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Abstract

As several empirical studies pointed out that asymmetmkslioccur considerably fre-
quently in wireless networks and that network layer roupegformance could poten-
tially be significantly improved by utilizing these asymmietinks, it seems to be a
reasonable feature within tiécal abl e Sour ce Routing (SSR) protocol to
provide support for asymmetric links.

The proposed algorithm is based on the approach of exchapgiriial topology
information as an extension of regulHELLO messages. Considering the network
topology as a directed graph, two given nodes will only be ablcommunicate with
each other if the network graph provides a directed cycldaioimg both of them.
Therefore the main idea of this thesis is to find such a dicecyele, which we denote
as aloop path

Detecting a loop path containing an asymmetric link imptlest areverse patto
this asymmetric link is obtained, i.e. a (multihop) sourgete connecting both nodes
that are adjacent to the asymmetric link in the reverse tiineof this asymmetric link.
By this means, upon initially assuming any link to be asymiagsource routes resolv-
ing occurring asymmetric links are gradually discovered.

Since exchanging exhaustive topology information doessoate with regard to
bandwidth consumption and local storage requirements,aptoged some strategies
on prioritizing and selecting appropriate topology infation to be sent within peri-
odicHELLOmessages.
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Chapter 1

Introduction

Due to the increasing miniaturization of wireless sensateso(Smart Dust), more
and more application scenarios for wireless sensor nesaamkbecoming imaginable.
These scenarios cover areas such as collecting of ecoldgiza clinical bedside mon-
itoring or implementing intelligent office or living space.

Scal abl e Source Routing (SSR) [6] is a routing approach that aims at
large unstructured networks like mobile ad hoc netwoMARNETS, mesh networks
and wireless sensor networks taking care of their specifipgties, such as resource
limitation of the used hardware platforms or frequentlyradiag network topologies.
SSR is a network layer protocol that combines source routitly Chord-like [19] in-
direct routing in a virtual, ring-structured address space

Multiple empirical studies indicate that asymmetric linkscur reasonably fre-
qguently in common wireless network scenarios. Thus, sonmefiieat the overall
routing performance is anticipated when utilizing asymudinks within routing pro-
tocols.

To the best of our knowledgdynami ¢ Source Routing (DSR) [10] is
the only currently implemented MANET routing protocol, whiprovides support for
asymmetric links, but at considerable costs.

The objective of this diploma thesis hence is to develop gordghm, which is
capable of detecting asymmetric links, discovering appatg reverse paths to oc-
curring asymmetric links and to integrate the proposed@gyr into theScal abl e
Source Routing (SSR) protocol in order to support the utilization of asymmet-
ric links during the SSR routing process. Finally, the pisgxb algorithm has to be
evaluated using an existing simulation environment, wigdimplemented in the net-
work simulatorOMNeT++[20].

As this objective aims at an application of SSR in wirelegmscios, such as mobile
ad hoc network or wireless sensor networks, we need to mestadeontext-sensitive
restraints. Basically, a potential solution will have t@bteith a limited storage capac-
ity of wireless nodes as well as with comparatively snhillUs (maximum transmis-
sion units)provided by some common wireless MAC layers.

This thesis is organized as follows. In the second chaptgrrade an overview
on common settings inducing asymmetric links and outliteotvorks related to the
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issue of this thesis.

In chapter 3 we elaborately describe theal abl e Sour ce Rout i ng proto-
col. Subsequently, we analyze the SSR routing process ail dgth regard to the
posterior integration of the intended extension.

Our algorithm providing support for asymmetric links in SiSktroduced in chap-
ter 4. Furthermore, we explain the modifications to the SSRogol, which were re-
quired in order to be capable of utilizing asymmetric linksidg the routing process.

Chapter 5 describes classes of §s - cor e library that are relevant to the inte-
gration of the proposed extension into the SSR protocol.

Finally, the simulation environment as well as the obtaismaulation results are
depicted in chapter 6.



Chapter 2

Basics and Related Work

The initial sections of this chapter describe common wégleetwork scenarios in-
ducing asymmetric links. Subsequently, other existingksaelated to the issue of
utilizing asymmetric links within routing protocols areiéfty summarized as well as
some empirical studies, which provide some insights on ticewence of asymmetric
links in real world scenarios. Finally, we introduce somerent work related to the
application of theScal abl e Sour ce Routi ng protocol in wireless sensor net-
works.

2.1 Scenarios Inducing Asymmetric Links

As currently advised, the following sections provide anrgigv on common wireless
settings inducing asymmetric links.

2.1.1 Inherent Different Radio Capabilities

Heterogeneous nodes are the most obvious cause for asyimiinés. If the transmis-
sion range of a given nodeis inherently larger than the transmission range of another
nodeq and the distance between the two nodes is covered by thertigsisn range

of nodep, but exceeds the transmission range of ngdan asymmetric link directed
from nodep to nodeg is induced.

This kind of asymmetric link of course is a persistent pheanam and thus quite
auspicious to be utilized in routing protocaols.

2.1.2 Different Interference Levels

Homogeneous nodes can cause asymmetric links, too. Asguregample, two nodes
p andgq that are providing an identical transmission range. Sudtting will not in-
evitably lead to a symmetric link betwegrandgq. If - e.g. due to a locally increased
node density within nodg’s proximal environment - the given interference level at
nodeq is significantly higher than the current interference lestehodep, nodeq will
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not be able to receive messages sent by pode

Asymmetric links occurring due to different interferenesdls typically are rel-
atively transient. Thus, asymmetric link detection medsras would need to work
pretty efficiently in order to obtain any benefit of the utifion of this kind of asym-
metric links.

2.1.3 Power Control Algorithms

Whenever battery lifetime is a critical issue, in particwlduen it comes to wireless sen-
sor networks, there are two common techniques, which aremanty used: regularly
setting the wireless node to sleep mode or reducing theegisahode’s transmission
power (if no traffic is present).

Reducing the transmission power has the disadvantagereiisiog the likelihood
of asymmetric links. That is, if the transmission power of\eg nodep is higher than
the transmission power of a second ngd& may be possible for nodgto receive a
message from nodeg but not for node to receive a message that is sent by n@de

If nodes gradually reduce their transmission power depegndn the decrease of
their remaining battery lifetime, the induced asymmeirik$ will actually be reason-
ably persistent.

2.1.4 Impact of Asymmetric Links

Most network layer routing protocols assume any link to basetric. Exchanging
topology information between neighboring nodes in geneaiabes two issueknowl-
edge asymmetrgndrouting asymmetry14].

The termknowledge asymmetdescribes the observation that a source nodé
an asymmetric linkp — ¢ does not intuitively learn about the existence of this link
whereas the sink nodgobviously does.

Furthermore, in a setting as described above the path sed@&om node to node
p necessarily needs to be different from a path that would geired to reach nodg
from nodegq. This observation is commonly referred toragting asymmetry
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2.2 Related Work

The subsequent sections summarize some empirical stuuliestigating the occur-
rence of asymmetric links in specific wireless scenarios @ogtide an overview on
other existing approaches concerning the issue of deteatid utilization of asym-
metric links within routing protocols.

2.2.1 Empirical Studies on the Occurrence of Asymmetric Links
in Wireless Settings

Several real world studies of ad hoc networks indicate thgtranetric links make up
a significant fraction of all links present.

Ganesan et alobserved that up t65% of the links within their deployment, which
consisted of 150 arbitrarily distributed nodes, are asytrimeven when each node is
transmitting at the same transmission power and no additi@uio sources exist in
the given test arrangement [7].

Analogously,De Couto et al[4] reported that up t&0% of all occurring links
show asymmetric delivery rates in several indoor deployimehwireless nodes.

FurthermoreZhao et al.[22] investigated multiple deployments of up to 60 Mica
motes and concluded that asymmetric links are quite comimanat leasti0% of all
links have significantly asymmetric packet delivery ratesi@tion of> 50%) and thus
are behaving as asymmetric links.

2.2.2 Local Asymmetric Link Detection Based on a ReguladELLO
Protocol

In wireless settingsHELLO protocols are commonly employed to enable wireless
nodes to gather information about their proximal environtne

Typically, each node participating in the given networkjpgtocol periodically
broadcasts a list of all nodes it received HELLO messages frithin a defined time-
out interval. Since these HELLO messages are designateel éxdhanged between
physical neighbors and not to be flooded across the wholeonketihey are supplied
with aTTL (time-to-live)of 1.

Beyond the described functionality of discovering a nogégsical neighborhood,
a HELLO protocol could be rather beneficial at locally dategasymmetric links and
- for this additional purpose - is frequently employed witlsipproaches concerning
the utilization of asymmetric links in routing protocols @sscribed in the subsequent
sections.

Assuming an asymmetric link — ¢ between two given nodgsandq, nodep ob-
viously will not receive any periodic HELLO messages senhbgleq. Consequently,
nodeq will not ever occur within HELLO messages sent by npdés nodeg receives
those HELLO messages of nogenot containing its own address, noglés capable
of determining that the corresponding link has to bérmoming asymmetric link=or
nodep however, there is no chance so far to even learn about theeeges of node
q. Obviously, this is one of the major issues that have to beesoin order to utilize
asymmetric links within any routing protocol.
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Within the described setting, nogewould be denoted asackward neighboof
nodeq whereas nodg would be called dorward neighborof nodep. A given link
will be recognized as symmetric if and only if the adjacerde®are backward neigh-
bors and forward neighbors of each other at the same time.

2.2.3 Native Support of Asymmetric Links inDSR

Dynami ¢ Source Routing (DSR) [10]is an ad hoc on-demand routing proto-
col, i.e. a source routes between two given ngdesid ¢ is not established until it
is demanded by either nogeor nodeq. A node initiates a so-calleRoute Discov-
ery procedure by flooding the network withRout e Request (RREQ message.
Each time an intermediate node handles and forward$¥RESQ message, it appends
the incoming hop to the message’s source route field. Thssindeg that node
requires a source route to the destination ngdas soon as thBREQ message has
reached node, a source route in the direction from nogléo nodeq is established.

In DSR the destination nodg does not assume the currently obtained source route
to be bidirectional, i.e. nodgwill not utilize the reversed source route in order to reach
the issuer nodg. Nodeq rather queries its route cache for a source route to paate
- if the route cache does not provide an active path to podetriggers anotheRoute
Discoveryprocedure in order to establish a new source route in thetairefrom node
¢ to nodep.

As DSR usually requires tw&oute Discoverprocedures to establish bidirectional
connectivity between two given nodes, it produces a conslde amount of control
overhead and thus does not scale to larger sized networks.

2.2.4 Extension of Conventional Distance Vector Protocols

Prakash [16] investigated conventional distance vector routingoathms and
announced an extension providing support for the utilimatif asymmetric links. This
approach is based on exchangi¢?) sized matrix { being the number of nodes in
the given network topology) between neighboring nodesdento be able to represent
both possible directions of a link between any two nodes.

Although the storage requirements of thig n matrix representation could poten-
tially be reduced by applying sonsparse matrix compression scherttés approach
is not scalable with regard to increasing network sizes.

2.2.5 Approach Introducing Sink Trees

In [3], Jorge A. Cobtproposes an algorithm, which is based on the idea of peadgic
exchanging so-callesink treesbetween physically neighboring nodes. A node’s sink
tree virtually is a second route cache (here referred spasce treg The semantical
difference is that paths stored in the sink tree are direci@drds the given node. These
sink trees are used to detect and resolve potential asymartieks.

On adding links to its sink tree, each node needs to ckeck mextended paths
for a potentially introduced loop, i.e. the node ckecks Wketts own address reoccurs
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at some deeper level of its sink tree. Detecting a loop irsghat a source route can
be extracted of the considered path.

By this means, upon initially assuming any link to be asymimghodes gradually
discover source routes resolving these asymmetric links.

To the best of our knowledge on the current state of reseénehapproach pro-
duces the lowest control overhead®fn), wheren is the number of nodes in a given
network topology. Even though this would still not scaleamler networks, we decided
to pick this approach up as a basis of our further investigati Section 4.2 provides
an extensive description of our variant of Cobb’s algorithm

2.2.6 Local Detection of Asymmetric Links

Wang et al. proposd®L P [21], aLocation-aware anBower-aware routing protocol
for heterogeneous ad hoc networks wikymmetric links. Basically, each node holds
a set of its backward and a set of its forward neighbors. A heaes about its back-
ward neighbors and about nodes that are backward as welhaartbneighbors by
employing a regular HELLO protocol as described in secti@h2

The technique used to resolve backward neighbors beyomdrasiyic links is de-
limitted to so-calle®-party proxy setd.e. sets of three neighboring nodes that contain
at least one symmetric link and that are circularly conreeat@ong each other. Figure
2.1 depicts an example for a setting that is compliant to bowve conditions for a 3-
party proxy set.

p 1 a

0 >l

u,

Figure 2.1: Example setting of a 3-party proxy set

Within this example, node, which receives the HELLO messages of nadas
well as the HELLO messages of noglevould notify nodep of the existing asymmet-
ric link directed from nodey to nodeq. Henceforth, node would be aware of this
asymmetric link and capable of utilizing this link withingouting protocol.

Paths to destinations beyond a node’s neighbor sets angisiséal using an ad-
vanced flooding technique incorporating the nodes’ locatiéormation, which has to
be provided in any form.

In [18], Sinha et al. describe an extension of tt#ne Routing protocol (ZRP)
which supports the utilization of asymmetric links.
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Thezoneof a given node is defined as a the set of all nodes in the cuncete’s
environment that are reachable within a certain radius oredsn hops. Whereas reg-
ular HELLO messages typically are only exchanged betweggipal neighbors (see
section 2.2.2), within this ZRP extension each node brastdc¢he list of its backward
neighbors within its zone, i.e. the TTL of the correspondingssages is set equal to
the defined zone radius. Based on this backward neighbamiafion, a node is capa-
ble of calculating the shortest path to each node insideite zThese paths are stored
within a data structure that is denoted as a nodetbound tree

Routes to destinations beyond a node’s zone, i.e. the giwda'sioutbound tree
does not provide a path to the demanded destination, afdiskthy applying a tech-
nigue, which is referred to dsordercasting A message directed to a destination out-
side the issuer node’s zone primarily is forwarded to an @gmjte border node, that
is, some node in the most distant level of the issuer’'s outddree. If the current
border node does not provide a route to the message’s destinawill again forward
the message to a border node of its associated zone and Iso Tdris procedure is
repeated until the considered message has reached itsadiesti

Bordercasting will result in a large amount of query messag#ich in the worst
case could be almost equally expensive as flooding the wietteonk. Hence, the scal-
ability of the ZPR protocol with regard to increasing netlwsizes is quite disputable.

Ramasubramanian et dlL7] proposeBRA aBidirectionalRouting Abstraction for
asymmetric mobile ad hoc networks. BRA provides a symmaeipistraction of the
asymmetric network to arbitrary kinds of routing protogals. a sub-routing layer is
introduced, which enables conventional routing prototolstilize asymmetric links
(the authors applied th&ODV [15] protocol over BRA).

Basically, BRA employs a modifieBellman-Fordalgorithm, which is denoted as
Reverse Distributed Bellman-Ford Algorithm (RDBHAY] to discover reverse paths
around occurring asymmetric links within a node’s so-ahlteality, which is defined
by a given radius measured in hops. TRi®BFAalgorithm periodically exchanges a
reversed distance-vectoeporting currently calculated distandesm each other node
within the sender’s localityo the sender of a given distance-vector message.

The overhead for reverse route maintenance is claimed to ©¢i), wheren is
the average number of nodes within a node’s locality.

2.2.7 Applying Reverse Path Search in AODV

Similar to theDSRprotocol as described in section 2.2.3, Agthoc On-demand Dis-
tance Vector (AODV]15] routing protocol uses flooding dlout e Request mes-
sages (abbr.RREQ) to establish a path between a given source and the designate
destination. Each hop traversed byRREQmessage is recorded within this message’s
source route field and thus, once the destintation nodeveanRREQ message, a
source route between the source and the destination isneldtand propagated back
to the source by sendingRout e Repl y (abbr. RREP) message containing the cur-
rently established source route back to the correspondinge node.

Obviously, if occurring asymmetric links are not being a¢eel and blocked during
this path discoveryprocedure, source routes obtained by AODV could contaimasy
metric links and thus would potentially not be valid in thegese direction from the
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destination to the source.

An extension to the AODV protocol providing support for asyetric links has
been announced bylarina et al.[13]. Typically, severaRREQ messages associated
to the sameRoute Discoverprocedure will reach the destination on different paths.
In standard AODV, each intermediate node only handles tBeRREQ message is
whereas duplicates are recognized on the basis of theitiédésequence number and
immediately discarded.

The proposed extension to AODV suggests to handle BRE®Q message at each
particular intermediate node as well as at the destinaticorder to obtain multiple
source routes in the direction from the source to the ddgiimaf a givenRoute Dis-
coveryprocedure. The destination responds to each recBRE@Qmessage by sending
an RREP message to the source utilizing the currently obtainedcgorgute. Further-
more the authors assume that at least one of the various tpatessed by th&RREQ
messages, which are received at the destination node, [@etmty symmetric and thus
at least ondRREP message would reach the source node.

Obviously, the latter assumption of at least one existimlyéctional path between
any two nodes delimits the applicability of this approachrtkermore, the scalability
of the AODV protocol is significantly degraded due to the ¢desable additional con-
trol overhead induced by the proposed extension.

2.2.8 Reverse Tunneling

In [14], Nesargi et al.propose an approach based on the idea of tunneling MAC layer
ACKs and control messages of the network layer routing paitivom the sink to the
source of occurring asymmetric links.

Aregular HELLO protocol as described in section 2.2.2 is leygxd to enable each
participating node to detect incoming asymmetric links.

In order to be able to utilize asymmetric links within commdAC layer protocols
demanding per frame ACKs (such BSEE-802.11 WLAN9]) as well as within the
currently employed routing protocol, MAC layer ACKs and trmh messages of the
routing protocol are tunnelled over the network layer peotpi.e. these messages are
encapsulated into regular network layer messages.

Establishing the require@verse tunnefrom the sink to the source of an occurring
asymmetric link is left to the employed routing protocol. ushthe obtained perfor-
mance and scalability of this approach is strongly depeinafethe employed network
layer routing protocol.

Supposing that an on-demand routing protocol @DV or DSR(see sections
2.2.7 and 2.2.3) is employed, which is fairly common to waesl ad hoc network sce-
narios, the sink of an asymmetric link would have to initiateadditional route dis-
covery procedure in order to establish an appropriate seveath, upon receiving an
RREP message propagating a source route that contains the pondiag asymmetric
link.
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2.3 Further Related Work on SSR in Mesh Networks

Towards the end of the editing time of this diploma thesisgeein touch withAndré

Kaustell who wrote his master thesis [11] on the application of th&® $E&otocol in
mesh networksKaustellproposed several optimizations concerning the scalploifit
SSR, which are quite interesting with regard to the issugisfwork.

Based on the observation that the source routes that araicedtin SSR payload
messages occupy a considerable fraction of the given MA€r igme Kaustellpro-
posed a technique referred toVdstual Route Compression (VRClypically, source
routes are assembled of the particular nodes’ network Egeresses. Applying VRC,
each node assigns identifiers to its adjacent links. Thestifters are significantly
smaller in size than common network layer addresses anatbogrce route represen-
tation compressed to a fraction of its usual size could baiobd.

As these small sized link identifiers are only definite withimode’s physical neigh-
borhood, they could not be applied to represent entire sougates within a node’s
route cache. Thus, an additiorRbute Request (RRE@)essage is required to tra-
verse a given source route in order to assemble the linkifamepresentation of this
source route, which is subsequently used to provide thisceaoute within the actual
SSR payload message.

Another optimization suggested Kaustellis denoted aktermediate Node Short-
cut Discovery This mechanism attempts to optimize the source route,wdigiven
message has already traversed.



Chapter 3

Description and Analysis of SSR

This chapter gives a brief overview &cal abl e Source Routing (SSR) pro-
tocol [6]. It helps to understand the considerations thafrroduced in the following
chapters. In particular, it explains the foundations for ptoposed enhancement of
SSR.

3.1 Indirect Routing

Indirect routing means that some node demanding some dtet observice provided
by any other node within the network useBIdT- (distributed hash tablg2]) or KBR-
basedKey based routindg8]) service, which maps the data object or service desarip
to an address in the virtual ring. While DHTs deliver a nodeiciwiturrently provides
a certain data object or service, KBR provides a method tatfiadlosestnode for the
requested data or service, according to some defined meigicthe physical distance
or the number of hops).

The overlay routing then transports the service requestd@hcountered address
by forwarding the corresponding message in (counter-jgle direction of the ad-
dress space until the distance between the address of ttemtoode and the address
of the requested data object or service cannot be minimizgduather.

In SSR, a given nodel is responsible for all data objects or services whose ad-
dresses are located between its own address and the adblsesseonode3, whose
address is the smallest of all nodes with addresses largemnitdeA’s address. In this
constellation, nodé is denoted as nodé’s successowhereas nodel is called node
B’s predecessorObviously, correct and reliable overlay routing requii@each node
in the network to know its actual successor. This conditiarferred to asonsistency

Analogous toChord [19], it is mandatory for each SSR node to store its physical
neighbors as well as source routes to its predecessor aceksae in the virtual address
space within its route cache. However, wheredshnrdeach node stores source routes
to O(log n) additional nodes at exponentially spaced distances taeethe average
request path length, in SSR, source routes to arbitrarysnaaegradually inserted into
a node’s route cache. Once the storage capacity of an SSRsmodte cache is ex-
hausted, entries are replaced accordingRb (least recently usedgplacement policy.

11
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3.2 Message Forwarding

As mentioned above, the concept of forwarding messag& &l abl e Sour ce
Rout i ng is to greedily decrease the distance in the virtual ring @pikferring phys-
ically short paths. In this section we explain the SSR fodiay decision procedure in
detail.

In SSR, payload messages contain a source address, a tiestaddress and a
source route. The included source route does not have tosspamplete path from
the originators to the destinatiod as this would implicate exhaustive knowledge of the
network topology to be able to send a request. In fact, a ndds a source route to the
message, which, up to its current knowledge, obtains a teduaf the virtual distance
to the message’s destinatidni.e. the message is supplied with a source route to a
proxy destinatiomode, whose address resides between the address of theatwigi
and the address of the actual destination.
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Figure 3.1: lllustration of SSR routing process

On receiving a message, each intermediate node forwardseleage until the
end of the contained source route is reached. Assuminghbagast node; of the
source route is not the message’s destinatiothhe nodei; serves as aediatorand
tries to append a source route from its route cache that withér reduce the virtual
distance towards the destinatidifdetails on appending further routing information to
incomplete source routes are given in section 3.3). At thiatptwo distance metrics
are used to proceed the forwarding decision:

1. Physicaldistance, measured in hops

2. Virtual distance, absolute value of the numerical difference betvite’o nodes’
addresses

The actual forwarding descision proceeds as follows. Theiaer nodei; tries
to append a source route attaining the message’s destirnatibthe route cache does
not contain a path to nodg the mediator nodé will determine another intermediate
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node that is virtually closer to the destinatiénAs typically several such nodes exist,
nodei; selects the physically closest one among those nodes.r# #re still several
nodes left to come into consideration, the virtually closesde to the destinatiod
will be selected.

A brief example of SSR source routing is illustrated in fig8ré. Nodel demands
to send a payload message to nddeThe message is forwarded to nodg since that
node is physically closest to node Node17 is preferred over nodé3 due to being
virtually closer to nodel2. For the same reasons, the message is forwarded from node
17 to node32. Node32 forwards the packet to its successor, n@dewhich in turn
forwards the message to its successor that coincides vettightination, nodé2.

3.3 Appending Source Routes and Applying Shortcuts

Since up to now any operation related to source routing in S®Rsed on the assump-
tion that any link between two nodes is symmetric and conseityisource routes are
completely bidirectional, we need to analyze the SSR rgyimocess thoroughly. If we
aim at utilizing asymmetric links as well, we obviously haeedrop this assumption.
Having depicted the basic principles of SSR in the previagtians, we will discuss
further details of SSR source routing now, which have to begiht of accurately if the
above assumption becomes invalid.

By default,hop-by-hopmessages (payload messages actually are hop-by-hop mes-

sages) are forwarded along the source route that is codtairthe message’s header.

On receiving this type of message, a node foremost checke ifnessage has hereby
reached its destination. In case the source route does ntatic@ny further hops and

the message has not reached its destination yet, the caogatwvould be a proxy des-
tination, i.e. it has to operate asreediatorand thus to append a source route that will
carry the message to its destination or at least virtuathgea towards its destination
(that is, to a further proxy destination).

In SSR, two options of appending routing information to adhgphop message’s
source route are implemented. A mediator node could e#tiérfurther hopgsowards
the message’s destination apply a shortcutto the given source route. The latter
option is depending on the mediator’s knowledge of the ngtwa@pology. If the me-
diator node knew an improved source route to the messagstsdgon, which it is
not part of itself, the remaining part of the original souroete will be replaced by
the new path. As expressed by the teshortcut this kind of route optimization is not
performed unless the number of remaining hops to the messdgsination could be
reduced. In order to redirect the hop-by-hop message anteeit source route, a so-
calledstub pathfrom the mediator node to the adjacent node on this shodadded
to the message (see figure 3.3). Eventually, hop-by-hopagedsrwarding proceeds
as supplied before.

As we also use the currently mentiongtdb pathfield in a hop-by-hop message’s
header to provide a path the node that most recently modified the message’s source
route, we need to record the mediator node in this stub pdthdigyway, even though
this mediator did not apply a shortcut to the current souocée. Since on occurrence
of a link failure on the message’s source route we intend fiorim the most recent
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Setting:
B—E—OC—0—®

Forwarding of message from source A
to destination E with proxy destination C:

Current Source route to Stub
node: (proxy) destination: path:

® |&—-e—0©

© |&-@—-0—-0—6| ©

Figure 3.2: Appending further hops to a hop-by-hop messamirce route

mediator node (as well as each subsequent intermediatebedadeen the most recent
mediator and the node detecting the broken link), recorthiegmost recent mediator
of a hop-by-hop message is essential (further details aortiag unavailable links are

depicted in section 3.4 below).

Figure 3.2 illustrates the elementary case of appendintinginformation onto a
message’s source route. Nodedemands to send a message to nagéut it's route
cache only provides a path to no@g which actually is virtually closer to the destina-
tion nodeF. In this example, nod€’ is able to entirely complement the source route
to the message’s destinatidhand is being recorded as most recent mediator in the
message’s stub path field.

An example of a mediator node applying a shortcut to a me&sagerce route is
depicted in figure 3.3. The intial source route provided l&yjifisuer nodel carries the
message to nodP. As the mediator nod® knows the shortcuf’ — F — F'to the
message’s destinatidn, the hop— D is cut off from the source route and replaced by
the shortcut. Furthermore, the lifk — C' is being inserted into the message’s stub
path field.

On appending additional routing information to an incontgkource route as de-
picted above, it would be reasonable to notify the messag@jmator about the ap-
pended path. Thereby, that node could treat similar reglgstself henceforth. Since
it is not desirable to transfer routing information, whistpossibly overaged, from one
route cache to another, we do not sendS8R ROUTE_UPDATE message until the
complemented path has been entirely traversed. Thus, @oeiving the considered
message, the destination node sendS$R ROUTE_UPDATE message back to the is-
suer along the reversed path. By this means, reporting palfgrioroken links directly
from one node’s route cache to another node’s route cacheidel.



3.4. HANDLING BROKEN LINKS 15

Setting:

B—®—O—E—F
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Forwarding a message from source A
to destination F with proxy destination D.
Node D adding shortcut:

Current Source route to Stub
node: (proxy) destination: path:
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Figure 3.3: Appending a shortcut to a hop-by-hop messagaixs route

3.4 Handling Broken Links

On observing that the next hop of an incoming hop-by-hop agess source has be-
come unavailable by now, the current intermediate nodeseeihform the node that
most recently modified the source route (i.e. the node thabktually appended the
broken link to the message’s source route) about the lideriai Thus, using the re-
verse path back to the message’s mediator respectively tssiier node, it sends an
SSR_ROUTE_UPDATE message containing the broken link.

If the message’s source route had previously been modifieatiding a shortcut,
the reversed stub path would be used to create a path cating8§R_ ROUTE_UPDATE
message to that most recent mediator node. Anyway, eachthatleould possibly
have added the broken link to its route cache while forwayttme corresponding mes-
sage would be notified of the link’s current unavailabilitg, the reported link will be
marked as inactive in each intermediate node’s route caxzeek as in the mediator
or issuer node’s route cache.

3.5 State Maintenance

SSR guarantees consistent routing if and only if all nodesige valid source routes to
their virtual neighbors, that is its predecessor and sisoresithin the virtual address
ring. In this section we give a brief description of the algon that we currently use
to establish thisonsistencgondition of the virtual ring. Since this component of SSR
is still an issue of research and deployment, the versioaritbesl below only reflects
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Figure 3.4: Protocol state machine visualizing SSR meskmgarding
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the state of the stable SSR implementation at the beginrfitigsowork.

The following algorithm is triggered by a periodic event dead as
SSR.NOTI FI CATI ON event. In the first step, a node handling this kind of event has
to check - based on its local knowledge, i.e. the informasitmmed in its route cache
- whether its address could be the maximum address in the adsh@éss space, i.e.
whether the current node itself could be the correct prestereof the defined mini-
mum addresgera If no other node with an address between the own addres$iand t
zeroaddress was found in the route cache S&R MAX_NODE_ANNOUNCE message
would be assembled and sent per broadcast.

In case it is not possible for a given node to be the holder efnlaximum ad-
dress, this node queries its route cache for the node, wiuigld enost likely be its
virtual neighbor and initiates aBSR NEI GHBOR_NOTI FI CATI ON message to that
node. Like payload messag&SR NEI GHBOR NOTI FI CATI ON messages are hop-
by-hop messages containing a source route to the curresgiynaed virtual neighbor.

On receiving anSSR_MAX_NODE_ANNOUNCE message, a node needs to check
whether - up to its current knowledge of the network topolegfyere is another node
whose address is bigger than the issuer’s address. If sucldewas found in the
node’s route cache, flooding of tf®SR MAX_NODE_ANNOUNCE message would be
aborted. Otherwise, the current node also checks whethen#issage’s issuer could
be its virtual neighbor and, if so, initiates &R _NEI GHBOR_NOT| FI CATI ON mes-
sage to that node. Either way, flooding of tB8R MAX_NODE_ANNOUNCE message
continues.

The handling of SSR.NEI GHBOR.NOTI FI CATI ON messages proceeds as fol-
lows. Each intermediate node on the message’s source raateées its route cache
whether it contains a better neighbor candidate (i.e. a mduese address is between
the issuer’s address and the message’s current destinattoress) of the message’s
issuer than the message’s current destination. In caseex beighbor candidate is
found the message’s source route is updated. Eventuadlym@ssage is forwarded
along the (new) source route to its (new) destination.

In figure 3.4 we depict a protocol state machine that summsitlze particular steps
of message forwarding in SSR as described in the previoti®ssc
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Chapter 4

Approach Based onPartial Sink
Trees

In this chapter we propose an algortihm for detecting andlvesy asymmetric links.
It is based on an approach Bgrge A. Cobl3]. We extend the basic algorithm that is
described in section 4.2 by applying certain assumptionstalireless sensor network
topologies (as described in section 4.3) and integratedttireScal abl e Sour ce
Rout i ng protocol (see section 4.4). Finally, we discuss some ltioia and special
cases in section 4.5.

4.1 Assumptions and Simplifications

Within this work (as well as in each related work that is sumizeal in section 2.2),
we assume that for each pdjr, ¢) of nodes in a given network topology, there exists
a path in the direction from nodeto nodeq as well as in the reverse direction from
nodegq to nodep. Formally expressed, we assumeigcted graphwhich moreover is
strongly connected

A directed graphG is defined as a pai := (V, E), whereasl represents
a set ofvertices(here: the nodes in the given network topology) didepresents
a set of directed edges, i.e. a set of ordered pairs of verfloere: the links in the
given network topology). Moreover, if such a directed gragstrongly connectedhis
graph will contain at least ondirected cyclefor each particular linkp, ¢), i.e. as
(p, q) represents an edge, which is directed from veptéx vertexq, the existence of
a sequence of edgé€éqy, i), ..., (4, p)} in the reverse direction is assured.

This common assumption is necessary to exclude nodes witlirmoming or only
outgoing links.

Furthermore, we assume that each node learns about theindtdeshysical neigh-
borhood through periodically exchanged HELLO messagesase of a symmetric
link between two neighbors and g, both nodes will automatically learn of the exis-
tence of this link.

If, for example, the link between the nodesindq is an asymmetric link, which
is directed from node to nodeq, nodeq will learn of this link, i.e. nodey will learn

19
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that nodep is abackward neighbqron receiving node's HELLO messages, whereas
nodep will not ever learn that node is aforward neighbor

4.2 Basic Algorithm

In the subsequent sections we describe the basic id€aloth’s approach [3], which
uses so-calledink treego detect and resolve occurring asymmetric links. Finaliy,
discuss this approach with regard to its scalability.

4.2.1 Sink Tree Data Structure

As mentioned above, the approach to asymmetric link detethtiat we pursued during
this work is based on sink treedata structure, which each participating node needs
to hold. Physical neighbors exchange their sink trees witheir periodically broad-
casted HELLO messages.

Basically, a node’s sink tree is a second route cache (whkielsb referred to as a
node’ssource tregesee section 3.1), but semantically, paths stored in tHetsee are
directed towards the given node, i.e. the node itself is ttreraon sink for all paths
contained in its sink tree. In a route cache/source treeeherypaths are directed from
the given node to various destinations in the network, he.awner of a source tree is
the common source of all paths contained in its source tree.

Furthermore, within the sink tree, we store two additionalperties of each link:
the asymmetric linkproperty and theunresolved linkproperty. Virtually, theasym-
metric link property is a flag, which we use to mark a link as asymmetricredeethe
unresolved linkproperty is a flag denoting (potentially asymmetric) linkssthom the
given node does not provide a reverse path yet.

4.2.2 Sink Tree Construction andMerging Sink Trees

As mentioned above, physical neighbor exchange their sedstperiodically within
HELLO messages. On joining the network, a node’s sink trdg contains the sink,
i.e. its own address. Paths are added gradually on recegftiperiodic HELLO mes-
sages broadcasted by its neighbors. We denote this prectthtris described within
this section asnergingof sink trees. Since it is essential to clearly distinguishween

a node’s local sink tree and a foreign sink tree received ifcallD message, we will
refer to the latter ablELLO sink treehenceforth. Within SSR, we denote this type of
HELLO messages containing a sink treeS8R HELLO W TH_TREE messages.

Once a node receives a message of t388 HELLOW TH_TREE, it foremost
checks whether its local sink tree already contains theesesfdhis HELLO message.
If no entry is found in the first level of the local sink treegthiven node inserts the in-
coming linkfromthe sender, which - at least preliminary - is marked as an astnic
link.

The second step is the previously mentioned proceduneenfingthe paths con-
tained in the HELLO sink tree into the node’s local sink tr&éis is achieved with
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an iteration over the set of the HELLO sink tree’s leaf nodes: each leaf node, we
extract the path towards the HELLO sink tree’s sink, i.e. hth to the sender of the
givenSSR HELLO W TH.TREE message, from the HELLO sink tree. Beginning with
the link from the node next to the sink up to the sink itself, weed to check for each
particular link of the current path, whether the node’s I@iak tree already contains
the considered link or not yet. The first case indicates, thiathe most, we have to
update the asymmetric link property of the correspondirtgyen the local sink tree.
In the latter case, we need to copy the considered entry fnemeiceived HELLO sink
tree to the node’s local sink tree.

Note that we initially assume each link to be asymmetric,the asymmetric link
property of each entry in the local sink tree is set, but oheeasymmetric link property
of an entry is removed, we will not ever set it again based @oriination contained in
a received HELLO sink tree. Since we do not assume synchsoclooks among the
nodes, a node is not capable to decide whether the informediotained in a received
HELLO sink tree is more up to date than the information thatdsed in its local sink
tree. Therefore, we solve this issue usB8R ROUTE_UPDATE messages (see section
3.4).

4.2.3 Resolving Asymmetric Links

A node uses its knowledge about the network topology, whighthers on the basis of
received

SSR HELLOW TH.TREE messages from physical neighbors and which it stores in
its local sink tree, to detect asymmetric links and to disc@ppropriateeverse paths

In this case, the termeverse pathtdenotes a source route around an occurring asym-
metric link, for instance a source route to a backward neighthose messages are
received but that cannot be reached in the reverse diredterrefer to this procedure
asresolving asymmetric linkand describe it in detail within this section.

Q'@ ® ® ®
S ®

Setting Source tree Sink tree Source tree Sink tree
of node A of node A of node B of node B

®

Sink tree of node A Source tree of node A Sink tree of node A
merged with with new source route  after loop removal
sink tree of node B to node B

Figure 4.1: Detecting a symmetric link to a physical neighbo



22 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

The algorithm is based on the following elementary obsématf we found aoop
pathwithin a node’s local sink tree, i.e. a path that containsciimeent node’s address
twice, we could obtain a new source route. Potentially, @& source route might
be used to forward messages to some backward physical eitidt has not been
reachable so far due to an asymmetric link.

First of all, this explanation will concentrate on findingoap within one dedicated
path that has currently been added to a given node’s lockltsde. As suggested
above, a loop path is detected once the node’s own addresthesink or equivalent
theroot of the sink tree, occurs again within the considered path.

A loop paths < n; < s (s denoting the sink, i.e. the owner of the given local sink
tree) of length2 indicates that the link between the sinland the physical neighbor
denoted as; has to be a symmetric link. Hence we add the path n,; to the source
tree of nodes whereas the duplicated entry for noglat the second level of the local
sink tree will be deleted.

Figure 4.1 illustrates the described procedures emplogirsgmple setting with
three nodesi, B andC with a single asymmetric link that is directed from nadeo
nodeA.

When being viewed from behind, a loop path with a lengthtdiops, & > 2,
formally expressed as <« n; <« ny « ... < ni_1 < s provides a source route
s — ng_1 — ... — ny — ny to the physical neighbat,. Assuming an incoming
asymmetric links < ny, nodes could resolve this incoming asymmetric link by in-
serting the currently discovered source route into its@®tnee.

VA

Setting Source tree Sink tree Source tree Sink tree
of node A of node A of node C of node C

®) (A
® © ®
© ®

Sink tree of node A Source tree of node A Sink tree of node A
merged with with new source route after removing loop
sink tree of node C to node C

Figure 4.2: Resolving an incoming asymmetric link(i)

Continuing the example started above (see figure 4.1), ithis we consider the
loop pathA «— C «— B < A. Viewing this loop path from behind leads to a source
route A — B — (C to nodeC. Since there is an incoming asymmetric lilkk— C
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in this examples’s setting (i.e. nodéis an unresolved backward neighbor of node
A), node A adds the new source route — B — (' to its source tree whereas the
duplicated entry at the second leveli{k < levelzero) of the local sink tree is being
deleted. We depict these steps in figure 4.2.

On detecting a loop path« n; « ng « ... < ng_1 < s spanningk > 2 hops,
there is another potential of resolving an incoming asymiagik.

Obviously, there is an - at least - outgoing link— n;_; from nodes to the second
node of the loop pathy;,_1, i.e. noden,_ isin reach of node. If we found a disjoint
paths < n,, « ... < ng < nj_1 down from this physical neighber;_; in the local
sink tree withs < n,, being an incoming asymmetric link, we could resolve thig lin
with the source route — n,_; — n;, — ... — n,. This source route is assembled
of the first hop of the loop path;_; < s, and the disjoint path te,, excluding the
incoming asymmetric link «— n,,.

() ® ® ®
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Figure 4.3: Resolving an incoming asymmetric link (ii)

Figure 4.3 shows an example setting where we apply the puoeess described
above to resolve the incoming asymmetric lidk— D at nodeA. After merging the
HELLO sink tree received from nod@ into the local sink tree of nodd, the loop path
A — B «— C < Ais detected and thus the source rodte~ C — B is extracted as
has been shown in figure 4.2 and described in the previouspggam
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The first hop of the loop path provides an outgoing litkk— C'. Within this ex-
ample, the local sink tree contains a disjoint pdtk— D < C' originating at node”'.
Concatenating this path excluding the last Hop— A onto the outgoing linkA — C,
we assemble a new source rodte—~ C' — D to the unresolved neighbdp.

4.2.4 Scalability Issues

If the proposed algorithm was used as described above, ésrlodal sink tree would
grow continuously until it contained any link of the giventwerk topology. As each
symmetric link may occur twice, i.e. once for both direcpthe storage complexity
for the local sink tree would be i@ (2n) whereas: is the number of directed edges in
the network graph. Even if we assume nodes, which providiemuit storage capacity
to hold this amount of information, the given algorithm degidl not scale to larger
sized networks, since it is not practicable to exchangeoderiHELLO messages of
this dimension.

Technically, the primary contraint to meet is theTU (maximum transfer unit)
which is specific to the underlying MAC layer protocol. In ptige - depending on
the actual node density - even HELLO messages complianéetgitien MTU could be
to large. In wireless settings, the higher propagationydefdarge messages implies
an increasing collision probability at media access, whia$to be avoided in order to
prevent a grave break-in of overall network throughputtti@mmore, itis a principle of
network protocol design to spend as little bandwidth asiptesor control overhead.

In the subsequent section we discuss how the given algothuid be adapted
to larger sized networks while concurrently dealing witpagpriately small HELLO
messages.
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4.3 Scalability Enhancements

Within this section, we propose several strategies ondgi88R HELLOW TH.TREE
messages, which physical neighbors periodically exchamige partial information of
a node’s local sink tree. Furhtermore, we analyze thestegtes with regard to their
intended impact and potential side effects.

First of all, it is mandatory to include a node’s currentlyokm physical neighbors
in each HELLO message. Otherwise, these HELLO messagesiwotlbe useful
with regard to their intrinsic purpose of efficiently inte¢gjing new nodes into the SSR
protocol anymore.

Basically, we integrated three strategies on selectinglIsink tree information
to be copied t&SSR HELLO W TH.TREE messages into the basic algorithm that we
described in section 4.2:

e SSR. UNRESCLVED_LI NKS_FI RST
e SSR DELTA TREE
e SSR_ RANDOML.TREE

Effectively, we only employ the third strategy to obtain quamative data during
the evaluation stage of this work (as explained below).

The proposed strategy referred toS8R UNRESOLVED_LI NKS_FI RST strategy
is based on specific assumptions, which we derived of commmeiess sensor net-
work settings. First of all, we assume an uniform distribatof the wireless sensor
nodes, which implies an at least approximately uniform ndelesity within the net-
work topology. Furthermore, we assume that a major fraabiothe wireless sensor
nodes provides an equal minimum transmission range whareasor fraction of the
wireless sensor nodes provides an enhanced transmissiga. ra hus, asymmetric
links induced by this kind of wide transmission range nodasally are links that are
non-essential with regard to the overall network connégtiv.e. the network topol-
ogy would still be compliant to the conditions of a connecgeaph (see section 4.1)
if these asymmetric links were ignored respectively blackdonetheless, these links
could provide reasonable shortcuts when utilized in souwaéing. Besides that, the
latter assumption suggests that the loop paths, which gori#im requires to resolve
this kind of asymmetric links, should only span a few hops.

Taking these assumptions as a basis, we propose the fojospproach. As
long as the local sink tree’s size is below or equals the spabeh is provided in
SSR HELLO.W TH.TREE messages, we completely copy the local sink tree into the
current HELLO message. Upon exceeding the space providedELLO messages,
we apply the following priorization to select partial infoation of the local sink tree:

close unresolved links > remote unresolved links > close resolved links >
remote resolved links

According to this order, paths containing close unresolivdd are primarily copied
to the HELLO sink tree. If there is still some space left withihe HELLO message,
paths containing remote unresolved links will be selected o forth. On the other
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hand, there could be a potential for paths only containisglwed links to be helpful
at resolving asymmetric links as well. Therefore two al&tive perceptions of this
priorization seem to be reasonable.

If we enforce this priorization for each particul@88R_ HELLOW TH.TREE mes-
sage, paths containing close unresolved links will be seeach HELLO message until
they get resolved. Then the same procedure continues witiefainresolved links and
so on. Thus, we denote this strategy on selecting partiairimdtion of the local sink
tree to be copied to current HELLO messageS8R UNRESCLVED_LI NKS_FI RST
strategy. Depending on the space provided in HELLO mess#gasuld take a con-
siderably long period of time, until paths only containiregolved links are selected
and copied to a HELLO message - if at all.

Thus, particularly if the space provided for the local sirdetwas relatively small,
it would be reasonable to enforce the priorization as deedrabove by sending the
entire local sink tree divided up to seve@$BR HELLOW TH.TREE messages, i.e.
we send close unresolved links in the first HELLO messags(#)sequent HELLO
messages contain farther unresolved links and so forth| th& local sink tree
has been entirely transmitted. We refer to this variant &f ¢carrently proposed
SSR.UNRESOLVED_LI NKS_FI RST strategy aSSR DEL TA TREE strategy.

Obviously, theSSR_.UNRESOLVED_LI NKS_FI RST is aimed at predominantly re-
solving asymmetric links within a node’s local area. Consagly, there is a potential
to enhance the overall routing performance of the SSR pobteith support for asym-
metric links by trying to improve a hop-by-hop message’sseuoute at each interme-
diate hop, i.e. each forwarding node attempts to immediatidize currently resolved
asymmetric links, which could possibly abbreviate the rage% current source route.
Furthermore, if this so-calle8SR EARLY_PATH.OPTI M ZATI ON extension accom-
plishes to improve a message’s source route, we initia@S&ROUTE_UPDATE mes-
sage to the node (issuer or mediator) that most recently fraddhis source route.
Thereby, that node could apply this source route opimindiipitself in the future and
thus shortcuts are gradually being distributed acrosseheark.

As discussed in section 3.3, one of the principles of SSR istadransfer
routing information, which could possibly be overaged,nfr@one route cache to
another and thusSSR. ROUTE_UPDATE messages reporting route optimizations
should not be initiated until the intended destination hesrbreached. The proposed
SSR EARLY_PATH.OPTI M ZATI ON extension of course offends this principle, but
nonethelss, there is at least one argument supporting denmeptation of this exten-
sion:

If we utilize asymmetric links during the SSR routing pragethe source route a
message has traversed upon reaching its destination witlajy not be identical to
the reverse path back to the message’s issuer, which woulddsk by a subsequent
SSR_ROUTE_UPDATE message (see section 4.4.1). Thus, the source route is abt or
least not completely validated upon the reception of S8& ROUTE_UPDATE mes-
sage at the precedent hop-by-hop message’s issuer anébtbeteuld possibly be
overaged as well.

Clearly, theSSR_ EARLY_PATH.OPTI M ZATI ON extension will also have an im-
pact on SSR source routing without utilizing asymmetri&sinwhich we need to ob-
serve during the evaluation stage of this work.

Our third strategy on selecting paths to be copied&R HELLOW TH.TREE
messages virtually fills the HELLO message with paths thapigt of the local sink
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tree at random and thus is referred t&a&R RANDOM TREE strategy. Using this strat-
egy, each path in a node’s local sink tree has the same piibpatbe sent in the sub-
sequent HELLO message. As mentioned above, this is morénita forcemethod
than any kind of sophisticated strategy and thus is bagieatiployed to compare the
simulations results of thESR_UNRESCOLVED_LI NKS_FI RST strategy as well as the
SSR DELTA TREE strategy to.

Obviously, the proposed strategies on constructing HELIO® ees according to
a priorization of local sink tree information as describémb\ae aim at efficiently re-
solving asymmetric links within the proximal environmenfitaggiven node. As long as
occurring asymmetric links are the exception rather thamtle and the corresponding
loop paths are not exceptionally long, asymmetric linksusthde resolved within few
HELLO message intervals, i.e. the calculational best carddibe:

timerasolm’ng asymmitric link — #hops of loop path * peTiOdHELLO messages
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4.4 Integration into SSR

Having introduced the proposed algorithm to detect andivesmsymmetric links in
the previous sections, in the subsequent sections we Hesoodifications specific to
SSR, which are essential in order to utilize asymmetricdiwithin the source routing
process.

4.4.1 Link Substitution

Before detection mechanisms for asymmetric links have le@emented in SSR,
source routing was based on the assumption of paths beingletaty bidirectional,
i.e. the destination node of a hop-by-hop message couldiragerse the contained
path and send its reply to the message’s issuer node. Cléaburce routes contain
asymmetric links are, this assumption will not apply any enor

We apply a principle referred to digk substitutionin order to construct a reverse
path back to the issuer while forwarding a message on thaicmut source route. For
this purpose, we introduced a so-callgath-to-issueffield within the header of hop-
by-hop messages. On receiving a hop-by-hop message, edehasto check whether
the incoming hop is a symmetric link or an asymmetric link. vdbsly, we merely
need to reverse symmetric links before we append them to éssage’s current path-
to-issuer. In the latter case, i.e. the message was recewszdn asymmetric link, the
current intermediate node needs to query its source treegath back to the previous
hop on the message’s source route in order to convenienthplement the reverse
path to the hop-by-hop message’s issuer. If the node’s eduee does not provide
an appropriate path, i.e. the message has recently beeartted/ by an unresolved
backward neighbor, the message will be discarded.

It is important to note that, at this particular point, iatthg SSR’s route update
mechanism, i.e. distributing the information that the esponding link should not
be used any further, is not desirable at all. Such an appreacitd simply exploit
this operation for asymmetric link resolving issues. Asyatiic links should only be
resolved by using the proposed algorithm basediieblL O W TH.TREE messages as
described above (see section 4.2.3).

A solution compliant to SSR could be a time-delayed retrassion of the corre-
sponding hop-by-hop message, assuming that the concemigagolved link would be
resolved shortly.

Figure 4.5 depicts a short example of the currently desdiib& substitutionprin-
ciple. NodeA is sending a message with source rodte> B — C' — FE containing
an asymmetric link, which is directed from nodg#to nodeC. On receiving this
message, nod€ needs to replace the incoming asymmetric lisk— C by some
appropriate reverse path back to nadde In this example’s setting, nod€ already
provides the knowledge about the path— D — B and thus replaces the asymmetric
link B — C by the reverse path' — D — B.

For the sake of clarity, this figure only shows how the path toessage’s issuer
is constructed by substituting each asymmetric link on tireesponding source route
with an appropriate reverse path. However, it is importamtdte that thesource route
field and thepath-to-issuelfield actually are distinct fields within the header of hop-
by-hop messages and therefore intermediate nodes do ndyri@source route field
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Setting:

Path to issuer: Current Remaining path
node: to destination:

Figure 4.5: Example for asymmetric link substitution

during the link substitution procedure.

As described in section 3.3, SSR provides two options ofrehigy incomplete
source routes by some mediator node. The last node on a hbpgbhmessage’s source
route either has to append further hops towards the messaggtination or to apply
a shortcut to the message’s source route. In case of an oagiink failure on a cur-
rently traversed source route, we intend to notify the nbaé most recently modified
this source route. As explained earlier, we usestie pathfield in a hop-by-hop mes-
sage’s header to either record a mediator node appendithgfirops to the message’s
source route or to insert a real’ stub path carrying the mgssnto its new source
route after applying a shortcut.

Since naturally a stub path may contain asymmetric links, &malogous to the
previously introducegbath-to-issueffield, we need to add path-to-mediatoffield to
hop-by-hop messages’ headers. While a message is being fi@dvan a stub path, we
likewise employ thdink substitutionprinciple as described above to obtain a reverse
path to the mediator node, that most recently applied asldd the message’s source
route.

Figure 4.6 shows an example setting wherdititesubstitutiorprinciple is applied
on a stub path as well as on the regular source route. Nbdemands to send a
message to nodg, but is only able to provide a source romte— B — C — D to
the proxy destinatioD. While message forwarding is proceeded as described above,
the asymmetric link3 — C'is substituted with the reverse path— E — B.

The mediator nodé applies the a shortcut to the hop-by-hop message’s source
route by cutting off the patl? — C' — D and appending the linB — F instead, i.e.
the message’s new source routelis—~ B — F'. In order to carry the message onto
this source route, node adds the stub path — C' — E — B to the message. While
traversing this stub path, the corresponding reverse patbdeD is being constructed
and recorded within the messagpath-to-mediatofield. Since the stub path contains
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Figure 4.6: Link substitution on a stub path after applyirgihartcut
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the asymmetric linky — B, nodeB needs to substitute this link with the reverse path
B — C — E. This link substitution induces a loagg — E — C within the path-to-
mediatorB — C — E — C — D, which is detected and cut out from the current
path-to-mediator

Consequently, the message has reached its new source towtdedD and is fi-
nally forwarded to its destination, nodé

Recapitulatory, figure 4.4 highlights the modifications he basic SSR protocol
state machine as shown in figure 3.4, which were requireddardo provide support
for the utilization of asymmetric links.

Furthermore, the implementation of t88R_ EARLY_PATH.OPTI M ZATI ON ex-
tension as described in section 4.3 of course requiresiadaitmodifications to the
SSR protocol state machine. We emphasize these modifisatidigure 4.8.

Each intermediate node handling a hop-by-hop message teegery its route
cache in order to improve the remaining part of the curreiélyersed source route or
stub path. If an optimization is accomplished, the curreadlimtor node needs to send
an SSR_ ROUTE_UPDATE message reporting the optimized source route to the node
that most recently modified this source route, i.e. a prexyimediator respectively the
issuer node.

4.4.2 Inconsistencies of Knowledge

An asymmetric links always has the property that it takesartone for its source

to learn about its existence than it takes for its sink. Inyestates of SSR bootstrap-
ping, this property could induce inconsistent knowledgthefactual network topology
among neighboring nodes.

Setting:

Figure 4.7: Example setting inducing an inconsistency aiedge

Due to these inconsistencies of knowledge, it is possihlefoode to receive a
hop-by-hop message and not to know the next hop (i.e. an wrkfarward neigh-
bor) on the contained source route yet, although this nodetisally active and thus
could receive and forward the corresponding message. Hawswnce SSR already
provides the possiblity to distinguish between unknown lraken links (we do not
instantaneously delete a broken link from the outgoingrfate store, but mark it as
unavai | abl e, see section 5.1.4 and 5.2.6), we can solve this issue byafdimg
the message per broadcast. Based on the hop-by-hop messagee route and hop
count, any node receiving the broadcasted message is eagfatgtermining whether
it is the message’s intended subsequent recipient or ne@arlg] each false recipient
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would discard the message.

Figure 4.7 illustrates a setting that could lead to a temponaconsistency of
knowledge as described above. As nddevould definitely learn of the asymmet-
ric link C' — A prior to nodeC, nodeB could use this link at source routing and node
C would - at least for a short period of time - not even know alibetexistence of
nodeA.
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4.5 Discussion

In the subsequent sections we discuss some issues that &ireatip solved within our
approach.

4.5.1 Limitations of the Proposed Approach

As explained in 4.1, for each pair of adjacent nodes in thevorlt we assume the
existence of at least one directed cycle containing bothedge nodes. Thus, for each
occurring asymmetric link in the network topology, the ésige of at least one reverse
path that could resolve this asymmetric link is assured.

Setting:

Figure 4.9: Example setting containing an isolated node

In practice, this assumption does not necessarily applgréfbre in this section
we discuss some consequences that could be anticipatesl pirdposed approach is
employed in certain settings that are not compliant to tsemption described above.

The first setting to be discussed is depicted in figure 4.9. Oube asymmetric
link C — D, nodeD will never be discovered by any other node in this example’s
network topology. Nodé receives the periodic HELLO messages of néfédut the
asymmetric linkC' — D cannot be resolved since no reverse path to oésists.

Setting:
VY
D)
a

Figure 4.10: Example setting containing a partitioned oekwopology

>
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Figure 4.10 illustrates a network topology, which is patied due to the unresolv-
able asymmetric linkD — C'. Analogous to the previous setting, the lower partition of
the given network does not learn of the upper partition’stexice at all. Nevertheless,
neither source routing nor the algorithm resolving asyniménks is affected within
the lower partition. As nod® actually is a backward neighbor of nodg this kind of
network partition, which is hidden behind an asymmetri&,liis also referred to as a
backward partition

However, within the upper partition (which analogously endted as dorward
partition), the algorithm resolving asymmetric links indeed is afée since nod€’
receives the HELLO messages of nddeand merges the contained HELLO sink tree
into its local sink tree (see section 4.2). Consequentigeidowill propagate the asym-
metric link D — C' (and, subsequently, the asymmetric lihkk— D as well), which
actually is a close unresolved link of nodg across the forward partition of the net-
work topology. Obviously, this information is of no use faryeof the nodes within the
forward partition, since that link is not resolvable at @flrthermore, some space in
the local sink trees of the forward partition’s nodes as asglin the HELLO sink trees
that are exchanged between those nodes is wasted by irgl{sdiperfluous) topology
information of the backward partition.

Assuming a large backward partition containing plenty ghametric links that are
relatively close to the forward partition, the forward jigot will constantly get flushed
with superfluous sink tree information of the backward parti Consequently, the
proposed algorithm will not be able to utilize the space test in HELLO messages
optimally and thus will take a considerably longer periodiofe to resolve occurring
asymmetric links within the forward partition.

4.5.2 Detecting Broken (Asymmetric) Links

If we utilize asymmetric links during the routing procesgieen source route and its
reverse path typically are - at least partially - differewoinfi each other.

Setting:

&—4—®)

O—Q©

Figure 4.11: Example setting containing an asymmetrictivek becomes unavailable

Within the SSR protocol, we detect a failing symmetric limice no HELLO mes-
sage of the corresponding physical neighbor is receivelinvd defined link timeout
interval.

Considering an asymmetric link — B as depicted in figure 4.11, nodé of
course does not receive HELLO messages that are sent byhatall. Thus, on the
basis of HELLO message reception, only the sink, nBdés capable of detecting a
failing asymmetric link.
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In order to solve this issue, nod&could employ the reverse path— C — D —
A to send arSSR_ROUTE_UPDATE message reporting the broken lisk— B to its
former source, nodd (as well as to each intermediate node on the reverse pathy Ho
ever, in the worst case, a failing asymmetric link could l&a@d partitioned network
topology if there is no redundant directed cycle contairoth of the nodes that are
adjacent to this failing asymmetric link (see section 4Clgarly, the same considera-
tion applies to a failing link on the reverse path: If a redamicreverse path existed, it
would eventually be discovered, otherwise SSR would necigail.

As long as an unavailable asymmetric link has not been d=tedtie to absent
HELLO messages, there is no possibility to efficiently detbés link failure dur-
ing the routing process. Ordinary per hop acknowledgemam@not efficiently ap-
plicable when utilizing asymmetric links. If, referring the above example, per
hop acknowledgements from nodeto node A were tunnelled over the reverse path
B — C — D — A (as proposed biNesargi et al[14]) or if end-to-end acknowl-
edgements were applied, nodewould not be able to definitely identify the link that
actually has become unavailable on the basis of an absentwatE@dgement of node
B. Thus, the tunnelled or end-to-end acknowledgement isnedjto be hop-wise ac-
knowledged as well and - if a single per hop acknowledgemet# Igst - the routing
protocol has to be employed do discover an alternative seyeaith that could carry the
tunnelled or end-to-end acknowledgement to its destingtiodeA).

Due to the considerable complexity of such enhanced aclatmyeiment mecha-
nisms, it seems to be rather recommendable (within the S6Rqmi at least) to rely
on local detection of link failures, discarding potentfativeraged source routes and
time-delayed message retransmissions instead.

In case of a broken asymmetric link, the sink needs to notié/ dource by em-
ploying the corresponding reverse path or - if the currevenge path is overaged - by
employing the routing protocol to discover a new reversé.p&asically, any tech-
nique of reporting broken (asymmetric) links will only woifkthe network topology
still provides a directed cycle containing both of the nottest are adjacent to the
broken link.
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Chapter 5

Implementation

The scope of this chapter is to provide as much documentatarecessary to orient
oneself within the implementation and to be able to use oktenal it.

Foremost, we give a brief overview on all classes ofghe- cor e library that are
relevant to the integration of the proposed algorithm artdresions as described in the
previous chapter 4.

In the subsequent sections we locate specific implementgt#ots within the
ssr - cor e library and explain major extensions or modifications theatehbeen inte-
grated during the implementation stage of this work.

A complete and exhaustive analysis of #&r - cor e library is given in the study
thesisScalable Source Routing in the AmbiComp Environnbgritabian Knittel[12].

5.1 Overview onthessr - cor e Library

Within the following sections, we outline the purpose ofleatass of thessr - cor e
library that has been added or extended during the impleatientstage of this work.
Furthermore, we provide some basic information on the gechire of thessr - cor e
library, which is crucial to understand how the accomplishedifications fit into the
context of this architecture.

5.1.1 cNode Class

cNode

Figure 5.1: Abstract class cNode

The cNode class is an abstract class representing an SSR node in therket
It contains any functionality related to interaction wittthe implementation of SSR
and defines interfaces for interaction with upper and loagelts of the protocol stack.
The latter is implemented providing a set of pure virtualdions (for example
sendToNi ¢, sendUp). By implementing these functions within a child class of
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cNode, thessr - cor e library could be adapted to various environments and agplic
tions.

5.1.2 cMessage Class and Subclasses

This section will give a brief description of the hierarchi@rchitecture of message
classes within thesr - cor e library, which is depicted in the class diagram 5.2.

The abstract superclastkessage of all message classes provides common prop-
erties of all derived types of messages, such as fieldsetwork layer addressf the
source node and the messadep count

cMessage
cMsgHello cMsgKill cMsgHopByHop cMsgMaxNodeAnnounce
7
cMsgHelloWithTree cMsgConnect cMsgRouteUpdate
7
cMsgNeighborNotification cMsgPayload

Figure 5.2: Minimal class Diagram of SSR messages

SSR HELL Omessages as derived from thesgHel | o class are sent per broad-
cast in order to distribute information about the physiecalimnment and contain a list
of the sender’s currently known physical neighbors.

We added the subclast6sgHel | oW t hTr ee in order to create extended HELLO
messages of tyg8SR HEL L O W TH_TREE containing a sink tree (see sections 4.2 and
4.3). We provide further details concerning this class ttiea 5.2.2.

Once a node running SSR is going down, a message of$@seKI LL (an in-
stance of the clagsMs gKi | | ) is sent out per broadcast in order to preliminary inform
the node’s physical neighbors.

Messages of typ&SR_MAX_NODE_ANNCOUNCE (cMsgMaxNodeAnnounce) are
- as well asSSR_NEI GHBOR_NOTI FI CATI ON messages, which we describe below -
used by the SSRtate maintenancalgorithm (see section 3.5) in order to establish the
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consistencytate of the virtual ring, i.e. to discover each node’s dtteighbors.

ThecMsgHopByHop class is the abstract superclass of any message type contain
ing a source route to the intended destination or at leasti@sooute towards a proxy
destination. These messages contain a path and poteatsilip path (see section 3.3).

As described in chapter 3, we employ messages of §§e ROUTE_UPDATE,
which are created as instances of & gRout eUpdat e class, for at least two
reasons. We either use these messages to report a broken timk - issuer or me-
diator - node that most recently modified a previous hop-ty-message’s source
route or to report a complemented or improved source rousepievious hop-by-hop
message’s destination to the corresponding issuer node.

Furthermore, if we enable the propose8R EARLY_PATH.OPTI M ZATI ON ex-
tension (see section 4.3), each time an intermediate nddrines a hop-by-hop mes-
sage’s source route, it will send &8R ROUTE_UPDATE message to the node that
most recently modified this source route. Consequentlysages of this type contain
complete source routes, which should not be modified by tHe ®8ting algorithm
(see sections 3.3 and 3.4).

In contrast to that, a node sending &R NEI GHBOR_NOTI FI CATI ON or
SSR_PAYLQOAD message occasionally cannot provide a complete source ttgach
the intended destination. Thus we implemented the basihamisms of appending
source routes and applying shortcuts (see 3.3) within teeatic MsgConnect su-
perclass of the MsgNei ghbor Not i fi cati on andcMsgPayl oad classes.

When sending arsSR.NEI GHBOR_NOTI FI CATI ON message, the issuer node
selects the - up to its local knowledge - most likely virtuaighbor candidate and
provides a source route to this potential virtual neighbdks each intermediate
checks whether it could update the message’'s current déetin with a
better virtual neighbor candidat8SR NEI GHBOR_NOT| FI CATI ON messages usu-
ally contain a relative destination, i.e. we aim at discowgpthe virtually closest node
to the SSR_.NEI GHBOR_NOTI FI CATI ON message’s source.

5.1.3 Cache Classes

cRouteCache

7

cSourceRouteCache

Figure 5.3: Simplified class diagram of route cache classes

Within the hitherto existing implementation of tissr - cor e library, a node’s
route cache has been created as an instance afRbat eCache class. This class
contains the actual route cache functionality, such asvass®y a path to or towards
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a given virtual address, inserting, removing or refresHinks (i.e. cache lines) and
a replacement algorithm applyindrU (least recently usedgplacement policy (see
section 3.1).

5.1.4 Interface Store Classes

An instance of theeNode contains one instance of thd nt er f aceSt or e class,
which an SSR node uses to hold its physical neighbors. Ttesfate store basically
provides anARRlike mapping of the physical neighbors’ network layer ages to
their MAC layer addresses.

cPointToPointinterface

clnterfaceStore

Figure 5.4: Simplified class diagram of interface storesgas

For each physical neighbor, an instance of ¢i nt ToPoi nt | nt er f ace
class is created, which the SSR node uses to store the physigabor's MAC ad-
dress and to observe its state, i.e. a physical neighborrisati@asactiveas long as its
periodic HELLO messages are received within a defined limiegut interval.

In order to support the utilization of asymmetric links infF§Sve need to distin-
guish betweerincomingandoutgoingphysical neighbors. We provide further details
on this issue in section 5.2.6.
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5.2 Modifications within the ssr - cor e Library

In the subsequent sections we describe major modificatiodseatensions to the
ssr-cor e library, which have been integrated during the implemémtastage of
this work.

Thereby we outline how the novel functionality of the alglom and extensions
as proposed in the previous chapter 4 has been implementeekatain where these
particular components or modifications are located withestsr - cor e library.

5.2.1 Extensions of the&Node Class

Basically, we extended the cNode class by adding a localtsé®k i.e. an instance of
thecSi nkRout eCache class (see section 5.2.5), as well as a second instance of the
cl nterfaceStore class, since it is required to distinguish between inconaind
outgoing interfaces henceforth (refer to section 5.2.6daher details).

The novel functiotheckFor Unr esol vedLi nks() performs an iteration over
the links stored in the local sink tree updating treUnr esol ved property of each
particular entry by querying the node’s source tree for achiag reverse path. We
employ this functionality to implement a priorization ofresolved links when select-
ing paths of the local sink tree to be copied toS8R HELLO W TH.TREE message.
Thus, we call the functionheck For Unr esol vedLi nks() each time after having
processed a received HELLO sink tree.

Furthermore, some minor modifications were required toessome parameters,
which we need to configure the HELLO sink tree contructioncpolure, namely the
maximum HELLO sink tree size provided 85R HELLO W TH.TREE messages, the
strategy that is used to select local sink tree informatmbe copied to the HELLO
sink tree, or to enable/disable t88R_ EARLY_PATH.OPTI M ZATI ONextension (see
sections 4.3 and 5.2.5).

5.2.2 cMsgHel | oWt hTr ee Class

The novelcMsgHel | oW t hTr ee class is derived of the cMsgHello class of regular
HELLO messages. Instead of a list of a node’s physical neightHELLO messages
of this type contain a HELLO sink tree, i.e. an instance ofd¢®& nkRout eCache
class, which we create by using a dedicated constructorEbi D sink trees (see sec-
tion 5.2.5).

Within this class, the mandatotyandl e(...) function of thecMsgHel | o
class is overwritten. First of all, we either have to add teedgr of a currently re-
ceivedSSR HELLO W TH._TREE message to the incoming interface store or we have
to refresh the corresponding instance of ¢tfRoi nt ToPoi nt | nt er f ace class. If
the HELLO sink tree contains a link directed from the curneodle towards the sender
of the HELLO sink tree, we will add the sender to the outgoimgiface store as well
(see section 5.2.6). Furthermore, this function provithesitnplementation of the al-
gorithm searching for loops within paths that have receloélgn merged into the local
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sink tree (see sections 4.2.3 and 5.2.5).

5.2.3 Modifications to thecMsgConnect Class

As described in section 4.4.1, each intermediate node imgndl message of type
SSR.NEI GHBOR.NOTI FI CATI ON or SSR_PAYLQOAD needs to extend the message’s
path-to-issueffield and potentially itgpath-to-mediatorfield by appending a reverse
path to the previous hop on the message’s source route opathb

Since this operation is required for boBSR_NEI GHBOR_.NOTI FI CATI ON and
SSR_PAYLOAD messages, it has been implemented within the common sapsrcl
cMsgConnect .

5.2.4 Early Path Optimization in the cMsgPay| oad class

If we enable the application of th8SR EARLY_PATH.OPTI M ZATI ON extension,
each intermediate node receiving 88R PAYLOAD message will need to query its
route cache in order to attempt to improve the message’ssaoute or a currently
traversed stub path (see section 4.3). Regular SSR messaggrding would only
append routing information or apply a shortcut if eithertiessage’s source route was
at its end or the subsequent hop on the message’s sourcéealibecome unavailable
(see sections 3.2 and 3.4).

5.2.5 ¢Si nkRout eCache Class

As described in section 4.2.1, a sink tree virtually is a eooache and thus the
cSi nkRout eCache class is derived from theRout eCache class. Since HELLO

sink trees are created as instances ofttBenk Rout eCache class as well as nodes’
local sink trees, but have different attributes, we impletad two different construc-
tors within this class.

address| uplink | ... | asymLink | isUnresolved| sentinPrevHelloMsg time

Table 5.1: Cache columns provided by an instanceSfnk Rout eCache class

The constructor used to instantiate local sink trees praltyi creates an empty
route cache object of tyf®l NK_TREE. Optionally, a maximum number of cache lines
can be passed to this constructor. Table 5.1 illustrategadii&ional cache columns
that had to be established in order to implement specifictiomality of the local
sink tree data structure, namely the properéesy i nk, i sUnresol ved and
sent | nPrevHel | oMVsg.

On receiving a message of ty@SR HELLOW TH. TREE, we use a node’s
local sink tree’'s member functiomer gePat hl nt oLocal Si nkTr ee( pat h,
hel I 0Si nkTr ee) in order to merge the currently selected path of the given IHEL
sink tree into the node’s local sink tree (see section 4.E@) each link that is already
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contained in the local sink tree, we increment the time stafihe corresponding
cache line.

We will update the asymmetric link property as well if andyoiflthe considered
link is marked as symmetric in the HELLO sink tree, but is neatlas asymmetric
in the local sink tree. Since we do not assume synchronizecks] a node is not
capable of distinguishing whether the information stomedthie local sink tree or the
information received with the HELLO sink tree is more update. Thus, once we have
marked a link as symmetric in the local sink tree, we assunselittk as symmetric
until we receive atsSR_ROUTE_UPDATE message, reporting that the link has become
unavailable in a given direction.

Once a node’s local sink tree is running short of space, wagsehe line replace-
ment algorithm enforcing abRU (least recently usedgplacement policy, i.e. entries
are discarded in ascending order of their time stamps (sti®s&.1.3).

As described in the sections 4.2 and 4.3, HELLO sink trees bbeagonstructed
as identical copies of a node’s local sink tree. This is tHaulemode (referred to as
SSR_SI NK_TREE_COPY), which we apply as long as the current size of the local sink
tree is below or equals the maximum size of provided for a HEIdink tree.

As soon as the local sink tree’s size exceeds the sP&BReHELLO.W TH.TREE
messages provide for the the HELLO sink tree, B8R SI NK_TREE_COPY mode
is not applicable any longer and thus we employ one of thevallg strategies (see
section 4.3):

e (SSR S| NK_TREE_COPY)

o SSR.UNRESOLVED.LI NKS_FI RST
o SSRDELTA TREE

o SSR RANDOMTREE

Independent of the configured strategy, it is mandatorydiude a node’s physical
neighbors in the HELLO sink tree (this is equivalent to cogythe first level of the
local sink tree to the HELLO sink tree). Once this step is fint, the constructor
branches out depending on the selected strateg$$R_SI NK_TREE_MODE).

The functionsget C osest Unsent Unr esol vedLi nk( | ocal Si nkTr ee)
andget Cl osest Unsent Resol vedLi nk(| ocal Si nkTree) are used for the
SSR.UNRESOLVED_LI NKS_FI RST strategy as well as for th€SR_DELTA TREE
strategy. Basically, these functions deliver paths cairigithe closest unresolved re-
spectively resolved link of the local sink tree that has resrbcopied to the currently
contructed HELLO sink tree yet.

Furthermore, these functions utilize theasBeenSent | nPr evi ousHel | oMsg
property of the local sink tree’s sink tree cache lines ireottd delimit their selection
procedure on links that have not been sent within the cusenés of HELLO mes-
sages. We only need this property while applying 828R DELTA_TREE strategy.
Thus it is being ignored by other strategies.

Employing theSSR_ RANDOM TREE strategy, random paths of the local sink tree
(that have not been copied to the HELLO sink tree yet) areveledd using the HELLO
sink tree’s member functiorget Furt her RandonPat hOf Local Si nkTr ee(
maxHopDept h, | ocal Si nkTr ee) and copied to the HELLO sink tree until the
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provided space is entirely filled up.

The function copyPat hToHel | oSi nkTree(pat h, | ocal Si nkTree,
maxHopDept h) is used to copy a selected path from the local sink tree to allIEL
sink tree. Once the remaining spacén the currently constructed HELLO sink tree
is not sufficient for a selected path of length> k to be copied to the HELLO
sink tree completely, only the first hops of the given path will be copied. We
need this functionality in order to be able to optimally izl the space provided in
SSR HELLOW TH.TREE messages.

Furthermore, if anaximum hop deptparametelk is passed to this function, only
the firstk hops of the given path will be copied to the HELLO sink tree.ingshis
optional parameter we are able to create hop depth resttitit L O sink trees.

5.2.6 Incoming and Outgoing Interface Stores

In order to support the utilization of asymmetric links, aBR5node needs to distin-
guish betweeimcomingandoutgoinginterfaces. Therefore it is required to maintain a
second instance of thd nt er f aceSt or e class.

If a given node receives aBSR HELLOW TH.TREE message, it will add the
sender to its incoming interface store. Moreover, if therentr node itself is con-
tained in the first level of the received HELLO sink tree, tkeader will be added to
the outgoing interface store as well. Consequently, in césesymmetric link, the
corresponding neighbor finally occurs in the incoming ifstee store as well as in the
outgoing interface store.

Contrariwise, if a HELLO sink tree contains a link directedrh the current node
towards another node whose HELLO messages are not beinge@d®y the current
node, thissorward neighbomwill be added to the outgoing interface store and it will be
tagged with the MAC addreszera This specific MAC address denotes that there is
an outgoing asymmetric link, which we could utilize in sairouting by forwarding a
corresponding hop-by-hop message per broadcast.

Actually, utilization of asymmetric links in source routiesplies that we have to
send messages per broadcast across occurring asymmaitsc lin the first place,
this is due to the fact that a given node will not ever learnNi#eC layer address of a
forward neighbor beyond an asymmetric link. Furthermdnenicast at the underlying
MAC layer relied on acknowledged transmission (as for eXamythin the IEEE-
802.11standard [9]), it would not be possible to use unicast acasgsnmetric links,

anyway.



Chapter 6

Simulation Environment and
Evaluation

The initial sections of this chapter give a brief overviewtba simulation environment
and the test arrangements that we used during the evalustige of this work. En-

hancements and extensions to this simulation environmersiudjects of other current
works, thus we will concentrate on information that is relevto the interpretation of
our simulation results, which we present and discuss suigseky.

6.1 Overview on the Simulation Environment

The simulation environment that we used to evaluate theqaep SSR extension sup-
porting asymmetric links has been implemente®MNeT++ [20]. This simulation
environment already existed for various evaluation pugpancerning the SSR pro-
tocol and thus we only had to apply some minor modificationsrder to be able to
configurate additional parameters specific to the extereiointo record further statis-
tical data during simulations runs.

6.1.1 Simulator Functionality in the OMLSSR Class

The OMLSSR class, which is derived of th@MNeT++ cSi npl eMbdul e class, rep-
resents the centrdd MNeT++ simulation module containing any simulation related
logic, such as initializing a simulation run, event registg and handling or recording
and calculating of statistical data during simulation runs

Basically, we had to slightly modify the simulation initizhtion step in order to be
able to import additional parameters that we need to cordtguour SSR extension for
support of asymmetric links (see section 6.1.4).

Since the simulator has already been capable of generatitigtiss of routing
performance characteristics like the average accumulated declined by payload
messages and the average payload message delay, we fantbetmad to
add the functionality of printing information concerningetperiod of time the SSR
protocol needed to converge, i.e. to establishdabesistencycondition described in

47
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section 3.5, into an additional result file, which is namedoading to the scheme
ssrConverge-[...].txt.

6.1.2 cSsr Node Wrapper Class

ThecOnSsr Node class is derived of theNode class of thessr - cor e library (see

section 5.1.1). Thus, it virtually implements an SSR nodihiwithe simulation envi-
ronment and routes events and messages between actual @8€bpand the central
OMNeT++ simulation module, which we described in section 6.1.1 abov

6.1.3 Simplified MAC Layer

The primary concern of the evaluation of this work is to inigegte whether the al-
gorithm described in section 4.2 could be adapted to scateeidium size wireless
networks using the extensions proposed in section 4.3 attek tdetermine the impact
of certain parameters, which are specific to these extessmm the overall routing
performance of the SSR protocol.

Therefore and since implementations of realistic wireM#«C layers (likeIEEE
802.11(WLAN [9]), IEEE-802.15.1(Bluetooth [1]) or IEEE-802.15.4ZigBeeg [5]))
are still in a stage of development respectively have ordgméy been finished EEE-
802.1), we employed a simplified MAC layer implementation denaiselasy Orivac
during the evaluation stage of this work, which is based aditettional point-to-point
connections.

However, an evaluation of the proposed algorithm on theshafsiealistic MAC
layers will be a subject of our future work.

6.1.4 Simulation Scenarios

The scenarios that we used during this evaluation stage gegrerated on the basis of
randomn x n grids, i.e. network layer addresses are arbitrarily disted all over the
grid. Furthermore, we supplied these grids with varyingtitms of nodes providing
a larger transmission range. Whereas nodes with a defaudniasion range do only
reach (and thus are being reached by) physical neighbaraithdocated in the same
line or in the same column of the grid, these enhanced trasson range nodes are
capable to transcend the diagonals of adjacent grid cells.

Figure 6.1 shows a simple example df & 3 grid containing one single node with
an enhanced transmission range.

Consequently, such a wide transmission range node indycesfaur asymmetric
links (one asymmetric links for each wide transmission eangde located at a corner
of the grid and two asymmetric links for each wide transnoissange node located at
a border of the given grid). However, the fraction of widensmission range nodes is
not equivalent to the actual fraction of asymmetric linkshivi the resulting physical
network topology.
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Figure 6.1:3 x 3 grid containing one wide transmission range node
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The number of symmetric links, i.e. the number of regularesdgf ann = »n grid,
can be calculated using the formula:

#edges = 4(” - 2)2 + 4(” - 1) = 4(712 +3n + 3)

Assuming for example that there &@% of wide transmission range nodes within
al0x 10 grid, i.e. there are up &0 nodes each inducing up foasymmetric links, the
given grid has a total o€ 612 links whereof< 80 are asymmetric links. Hence the
resulting fraction of asymmetric links in the given grid tdbbe estimated te 13%.

Fraction of high range nodes: 0% | 10% | 20% 30%
Fraction of asymmetric links} 0% | < 7% | <13% | < 18,5%

Table 6.1: Estimated fractions of asymmetric links withie tised configurations

Within this evaluation stage, we employed scenarios coimgifractions of0%,
10%, 20% and30% of wide transmission range nodes. Table 6.1 shows the dracti
of asymmetric links corresponding to these values.

We wrote aPythonscript to automatically generate scenarios as describedea
This script demands the following parameters:

e Number of nodes

e Distance between adjacent nodes [m]

e Fraction of wide transmission range nodes [%)]

e Local sink tree size [# of cache lines]

e HELLO sink tree size [# of cache lines]

e HELLO sink tree mode$SR_SI NK_TREE_MCDE]

e HELLO sink tree maximum hop depth [# of hops]

e Enable/disablSSR EARLY_PATH OPTI M ZATI ON[BOOL]

e Seed [numeric] (optional)

On the basis of these parameters, the script generptesia i ons-[...].ini
file defining the position of each node within the grid topglaay anges-[...].ini
file defining each node as default or wide transmission rangdenand a
scenario-[...].ini file providing further parameters configuring the SSR pro-
tocol respectively the simulation environment, which aiefty described in the subse-
guent section 6.1.5. Furthermore, this script appendsiilves code, which is required
to interprete the described i ni files, to theNet Gri d. ned file of the OMNeT++
simulation environment.

This Net Gri d. ned file basically contains source code that is required to build
the described scenarios within t@dNet++ simulator and thus is written in tHéED
language oODMNet++,
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6.1.5 Further Simulation Parameters

This section describes some further parameters occurringhinw the
scenario-[...].ini file that are used to configure the corresponding simula-
tions run. We did not modify these parameters during theuaw@in stage of this work
and thus have them set to certain default values by our Soegeanerator script (see
section 6.1.4). As these parameters specify our test anaeigt, we provide a list as
well as a brief description of each parameter below.

Basically, parameters of the forgsr . * denote parameters that are specific to the
SSR protocol whereas the remaining parameters define piepef theOMNeT++
simulation environment.

e ssr. broadcast | nterval
e ssr.notificatelnterval
e ssr.cacheSi ze

e ssr. useAsynLi nk

e sinli meLimt

e activeTi ne

e activeTi meEnd

e packet Si ze

e request Rate

The parametessr . br oadcast | nt er val defines the period of time between
subsequent HELLO messages in seconds (default val@g).  Analogously,
ssr.notificatel nterval denotes the interval between subsequent intiations of
the SSR state maintenance algorithm, which is extensiasdgribed in section 3.5 (de-
fault value:10s). ssr. cacheSi ze defines the size of a node’s route cache measured
in cache lines (default value55). The boolean valussr . useAsynii nk is used
to enable/disable the extension providing support for asgtric links within the SSR
protocol (default valuetrue).

The first parameter concerning the simulation environnsantli meLi mi t , de-
notes the virtual time span of SSR protocol activity that énl simulated within
the specified simulation run. The default value is derivedloserved convergence
time values of particular network size80s for #,..4.s < 49 respectivelyl120s for
64 < #,04es < 100. The same applies for the subsequent time vaheds veTi e
andact i veTi neEnd, which define the points of time each node starts respegtivel
stops generating random requests, i.e. sending messaggse@SR PAYLOAD to
arbitrary destinations (default value30s / 90s for #,,04es < 49 and60s / 120s for
64 < #nodes < 100). Finally, the parametarequest Rat e denotes the number of
these random requests each node generates and sends pdrdieaay the active time
(default value:l).
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6.2 Simulation Results

Within the subsequent sections we present the simulatgritssthat we gathered dur-
ing the evaluation stage of this work. Predominantly, westitate the obtained overall
routing performance on the basis of the average path lerfg8sB PAYLQOAD mes-
sages measured in hops. Since we have been using a simpliieédi&yer during
these simulations (see section 6.1.3), the also recordedge message delay values
are not equally meaningful.

We furthermore recorded the period of time the SSR protamplired to converge,
i.e. to establish theonsistencyondition as described in 3.5. But since for any sce-
narios as described in section 6.1.4 the correspondindtsedn - as expected - not
significantly vary from simulations result obtained usirtignslard SSR, this data is
only crucial to observe in specific scenarios as considersddtion 6.2.6.

Foremost, we investigate the inherent impact of the prapose
SSR EARLY_PATH.OPTI M ZATI ONextension on the overall routing performance of
SSR by using standard SSR, i.e. support for asymmetric linkdeen disabled during
these simulation runs. We need this evaluation step in dalbe able to estimate a
potential additional benefit of th8SR EARLY_PATH.OPTI M ZATI ON extension in
scenarios containing asymmetric links.

We simulated each HELLO sink tree strategy as proposed tioget.3 using sce-
narios as described in section 6.1.4 with upl®0 nodes and fractions af0%, 20%
and30% of wide transmission range nodes. Furthermore, we perfdmaeh of this
simulation series having tHeSR EARLY_PATH.OPTI M ZATI ON extension disabled
as as well as enabled.

Finally, in section 6.2.6 we investigate the applicabibfyour proposed algorithm
in specific scenarios containing asymmetric links that iregexceptionally long loop
paths to be resolved.

6.2.1 Impact of SSR EARLY_PATH.OPTI M ZATI ONon SSR Over-
all Routing Performance in Absence of Asymmetric Links

Clearly, theSSR_ EARLY_PATH.OPTI M ZATI ON extension as described in section
4.3 could obtain a positive impact on the overall routing@anance of SSR.

Originally, within the SSR routing process, source routisap-by-hop messages
would only have been modified if necessary, i.e. if the messagpurce route was
at its end or if the subsequent hop had become unavailableimeantime. If now
each intermediate node attempts to improve a hop-by-hopage% source route, it is
reasonably likely that the length of the resulting souragteawill be reduced, but on
the cost of enforcing each particular intermediate nodestyits route cache and - in
case of a successful route optimization - an additi@sk® ROUTE_UPDATE message,
which has to be sent to the message’s mediator respectsselgii

Indeed, these addition&8SR ROUTE_UPDATE messages are optional, but seem
quite reasonable in order to propagate source route ogiiois back to the most re-
cent mediator node, which consequently could apply theesponding optimization
by itself henceforth.
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Impact of SSR_EARLY_PATH_OPTIMIZATION
in settings without asymmetric links
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Figure 6.2: Impact ofSSR.EARLY_PATH OPTI M ZATI ON on the average path
length perSSR_PAYLOAD message

In order to estimate the impact of tf8SR EARLY_PATH.OPTI M ZATI ON ex-
tension on the overall routing performance of SSR indepeindethe utilization of
asymmetric links, support for asymmetric links has beealded within this simula-
tion series.

The graph depicted in figure 6.2 shows that the application tloé
SSR EARLY_PATH.OPTI M ZATI ON extension could reduce the number of hops tra-
versed bySSR PAYLOAD messages up to aboli%.
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6.2.2 Results oSSR RANDOM TREE Mode

local sink tree size = 50, HELLO sink tree size = 10, mode =
SSR_RANDOM_TREE (max. hop depth = 3) without
SSR_EARLY_PATH_OPTIMIZATION
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Figure 6.3: SSR overall routing performance us88R RANDOM TREE mode to re-
solve asymmetric links

Using theSSR_RANDOM TREE strategy, the local sink tree information to be copied
to a HELLO sink tree is selected at random. Thus, this moderdends to fill up the
nodes’ route caches with source routes to various desiimathan to efficiently resolve
occurring asymmetric links. Consequently, this could pgsesult in a positive im-
pact on SSR’s overall routing performance, which we cantearty put down to the
utilization of asymmetric links.

In order to delimit this bias, we used an additionsximum hop deptparameter
during this series of simulation runs:

As in scenarios as described in 6.1.4 each asymmetric linlddme resolved by
a loop path of3 hops length, we predefined a maximum hop depth bbps for the
HELLO sink trees during this series of simulations. The fegu6.3 and 6.4 visualize
the SSR overall routing performance obtained8R RANDOVLTREE mode depend-
ing on the application of thESR_ EARLY_PATH.OPTI M ZATI ON extension.

Subsequently, we use the results of this non-sophisticdtategy as reference val-
ues for the simulation results of tt8SR_ UNRESOLVED_LI NKS_FI RST strategy and
the SSR DELTA TREE strategy.
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local sink tree size = 50, HELLO sink tree size = 10, mode =
SSR_RANDOM_TREE (max. hop depth = 3) with
SSR_EARLY_PATH_OPTIMIZATION
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Figure 6.4: SSR overall routing performance usB8R RANDOM. TREE mode with

SSR EARLY_PATH.OPTI M ZATI ON extension
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6.2.3 Results oSSR UNRESOLVED LI NKS_FI RST Mode

local sink tree size = 50, HELLO sink tree size = 10, mode =
SSR_UNRESOLVED_LINKS_FIRST without
SSR_EARLY_PATH_OPTIMIZATION
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Figure 6.5: Overall routing performance usiB$R UNRESOLVED_LI NKS_FI RST
mode

The results of this series of simulations show the perfooeaf the
SSR.UNRESOLVED_LI NKS_FI RST mode. This strategy is the most focussed on ef-
ficiently resolving asymmetric links and thus should ledsalbstrategies affect the
overall routing performance of SSR by distributing sourgetes to various destina-
tions across the network.

Compared to the simulation results presented in the prevéeation, which we
obtained while applying th&SR_ RANDOM TREE strategy, the relative benefit at the
overall routing performance of SSR dependent on the fraatfowide transmission
range nodes is significantly increased.

Observing the graphs depicted in figure 6.5 and 6.6, it ishé&srhore
remarkable that the relative benefit of utilizing the ocmgr asymmetric
links within SSR source routing is not considerably incezasvhen using the
SSR EARLY_PATH.OPTI M ZATI ON extension as proposed in section 4.3.



6.2. SIMULATION RESULTS 57

local sink tree size = 50, HELLO sink tree size = 10, mode =
SSR_UNRESOLVED_LINKS_FIRST with
SSR_EARLY_PATH_OPTIMIZATION
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Figure 6.6: Overall routing performance usiB§R_ UNRESCLVED_LI NKS_FI RST
mode withSSR_EARLY_PATH.OPTI M ZATI ON extension
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6.2.4 Results oSSR DELTA TREE Mode

local sink tree size = 50, HELLO sink tree size = 10, mode =
SSR_DELTA_SINK_TREE without SSR_EARLY_PATH_OPTIMIZATION
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Figure 6.7: SSR overall routing performance usB$R DELTA TREE mode to re-
solve asymmetric links

This section presents the simulation results that we obdaimwith SSR
while constructing HELLO sink trees with the&SSR.DELTA TREE strategy.
Since physical neighbors exchange their entire local si@est within several
SSR HELLO.W TH.TREE messages, there certainly is a considerable impact on the
overall routing performance beyond the utilization of asyetric links. Based on the
distribution of extensive sink tree information, the alfun as proposed in section
4.2.3 is able to extract many additional source routes touamdestinations within the
given network topology.

The graphs depicted in figure 6.7 and figure 6.8 illustratesthrulation results,
which we obtained using th8SR DEL TA_TREE strategy with as well as without the
SSR_EARLY_PATH.OPTI M ZATI ON extension.

As the overall routing performance of SSR is again increasetpared to the simu-
lation results of thesSR_ UNRESOLVED_LI NKS_FI RST mode presented in the previ-
ous section, the supposed impact of distributing extersivetree information seems
to be confirmed.
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local sink tree size = 50, HELLO sink tree size = 10, mode =
SSR_DELTA_SINK_TREE with SSR_EARLY_PATH_OPTIMIZATION
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Figure 6.8: SSR overall routing performance usB®R DELTA TREE mode with
SSR EARLY_PATH.OPTI M ZATI ON extension
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6.2.5 Comparison of the Proposed HELLO Sink Tree Strategies

Comparison of HELLO sink tree modes without
SSR_EARLY_PATH_OPTIMIZATION
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Figure 6.9: Observed benefit of the particular HELLO sink ts&rategies

In order to be able to compare the overall routing perforreasiotained by the
proposed HELLO sink tree strategies, all simulation resoftscenarios containing a
fraction of20% of wide transmission range nodes are accumulated and ddpidthin
the graphs 6.9 and 6.10. As usual, the latter illustratestihesponding simulation
results when additionally employing ti¥SR EARLY_PATH.OPTI M ZATI ON exten-
sion.

The remarkable fact that the routing performance obtaindeénwusing the
SSR DELTA TREE strategy exceeds the routing performance obtained with the
SSR UNRESOLVED_LI NKS_FI RST strategy is not completely unexpected. As dis-
cussed in the previous section as well as in section 4.3, ifgoispact on the overall
routing performance beyond the utilization of asymmetinéd could reasonably be
assumed.

Although the obtained overall routing performance while ptoying the
SSR DELTA TREE strategy exceeds the obtained overall routing performavitke
employing theSSR_UNRESCLVED_LI NKS_FI RST strategy, the latter strategy is rather
recommended to be applied within the SSR protocol, as wepwitit out in the subse-
guent section.

Table 6.2 summarizes the observed benefits and drawbadks pféviously com-
pared HELLO sink tree strategies.
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| HELLO sink tree modes | Benefits | Drawbacks

Poor efficiency at

SSR_RANDOM.TREE : -
resolving asymmetric links

Good efficiency at

SSR.UNRESCLVED_LI NKS_FI RST . oo
resolving asymmetric links

Most significant benefit at | Not as efficient as
SSR DELTA TREE overall routing performance SSR.UNRESOLVED_LI NKS_FI RST
mode at resolving asymmetric links

Table 6.2: Benefits and drawbacks of each particular HELIR Bee strategy

Comparison of HELLO sink tree modes with
SSR_EARLY_PATH_OPTIMIZATION
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Figure 6.10: Observed benefit of the particular HELLO sirgetistrategies using
SSR_EARLY_PATH.OPTI M ZATI ON extension
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Figure 6.11: Scenario scheme, which is referred toraige setting, type 1

6.2.6 Further Simulation Results

In addition to the simulations scenarios as described iticse6.1.4, we built sev-
eral further scenarios, which are kind of worst case scesdd the SSR protocol.
Basically, these additional scenarios follow two explétihemes, which we outlined in
the figures 6.11 and 6.12.

Both scenario schemes provide a network topology, whictn®st divided into
two partitions. In the first scheme, which is referred tdedge setting, type ,lthese
partitions are connected through a single symmetric andglesasymmetric link. As
we placed these links at opposite borders of the given tgyotbe loop path resolving
the asymmetric link is exceptionally long.

However, in theory even standard SSR without support fomasgtric links should
converge (and thus provide reliable source routing) withiolerable period of time as
at least one symmetric connection between the two parsigaists. In practice though,
standard SSR did not converge ityae 1lbridge setting containing6 nodes within a
time span o8800s.

Within the second scheme, which is denoted@dge setting, type,ave replaced
the remaining symmetric connection between the two netyarkitions by a second
asymmetric link, which is directed contrariwise to the fiasymmetric links that is
already contained in the describggbe 1bridge setting scheme.

Obviously, it is impossible for standard SSR to convergdlaace virtual neigh-
bors that are located in different partitions of the netwlaalkke no chance to ever dis-
cover each other.
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Figure 6.12: Scencario scheme, which is referred torikge setting, type 2
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Figure 6.13: Applicability of SSR extension for asymmetiitk extension support in
bridge scenarios
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The graph depicted in figure 6.13 shows the simulation resolicerning the con-
vergence behaviour that we obtained with SSR while emptpyime proposed
SSR.UNRESOLVED_LI NKS_FI RST strategy to construct HELLO sink trees. Miss-
ing results indicate that the SSR protocol did not converijeimva time span 0800s.
Figure 6.14 depicts the associataterage message hogesaph.
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Figure 6.14: Associated average message hops graph of 6.13

Applying the SSR DELTA TREE or SSR_ RANDOM.TREE strategy, the obtained
simulation results were significantly worse, i.e. the SSBqwol did not converge
within a time span 0800s in type lor type 2bridge scenarios containirig nodes.
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6.2.7 Expanded Simulation Results Obtained with SSR Applyig
the SSR.UNRESOLVED_LI NKS_FI RST Strategy

As illustrated in the previous sections, t88R_ UNRESOLVED_L| NKS_FI RST strat-
egy seems to be the most recommendable strategy to be empfogeder to support
the utilization of asymmetric links within the SSR protocdlhus, we expanded the
corresponding simulation series fcseeds per particular setting, i.6.random sce-
narios of each network size containing a fractior26% of wide transmission range
nodes have been simulated. The graphs depicted in figure @hd5figure 6.16
show the obtained simulation results depending on the egijih of the
SSR EARLY_PATH.OPTI M ZATI ON extension.

These simulation results basically confirm the simulat&sutts introduced in sec-
tion 6.2.3. Furthermore, this expanded study shows thedtmgfathe actual physical
topology on the overall routing performance of SSR.

Comparison of several seeds in scenarios containing 20%
of wide transmission range nodes

Average messag
o © 8
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- SSR using SSR_UNRESOLVED_LINKS_FIRST mode

0 T T T T T |
0 20 40 60 80 100 120

Network size [# of nodes]

Figure 6.15: Expanded simulation results usB8R UNRESOLVED_LI NKS_FI RST
strategy
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Comparison of several seeds in scenarios containing 20%
of wide transmission range nodes
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Figure 6.16: Expanded simulation results usB®R UNRESOLVED_LI NKS_FI RST
strategy an@SR_EARLY_PATH.OPTI M ZATI ON extension
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6.3 Summary of the Simulation Results

Summarizing the simulation results introduced and vigedliwithin the sections 6.2.2
to 6.2.4, we showed that the proposed algorithm based oraegaig partial sink tree
information between physical neighbors is capable of lgaakolving relatively close
asymmetric links at an acceptable cost, i.e. physical meighexchange HELLO mes-
sages containing a total @0 entries, which are selected from a node’s local sink tree
according to one of the proposed HELLO sink tree strategies.

As the simulation results of each particular HELLO sink ts&mategy indicate, the
application of thesSR_EARLY_PATH.OPTI M ZATI ON extension proposed in section
4.3 does not obtain a significant additional benefit in sdesarontaining asymmetric
links compared to scenarios not containing any asymmeiis| i.e. the extension
seems not to achieve a more extensive utilization of shtsrticluced by occurring
asymmetric links. However, as the overall routing perfanoeactually is significantly
better (up to abot0% in certain scenarios) when utilizing occurring asymmeinics,
we could argue that asymmetric links are already used qeitgiently without employ-
ing theSSR_EARLY_PATH.OPTI M ZATI ON extension.

Thus it is arguable whether to use this extension within tB& $rotocol at all,
since - as previously explained in section 4.3 - it producstenal control overhead.

The simulation results as presented in section 6.2.6 shatthlk proposed strate-
gies on utilizing the delimitted space provided in HELLO s&ges do not provide a
convenient performance at resolving asymmetric links wéareptionally long loop
paths are required. We could alleviate this issue somewhatdveasing the space
provided for HELLO sink trees, but that does not seem to beaatjmable solution
with regard to the MTUs of some MAC layers, which are commauged in wireless
sensor networks. Nevertheless, using our extension fgrastipf asymmetric links,
SSR actually worked in some special scenarios where s8R did not converge.

One of the most promising approaches on establishing telrahting within these
kinds of scenarios seems to be fynamic Source Routingrotocol proposed byohn-
son et al[10], which is briefly described in section 2.2.3 - but on tbhesiderable cost
of flooding the network twice.

Maybe the basic idea of this approach could be borrowed to iBSRRder to be
applied for asymmetric links that could not be resolved imith considerably long
period of time.
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Chapter 7

Conclusion

Within this diploma thesis, we proposed a scalable approaatesolving asymmetric
links in ad hoc network settings, which is based on the ide=xoianging partial sink
trees between neighboring nodes within a regular HELLOquait We introduced a
priorization of local sink tree information that aims atoksng asymmetric links in
ascending order of their distance to a given node. Thisiggtion strategy allows us
to deal with relatively small HELLO message sizes as requiingpractice due to the
small MTUs of MAC layers that are commonly used in wirelegssee networks.

Our algorithm has been integrated into ®eal abl e Sour ce Routi ng pro-
tocol and evaluated in a simulation environment based onn#terork simulator
OMNeT++. We thereby obtained a benefit of up to abddif; at the overall routing
performance of SSR in scenarios containing asymmetrislink

Furthermore, we were to some extent successful at emplayingxtended SSR
protocol in certain scenarios where standard SSR did netecga at all.

While applying the propose8SR EARLY_PATH.OPTI M ZATI ON extension, we
could enhance the overall routing performance of SSR updatals% even in scenar-
ios without asymmetric links.

7.1 Final Remarks

Having empirically validated the algorithmically corr@gterability of the proposed ap-
proach, our efforts have to be expanded towards more rieadisidies, i.e. we need to
generate scenarios, which are closer to real world setihgsbile ad hoc networks
and wireless sensor networks and we further have to verifyr@sults and observa-
tions using realistic abstractions of common MAC layersimyifuture simulations.

The latter implicitly denotes that we have to accuratelypadlae parameterization of
our simulation environment based on restraints, which hevee derived of specific
real world settings and MAC layers.

Furthermore, it seems to be quite promising to combine tbpgsed approach on

utilizing asymmetric links ircal abl e Sour ce Rout i ng with theVirtual Route
Compressiottechnique developed André Kaustel[11] (a short summary is given in

69
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section 2.3) in order to improve the fraction of actual pagaata that could be carried
in SSR_PAYLOAD messages.

Finally, as proposed in section 6.3, it could be reasonabkniploy a DSR-like
flooding technique in order to resolve asymmetric links vehomrresponding loop path
is exceptionally long and thus would not be discovered by algorithm within an
acceptable period of time.
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