the Timer Subsystem 43

#include <ene rgy conta ine r . h>

module SchedulerMonitorP {
provides interface I n i t ;

uses interface ECControl ;

uses interface SchedulerMonitor ;

}
implementation {

u i n t 8 t ta sk e c [uniqueCount (”TinySchedulerC . TaskBasic ”)] ;

command e r r o r t I n i t . i n i t () {
u i n t 8 t s i z e = uniqueCount (”TinySchedulerC . TaskBasic ”) ;

for (u i n t 8 t i =0; i < s i z e ; i++) {
t a sk e c [i] = NO CONTAINER;

}
return SUCCESS;

}

event void

SchedulerMonitor . s ta r t ingTask (u i n t 8 t id) {
ca l l ECControl . setActiveEC (ta sk e c [id]) ;

}

async event void

SchedulerMonitor . queueingTask (u i n t 8 t id) {
atomic {

t a sk e c [id] = ca l l ECControl . getActiveEC () ;

}
}

event void

SchedulerMonitor . g o i n g I d l e () {
i f (! ECControl . hwActivity ())

ca l l ECControl . setActiveEC (NO CONTAINER) ;

}
}

Listing 6.5: Implementation of the task monitoring component

44 6. Implementation

Component A Component B

TimerMilliC TimerMilliC

TimerMilliP

HilTimerMilliC

unique() unique()

Hardware dependent
Hardware independent

Figure 6.1: Architecture of the timer subsystem

of the hardware abstraction architecture. Therefore it is not platform independent.

However, below HilTimerMilliC, all current platforms use the same component,

provided by TinyOS, to virtualize the single hardware timer: VirtualizeTimerC.

Although this component is used from a platform dependent component, it is plat-

form independent. This component is the actual target for timer related commands

and the source of all timer related events. It is the topmost component in the timer

architecture hierarchy which actually contains an implementation in nesC.

An illustration of this dependency tree can be seen in figure 6.1. In this and future

illustrations, generic components are shown as boxes with rounded corners.

This VirtualizeTimerC component would be the right place to insert a probe for

monitoring timer activity. Commands and events have their endpoints in it and it

would be easy to add a signal in the implementations of startPeriodic and start-

OneShot. Signaling out a firing event to the monitoring component could be ac-

complished by altering the task which gets posted when a timer fires. This imple-

mentation would function correctly for all current platforms of TinyOS and inflict

a minimum in overhead. But if a developer of a new platform chooses to not use

the VirtualizeTimerC component to virtualize the hardware timers, the resource

container architecture would be broken. Platform developers are free in this decision

since HilTimerMilliC and BusyWaitMicroC are the only components which must

6.4. Information Acquisition and Management in the Timer Subsystem 45

Component A Component B

TimerMilliC TimerMilliC

TimerMilliP

HilTimerMilliC

unique() unique()

TimerMilliProxyP TimerMonitorP

Hardware dependent
Hardware independent

Figure 6.2: Architecture of the timer subsystem with proxy component

be implemented by every platform. How they are implemented is not dictated by

TinyOS.

Therefore, probes must be installed on a higher, platform independent level. Since

all other components in the timer architecture only wire to underlying components,

there is no spot to install probes in a hardware independent way without adding

components. The solution to this is a proxy component which fully implements a

parameterized timer interface and gets placed between TimerMilliP and HilTimer-

MilliC. This concept is illustrated in figure 6.2.

This involves a change in TimerMilliP which now instantiates not only HilTimer-

MilliC but also TimerMilliProxyP. It keeps initializing HilTimerMilliC but now

wires its provided parameterized timer interface to TimerMilliProxyP and the pa-

rameterized timer interface used by the proxy component to HilTimerMilliC. Thus

TimerMilliProxyP acts as a transparent proxy and just adds signals which get sent

out through the TimerMonitor interface (cf. listing 6.6, 6.7 and 6.8).

46 6. Implementation

configuration TimerMil l iP {
provides interface Timer<TMil l i>

as TimerMi l l i [u i n t 8 t id] ;

}
implementation {

components HilTimerMil l iC , TimerMilliProxyP , MainC ;

MainC . So f tw a r e I n i t −> HilTimerMil l iC ;

TimerMi l l i = TimerMill iProxyP ;

TimerMill iProxyP . SubTimerMil l i

−> HilTimerMil l iC . TimerMi l l i ;

}

Listing 6.6: TimerMilliP instantiates and wires TimerMilliProxyP

The important events in the timer subsystem are the programming and the firing

of a timer. It is not necessary to distinguish if a programmed timer is a one-shot

or periodic timer. Also the stop command is not needed to be signaled out since

no reaction to this event is required. A binding which was established during the

programming of the timer would just remain unused and would get overwritten when

the timer is programmed again.

The changes to the TinyOS code base for installing the probes in the timer archi-

tecture boil down to altering the TimerMilliP configuration and adding the Timer-

MilliProxyP component.

The very simple interface to the monitoring component suggests an equally simple

implementation of that component. For each timer which gets programmed, the

monitoring component has to remember the active energy container at that instant.

Later, when the timer fires, it has to switch back to that energy container. Since no

other synchronous activity can get interrupted, the management component needs

not to save the current energy container before it switches to the correct one.

The memory needs for saving the correlations between timers and energy containers

can be estimated at compile time. Every timer which gets instantiated via the

TimerMilliC component wires to a parameterized interface via a unique() call to

the string stored in the compiler macro UQ TIMER MILLI. As can be seen in

listing 6.9 the relation is saved via an array of bytes which has an entry for every

instantiated timer.

6.4. Information Acquisition and Management in the Timer Subsystem 47

module TimerMill iProxyP {
provides interface Timer<TMil l i>

as TimerMi l l i [u i n t 8 t id] ;

uses interface Timer<TMil l i>

as SubTimerMil l i [u i n t 8 t id] ;

provides interface TimerMonitor ;

}

implementation {
command void

TimerMi l l i . s t a r t P e r i o d i c [u i n t 8 t id] (u in t32 t dt) {
signal TimerMonitor . startedTimer (id) ;

ca l l SubTimerMil l i . s t a r t P e r i o d i c [id] (dt) ;

}
event void

SubTimerMil l i . f i r e d [u i n t 8 t id] () {
signal TimerMonitor . f i r i ngT imer (id) ;

signal TimerMi l l i . f i r e d [id] () ;

}
default event void

TimerMonitor . startedTimer (u i n t 8 t id) {}
default event void

TimerMonitor . f i r i ngT imer (u i n t 8 t id) {}

// . . .

}

Listing 6.7: Excerpt of the implementation of TimerMilliProxyP

48 6. Implementation

interface TimerMonitor {
event void startedTimer (u i n t 8 t id) ;

event void f i r i ngT imer (u i n t 8 t id) ;

}

Listing 6.8: The interface provided by the timer probe

#include <ene rgy conta ine r . h>

module TimerMonitorP {
provides interface I n i t ;

uses interface ECControl ;

uses interface TimerMonitor ;

}
implementation {

u i n t 8 t t ime r r c [uniqueCount (UQ TIMER MILLI)] ;

command e r r o r t I n i t . i n i t () {
u i n t 8 t s i z e = uniqueCount (UQ TIMER MILLI) ;

for (u i n t 8 t i = 0 ; i < s i z e ; i++) {
t ime r r c [i] = NO CONTAINER;

}
return SUCCESS;

}

event void TimerMonitor . startedTimer (u i n t 8 t id) {
t ime r r c [id] = ca l l ECControl . getActiveEC () ;

}
event void TimerMonitor . f i r i ngT imer (u i n t 8 t id) {

ca l l ECControl . setActiveEC (t ime r r c [id]) ;

}
}

Listing 6.9: Implementation of the timer monitoring component

6.5. Information Acquisition and Management in Device Drivers 49

Coverage of Energy Consumption

It is important to note that by monitoring the task system through the energy

container system, all synchronously executed code is covered. The inclusion of the

timer subsystem, which is more or less a device driver, covers the most important

source of control flow interruption. Since synchronous code accounts for most of an

applications code basis this means that the CPU-bound energy consumption of an

application is accurately accounted.

6.5 Information Acquisition and Management in

Device Drivers

The accuracy of probes in device drivers is limited to non-concurrent hardware

activity due to the interface which is used between energy container management

and energy measurement. It is currently not possible to get detailed information

about the energy consumption of a specific hardware component. This is problematic

when multiple components consume energy at the same time. This can happen, e.g.,

when a message is sent over the radio while a light sensor samples data. The energy

container implementation can neither know how much energy was used by the radio

chip nor how much was used by the light sensor. Only the sum of both is available.

Therefore it is not possible to account energy consumption arising from concurrent

hardware activities accurately to their origin.

Hardware activity can be classified in two groups. Processor-induced hardware ac-

tivity and processor-independent hardware activity.

As the name suggests, processor-independent activity can occur without initiation by

the processor. The independent hardware can notify the processor of the activity,

but it is also possible, that the processor is completely unaware of the ongoing

hardware activity. An example for processor-independent hardware activity is the

wireless chip, an essential part of any wireless sensor node. Wireless chips listen on

a channel and react if they detect a message for the node.

Processor-induced activity is characterized by a tight coupling of external hardware

activity with processor activity. The processor initiates hardware activity and it

happens promptly after that. The temperature sensor is an example for processor-

induced activity. The thermistor is connected to the analog/digital converters of the

processor. A reading of the sensor promptly causes a short hardware activity.

Processor induced hardware activity can be monitored by the current energy con-

tainer system. As an example of the probe insertion process, an implementation for

the temperature sensor of the basicsb sensor board driver is outlined below.

50 6. Implementation

TempC

AdcReadClientC

WireAdcP

unique()

TempDeviceP

ArbitratedReadC Hardware
Abstraction

Figure 6.3: An excerpt of the dependency tree of TempC

Accounting Processor Induced Hardware Activity

For a reliable probe it is necessary to find the component which fits best for probe

insertion. This process is complicated by the heavy usage of configuration files

in TinyOS. Since probes need real implementations and cannot get inserted into

configurations, it is often necessary to track down several layers of abstraction until

a component is found which satifies the requirements.

Examining TempC yields that it offers a Read interface which gets wired to a new

instance of AdcReadClientC. It also references a component called TempDeviceP

which offers the hardware abstraction of the sensor and wires two interfaces of Adc-

ReadClientC to it. Since the read command should be intercepted it is reasonable

to follow the path of the call. AdcReadClientC wires the Read interface to the pa-

rameterized Read interface of WireAdcP via a unique() call. A look into WireAdcP

shows that it hands Read over to a new instance of ArbitratedReadC which ac-

tually contains an implementation of the Read interface. An illustration of these

dependencies can be seen in figure 6.3.

ArbitratedReadC implements parts of the resource arbitration protocol [KLG+]

which allows multiple software components shared access to a hardware resource.

This component is a very good candidate for probe insertion since this component

knows when its managed resource is requested, granted and released. These events

6.5. Information Acquisition and Management in Device Drivers 51

command e r r o r t Read . read [u i n t 8 t c l i e n t] () {
signal ReadMonitor . r eque s t (c l i e n t) ;

return ca l l Resource . r eque s t [c l i e n t] () ;

}
event void Resource . granted [u i n t 8 t c l i e n t] () {

signal ReadMonitor . granted (c l i e n t) ;

ca l l Se rv i c e . read [c l i e n t] () ;

}
event void Se rv i c e . readDone [u i n t 8 t c l i e n t]

(e r r o r t r e s u l t , width t data) {
signal ReadMonitor . readDone (c l i e n t) ;

ca l l Resource . r e l e a s e [c l i e n t] () ;

signal ReadMonitor . r e tu rn ing (c l i e n t) ;

signal Read . readDone [c l i e n t] (r e s u l t , data) ;

}

Listing 6.10: Excerpts from ArbitratedReadC

are important for the probe, since at the request of the resource, a binding between

the request and the currently active energy container has to be established. When

the resource is granted to the client later on, the energy container which was active

during the request has to be reactivated since now the actual access to the hardware

will happen.

Excerpts from a modified ArbitratedReadC can be seen in listing 6.10. The read-

Done event is of particular interest. There are two signals out in this event because

the release call to the resource causes a posting of a task in a lower layer arbiter.

By signaling the monitoring component that this will happen it can take counter-

measures to prevent that the resulting task is associated with the current energy

container. After the resource is released, the correct energy container has to be

reactivated since now the processing of the acquired data is triggered in the appli-

cation.

With the insertion of the probe into AdcReadClientC, the problem of how the probe

can be wired to a corresponding management component arises. Since Arbitra-

tedReadC is a generic component, it is not possible to refer to it outside of the

instantiating configuration file. The configuration file in question is in this case

WireAdcP. A wiring of the instance of ArbitratedReadC to its monitoring compo-

52 6. Implementation

configuration WireAdcP {
provides {

interface Read<uint16 t >[u i n t 8 t c l i e n t] ;

interface ReadNow<uint16 t >[u i n t 8 t c l i e n t] ;

interface ReadMonitor ;

}
uses {

interface Atm128AdcConfig [u i n t 8 t c l i e n t] ;

interface Resource [u i n t 8 t c l i e n t] ;

}
}
implementation {

components Atm128AdcC , AdcP ,

new ArbitratedReadC (u in t16 t) as ArbitrateRead ;

Read = ArbitrateRead ;

ReadNow = AdcP ;

ReadMonitor=ArbitrateRead ;

Resource = ArbitrateRead . Resource ;

Atm128AdcConfig = AdcP ;

ArbitrateRead . S e rv i c e −> AdcP . Read ;

AdcP . Atm128AdcSingle −> Atm128AdcC ;

}

Listing 6.11: The modified WireAdcP component

nent by WireAdcP violates the design goals of the implementation technique specified

in section 6.1. It requires that probes do not wire to their management component

but only offer an interface for them. This technique demands that probes can be

installed only in normal, not-generic, components because they are statically ad-

dressable. In this specific case it is possible to use WireAdcP for this purpose. After

modification, WireAdcP offers the probe interface and wires it to the newly instan-

tiated ArbitratedReadC. This can be seen in listing 6.11.

The modification of WireAdcP must be examined thoroughly since it is a system

component which can be used in several places. Indeed, the probe implementation

for the temperature sensor does not only cover this sensor but also implements

effective covering of all sensors which use an instance of AdcReadClientC to arbitrate

6.5. Information Acquisition and Management in Device Drivers 53

their read calls. This includes the photodiode on the same sensor board but also

the voltage sensor on the mica2 platform and several other sensors. This shows the

elegance of this approach since a complete line of sensors is covered with a rather

low effort.

Currently, monitoring components for device drivers must prevent the task moni-

toring component from switching to NO CONTAINER when the CPU is put into

sleep mode. External hardware can still consume energy and information about

this would be lost otherwise. For that purpose the energy container management

component provides a flag which is used to signal other monitoring components that

a hardware device is expected to consume energy and therefore the currently active

energy container should persist. Otherwise, the monitoring component for the probe

implemented above is comparable to other monitoring components.

This procedure will be rendered obsolete through the tighter integration of device

driver probes into the energy measurement system proposed in section 8.1.

The inclusion of a probe in a generic component can complicate the implementation

of the corresponding monitoring component. In this case, only WireAdcP instantiates

ArbitratedReadC which simplifies the process. Since the wirings to the parameter-

ized interface of WireAdcP use a call to unique(), the parameter to this call can be

used with uniqueCount() to get the maximum number of clients. Therefore, the

memory consumption of the monitoring component is static.

As already stated, accounting the energy consumption of the wireless chip is cur-

rently not possible. However, the energy spent in the protocol stack of TinyOS is

accountable with the current interface.

Particularly, the energy which is consumed in the short period between a message

arrives in the stack and is delivered to the application is of interest. Since this

energy consumption happens without advance knowledge it is called spontaneous

energy consumption.

Accounting Spontaneous Energy Consumption

Most of the protocol stack of TinyOS is kept in synchronous context. Due to that,

the sending of a message is already covered. When an application prepares a message

and hands it over to the protocol stack, all further computation is accounted to the

applications energy container.

The energy consumption of the protocol stack while receiving a message is more

complicated. Since the receiver of a message is not known when the message is

handed over from the hardware, the energy spent while processing the raw data

54 6. Implementation

CC2420CsmaC

CC2420TinyosNetworkC

CC2420AckLplC

UniqueReceiveC

CC2420ActiveMessageP

Non-TinyOS Messages

Duplicate Messages

Figure 6.4: The receive part of the protocol stack of TinyOS

cannot be accounted to an energy container. However, it is possible to account the

energy consumed by the protocol stack to a new energy container which can be

claimed by an application, later on.

All further processing of the message is then accounted to the new energy container.

This includes the receive event which is triggered when the message is delivered. If

an application is already monitoring its energy consumption, and the energy which

is consumed by receiving the message should be added to an already existing energy

container, it can call the attachToContainer(ec id id) command with the already

existing energy container as argument.

If an application wants to start monitoring from the reception of a message, no

action is required. All further control flow will be accounted as regular.

Since a new energy container is generated with each received message, an application

must take care of them. If a container is not attached or used later on, stopMon-

itoring must be called to prevent the energy container management system from

running out of energy containers.

For the insertion of the probe, the protcol stack for the receiving of a message must

be examined. It is shown in figure 6.4.

The topmost component which handles messages in synchronous context is a compo-

nent which decides if received data is TinyOS network compatible or if it originated

from other sources than TinyOS (CC2420TinyosNetworkP). The signal of the probe

is inserted before the message is passed up in the protocol stack. Due to the sim-

plicity of this modification, a source code listing is omitted.

6.6. Energy Container Management 55

module NetworkMonitorP {
uses interface ECControl ;

uses interface NetworkMonitor ;

}
implementation {

event void NetworkMonitor . r e c e i v e () {
ca l l ECControl . s ta r tMon i to r ing () ;

}

event void NetworkMonitor . d i s ca rd () {
e c i d activeEC = ca l l ECControl . getActiveEC () ;

ca l l ECControl . s topMonitor ing (activeEC) ;

}
}

Listing 6.12: The monitoring component for the protocol stack

Another important point in the protocol stack is UniqueReceiveC which discards

duplicate messages. If applications are interested in duplicate messages, they can

wire to a special DuplicateReceive interface. Only if this interface is unwired, the

monitoring should stop. Therefore, a probe is inserted into the default implementa-

tion of this interface.

The monitoring component for this driver differs from the other monitoring compo-

nents since its duty is not to save an energy container/control flow relation but to

always set up a new container when the probe in CC2420TinyosNetworkP signals a

new packet. If the probe in UniqueReceiveP signals that the message was discarded,

the monitoring is stopped. Its source code can be seen in listing 6.12.

6.6 Energy Container Management

From an application developers view the energy container system is represented

by the ECManagerC configuration file which provides the ECManagement interface

as API and ECControl for monitoring components. ECManagerC can be seen in

listing 6.13.

ECManagerC uses a PoolC component to statically allocate a fixed number of struc-

tures provided by the energy measurement system. This structure represents an

56 6. Implementation

#include <energy . h>

#include <ene rgy conta ine r . h>

configuration ECManagerC {
provides interface ECManagement ;

}
implementation {

components MainC , ECManagerP ;

components new PoolC (struct energy , MAX CONTAINERS)

as Pool ;

MainC . So f tw a r e I n i t −> ECManagerP ;

ECManagerP . ECPool −> Pool ;

components TimerMonitorC , SchedulerMonitorC ,

AdcMonitorC , NetworkMonitorC ;

MainC . So f tw a r e I n i t −> TimerMonitorC ;

MainC . So f tw a r e I n i t −> SchedulerMonitorC ;

MainC . So f tw a r e I n i t −> AdcMonitorC ;

TimerMonitorC . ECControl −> ECManagerP ;

SchedulerMonitorC . ECControl −> ECManagerP ;

AdcMonitorC . ECControl −> ECManagerP ;

NetworkMonitorC . ECControl −> ECManagerP ;

components EnergyOpsC , Atm128EnergyInfoC ;

ECManagerP . EOps −> EnergyOpsC ;

ECManagerP . EInfo −> Atm128EnergyInfoC ;

ECManagement = ECManagerP .ECM;

}

Listing 6.13: The main configuration file for the EC-System

6.6. Energy Container Management 57

module ECManagerP {
provides interface ECManagement as ECM;

provides interface ECControl as ECC;

provides interface I n i t ;

uses interface Pool<struct energy> as ECPool ;

uses interface EnergyInfo as EInfo ;

uses interface EnergyOps as EOps ;

}

Listing 6.14: Interfaces of ECManagerP

amount of energy and can be handled through the use of functions provided by

the EnergyOps interface. The energy measurement system contains a component

(EnergyOpsC) which provides this interface.

ECManagerC also sets up all monitoring components and wires them to ECManagerP.

This enables the application developer to include the complete energy container

system with the inclusion of ECManagerC.

Due to the size of ECManagerP, it cannot be printed in its full length. Discussed

parts are printed as excerpts.

To shorten the source code of ECManagerP some interfaces are renamed. As can be

seen in listing 6.14, ECManagement is abbreviated to ECM , ECControl to ECC ,

EnergyInfo to EInfo and EnergyOps to EOps.

ECManagerP uses an array of pointers to energy structures to represent energy con-

tainers. The id of an energy container is the position of the corresponding pointer to

an energy struct in this array. This array is initialized with zeros and gets filled when

an application starts monitoring. There are two static allocations of energy structs

inside ECManagerP, rootC and tempC. The first one represents the root container

of the node and contains all energy used by the node. The second one is used in

several functions as a scratch container.

The initialization process of ECManagerP can be seen in listing 6.15. The last op-

eration in this command is a sampleComp call to the energy measurement system

to reset energy accounting. Its result is discarded because this is the point where

accounting to the root container starts.

One of the central functions of ECManagerP is account(). It is defined as a utility

function because it is used in multiple situations. It is shown in listing 6.16.

58 6. Implementation

command e r r o r t I n i t . i n i t () {
for (int i = 0 ; i < MAX CONTAINERS; i++) {

c o n t a i n e r s [i] = 0 ;

}
activeEC = NO CONTAINER;

hwActivity = 0 ;

ca l l EOps . r e s e t (&rootC) ;

ca l l EInfo . sampleComp(&tempC) ;

return SUCCESS;

}

Listing 6.15: The initialization procedure for ECManagerP

void account () {
ca l l EInfo . sampleComp(&tempC) ;

i f (activeRC != NO CONTAINER) {
ca l l EOps . add (c o n t a i n e r s [activeRC] ,

c o n t a i n e r s [activeRC] ,

&tempC) ;

}
ca l l EOps . add(&rootC , &rootC , &tempC) ;

}

Listing 6.16: The account utility function in ECManagerP

6.6. Energy Container Management 59

e c i d prepareNewContainer () {
e c i d f r e e i n d e x = f indFree Index () ;

c o n t a i n e r s [f r e e i n d e x] = ca l l ECPool . get () ;

ca l l EOps . r e s e t (c o n t a i n e r s [f r e e i n d e x]) ;

return f r e e i n d e x ;

}

Listing 6.17: The prepareNewContainer utility function in ECManagerP

In account(), tempC is used to obtain the energy consumption since the last call.

If an energy container is currently active, this energy consumption is added to it.

In any case, the energy consumption is added to the global variable rootC which

represents the energy consumption of the whole node.

The definition of account() as utility function simplifies important commands like

setActiveEC() which is reduced to a call to account() and the setting of activeEC

to its new value.

Due to similarities in the ECManagement and ECControl interfaces, there is some

duplicated code in ECManagerP. The implementation of setActiveEC() for the EC-

Control interface is the same as switchToContainer() in ECManagement . Although

this could be avoided through the use of another utility function, the brevity of those

commands renders that unnecessary.

When an application or a monitoring component calls the startMonitoring com-

mand, a new energy container is prepared via the utility function prepareNewCon-

tainer (listing 6.17). Before this new container is set as the active energy container,

a call to account is necessary to restart sampling.

The stopMonitoring command checks if the specified container is the currently ac-

tive container and, if this is the case, sets the active container to NO CONTAINER.

After that it returns the energy struct into the pool and zeroes its array entry. A

call to account is not necessary since, if the stopped container was the active energy

container, the pending energy consumption is lost anyway. If the stopped container

was not the active container, there is no influence to the energy accounting which is

currently in progress.

The switchToContainer command is very simple in its implementation. It just calls

account and then changes the active energy container to the specified one.

60 6. Implementation

7. Evaluation and Discussion

In this chapter, the energy container system is evaluated with regard to random

access memory consumption and computational overhead. The following evaluation

is based on source code. Due to time constraints, only very few tests were possible.

Their resulst are listed in the summary below. After that the implementation is

discussed with regard to the design goals.

7.1 Overhead Estimation

Through the use of the implementation technique described in section 6.1, an un-

used energy container system does neither consume any memory nor does it have

any computational overhead. The following evaluation discusses the memory con-

sumption and the computational overhead of an active energy container system.

The values exclude the energy measurement system.

Energy Container Management

Memory consumption of the energy container management component is mostly due

to the number of pre-allocated energy containers which is adjustable via a header

file. For each pre-allocated energy container, the energy container management

component needs a pointer to it. The size of a pointer on the MICAz platform is

two bytes. The PoolC component needs a pointer array to the actual structs, too.

This adds up to an additional memory consumption of four bytes per pre-allocated

energy container.

Independent from the number of pre-allocated energy containers, the energy con-

tainer management component allocates two static energy containers and two bytes

in variables. The PoolC component adds another two bytes to that.

62 7. Evaluation and Discussion

The size of an energy struct is currently four bytes. This adds up to an overall

memory consumption of 12 bytes constant and 8 bytes per pre-allocated energy

container.

The computational overhead of the energy management component is very low. All

operations on energy containers should not consume more than a few cycles and due

to the expected small number of pre-allocated energy containers, procedures with

a linear overhead in the number of energy containers should also have very little

impact.

Monitoring Components

Memory consumption of monitoring components is linear with the number of re-

lations they have to store. In case of the task monitoring component this is the

maximum number of tasks in the system. For the timer monitoring component this

is the number of timers used by an application. The monitoring component for

spontaneous energy in the network stack is an exception to this. It does not use any

memory.

All others use one byte per relation.

Since the introduced monitoring components only look up a value in a static array,

the computational overhead is negligible.

Probes

Due to their simple design, probes neither consume memory nor introduce compu-

tational overhead.

Summary

An energy container system does not add significantly to the memory consumption

of an application.

This statement is backed by memory consumption information provided by the nesC

compiler. A small example application was written to examine the memory con-

sumption of the energy container system. All discussed monitorable concepts were

used (timers, tasks, temperature sensor and wireless network). The number if pre-

allocated energy containers was set to five.

After extension with energy containers, the application consumed an additional

164 bytes of RAM and 1,990 bytes of program memory. This accounts for approxi-

mately 4% of the available RAM and 1.5% of the available program memory. These

numbers include the memory consumption of the energy measurement system.

7.2. Discussion 63

The energy container system alone – without energy measurement system – uses

74 bytes of RAM (1.8%) and 574 bytes of program memory (0.4%).

The computational overhead introduced by the energy container system is also neg-

ligible. But together with the computational overhead of the underlying energy

measurement system and the fact that overhead is introduced in crucial system

functions, this overhead can have effects on time-critical applications. The investi-

gation of the extents of those effects is left for future work.

7.2 Discussion

This discussion is based on the design goals proposed in chapter 5.

The requirement of a lightweight implementation was met. The memory consump-

tion of the energy container system is very low and for the most significant part

adjustable via global configuration parameters.

Calls to the energy container system do not induce big computational overhead.

However, in future work measurements should be made to prove that.

To extend an application with energy container support, very few changes to the

source code are needed. Application developers only have to include one component

which provides an easy to use interface.

With the exception of probes in device drivers, the energy container system is plat-

form independent. It is also independent from the underlying energy measurement

system although a tighter coupling is needed to monitor hardware activity (see sec-

tion 8.1).

64 7. Evaluation and Discussion

8. Future Work

Apart from the work which can be done with a richer interface to the energy mea-

surement system, a suggestion for extending the energy container system is provided.

8.1 Tighter Coupling with the Energy Measure-

ment System

The limitations of the energy container system described in this thesis are due to the

limited interface to the energy measurement system. Future versions of the energy

measurement system will provide a richer interface and therefore allow a tighter

integration with the energy container system.

With support by the energy measurement system for queries about the energy con-

sumption of specific hardware, accurate accounting is possible.

Monitoring components could use the knowledge about the energy consumption

of the hardware they are monitoring to account that consumption to the container

which was active when the hardware activity was induced. Even when that container

is not active while the hardware activity happens.

Only small changes to the existing system would be necessary to accomplish this

task. Foremost, the monitoring components need access to the energy measurement

system and more privileges in energy container handling.

8.2 Energy Container Hierarchy

In this thesis, energy containers are not structured in a hierarchy. The root container

is completely independent from other containers and specially treated by the energy

container system.

66 8. Future Work

The introduction of a hierarchy would not only remove this special treatment but

also provide application developers with fine-grained measurement possibilites. An

application developer could use long running energy containers to get additional

information besides the direct, per-query information.

With great efforts from the application developer, the current implementation is

capable of a simulation of an energy container hierarchy. However, an integration of

this principle in the system could be useful.

9. Conclusions

In this thesis I described how to design and implement an energy container system

for the TinyOS operating system for wireless sensor nodes. The design decisions

were driven by the limitations of the target hardware platform and the goal of a

system with a high usability.

A control flow in an application can be associated with an energy container. All

energy consumption induced from that control flow is accounted to its energy con-

tainer.

The design is based on a three-layered approach. The tasks of control flow tracking,

the processing of data about control flow and the management of energy containers

are partitioned in three layers.

Control flow is tracked via probes which are inserted in control flow interrupting

components. The data sampled by those probes is sent to monitoring components

which register the interruption and save the current energy container environment.

On continuation of the control flow, the environment is reestablished and further

action is accounted to the correct energy container.

Energy consumption values are provided by an early development version of an online

energy measurement system for sensor nodes. Unfortunately, the interface between

energy measurement and energy container system was not sufficient to accurately

account all energy consumption on the node. Only accurate accounting of the main

processor and some sensors on the board is available.

However, when a more extensive interface to the energy measurement system is avail-

able, only small changes to the energy container system are necessary to completely

cover the energy consumption of the whole node.

68 9. Conclusions

Evaluation of the implemented system showed that it meets the requirements. It

features low memory consumption and easy integration in existing applications.

Bibliography

[ATM] ATMEL. ATmega128L Datasheet. Published at http://www.atmel.

com/dyn/resources/prod documents/2467S.PDF.

[BDM99] G. Banga, P. Druschel, and J.C. Mogul. Resource containers: A new

facility for resource management in server systems. Proceedings of the

1999 USENIX/ACM Symposium on Operating System Design and Im-

plementation, pages 45–58, 1999.

[Bel01] F. Bellosa. The case for event-driven energy accounting. Department of

Computer Science, University of Erlangen TR-I4-01-07, 2001.

[Cro] Crossbow Technology. MICAz Datasheet. Published at

http://www.xbow.com/Products/Product pdf files/Wireless pdf/

MICAz Datasheet.pdf.

[DOTH07] Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and Zhitao He.

Software-based on-line energy estimation for sensor nodes. In Proceed-

ings of the 4th workshop on Embedded networked sensors, pages 28–32,

New York, NY, USA, 2007. ACM.

[GLvB+03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.

The nesC language: A holistic approach to networked embedded sys-

tems. Proceedings of the ACM SIGPLAN 2003 conference on Program-

ming language design and implementation, pages 1–11, 2003.

[HPH+] Vlado Handziski, Joseph Polastre, Jan-Hinrich Hauer, Cory Sharp,

Adam Wolisz, David Culler, and David Gay. Tinyos extension proposal

2: Hardware abstraction architecture. Published at http://tinyos.net/.

[KB07] Simon Kellner and Frank Bellosa. Energy accounting support in tinyos.

In GI/ITG KuVS Fachgespräch Systemsoftware und Energiebewusste

Systeme, pages 17–20. Fakultät für Informatik, Universität Karlsruhe

(TH), October 2007.

http://www.atmel.com/dyn/resources/prod_documents/2467S.PDF
http://www.atmel.com/dyn/resources/prod_documents/2467S.PDF
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://tinyos.net/

70 Bibliography

[Kel07] Simon Kellner. Wip: Energy container for database-oriented sensor

networks. In 6. Fachgespräch Sensornetzwerke, number 2007-11 in

AIB, pages 5–7. GI/ITG Fachgruppe “Kommunikation und Verteilte

Systeme”, Distributed Systems Group, RWTH Aachen University, July

2007.

[KLG+] Kevin Klues, Philip Levis, David Gay, David Culler, and Vlado

Handziski. Tinyos extension proposal 108: Resource arbitration. Pub-

lished at http://tinyos.net/.

[Lev06] Philip Levis. TinyOS Programming. 2006. http://csl.stanford.edu/

˜pal/.

[Wai03] M. Waitz. Accounting and control of power consumption in energy-

aware operating systems. Master’s thesis, University of Erlangen-

Nürnberg, 2003.

[zeu] Zeus, zuverlässige informationsbereitstellung in energiebewussten ubi-

quitären systemen. Website: http://www.zeus-bw-fit.de.

http://tinyos.net/
http://csl.stanford.edu/~pal/
http://csl.stanford.edu/~pal/
http://www.zeus-bw-fit.de

	Contents
	1 Introduction
	1.1 Sensor Networks as Data Providers
	1.2 Energy Containers

	2 Related Work
	2.1 Resource Containers
	2.2 Energy as Resource
	2.3 Online Energy Accounting on Sensor Nodes

	3 Background Information
	3.1 TinyOS
	3.2 NesC
	3.3 Component-based Architecture
	3.4 Generic Components
	3.5 Parameterized Interfaces
	3.6 Tasks
	3.7 Synchronous and Asynchronous Context
	3.8 Abstraction Layers

	4 The Problem of Energy Containers in TinyOS
	4.1 Hardware specific Issues
	4.2 Operating System specific Issues

	5 Designing Energy Containers
	5.1 Design Goals
	5.2 General Architecture
	5.3 Application Programming Interface
	5.4 Energy Container Management
	5.5 Information Monitoring
	5.6 Information Acquisition

	6 Implementation
	6.1 Conditional Integration of Probes
	6.2 Interfacing the Energy Measurement System
	6.3 Information Acquisition and Management in the Scheduler
	6.4 Information Acquisition and Management in the Timer Subsystem
	6.5 Information Acquisition and Management in Device Drivers
	6.6 Energy Container Management

	7 Evaluation and Discussion
	7.1 Overhead Estimation
	7.2 Discussion

	8 Future Work
	8.1 Tighter Coupling with the Energy Measurement System
	8.2 Energy Container Hierarchy

	9 Conclusions
	Bibliography

