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Abstract

Because of the rising energy costs and the increased energy consumption of computer
systems it is becoming more and more important to increase energy efficiency. To
achieve this modern operating systems use several power management strategies which
mostly focus on reducing the energy consumption of the CPU. Other components like
hard disk drives are often neglected and are at best just turned off if not needed.

To also increase the energy efficiency of systems where the disk drives are not idle
long enough to be turned off, we propose to utilize compression to reduce disk activity.
Due to compression more data can be stored in caches in main memory and thus the
disk has to be accessed less often, and reading or writing the compressed data from
disk takes less time and therefor less energy.

To evaluate if the energy saved by the disk drive outweighs the additional energy
needed by the CPU for compression and decompression we implement a block device
driver that transparently compresses all data written to disk. The results of our mea-
surements show that on desktop systems, where the CPU consumes significantely more
energy than the disk drive, no energy can be saved using this approach. On embedded
systems and mobile devices though, where the CPU and the disk energy consumption
are similar, it is possible to improve energy efficiency by upto 50% while at the same
time also increasing I/O performance.
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Chapter 1

Introduction

Along with the increase of computing power over the last years also came an even faster
increase of power consumption of computer systems. Because of the rampant energy
costs and the only slowly advancing battery technologies this has become a growing
problem and the importance of high energy efficiency is rising.

To reduce the energy costs and cooling needs of desktop and server systems, and
to extend the battery life of mobile devices, modern operating systems use several
power management strategies. Most of those strategies concentrate on reducing the
energy consumed by the CPU though while ignoring most other parts of the system.
But thanks to the improvements in processor technologies the CPU is no longer the
all-dominant energy consumer in a computer system anymore which means the focus
of power management has to shift to other components.

Hard disk drives are one of those components, especially considering the need to
store more and more data. They are used as the primary data storage in consumer PCs
and because of their low cost and high performance are also starting to replace tape
devices as digital storage for archival purposes, and in the form of microdrives they
are even available for small portable devices. This results in the need of new ways to
increase the energy efficiency of disk drives.

1.1 Motivation
Besides the classical field of application of data compression—better utilization of
limited storage space and the acceleration of data transmission—it can also be used
to improve energy efficiency: memory modules no longer needed due to compression
can be deactivated and especially in wireless communication a significant amount of
energy can be conserved when less data has to be transmitted.

Following this line of thought, it should also be possible to increase the energy
efficiency of disk drives by using compression. Compared to the main memory com-
pression mentioned above the data stored on disk does not consume any energy though,
only reading and writing it does. Therefore disk accesses need to be avoided or at least
their length needs to be shortened to save energy. This can by achieved by compressing
the data before writing it to disk and decompressing it after reading. And as long as
the energy saved by the disk outweighs the additional energy consumed by the CPU
for compression the overall system energy efficiency can be improved.
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2 1. INTRODUCTION

1.2 Proposed Solution
Based on this idea our solution is to put an additional layer between the file system
code and the disk drive which transparently compresses all data. This way we are
independent from the file system and the actual disk drive used and thus this approach
is applicable for a wide range of systems.

To further reduce the number of disk accesses a compressed cache in main memory
is used. Compared to the regular uncompressed disk cache this allows us to store more
data in memory so less has to be read from and written to disk. Especially on embedded
systems with little memory this can greatly reduce the energy consumed by the disk.

1.3 Structure of the Thesis
The thesis is structured as followed:

• Chapter 2 provides background information about how energy consumption can
be reduced when using disk drives and lists related work where compression has
been used to improve energy efficiency.

• Chapter 3 explains the design and internal details of our approach to conserve
energy by reducing disk activity.

• Chapter 4 covers the implementation details of our solution.

• Chapter 5 describes the two test systems used and discusses the obtained exper-
imental results.

• Chapter 6 is a summary of the thesis and also includes directions for further
work.



Chapter 2

Background and Related Work

The first part of this chapter provides background about hard disk drives (HDDs) and
their power management, whereas the second part gives an overview of existing ap-
proaches to reduce energy consumption with compression.

2.1 Background
To improve the energy efficiency of disk drives it is important to understand how a
HDD works and which parts of it consume the most energy.

Spindle Head

Actuator Arm

Actuator Axis

Actuator

IDE Connector

Power Connector

Platter

Figure 2.1: Schematic view of a hard disk drive. (Source: [Wik08]) .
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2.1.1 Hard Disk Drives
Figure 2.1 shows a schematic view of the components of a HDD. The Platter is a
circular disk made of ferromagnetic material which is rotating at very high speeds, from
5400 revolutions per minute (rpm) in notebook HDDs up to 15000 rpm in high-end
server drives. Information is recorded to it by magnetizing small areas, representing a
binary 1 or 0. This is done by the read-and-write head which hovers very closely (only
tens of nanometers in modern drives) over the platter. To read or write data this head
first has to be brought into the right position over the platter by the actuator, then has
to wait till the right area of the spinning platter arrives under it.

Thus there are four primary energy consumers in a HDD: the spindle motor, the
actuator, the read-and-write head and the electronics operating the disk’s interface and
controlling the other components.

2.1.2 Hard Disk Drive Power Management
To reduce energy consumption a modern disk drive is able to selectively turn off unused
parts by supporting several power modes. Table 2.1 shows the power modes of an IBM
Travelstar and their corresponding power usage. Also shown is the drawback of the
power modes: when they are used the latency to access data can increase significantly.

Mode Properties Power Latency
Active reading/writing 2.1-4.7 W -
Performance Idle 1.85 W -
Active Idle actuator turned off 0.85 W 20 ms
Low Power Idle head parked and off 0.65 W 300 ms
Standby spindle motor off 0.25 W 1.0-9.5 s
Sleep electronics off 0.1 W 3.0-9.5 s

Table 2.1: Power modes of an IBM hard disk. (Source: [Be07])

This means there are two ways to increase energy efficiency: always keep the HDD
in the lowest power mode possible and avoid or reduce disk activity as much as possi-
ble.

The former approach is used in most modern Operating Systems. They use algo-
rithms of varying complexity trying to predict the future disk accesses to find a good
compromise between the best power mode for a given situation, the energy needed for
the transition between the modes and the performance impact caused by added latency.
The most widely used—and most simple—way is to use a user defined timeout after
which the HDD is set to a lower power mode. This generic approach reduces the en-
ergy consumption in general, but by not taking the characteristics of the HDD and the
access patterns into account it is far from optimal. Details of better strategies can be
found in [Be07].

The latter approach—the reduction of disk activity—is the focus of this thesis. We
will try to reduce energy consumption by actually reducing the amount of data written
to the disk by compressing it on-the-fly.
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2.2 Related Work
The idea to use data compression to reduce disk activity is not new, but it is usually
utilized to improve performance without energy efficiency in mind.

2.2.1 Swap Compression
One of the first works to close the performance gap between main memory and disk
drives was proposed by Douglas [Dou93]. His approach was to modify the paging
algorithms of the virtual memory system: when a page has to be swapped out it is not
directly written to the pagefile on the hard disk but instead compressed and stored in a
compression cache in memory. Only when this cache is full are the oldest pages written
back to disk. During swap in of a page the compression cache is first checked for that
page. On a hit, the page would be taken from the cache and be decompressed for direct
usage. Otherwise it would be read from disk as in a regular swap in strategy.

While this approach worked to reduce the amount of I/O operations it actually
degraded performance of the tested applications. The relatively low available CPU
processing power at the time was found to be the reason for that and he predicted that
with increasing performance the results would be more favorable.

His idea of the compression cache was later taken up and improved on by Cortes
and Becerra [CBC00]. Here the pages are also stored compressed on disk to increase
the size of the swap area. Furthermore the disk accesses during swap in and out are
grouped in order to no longer have the performance impact of disk seek times per page
but only per group. Evaluation of the cache hit rates lead to the usage of two different
paths for swap in and swap out which provides additional performance benefits by only
keeping write buffers in the cache while read buffers bypass it.

2.2.2 Memory Compression
Compression can also be used to increase the amount of available memory by storing
all data in it compressed and decompressing it on-the-fly when it is accessed. Early
works like [MMS99] come to the conclusion that software compression is too slow and
should only be used for swap compression like mentioned above. While they suggest
that hardware compression is needed to be able to compress all data in memory without
performance impact more recent approaches [ES05] are able to do this with a pure
software implementation thanks to a specialized compression scheme coupled with a
highly-efficient hierarchical memory layout.

Besides using the memory freed by compression to store more data, compression
can also be used reduce the number of RAM modules needed to store the data. Ober-
nolte [Obe03] improves energy efficiency by turning off the memory modules which no
longer store data. More details about energy-aware memory compression can be found
in [Wun04]. It compares the performance impact of several compression algorithms
with their energy consumption and also evaluates which algorithms are best suited for
the code and data segments of applications. The most efficient algorithm is found to be
Lempel-Ziv-Oberhumer (lzo) [Obe02].

2.2.3 Compression for Energy Efficient Data Transmission
Another use of compression is to reduce the amount of data that has to be transferred
when communicating. This is especially important for small sensor nodes where the
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most energy consuming task is the transmission of data over a wireless network. Work
in this area has been done in [CF03] where compression is not only used to improve
energy efficiency but also to reduce latency.

2.2.4 e2compr
e2compr [WWL] is an extension to the second extended filesystem (ext2) that allows
transparent on-the-fly compression and decompression. It does not compress all the
data in the file system but instead only the contents of regular files selected by the user.
For data safety reasons, the administrative data like superblock, inodes and directory
files are never compressed.

On an ext2 device without e2compr data is stored in fixed-size blocks (usually
1 kilobyte) and the inode holds (directly and possibly indirectly) a list of every block
in a file. When reading data the file system code first determines the corresponding
block it is stored in, gets the block, then reads the data from it. A special feature of
ext2 is that files can contain holes which means that some blocks of a file are missing.
In this case the apparent size of the file is much bigger than the product of the number
of blocks it really holds and the block size. A missing block does not take up any space
on the disk but is considered to be filled with zeroes.

Taking advantage of the missing blocks feature allows e2compr to add transparent
compression and decompression without changing the way data is stored on disk: files
are divided into clusters of n blocks (where n is constant for a given file) and e2compr
replaces non-hole data in a cluster with blocks of compressed data followed by one
or more missing blocks. The compression takes place whenever a cluster boundary is
reached during writing. In some cases clusters do not compress well, for example when
a cluster only contains one block of data or when the compressed data occupies more
space than if uncompressed. In such cases the cluster is left unchanged. When a cluster
is read it is necessary to differentiate between uncompressed and compressed clusters
where the the holes actually contain data. This is done by indicating the missing blocks
in a compressed cluster with FFFFFFFF and not with a zero pointer like the regular
empty holes. Doing so reduces the maximum size of the file system by one block
though.

The focus of e2compr is to increase disk space and to ensure data safety, not saving
energy though. It nevertheless can be used as a starting point to see how much more
energy the CPU needs to compress the data and if the HDD energy consumption can
actually be reduced. The major drawbacks (both concerning energy savings and in
general) of e2compr are:

• It is an extension of ext2 file system and thus incompatible with the journaling
extensions of ext3 and naturally also any other file systems.

• Only file contents are compressed, but not the administrative data. In a file sys-
tem with a big number of very small files this means that most data written to
disk is uncompressed.

• The amount of data read from or written to disk can only be reduced for files
bigger than one block since even a compressed cluster takes up at least one block.

• Data is only compressed when writing it to disk, there is no compressed buffer
to reduce disk activity.

To solve those problems we designed the compressed block device compr.



Chapter 3

Design

3.1 Compressed Block Device
The main goal when designing the (virtual) compressed block device compr is to min-
imize the amount of HDD activity when reading and writing data whilst keeping the
CPU load low by caching recently used uncompressed data. This is done to find a
compromise between the additional energy consumed by the CPU and memory during
compression and the energy saved with the HDD. compr works similar to a loop device
by using a file or partition on a HDD as its backing store. All data written to compr is
compressed and stored in a buffer in memory. Only when that buffer is full (or when
the device is closed) is the data written back to disk. Increasing the available disk space
or performance was not a design goal of compr.

As can be seen by the example of e2compr in Section 2.2.4 adding compression
to an already existing file system can be difficult. Workarounds to differentiate com-
pressed from uncompressed data need to be found and it is hard to achieve good com-
pression ratio and high performance in a design that was never meant to support com-
pression in the first place. A better solution would be to design a new file system from
scratch to take full advantage of compression by focusing on its particular needs. Im-
plementing a new file system is a daunting challenge though, and it does not solve
the problem that it would be nice to have compression available independently from
the used—and possibly specialized for a certain usage scenario—file system. Because
of this we decided to implement compr as block device driver sitting between the file
system and the disk as an additional layer to provide transparent compression for any
file system. Since block device drivers are operating system dependent we chose to
base our design on Linux and thus compr had to be designed with the architecture
of the Linux block device layer in mind, but the design could be transferred to other
operating systems as well.

3.1.1 Linux Block Device Layer
The block device layer in the Linux Kernel 2.6 is used to provide access to devices
that transfer randomly accessible data in fixed-size blocks, that is disk drives primarily.
Since disk drives normally are built with moving parts they have very high average
access times. In a modern disk drive, a random access read or write requires about
10 milliseconds to complete, mainly because the read/write heads have to be moved
into the right position above the disk surface and then have to wait for the part of the

7



8 3. DESIGN

disk containing the data to arrive. However, once the heads are placed correctly and
data is accessed sequentially a disk drive can sustain data rates of over 100 megabytes
per second.

To minimize the performance impact of the high access times three techniques are
used. Firstly, Linux implements a primary disk cache called page cache in main mem-
ory which is used when accessing data on a block device. This way on each cache
hit the slow I/O operation on the disk drive can be avoided completely and the transfer
rate is also improved since the page cache in memory is faster by an order of magnitude
than any disk drive. Using direct I/O the page cache can be bypassed though which can
be advantageous for applications like database systems which want to implement their
own caching strategies in user mode. To further reduce the amount of head movement
the smallest data unit that can be accessed on a block device is a 512-byte sector, en-
suring that at least those 512 byte can always be read or written sequentially. Block
devices can have bigger transferable units by combining sectors to blocks, the size of
which is limited by the page size (usually 4 kilobytes). Any I/O operations smaller
than that are automatically converted to an operation of the right size by the kernel.
The last technique is the sorting of outstanding I/O requests in the command queue
to try to have them all in the same direction of the head and the merging of multi-
ple requests for contiguous sectors. Modern disk drives supporting Native Command
Queueing (NQC) or Tagged Command Queueing (TQC) do not rely on the kernel for
this anymore though as they can do it by themselves. The added latency induced by the
reordering of the requests can reduce performance in rare situations though.

3.1.2 compr
In the simplest way a compressed block device could be designed by just adding it as an
additional layer between the user and the disk drive like a loop device. Then on each
write of a sector to the compressed block device the data would be compressed and
written back to disk, and on a read the sector would be decompressed. As explained
above the minimum size of an I/O operation on a block device is one sector though
which means that no matter how well the sector can be compressed we always end up
writing a whole 512-byte sector back to disk. This means alot of CPU overhead and
thus energy consumption is added without actually reducing the work done by the disk
drive at all.

To overcome this problem n sequential sectors have to be combined to blocks big-
ger than 512 byte and if that block compresses well only m < n sectors have to be
written to or read from disk. The bigger n is the higher is the possibility that a sub-
stantial number of sectors will not have to be accessed on disk at all. This is because
most compression algorithms provide better results when data is split in only a few big
partitions than many smaller ones. If n is too big CPU overhead becomes a serious
problem though because now a big block has to be compressed/decompressed on each
access to a sector. To mitigate this effect compr uses a two-tier cache hierarchy which
can be seen in Figure 3.1.

3.1.3 Cache Hierarchy
In compr a variable (but fixed per device) number of n 512-byte sectors is combined
into an uncompressed block (called ublock from now on). The default value of n is
32 resulting in ublocks of 16 kilobyte. On the first level of the cache hierarchy those
ublocks are stored in a small least recently used (LRU) cache called ucache. This cache
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... cblockcblock cblock cblock cblock ... Hard Disk

... cblock cblock cblock cblock cblock ... ccache

ublock ublock ublock ublock ucache

OS Page Cache... page page page page page ...

Applicationuser buffer

f write()/f read()

compress/decompress

low level write/read

write/read

User

Kernel

Figure 3.1: The design of compr and its cache hierarchy.

helps to solve the problem of repeated access to sectors in the same ublock. The data
only has to be decompressed on the first miss in the ucache, all subsequent requests to
the same ublock can be satisfied with a simple memory copy. This specifically helps
with sequential access as it reduces the number of decompressions needed from n to 1
compared to a design without a ucache.

Once the ucache overflows the oldest dirty entry is compressed into a compressed
block (called cblock) and stored in compr’s compressed disk cache. This big (the de-
fault size is 4 megabyte) second level ccache is the main technique used to reduce
disk access as much as possible. Compared to a normal disk cache it differs in several
points:

• As its entries are compressed it can potentially store much more data than nor-
mally would fit in main memory, resulting in a much more efficient use of avail-
able memory.

• The dirty cblocks are only written back to disk on a ccache overflow or when the
device is closed. This means that disk access can be completely avoided if all
the data fits in the ccache. The drawback is that this puts data safety at high risk
if the ccache is lost because of unexpected shutdowns. This could be solved by
writting back the dirty entries in intervalls like a normal disk cache does.

• The cblocks are not fixed-sized since they contain compressed data. This makes
the implementation of the ccache more challenging because to make the best use
of the available space, fragmentation has to be kept as low as possible. Simi-
lar problems are faced when designing dynamic memory allocators, so the ap-
proaches used there are applicable here too.

When there is no more room in the ccache the oldest dirty cblock is written back to disk.
This way disk energy consumption is kept to a minimum compared to a system without
compr as less data has to be stored on disk and the disk has to be accessed less often
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since there is more data stored in memory. The additional CPU energy consumption
caused by compression and decompression is also kept relatively low by caching the
ublocks too.

3.1.4 Uncompressed Cache ucache
The ucache used to store the ublocks is similar to a regular cache as it provides room for
a fixed number of entries of a fixed size. Since we want most data to be compressed the
ucache is fairly small (ranging from 2 to 8 ublocks) and thus simply iterating over all
entries to find out if an access is a hit or a miss does not cause performance problems.
As mentioned above, when the ucache is full an LRU replacement strategy is used and
the oldest entry is written back if its dirty or discarded otherwise. A sequential read of
all the blocks in a ublock will always result in a hit in the most recently used entry, so
we decided to iterate over the ucache entries in reverse order of the LRU list.

The flow chart in figure 3.2 shows the steps taken in the ucache when data is written
to compr.

calculate
offset of

corresponding
ublock

write block

hit?

oldest entry
dirty?

move to top

replace entry

write back of
oldest entry

copy into
oldest entry

yes

no

yes

no

Figure 3.2: Flow chart of a write on compr.
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3.1.5 Compressed Cache ccache
The ccache differs from the ucache by containing a variable number of entries of vary-
ing sizes. It also is considerably bigger and thus has room for a significantly bigger
number of entries. This is aggravated by the fact that we are storing compressed data so
even at the size of only 4 megabytes the ccache can potentially have tens of thousands
of cblocks stored in it. If implented like the ucache the O(n) Overhead for finding
an entry could severely impact performance. We thus decided to base the lockup on a
red-black-tree which offers an O(log(n)) search time.

Another problem of the big number of entries is the flushing of the cache when the
device is closed. When writing all the dirty entries back to disk at least 512 byte need
to be written for each cblock even if it is much smaller (see Section 3.1.1). If the page
cache gets used for those writes we end up with a read and a write of 4 kilobytes per
entry. This could easily nullify all the energy saved by the reduced number of disk
accesses before the flush, especially taking the computational overhead of such a big
number of small I/O operations into account. This can be mitigated by writing the
blocks in ascending order to reduce the amount of disk seek time needed which is easy
to do as the rb-tree sorts the entries anyway.

To improve the flush performance further we decided on another approach: instead
of writing each dirty entry to disk the whole memory region containing the ccache is
written to a reserved area on the disk. This way only one big I/O operation is needed.
When the device is opened again the old ccache is read and the ccache is filled with
its entries. This has the added advantage of providing a ccache that already contains
the recently used blocks right when the device is opened. The drawbacks are that some
disk space is lost to reserved area, and that restoring the ccache makes opening the
device a computationally heavy operation which can be a big overhead if none of the
blocks contained in the ccache are read. In general the much cheaper flush outweighs
the slightly more complicated open though (see Table A.10).

Like in the ucache an LRU strategy is used to replace the oldest entries when the
ccache is full. The steps taken in the ccache when a write back from the ucache occurs
can be seen in Figure 3.3, the interaction of both caches can be seen in the flow chart
in figure 3.5 which shows a read on compr.

3.1.6 Disk Layout
We decided to use a simple disk layout for compr which can be seen in figure 3.4. It
starts with a short header containing all the information needed to open the device (size
of the ublocks, the used compression algorithm and pointers of the old ccache needed
to restore it). Following it is a reserved area which is used for the fast flush described
above. This area cannot grow, so the size of the ccache is limited to the size used when
the device first was created. The device can be recreated with a different ccache size
but then all data stored on it is lost.

The next part is the block allocation table (BAT). It contains the size of each block
saved on the disk. A direct mapping is used (the first entry is the size of the first cblock
and so on) for fast access and small memory footprint. When the device is opened the
BAT is loaded into memory and used for all following accesses. It is updated whenever
the size of a cblock changes (due to a write) and when the device is closed the BAT
is written back to disk. A size of 0 bytes indicates that a cblock does not contain any
data. We take advantage of that by not accessing the disk at all when a cblock of size
0 is accessed and instead just return a buffer filled with zeroes. If the size of a cblock
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compress
ublockwrite back

hit and fit?
write back of
oldest entry

move to top

copy cblock
into entry

room for
new entry?

oldest entry
dirty? add new entry

remove
oldest entry

write oldest
entry to disk

yesno

no yes

yes

no

Figure 3.3: Flow chart of a write back from ucache to ccache.

is as big as a ublock it indicates that the cblock is not compressed. This can happen
when the data does not compress well and actually takes up the same or more space in
compressed form than uncompressed.

header ccache flush area BAT cblock cblock cblock ...

16 Bytes Size of ccache 4 byte per ublock ublock ublock ublock

Figure 3.4: The disk layout used in compr.

After the BAT the data area begins. Here all the cblocks are stored in ascending
order, each one starting at the offset of the corresponding ublock. Since a cblock can
never be bigger than a ublock this ensures that there is always enough room for the
cblocks. Disadvantages of this are a high degree of internal fragmentation caused by
all the gaps between cblocks. Those gaps could be used to increase the available disk
space by compacting the cblocks but that is beyond the scope of this thesis.
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Figure 3.5: Flow chart of a read on compr. Red nodes are part of the ccache, blue nodes
of the ucache.
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Chapter 4

Implementation

To evaluate if compr is able to improve energy efficiency we implemented it as a
block device driver for the Linux operating system. The kernel version used was
2.6.11 [Tor08]. This system was chosen because it is open source and well documented
which facilitates the implementation and also because it is available for embedded sys-
tems too.

4.1 Compression Algorithms
The compression and decompression of data is at the core of compr. Energy consump-
tion can only be reduced if the workload caused by the compression plus the additional
overhead of the cache hierarchy is lower than the energy saved by the reduced disk
activity. Because of this, compr has an open interface which allows to easily add more
or to select the best compression algorithm for a given system to meet this requirement.
The following five algorithms were examined in this thesis.

4.1.1 gzip
Gzip is based on the DEFLATE [Deu96] algorithm which combines LZ77 and Huff-
man coding. LZ77 is a dictionary based algorithm which scans the data for redundancy
using a sliding window and performs a run-length encoding. It offers an adjustable
compression-level vs. speed of encoding ratio, with gzip1 being the lowest compres-
sion and gzip9 the best. This makes it suitable for finding the right balance to save
energy.

Another advantage of it is the wide availability since zlib, which implements the
DEFLATE algorithm, is part of the Linux kernel.

4.1.2 lzrw3a and lzv1
Like gzip, the lzrw3a [Wil91] algorithm is also based on LZ77. Compared to gzip it
offers slightly worse compression but is significantly faster. It also has a very small
memory footprint, requiring only 16 kilobyte of memory for both compression and
decompression.

LZV1 is similar to LZRW3A but is tuned for even faster performance. In most
cases it is not that much slower than a pure memory copy, but it also only provides
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very low compression ratios.

4.1.3 lzo
One of the fastest compression algorithms based on LZ77 is lzo [Obe02]. Its compres-
sion ratio is equal to or better than that of gzip while being moderately faster during
compression and significantly faster at decompression using less than a tenth of CPU
time in comparision.

4.1.4 bzip2
Contrary to the other algorithms mentioned so far, bzip2 is not based on LZ but on the
Burrows-Wheeler transform [BW94]. Its compression stack is quite complex, includ-
ing amongst others two run-length encodings, the Burrows-Wheeler transform, sorting
of the input data and a Huffman coding. This makes compression and decompression
quite slow, but the compression ratio obtained by bzip2 surpasses that of gzip by up
to 65%, especially when compressing text files. As it is an asymetric algorithm de-
compression is relatively fast compared to compression though, so it might offer good
performance for data that is rarely written to but often read.

4.2 Implementation of compr
The implementation of compr is similar to that of the loop device driver included in the
Linux kernel. It consists of two parts: a small user space tool called comprsetup which
is used to create the device and the block device driver itself in kernel space.

When creating the device comprsetup allows the user to specify which compression
should be used, how many blocks a cblock contains, how big the caches are and which
device is to be used as backing file. This information along with a file handle of the
backing file is then passed to the driver. This has to be done because if the backing file
was opened in the driver it would belong to whichever process accessed the driver dur-
ing the open operation. As this could be any process accessing the device compr would
not be transparent for that process anymore because its file descriptor table would be
modified. This could cause problems because the number of file descriptors per process
is limited.

In the driver the file handle is then used to read the header of the backing file and
the BAT is copied into memory. The Linux file operations are meant to be accessed
from user space though and expect user space buffers whereas all the memory allo-
cated by the driver is in kernel space. To circumvent this problem the current process
address limits have to be modified for every read and write which is easy to do using
the set_fs() function.

A more serious problem is that all the disk accesses by the driver are also buffered
in the page cache and thus we get an additional layer in the cache hierarchy described
in Section 3.1.3. This second page cache could be bypassed by using direct I/O, but
direct I/O is optimized for usermode applications and does not work from within the
kernel. Making it work with kernel buffers would need substantial changes to the direct
I/O implementation in the kernel which was beyond the scope of this thesis.

To keep the time spent in the read and write operations of the device low and to not
block applications for too long all compression and decompression is done in a seperate
kernel thread. Using more than one thread for this on systems with more than one CPU
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could increase the performance at the cost of additional synchronization overhead. As
our fucus is on energy consumption and not performance though we decided to use the
single threaded approach.

4.2.1 Implementation Details of the ucache
Since the ucache has a fixed size it is implemented as a single memory area (allocated
with vmalloc()) containing all its entries. They are linked together by a singly-
linked list and to implement the LRU replacement strategy the last entry is moved to
the top of the list on each access.

4.2.2 ccache Implementation Details
The implementation of the ccache is based on the red-black-tree implementation in-
cluded in the kernel for fast lockup and an LRU list like the one used in the ucache.
Because the ccache entries do not have a fixed size we cannot allocate all its memory as
one block and then divide it equally, instead we have to allocate memory per entry. The
memory allocation functions offered by the kernel are not suited for a big number of
allocations of varying sizes though: kmalloc() is optimized for small sized memory
allocations and suffers from fragmentation on non power-of-two sizes, vmalloc()
is meant for bigger allocations and has significant fragmentation when used for small
sizes. To be able to write back the ccache with just one I/O operation when flushing
we furthermore need all its entries to be in one memory area which is not possible with
either of those two functions.

Our solution to this problem is to use Two Level Segregate Fit (TLSF) [MRC03], a
general purpose dynamic memory allocator designed to meet real-time requirements.
It is much faster than the memory allocations in the kernel while being very memory
efficient thanks to the low amount of fragmentation. It also can be used to allocate all
its memory within a big memory area previously allocated by vmalloc() and thus
fulfills all our requirements.

To be able to write all of the ccache to disk and then restore it later on not only its
data needs to be written though but also a link to all the entries to be able to find them
in the memoy block. Instead of writing a seperate index to disk we decided to use the
following approach: We not only use the memory area managed by TLSF to store the
cblocks but also put the management information (pointers to the linked list and the
red-black-tree, dirty bit and the offset of the cblock) of the entries in it. The data and
the information are allocated together with one operation to keep the overhead low, and
since the data directly follows the information we do not need a pointer to the data so
we can save some memory.

When restoring this memory block from disk the only additional information we
need are the offset of the first entry from the start of the memory block and the address
of the memory block which are saved in the header. We can then access the first entry
and all subsequent entries by simply adjusting the links in them with the saved address
and put all the cblocks into our new ccache. Since we are not allocating the cblocks
in the same order they were allocated before the flush it is possible to have more frag-
mentation though, so all dirty cblocks which do not fit in the new ccache are written
back to disk.
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Chapter 5

Evaluation and Discussion

To evaluate if and by how much file compression can improve energy efficiency and
which compression algorithm is best suited for this task we measured the energy con-
sumption in several scenarios. In this chapter only parts of the measurements will be
presented, tables with all obtained results can be found in Appendix A.

In order to avoid any kind of external influence on the obtained results all unneeded
and potentially energy consuming background tasks were closed. Furthermore, the test
systems were rebooted before each test run to set them into the same initial state each
time and to empty the page cache in particular. The already existing power management
features of the Linux kernel—especially the CPU throttling mechanisms —were not
disabled since they would not be disabled in a real production system striving for low
energy consumption either.

5.1 Test Systems
Two systems were used for the evaluation: a desktop PC and an embedded system.
The desktop system has a 1.5 GHz Intel Pentium 4 [Int03] processor and 768 megabyte
RAM. We used a 40 gigabyte Samsung Spinpoint MP0402H [Sam] 2.5 inch notebook
HDD connected to the mainboard’s IDE controller. Both CPU and HDD energy con-
sumption were measured to see if the energy saved by the disk drive outweighs the
CPU overhead caused by the compression.

The embedded system is a Triton Starter Kit III [KAR] evaluation board with a
312 MHz Intel XScale PXA270 [Int] processor and 64 megabyte of main memory.
A 4 gigabyte Hitachi microdrive [Hit] connected to the Compact Flash interface was
used as the disk drive. As it is a System-on-a-chip design it was not possible to measure
HDD and CPU energy consumption seperately, so we focused on total system energy
consumption instead.

5.2 Compressed File System
Our first evaluations were done using e2compr to see if a compressed file system not
designed for energy efficiency can be used to save energy, and to get a general idea of
the HDD to CPU energy consumption ratio. The latest e2compr version (0.4.51) was
used on the desktop system, but as the embedded system was running an older Linux
kernel we had to use e2compr version 0.4.45 on it.
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5.2.1 Desktop PC
To see if the compression helps with energy consumption of the desktop system at
all our first tests were a best case scenario: reading and writing a 250 megabyte file
containing only zeroes to an e2compr filesystem. This file compresses extremely well
and thus results in the lowest disk activity.
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Figure 5.1: Energy consumption when writing 250 MB of zeroes on the desktop system
using e2compr. The left bar is using a cluster size of 4 kilobyte, the right bar 8 kilobyte.

The energy consumption when writing can be seen in Figure 5.1. Even with the best
performing compression algorithm (LZO) 60% more energy is needed compared to
writing the file to an uncompressed file system. As the chart shows we are actually able
to improve HDD energy efficiency by a small amount, but the total energy consumption
is clearly dominated by the CPU.

There are two main reasons for the increased energy consumption: firstly, dur-
ing the uncompressed write the CPU is idle all the time, consuming only about 10 W.
When compressing it operates at full load though and the energy consumption increases
to more than 60 W. As the HDD energy consumption only decreases by 2 W when
there is no disk activity energy can only be saved if the compressed write is signifi-
cantly shorter. Secondly, the write rate of the HDD is higher than the compressed data
throughput of the CPU. This means no matter how well the data compresses the write
operation will always take longer than the uncompressed write, making it impossible
to save energy in this scenario.

The results when reading are similar, showing a 45% increase in the best case. To
see if we could save energy on a busy system where the CPU is at full load even without
compression we decided to compile the Linux kernel on an e2compr file system. The
results (see Table A.3) improve but the energy consumption still increases by 8%.
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5.2.2 Embedded System
The best case scenario was tested on the embedded system too, but because of the
slower disk a smaller 25 megabyte file of zeroes was used. Figure 5.2 shows the ob-
tained results for both reading and writing.

Using lzrw3a, lzv1 or lzo and a cluster size of 8 kilobyte the system energy con-
sumption actually can be reduced to as low as 65%. That is because the CPU of the
embedded system consumes a similar amount of energy as the HDD and thus we do
not face the same problems as with the desktop system. Additionally the CPU can de-
compress data faster than the disk can read uncompressed data causing the compressed
read to take less time.

When writing the energy consumption changes drastically, resulting in a 339%
increase in the best case. A small part of this is caused by the computationally more
expensive compression compared to decompression, but the main reason is that we
used an older version of e2compr. Instead of compressing and writing a cluster directly
to disk, the file first is completely written as an uncompressed file, then each cluster is
read in again, gets compressed and then written back to disk. Thus thrice the work has
to be done which explains the tripled energy consumption.
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Figure 5.2: System energy consumption on the embedded system using a 25 megabyte
file of zeroes on e2compr. The left bar is using a cluster size of 4 kilobyte, the right bar
8 kilobyte.



22 5. EVALUATION AND DISCUSSION

5.3 Compressed Block Device
As shown above compression cannot be used to improve the energy efficiency of the
desktop system which is why we tested our implementation of compr on the embed-
ded system only. All measurements were run with 16 kilobyte ublocks, a 4 megabyte
ccache and the ucache was set to contain a maximum of 4 entries. These values were
selected as they provide good results and also leave enough memory for other applica-
tions.

5.3.1 Embedded System
Our first test for compr was the best case scenario we also used for e2compr: reading
and writing a 250 megabyte file of zeroes. The results can be seen in Figure 5.3 where
‘ext2’ stands for a regular uncompressed ext2 file system and ‘none’ is compr with no
compression, that is the cblocks are not compressed and the same size as the ublocks.
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Figure 5.3: System energy consumption on the embedded system when reading and
writing a 250 megabyte file of zeroes using compr.

Thanks to the compressed cache energy efficiency is much increased when reading
for most compression algorithms. That is because the small 4 megabyte ccache actually
contains all data of the 250 megabyte file and thus no data at all has to be read from
disk. The decompression from the ccache to memory is also much faster than reading
from disk which further reduces energy consumption by making the read operation
shorter. So not only do we improve energy efficiency but also performance. The best



5.3. COMPRESSED BLOCK DEVICE 23

performing algorithm here again is lzo by reducing energy consumption to 11%. lzrw3a
fails to deliver good results because it does not compress the ublocks as well as the other
algorithms and thus its ccache contains less than 33 megabyte of uncompressed data.

When writing 250 megabyte of zeroes only lzv1 and lzo can reduce the energy
consumption. The gzip and bzip2 algorithms are too computationally expensive when
compressing data and lzrw3a suffers from the bad compression ratio mentioned above.

Also observable is the higher energy consumption when reading (119%) and writ-
ing (134%) to compr without using compression. This overhead is caused by the ad-
ditional memory copies between the caches. When writing data it is first copied to the
page cache, from there to the ucache, then the ccache, the page cache again and finally
written to disk. As mentioned in 4.2 this overhead could be reduced if it was possible to
bypass the second page cache using direct I/O. It is remarkable that compr can improve
energy efficiency when compressing data despite this relatively big overhead.
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Figure 5.4: System energy consumption on the embedded system when reading and
writing 45 megabyte of Linux source code using compr.

To simulate a more realistic scenario than our best case we used a file containing
the first 45 megabyte of the (uncompressed) Linux source code. For the write mea-
surements this file was first copied to a RAM disk and then written to disk from there.
This was necessary because the disk we used was the only storage device available
on the embedded system and transfering the file over the network turned out to be a
bottleneck.

As can be seen in Figure 5.4 compr can improve efficiency in this scenario too by
reducing energy consumption to 50% when reading and 80% when writing. Again
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lzo provides the best result because it provides the best trade-off between compression
ratio and compression speed. The data is compressed to about 10% smaller cblocks by
bzip2 but the compression takes disproportionately more energy and time resulting in
a higher total energy consumption. lzrw3a and lzv1 provide decent results too but lzo
is superior to them in any way and thus the compression algorithm of choice. gzip is
both too slow and does not compress well enough to achieve good results.



Chapter 6

Summary

With the increasing amount of data that needs to be stored, hard disk drives are becom-
ing one of the major energy consumers in many computer systems. This is intensified
by the improved energy efficiency of many other system components whereas little to
no work has been done to reduce the energy consumption of disk drives.

Our proposed solution is to transparently compress all data that is to be written to
disk. This allows us to store more data in main memory and thus the number of I/O
operations is reduced, and since less data has to be read and written the length of the
disk accesses are shortened. Due to this reduction of disk activity the energy efficiency
of the hard disk is improved.

6.1 Conclusion
As shown by our evaluations the reduced disk energy consumption does not always
translate to an improved energy efficiency for the whole system though. The reason
for this is that the additional energy needed by the CPU for compression can greatly
exceed the energy saved by the disk drive.

The CPUs used in regular desktop systems today consume more energy when idling
than a disk drive under full load, and the disk data transfer rates are higher than the
throughput of compressed data of the CPU. This results in slower and longer I/O oper-
ations when using compression and thus no energy can be saved. This might change in
the future if the trend to faster and more energy efficient CPUs continues.

On embedded systems where the CPU and HDD energy consumption are similar
our approach is able to reduce the system energy consumption to 50% when reading
and 80% when writing. Here the compressed cache in memory also has a bigger impact
since embedded systems usually have a very limited amount of RAM. Furthermore we
are also able to improve performance because the small embedded hard drives only
have low data transfer rates and the compression enables us to write more data in less
time.

In general the potential to save energy with our approach increases with faster but
highly energy efficient CPUs and higher HDD energy consumption, which seems to be
the direction for both CPU and HDD development.
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6.2 Future Work
One way to improve the efficiency of our compression layer would be the reduction
of overhead by bypassing the second page cache using direct I/O. This would need
substantial changes to the direct I/O implementation in the Linux kernel to be able to
use it not only from user mode but also kernel mode. Even more overhead could be
eliminated if the first page cache could be bypassed too, but this would need changes
to the user mode applications.

Another improvement would be to use a better disk layout similar to the one used
by the ccache to reduce the amount of unused disk space. Compacting the compressed
data and thereby increasing the available space might result in less needed HDDs and
thus quite a big energy conservation.

With flash memory based Solid State Disks (SDDs) becoming more and more pop-
ular and already replacing HDDs in some low energy devices it should be checked if
their energy efficiency can also be improved by compression. In general they consume
less energy than disk drives because they do not contain any moving mechanical parts.
They still need more energy for reading and writing than for idling though, so a re-
duction of disk activity should still be able to reduce energy consumption too, just to a
lesser extent than with disk drives.



Appendix A

First Appendix

Following are all the details of the obtained results of the evaluations described in
Section 5. The ‘Relative’ column describes the energy consumption relative to the
uncompressed case, the lower the value the higher the energy efficiency.

Algorithm Cluster Size HDD CPU Total Time Relative

none - 19.01 J 132.38 J 151.38 J 7621 ms 100%

4 kB 44.77 J 1355.27 J 1400.04 J 25847 ms 925%gzip9
8 kB 42.54 J 1403.97 J 1446.51 J 26182 ms 956%
4 kB 44.23 J 1350.90 J 1395.13 J 25456 ms 921%gzip1
8 kB 42.33 J 1400.36 J 1442.69 J 26173 ms 953%
4 kB 51.03 J 1305.99 J 1357.02 J 30002 ms 896%bzip2
8 kB 29.88 J 818.99 J 848.86 J 18000 ms 561%
4 kB 32.96 J 514.46 J 550.41 J 17992 ms 364%lzrw3a
8 kB 19.26 J 436.87 J 456.14 J 11093 ms 301%
4 kB 32.94 J 391.00 J 423.94 J 18070 ms 280%lzv1
8 kB 19.11 J 312.06 J 331.18 J 11020 ms 218%
4 kB 33.25 J 318.68 J 351.98 J 17582 ms 233%lzo
8 kB 18.53 J 231.71 J 250.23 J 10577 ms 165%

Table A.1: Energy consumption when writing 250 megabyte of zeroes on the desktop
system using e2compr.

27



28 A. FIRST APPENDIX

Algorithm Cluster Size HDD CPU Total Time Relative

none - 20.50 J 164.85 J 185.35 J 8534 ms 100%

4 kB 20.49 J 250.84 J 271.34 J 8757 ms 146%gzip9
8 kB 26.33 J 262.48 J 288.82 J 11348 ms 156%
4 kB 25.87 J 262.88 J 288.75 J 11143 ms 156%gzip1
8 kB 20.62 J 253.35 J 273.96 J 8838 ms 148%
4 kB 35.41 J 637.34 J 672.75 J 15376 ms 339%bzip2
8 kB 56.88 J 522.50 J 579.38 J 24734 ms 313%
4 kB 20.61 J 252.31 J 272.92 J 8828 ms 147%lzrw3a
8 kB 25.14 J 258.22 J 283.36 J 10824 ms 150%
4 kB 20.53 J 257.29 J 277.82 J 8786 ms 150%lzv1
8 kB 29.23 J 268.35 J 315.58 J 12539 ms 170%
4 kB 20.54 J 236.18 J 256.72 J 8795 ms 139%lzo
8 kB 24.93 J 240.84 J 265.77 J 10739 ms 143%

Table A.2: Energy consumption when reading 250 megabyte of zeroes on the desktop
system using e2compr.

Algorithm Cluster Size HDD CPU Total Realtive

none - 324.35 J 11737.2 J 12061.6 J 100%

4 kB 442.94 J 13188.6 J 13631.5 J 113%gzip9
8 kB 500.47 J 15025 J 15525,5 J 128%
4 kB 430.66 J 13106.6 J 13537.3 J 112%gzip1
8 kB 458.35 J 14987.7 J 15473.1 J 128%
4 kB 570.37 J 17259.3 J 17829.7 J 147%bzip2
8 kB 620.35 J 16573.4 J 17193.7 J 143%
4 kB 435.32 J 13357.1 J 13792.4 J 114%lzrw3a
8 kB 423.49 J 13457.4 J 13881.0 J 115%
4 kB 419.62 J 13434.4 J 13854.0 J 114%lzv1
8 kB 406.35 J 13067.2 J 13473.5 J 112%
4 kB 410.73 J 12938.7 J 13349.4 J 111%lzo
8 kB 390.36 J 12634.4 J 13024.8 J 108%

Table A.3: Energy consumption when compiling the Linux kernel on an e2compr file
system on the desktop system.
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Algorithm Cluster Size Energy Time Relative

none - 30.13 J 12498 ms 100%

4 kB 38.01 J 15297 ms 126%bzip2
8 kB 32.49 J 8604 ms 108%
4 kB 30.90 J 12762 ms 103%lzrw3a
8 kB 23.08 J 9570 ms 77%
4 kB 30.51 J 12727 ms 101%lzv1
8 kB 19.47 J 8030 ms 65%
4 kB 30.26 J 12588 ms 100%lzo
8 kB 21.17 J 8773 ms 70%

Table A.4: Energy consumption when reading 25 megabyte of zeroes on the embedded
system using e2compr.

Algorithm Cluster Size Energy Time Relative

none - 20.23 J 8277 ms 100%

4 kB 264.07 J 104606 ms 1305%bzip2
8 kB 129.52 J 51424 ms 640%
4 kB 234.28 J 93514 ms 1158%lzrw3a
8 kB 101.10 J 40643 ms 500%
4 kB 224.20 J 89512 ms 1108%lzv1
8 kB 93.07 J 37486 ms 460%
4 kB 219.88 J 87634 ms 1087%lzo
8 kB 88.79 J 35735 ms 439%

Table A.5: Energy consumption when writing 25 megabyte of zeroes on the embedded
system using e2compr.

Algorithm ccache entries Energy Time Relative

ext2 - 208.40 J 81457 ms 100%
none 255 274.25 J 108292 ms 134%
gzip 17054 468.78 J 246385 ms 225%
bzip2 17054 280.26 J 147547 ms 134%
lzrw3a 2103 352.16 J 143421 ms 168%
lzv1 16420 69.05 J 36813 ms 33%
lzo 17054 53.23 J 26272 ms 25%

Table A.6: Energy consumption when writing 250 megabyte of zeroes on the embedded
system using compr.
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Algorithm ccache entries Energy Time Relative

ext2 - 254.42 J 104388 ms 100%
none 248 302.95 J 122774 ms 119%
gzip 17054 42.05 J 22157 ms 17%
bzip2 17054 64.38 J 45883 ms 37%
lzrw3a 2094 259.48 J 105089 ms 102%
lzv1 16354 27.59 J 14130 ms 11%
lzo 17054 26.87 J 14121 ms 10%

Table A.7: Energy consumption when reading 250 megabyte of zeroes on the embed-
ded system using compr.

Algorithm ccache entries Energy Time Relative

ext2 - 92.59 J 39668 ms 100%
none 248 107.23 J 41385 ms 115%
gzip 517 157.24 J 45647 ms 169%
bzip2 751 99.54 J 40368 ms 108%
lzrw3a 576 87.63 J 37617 ms 95%
lzv1 631 81.46 J 33679 ms 88%
lzo 682 74.11 J 31254 ms 80%

Table A.8: Energy consumption when writing 45 megabyte of the Linux source code
on the embedded system using compr.

Algorithm ccache entries Energy Time Relative

ext2 - 107.55 J 42548 ms 100%
none 248 123.62 J 45328 ms 115%
gzip 521 73.19 J 32147 ms 68%
bzip2 752 70.33 J 34261 ms 65%
lzrw3a 584 82.62 J 36217 ms 77%
lzv1 637 65.35 J 28384 ms 61%
lzo 685 53.50 J 21723 ms 50%

Table A.9: Energy consumption when reading 45 megabyte of the Linux source code
on the embedded system using compr.

Flush ccache entries Energy Flush Energy Open Total Relative

normal 17054 340.52 J 2.86 J 343.38 J 100%
ordered 17054 310.65 J 2.73 J 313.35 J 91%
fast 17054 1.87 J 7.84 J 9.71 J 3%

Table A.10: Comparision of the different ccache flushes.
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