
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Efficient Detection and Utilization of Asymmetric
Links in Scalable Source Routing (SSR)

Pascal Birnstill

Diplomarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa
Betreuende Mitarbeiter: M.Sc. Pengfei Di,

Dr. Thomas Fuhrmann (Technische Universität München)

May 19, 2009

Hiermit erkl̈are ich, die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources have been used.

Karlsruhe, May 19, 2009

Pascal Birnstill

Abstract

As several empirical studies pointed out that asymmetric links occur considerably fre-
quently in wireless networks and that network layer routingperformance could poten-
tially be significantly improved by utilizing these asymmetric links, it seems to be a
reasonable feature within theScalable Source Routing (SSR) protocol to
provide support for asymmetric links.

The proposed algorithm is based on the approach of exchanging partial topology
information as an extension of regularHELLO messages. Considering the network
topology as a directed graph, two given nodes will only be able to communicate with
each other if the network graph provides a directed cycle containing both of them.
Therefore the main idea of this thesis is to find such a directed cycle, which we denote
as aloop path.

Detecting a loop path containing an asymmetric link impliesthat areverse pathto
this asymmetric link is obtained, i.e. a (multihop) source route connecting both nodes
that are adjacent to the asymmetric link in the reverse direction of this asymmetric link.
By this means, upon initially assuming any link to be asymmetric, source routes resolv-
ing occurring asymmetric links are gradually discovered.

Since exchanging exhaustive topology information does notscale with regard to
bandwidth consumption and local storage requirements, we deployed some strategies
on prioritizing and selecting appropriate topology information to be sent within peri-
odicHELLO messages.

Contents

1 Introduction 1

2 Basics and Related Work 3
2.1 Scenarios Inducing Asymmetric Links 3

2.1.1 Inherent Different Radio Capabilities 3
2.1.2 Different Interference Levels 3
2.1.3 Power Control Algorithms 4
2.1.4 Impact of Asymmetric Links 4

2.2 Related Work . 5
2.2.1 Empirical Studies on the Occurrence of Asymmetric Links in

Wireless Settings . 5
2.2.2 Local Asymmetric Link Detection Based on a RegularHELLO

Protocol . 5
2.2.3 Native Support of Asymmetric Links inDSR 6
2.2.4 Extension of Conventional Distance Vector Protocols. 6
2.2.5 Approach IntroducingSink Trees. 6
2.2.6 Local Detection of Asymmetric Links 7
2.2.7 Applying Reverse Path Search in AODV 8
2.2.8 Reverse Tunneling . 9

2.3 Further Related Work on SSR in Mesh Networks10

3 Description and Analysis of SSR 11
3.1 Indirect Routing . 11
3.2 Message Forwarding . 12
3.3 Appending Source Routes and Applying Shortcuts 13
3.4 Handling Broken Links . 15
3.5 State Maintenance . 15

4 Approach Based onPartial Sink Trees 19
4.1 Assumptions and Simplifications .19
4.2 Basic Algorithm . 20

4.2.1 Sink TreeData Structure . 20
4.2.2 Sink Tree Construction andMergingSink Trees 20
4.2.3 Resolving Asymmetric Links 21
4.2.4 Scalability Issues . 24

4.3 Scalability Enhancements . 25
4.4 Integration into SSR . 28

4.4.1 Link Substitution . 28

iii

iv CONTENTS

4.4.2 Inconsistencies of Knowledge 32
4.5 Discussion . 35

4.5.1 Limitations of the Proposed Approach 35
4.5.2 Detecting Broken (Asymmetric) Links 36

5 Implementation 39
5.1 Overview on thessr-core Library 39

5.1.1 cNode Class . 39
5.1.2 cMessage Class and Subclasses 40
5.1.3 Cache Classes . 41
5.1.4 Interface Store Classes . 42

5.2 Modifications within thessr-core Library 43
5.2.1 Extensions of thecNode Class 43
5.2.2 cMsgHelloWithTree Class 43
5.2.3 Modifications to thecMsgConnect Class 44
5.2.4 Early Path Optimizationin thecMsgPayload class 44
5.2.5 cSinkRouteCache Class 44
5.2.6 Incoming and Outgoing Interface Stores46

6 Simulation Environment and Evaluation 47
6.1 Overview on the Simulation Environment 47

6.1.1 Simulator Functionality in theOM SSR Class 47
6.1.2 cSsrNode Wrapper Class 48
6.1.3 Simplified MAC Layer . 48
6.1.4 Simulation Scenarios . 48
6.1.5 Further Simulation Parameters 51

6.2 Simulation Results . 52
6.2.1 Impact ofSSR EARLY PATH OPTIMIZATION on SSR Over-

all Routing Performance in Absence of Asymmetric Links . . 52
6.2.2 Results ofSSR RANDOM TREE Mode 54
6.2.3 Results ofSSR UNRESOLVED LINKS FIRST Mode 56
6.2.4 Results ofSSR DELTA TREE Mode 58
6.2.5 Comparison of the Proposed HELLO Sink Tree Strategies. . 60
6.2.6 Further Simulation Results 62
6.2.7 Expanded Simulation Results Obtained with SSR Applying the

SSR UNRESOLVED LINKS FIRST Strategy 65
6.3 Summary of the Simulation Results 67

7 Conclusion 69
7.1 Final Remarks . 69

List of Figures

2.1 Example setting of a 3-party proxy set 7

3.1 Illustration of SSR routing process 12
3.2 Appending further hops to a hop-by-hop message’s sourceroute . . . 14
3.3 Appending a shortcut to a hop-by-hop message’s source route 15
3.4 Protocol state machine visualizing SSR message forwarding 16

4.1 Detecting a symmetric link to a physical neighbor 21
4.2 Resolving an incoming asymmetric link(i) 22
4.3 Resolving an incoming asymmetric link (ii) 23
4.4 Protocol state machine of SSR message forwarding supporting asym-

metric links . 29
4.5 Example for asymmetric link substitution 30
4.6 Link substitution on a stub path after applying a shortcut 31
4.7 Example setting inducing an inconsistency of knowledge. 32
4.8 Protocol state machine of SSR message forwarding supporting asym-

metric links andSSR EARLY PATH OPTIMIZATION 34
4.9 Example setting containing an isolated node 35
4.10 Example setting containing a partitioned network topology 35
4.11 Example setting containing an asymmetric link that becomes unavailable 36

5.1 Abstract class cNode . 39
5.2 Minimal class Diagram of SSR messages 40
5.3 Simplified class diagram of route cache classes 41
5.4 Simplified class diagram of interface store classes 42

6.1 3× 3 grid containing one wide transmission range node 49
6.2 Impact ofSSR EARLY PATH OPTIMIZATION on the average path

length perSSR PAYLOAD message 53
6.3 SSR overall routing performance usingSSR RANDOM TREE mode to

resolve asymmetric links . 54
6.4 SSR overall routing performance usingSSR RANDOM TREEmode with

SSR EARLY PATH OPTIMIZATION extension 55
6.5 Overall routing performance usingSSR UNRESOLVED LINKS FIRST

mode . 56
6.6 Overall routing performance usingSSR UNRESOLVED LINKS FIRST

mode withSSR EARLY PATH OPTIMIZATION extension 57

v

vi LIST OF FIGURES

6.7 SSR overall routing performance usingSSR DELTA TREE mode to
resolve asymmetric links . 58

6.8 SSR overall routing performance usingSSR DELTA TREE mode with
SSR EARLY PATH OPTIMIZATION extension 59

6.9 Observed benefit of the particular HELLO sink tree strategies 60
6.10 Observed benefit of the particular HELLO sink tree strategies using

SSR EARLY PATH OPTIMIZATION extension 61
6.11 Scenario scheme, which is referred to asbridge setting, type 1 62
6.12 Scencario scheme, which is referred to asbridge setting, type 2. . . . 63
6.13 Applicability of SSR extension for asymmetric link extension support

in bridge scenarios . 63
6.14 Associated average message hops graph of 6.13 64
6.15 Expanded simulation results usingSSR UNRESOLVED LINKS FIRST

strategy . 65
6.16 Expanded simulation results usingSSR UNRESOLVED LINKS FIRST

strategy andSSR EARLY PATH OPTIMIZATION extension 66

List of Tables

5.1 Cache columns provided by an instance ofcSinkRouteCache class 44

6.1 Estimated fractions of asymmetric links within the usedconfigurations 50
6.2 Benefits and drawbacks of each particular HELLO sink treestrategy . 61

vii

viii LIST OF TABLES

Chapter 1

Introduction

Due to the increasing miniaturization of wireless sensor nodes (’Smart Dust’), more
and more application scenarios for wireless sensor networks are becoming imaginable.
These scenarios cover areas such as collecting of ecological data, clinical bedside mon-
itoring or implementing intelligent office or living space.

Scalable Source Routing (SSR) [6] is a routing approach that aims at
large unstructured networks like mobile ad hoc networks (MANETs), mesh networks
and wireless sensor networks taking care of their specific properties, such as resource
limitation of the used hardware platforms or frequently changing network topologies.
SSR is a network layer protocol that combines source routingwith Chord-like [19] in-
direct routing in a virtual, ring-structured address space.

Multiple empirical studies indicate that asymmetric linksoccur reasonably fre-
quently in common wireless network scenarios. Thus, some benefit at the overall
routing performance is anticipated when utilizing asymmetric links within routing pro-
tocols.

To the best of our knowledge,Dynamic Source Routing (DSR) [10] is
the only currently implemented MANET routing protocol, which provides support for
asymmetric links, but at considerable costs.

The objective of this diploma thesis hence is to develop an algorithm, which is
capable of detecting asymmetric links, discovering appropriate reverse paths to oc-
curring asymmetric links and to integrate the proposed approach into theScalable
Source Routing (SSR) protocol in order to support the utilization of asymmet-
ric links during the SSR routing process. Finally, the proposed algorithm has to be
evaluated using an existing simulation environment, whichis implemented in the net-
work simulatorOMNeT++ [20].

As this objective aims at an application of SSR in wireless scenarios, such as mobile
ad hoc network or wireless sensor networks, we need to meet several context-sensitive
restraints. Basically, a potential solution will have to deal with a limited storage capac-
ity of wireless nodes as well as with comparatively smallMTUs (maximum transmis-
sion units)provided by some common wireless MAC layers.

This thesis is organized as follows. In the second chapter weprovide an overview
on common settings inducing asymmetric links and outline other works related to the

1

2 CHAPTER 1. INTRODUCTION

issue of this thesis.
In chapter 3 we elaborately describe theScalable Source Routing proto-

col. Subsequently, we analyze the SSR routing process in detail with regard to the
posterior integration of the intended extension.

Our algorithm providing support for asymmetric links in SSRis introduced in chap-
ter 4. Furthermore, we explain the modifications to the SSR protocol, which were re-
quired in order to be capable of utilizing asymmetric links during the routing process.

Chapter 5 describes classes of thessr-core library that are relevant to the inte-
gration of the proposed extension into the SSR protocol.

Finally, the simulation environment as well as the obtainedsimulation results are
depicted in chapter 6.

Chapter 2

Basics and Related Work

The initial sections of this chapter describe common wireless network scenarios in-
ducing asymmetric links. Subsequently, other existing works related to the issue of
utilizing asymmetric links within routing protocols are briefly summarized as well as
some empirical studies, which provide some insights on the occurrence of asymmetric
links in real world scenarios. Finally, we introduce some current work related to the
application of theScalable Source Routing protocol in wireless sensor net-
works.

2.1 Scenarios Inducing Asymmetric Links

As currently advised, the following sections provide an overview on common wireless
settings inducing asymmetric links.

2.1.1 Inherent Different Radio Capabilities

Heterogeneous nodes are the most obvious cause for asymmetric links. If the transmis-
sion range of a given nodep is inherently larger than the transmission range of another
nodeq and the distance between the two nodes is covered by the transmission range
of nodep, but exceeds the transmission range of nodeq, an asymmetric link directed
from nodep to nodeq is induced.

This kind of asymmetric link of course is a persistent phenomenon and thus quite
auspicious to be utilized in routing protocols.

2.1.2 Different Interference Levels

Homogeneous nodes can cause asymmetric links, too. Assume,for example, two nodes
p andq that are providing an identical transmission range. Such a setting will not in-
evitably lead to a symmetric link betweenp andq. If - e.g. due to a locally increased
node density within nodeq’s proximal environment - the given interference level at
nodeq is significantly higher than the current interference levelat nodep, nodeq will

3

4 CHAPTER 2. BASICS AND RELATED WORK

not be able to receive messages sent by nodep.

Asymmetric links occurring due to different interference levels typically are rel-
atively transient. Thus, asymmetric link detection mechanisms would need to work
pretty efficiently in order to obtain any benefit of the utilization of this kind of asym-
metric links.

2.1.3 Power Control Algorithms

Whenever battery lifetime is a critical issue, in particularwhen it comes to wireless sen-
sor networks, there are two common techniques, which are commonly used: regularly
setting the wireless node to sleep mode or reducing the wireless node’s transmission
power (if no traffic is present).

Reducing the transmission power has the disadvantage of increasing the likelihood
of asymmetric links. That is, if the transmission power of a given nodep is higher than
the transmission power of a second nodeq, it may be possible for nodeq to receive a
message from nodep, but not for nodep to receive a message that is sent by nodeq.

If nodes gradually reduce their transmission power depending on the decrease of
their remaining battery lifetime, the induced asymmetric links will actually be reason-
ably persistent.

2.1.4 Impact of Asymmetric Links

Most network layer routing protocols assume any link to be symmetric. Exchanging
topology information between neighboring nodes in generalcauses two issues:knowl-
edge asymmetryandrouting asymmetry[14].

The termknowledge asymmetrydescribes the observation that a source nodep of
an asymmetric linkp → q does not intuitively learn about the existence of this link
whereas the sink nodeq obviously does.

Furthermore, in a setting as described above the path traversed from nodeq to node
p necessarily needs to be different from a path that would be required to reach nodep
from nodeq. This observation is commonly referred to asrouting asymmetry.

2.2. RELATED WORK 5

2.2 Related Work

The subsequent sections summarize some empirical studies investigating the occur-
rence of asymmetric links in specific wireless scenarios andprovide an overview on
other existing approaches concerning the issue of detection and utilization of asym-
metric links within routing protocols.

2.2.1 Empirical Studies on the Occurrence of Asymmetric Links
in Wireless Settings

Several real world studies of ad hoc networks indicate that asymmetric links make up
a significant fraction of all links present.

Ganesan et al.observed that up to15% of the links within their deployment, which
consisted of 150 arbitrarily distributed nodes, are asymmetric even when each node is
transmitting at the same transmission power and no additional radio sources exist in
the given test arrangement [7].

Analogously,De Couto et al.[4] reported that up to30% of all occurring links
show asymmetric delivery rates in several indoor deployments of wireless nodes.

Furthermore,Zhao et al.[22] investigated multiple deployments of up to 60 Mica
motes and concluded that asymmetric links are quite common,i.e. at least10% of all
links have significantly asymmetric packet delivery rates (variation of> 50%) and thus
are behaving as asymmetric links.

2.2.2 Local Asymmetric Link Detection Based on a RegularHELLO
Protocol

In wireless settings,HELLO protocols are commonly employed to enable wireless
nodes to gather information about their proximal environment.

Typically, each node participating in the given networkingprotocol periodically
broadcasts a list of all nodes it received HELLO messages from within a defined time-
out interval. Since these HELLO messages are designated to be exchanged between
physical neighbors and not to be flooded across the whole network, they are supplied
with aTTL (time-to-live)of 1.

Beyond the described functionality of discovering a node’sphysical neighborhood,
a HELLO protocol could be rather beneficial at locally detecting asymmetric links and
- for this additional purpose - is frequently employed within approaches concerning
the utilization of asymmetric links in routing protocols asdescribed in the subsequent
sections.

Assuming an asymmetric linkp→ q between two given nodesp andq, nodep ob-
viously will not receive any periodic HELLO messages sent bynodeq. Consequently,
nodeq will not ever occur within HELLO messages sent by nodep. As nodeq receives
those HELLO messages of nodep not containing its own address, nodeq is capable
of determining that the corresponding link has to be anincoming asymmetric link. For
nodep however, there is no chance so far to even learn about the existence of node
q. Obviously, this is one of the major issues that have to be solved in order to utilize
asymmetric links within any routing protocol.

6 CHAPTER 2. BASICS AND RELATED WORK

Within the described setting, nodep would be denoted asbackward neighborof
nodeq whereas nodeq would be called aforward neighborof nodep. A given link
will be recognized as symmetric if and only if the adjacent nodes are backward neigh-
bors and forward neighbors of each other at the same time.

2.2.3 Native Support of Asymmetric Links inDSR

Dynamic Source Routing (DSR) [10] is an ad hoc on-demand routing proto-
col, i.e. a source routes between two given nodesp andq is not established until it
is demanded by either nodep or nodeq. A node initiates a so-calledRoute Discov-
ery procedure by flooding the network with aRoute Request (RREQ) message.
Each time an intermediate node handles and forwards thisRREQ message, it appends
the incoming hop to the message’s source route field. Thus, assuming that nodep
requires a source route to the destination nodeq, as soon as theRREQ message has
reached nodeq, a source route in the direction from nodep to nodeq is established.

In DSR the destination nodeq does not assume the currently obtained source route
to be bidirectional, i.e. nodeq will not utilize the reversed source route in order to reach
the issuer nodep. Nodeq rather queries its route cache for a source route to nodep or
- if the route cache does not provide an active path to nodep - it triggers anotherRoute
Discoveryprocedure in order to establish a new source route in the direction from node
q to nodep.

As DSR usually requires twoRoute Discoveryprocedures to establish bidirectional
connectivity between two given nodes, it produces a considerable amount of control
overhead and thus does not scale to larger sized networks.

2.2.4 Extension of Conventional Distance Vector Protocols

Prakash [16] investigated conventional distance vector routing algorithms and
announced an extension providing support for the utilization of asymmetric links. This
approach is based on exchangingO(n2) sized matrix (n being the number of nodes in
the given network topology) between neighboring nodes in order to be able to represent
both possible directions of a link between any two nodes.

Although the storage requirements of thisn x n matrix representation could poten-
tially be reduced by applying somesparse matrix compression scheme, this approach
is not scalable with regard to increasing network sizes.

2.2.5 Approach Introducing Sink Trees

In [3], Jorge A. Cobbproposes an algorithm, which is based on the idea of periodically
exchanging so-calledsink treesbetween physically neighboring nodes. A node’s sink
tree virtually is a second route cache (here referred to assource tree). The semantical
difference is that paths stored in the sink tree are directedtowards the given node. These
sink trees are used to detect and resolve potential asymmetric links.

On adding links to its sink tree, each node needs to ckeck new or extended paths
for a potentially introduced loop, i.e. the node ckecks whether its own address reoccurs

2.2. RELATED WORK 7

at some deeper level of its sink tree. Detecting a loop implies that a source route can
be extracted of the considered path.

By this means, upon initially assuming any link to be asymmetric, nodes gradually
discover source routes resolving these asymmetric links.

To the best of our knowledge on the current state of research,this approach pro-
duces the lowest control overhead ofO(n), wheren is the number of nodes in a given
network topology. Even though this would still not scale to larger networks, we decided
to pick this approach up as a basis of our further investigations. Section 4.2 provides
an extensive description of our variant of Cobb’s algorithm.

2.2.6 Local Detection of Asymmetric Links

Wang et al. proposeA4LP [21], aLocation-aware andPower-aware routing protocol
for heterogeneous ad hoc networks withAsymmetric links. Basically, each node holds
a set of its backward and a set of its forward neighbors. A nodelearns about its back-
ward neighbors and about nodes that are backward as well as forward neighbors by
employing a regular HELLO protocol as described in section 2.2.2.

The technique used to resolve backward neighbors beyond asymmetric links is de-
limitted to so-called3-party proxy sets, i.e. sets of three neighboring nodes that contain
at least one symmetric link and that are circularly connected among each other. Figure
2.1 depicts an example for a setting that is compliant to the above conditions for a 3-
party proxy set.

p q

r

Figure 2.1: Example setting of a 3-party proxy set

Within this example, noder, which receives the HELLO messages of nodep as
well as the HELLO messages of nodeq, would notify nodep of the existing asymmet-
ric link directed from nodep to nodeq. Henceforth, nodep would be aware of this
asymmetric link and capable of utilizing this link within the routing protocol.

Paths to destinations beyond a node’s neighbor sets are established using an ad-
vanced flooding technique incorporating the nodes’ location information, which has to
be provided in any form.

In [18], Sinha et al. describe an extension of theZone Routing protocol (ZRP),
which supports the utilization of asymmetric links.

8 CHAPTER 2. BASICS AND RELATED WORK

Thezoneof a given node is defined as a the set of all nodes in the currentnode’s
environment that are reachable within a certain radius measured in hops. Whereas reg-
ular HELLO messages typically are only exchanged between physical neighbors (see
section 2.2.2), within this ZRP extension each node broadcasts the list of its backward
neighbors within its zone, i.e. the TTL of the correspondingmessages is set equal to
the defined zone radius. Based on this backward neighbor information, a node is capa-
ble of calculating the shortest path to each node inside its zone. These paths are stored
within a data structure that is denoted as a node’soutbound tree.

Routes to destinations beyond a node’s zone, i.e. the given node’s outbound tree
does not provide a path to the demanded destination, are establish by applying a tech-
nique, which is referred to asbordercasting. A message directed to a destination out-
side the issuer node’s zone primarily is forwarded to an appropriate border node, that
is, some node in the most distant level of the issuer’s outbound tree. If the current
border node does not provide a route to the message’s destination, it will again forward
the message to a border node of its associated zone and so forth. This procedure is
repeated until the considered message has reached its destination.

Bordercasting will result in a large amount of query messages, which in the worst
case could be almost equally expensive as flooding the whole network. Hence, the scal-
ability of the ZPR protocol with regard to increasing network sizes is quite disputable.

Ramasubramanian et al.[17] proposeBRA, aBidirectionalRoutingAbstraction for
asymmetric mobile ad hoc networks. BRA provides a symmetricabstraction of the
asymmetric network to arbitrary kinds of routing protocols, i.e. a sub-routing layer is
introduced, which enables conventional routing protocolsto utilize asymmetric links
(the authors applied theAODV [15] protocol over BRA).

Basically, BRA employs a modifiedBellman-Fordalgorithm, which is denoted as
Reverse Distributed Bellman-Ford Algorithm (RDBFA)[17] to discover reverse paths
around occurring asymmetric links within a node’s so-called locality, which is defined
by a given radius measured in hops. ThisRDBFAalgorithm periodically exchanges a
reversed distance-vectorreporting currently calculated distancesfrom each other node
within the sender’s localityto the sender of a given distance-vector message.

The overhead for reverse route maintenance is claimed to be in O(n), wheren is
the average number of nodes within a node’s locality.

2.2.7 Applying Reverse Path Search in AODV

Similar to theDSRprotocol as described in section 2.2.3, theAd hoc On-demand Dis-
tance Vector (AODV)[15] routing protocol uses flooding ofRoute Request mes-
sages (abbr.:RREQ) to establish a path between a given source and the designated
destination. Each hop traversed by anRREQ message is recorded within this message’s
source route field and thus, once the destintation node receives anRREQ message, a
source route between the source and the destination is obtained and propagated back
to the source by sending aRoute Reply (abbr.RREP) message containing the cur-
rently established source route back to the corresponding source node.

Obviously, if occurring asymmetric links are not being detected and blocked during
this path discoveryprocedure, source routes obtained by AODV could contain asym-
metric links and thus would potentially not be valid in the reverse direction from the

2.2. RELATED WORK 9

destination to the source.

An extension to the AODV protocol providing support for asymmetric links has
been announced byMarina et al. [13]. Typically, severalRREQ messages associated
to the sameRoute Discoveryprocedure will reach the destination on different paths.
In standard AODV, each intermediate node only handles the first RREQ message is
whereas duplicates are recognized on the basis of their identical sequence number and
immediately discarded.

The proposed extension to AODV suggests to handle eachRREQ message at each
particular intermediate node as well as at the destination in order to obtain multiple
source routes in the direction from the source to the destination of a givenRoute Dis-
coveryprocedure. The destination responds to each receivedRREQmessage by sending
anRREP message to the source utilizing the currently obtained source route. Further-
more the authors assume that at least one of the various pathstraversed by theRREQ
messages, which are received at the destination node, is completely symmetric and thus
at least oneRREP message would reach the source node.

Obviously, the latter assumption of at least one existing bidirectional path between
any two nodes delimits the applicability of this approach. Furthermore, the scalability
of the AODV protocol is significantly degraded due to the considerable additional con-
trol overhead induced by the proposed extension.

2.2.8 Reverse Tunneling

In [14], Nesargi et al.propose an approach based on the idea of tunneling MAC layer
ACKs and control messages of the network layer routing protocol from the sink to the
source of occurring asymmetric links.

A regular HELLO protocol as described in section 2.2.2 is employed to enable each
participating node to detect incoming asymmetric links.

In order to be able to utilize asymmetric links within commonMAC layer protocols
demanding per frame ACKs (such asIEEE-802.11 WLAN[9]) as well as within the
currently employed routing protocol, MAC layer ACKs and control messages of the
routing protocol are tunnelled over the network layer protocol, i.e. these messages are
encapsulated into regular network layer messages.

Establishing the requiredreverse tunnelfrom the sink to the source of an occurring
asymmetric link is left to the employed routing protocol. Thus, the obtained perfor-
mance and scalability of this approach is strongly dependent of the employed network
layer routing protocol.

Supposing that an on-demand routing protocol likeAODV or DSR(see sections
2.2.7 and 2.2.3) is employed, which is fairly common to wireless ad hoc network sce-
narios, the sink of an asymmetric link would have to initiatean additional route dis-
covery procedure in order to establish an appropriate reverse path, upon receiving an
RREP message propagating a source route that contains the corresponding asymmetric
link.

10 CHAPTER 2. BASICS AND RELATED WORK

2.3 Further Related Work on SSR in Mesh Networks

Towards the end of the editing time of this diploma thesis, wegot in touch withAndŕe
Kaustell, who wrote his master thesis [11] on the application of the SSR protocol in
mesh networks.Kaustellproposed several optimizations concerning the scalability of
SSR, which are quite interesting with regard to the issue of this work.

Based on the observation that the source routes that are contained in SSR payload
messages occupy a considerable fraction of the given MAC layer frame,Kaustellpro-
posed a technique referred to asVirtual Route Compression (VRC). Typically, source
routes are assembled of the particular nodes’ network layeraddresses. Applying VRC,
each node assigns identifiers to its adjacent links. These identifiers are significantly
smaller in size than common network layer addresses and thusa source route represen-
tation compressed to a fraction of its usual size could be obtained.

As these small sized link identifiers are only definite withina node’s physical neigh-
borhood, they could not be applied to represent entire source routes within a node’s
route cache. Thus, an additionalRoute Request (RREQ)message is required to tra-
verse a given source route in order to assemble the link identifier representation of this
source route, which is subsequently used to provide this source route within the actual
SSR payload message.

Another optimization suggested byKaustellis denoted asIntermediate Node Short-
cut Discovery. This mechanism attempts to optimize the source route, which a given
message has already traversed.

Chapter 3

Description and Analysis of SSR

This chapter gives a brief overview onScalable Source Routing (SSR) pro-
tocol [6]. It helps to understand the considerations that are introduced in the following
chapters. In particular, it explains the foundations for our proposed enhancement of
SSR.

3.1 Indirect Routing

Indirect routing means that some node demanding some data object or service provided
by any other node within the network uses aDHT- (distributed hash table, [2]) or KBR-
based (key based routing, [8]) service, which maps the data object or service description
to an address in the virtual ring. While DHTs deliver a node, which currently provides
a certain data object or service, KBR provides a method to findtheclosestnode for the
requested data or service, according to some defined metric (e.g. the physical distance
or the number of hops).

The overlay routing then transports the service request to the encountered address
by forwarding the corresponding message in (counter-)clockwise direction of the ad-
dress space until the distance between the address of the current node and the address
of the requested data object or service cannot be minimized any further.

In SSR, a given nodeA is responsible for all data objects or services whose ad-
dresses are located between its own address and the address of some nodeB, whose
address is the smallest of all nodes with addresses larger than nodeA’s address. In this
constellation, nodeB is denoted as nodeA’s successorwhereas nodeA is called node
B’s predecessor. Obviously, correct and reliable overlay routing requiresfor each node
in the network to know its actual successor. This condition is referred to asconsistency.

Analogous toChord [19], it is mandatory for each SSR node to store its physical
neighbors as well as source routes to its predecessor and successor in the virtual address
space within its route cache. However, whereas inChordeach node stores source routes
to O(log n) additional nodes at exponentially spaced distances to reduce the average
request path length, in SSR, source routes to arbitrary nodes are gradually inserted into
a node’s route cache. Once the storage capacity of an SSR node’s route cache is ex-
hausted, entries are replaced according toLRU (least recently used)replacement policy.

11

12 CHAPTER 3. DESCRIPTION AND ANALYSIS OF SSR

3.2 Message Forwarding

As mentioned above, the concept of forwarding messages inScalable Source
Routing is to greedily decrease the distance in the virtual ring while preferring phys-
ically short paths. In this section we explain the SSR forwarding decision procedure in
detail.

In SSR, payload messages contain a source address, a destination address and a
source route. The included source route does not have to spana complete path from
the originators to the destinationd as this would implicate exhaustive knowledge of the
network topology to be able to send a request. In fact, a node adds a source route to the
message, which, up to its current knowledge, obtains a reduction of the virtual distance
to the message’s destinationd, i.e. the message is supplied with a source route to a
proxy destinationnode, whose address resides between the address of the originator
and the address of the actual destination.

Figure 3.1: Illustration of SSR routing process

On receiving a message, each intermediate node forwards themessage until the
end of the contained source route is reached. Assuming that the last nodei1 of the
source route is not the message’s destinationd, the nodei1 serves as amediatorand
tries to append a source route from its route cache that will further reduce the virtual
distance towards the destinationd (details on appending further routing information to
incomplete source routes are given in section 3.3). At this point, two distance metrics
are used to proceed the forwarding decision:

1. Physicaldistance, measured in hops

2. Virtual distance, absolute value of the numerical difference between two nodes’
addresses

The actual forwarding descision proceeds as follows. The mediator nodei1 tries
to append a source route attaining the message’s destination d. If the route cache does
not contain a path to noded, the mediator nodei1 will determine another intermediate

3.3. APPENDING SOURCE ROUTES AND APPLYING SHORTCUTS 13

node that is virtually closer to the destinationd. As typically several such nodes exist,
nodei1 selects the physically closest one among those nodes. If there are still several
nodes left to come into consideration, the virtually closest node to the destinationd
will be selected.

A brief example of SSR source routing is illustrated in figure3.1. Node1 demands
to send a payload message to node42. The message is forwarded to node17, since that
node is physically closest to node1. Node17 is preferred over node13 due to being
virtually closer to node42. For the same reasons, the message is forwarded from node
17 to node32. Node32 forwards the packet to its successor, node39, which in turn
forwards the message to its successor that coincides with the destination, node42.

3.3 Appending Source Routes and Applying Shortcuts

Since up to now any operation related to source routing in SSRis based on the assump-
tion that any link between two nodes is symmetric and consequently source routes are
completely bidirectional, we need to analyze the SSR routing process thoroughly. If we
aim at utilizing asymmetric links as well, we obviously haveto drop this assumption.
Having depicted the basic principles of SSR in the previous sections, we will discuss
further details of SSR source routing now, which have to be thought of accurately if the
above assumption becomes invalid.

By default,hop-by-hopmessages (payload messages actually are hop-by-hop mes-
sages) are forwarded along the source route that is contained in the message’s header.
On receiving this type of message, a node foremost checks if the message has hereby
reached its destination. In case the source route does not contain any further hops and
the message has not reached its destination yet, the currentnode would be a proxy des-
tination, i.e. it has to operate as amediatorand thus to append a source route that will
carry the message to its destination or at least virtually closer towards its destination
(that is, to a further proxy destination).

In SSR, two options of appending routing information to a hop-by-hop message’s
source route are implemented. A mediator node could eitheradd further hopstowards
the message’s destination orapply a shortcutto the given source route. The latter
option is depending on the mediator’s knowledge of the network topology. If the me-
diator node knew an improved source route to the message’s destination, which it is
not part of itself, the remaining part of the original sourceroute will be replaced by
the new path. As expressed by the termshortcut, this kind of route optimization is not
performed unless the number of remaining hops to the message’s destination could be
reduced. In order to redirect the hop-by-hop message onto its new source route, a so-
calledstub pathfrom the mediator node to the adjacent node on this shortcut is added
to the message (see figure 3.3). Eventually, hop-by-hop message forwarding proceeds
as supplied before.

As we also use the currently mentionedstub pathfield in a hop-by-hop message’s
header to provide a pathto the node that most recently modified the message’s source
route, we need to record the mediator node in this stub path field anyway, even though
this mediator did not apply a shortcut to the current source route. Since on occurrence
of a link failure on the message’s source route we intend to inform the most recent

14 CHAPTER 3. DESCRIPTION AND ANALYSIS OF SSR

Figure 3.2: Appending further hops to a hop-by-hop message’s source route

mediator node (as well as each subsequent intermediate nodebetween the most recent
mediator and the node detecting the broken link), recordingthe most recent mediator
of a hop-by-hop message is essential (further details on reporting unavailable links are
depicted in section 3.4 below).

Figure 3.2 illustrates the elementary case of appending routing information onto a
message’s source route. NodeA demands to send a message to nodeE, but it’s route
cache only provides a path to nodeC, which actually is virtually closer to the destina-
tion nodeE. In this example, nodeC is able to entirely complement the source route
to the message’s destinationE and is being recorded as most recent mediator in the
message’s stub path field.

An example of a mediator node applying a shortcut to a message’s source route is
depicted in figure 3.3. The intial source route provided by the issuer nodeA carries the
message to nodeD. As the mediator nodeD knows the shortcutC → E → F to the
message’s destinationF , the hop→ D is cut off from the source route and replaced by
the shortcut. Furthermore, the linkD → C is being inserted into the message’s stub
path field.

On appending additional routing information to an incomplete source route as de-
picted above, it would be reasonable to notify the message’soriginator about the ap-
pended path. Thereby, that node could treat similar requests by itself henceforth. Since
it is not desirable to transfer routing information, which is possibly overaged, from one
route cache to another, we do not send anSSR ROUTE UPDATE message until the
complemented path has been entirely traversed. Thus, upon receiving the considered
message, the destination node sends anSSR ROUTE UPDATE message back to the is-
suer along the reversed path. By this means, reporting potentially broken links directly
from one node’s route cache to another node’s route cache is avoided.

3.4. HANDLING BROKEN LINKS 15

Figure 3.3: Appending a shortcut to a hop-by-hop message’s source route

3.4 Handling Broken Links

On observing that the next hop of an incoming hop-by-hop message’s source has be-
come unavailable by now, the current intermediate node needs to inform the node that
most recently modified the source route (i.e. the node that has actually appended the
broken link to the message’s source route) about the link failure. Thus, using the re-
verse path back to the message’s mediator respectively to its issuer node, it sends an
SSR ROUTE UPDATE message containing the broken link.

If the message’s source route had previously been modified byadding a shortcut,
the reversed stub path would be used to create a path carryingtheSSR ROUTE UPDATE
message to that most recent mediator node. Anyway, each nodethat could possibly
have added the broken link to its route cache while forwarding the corresponding mes-
sage would be notified of the link’s current unavailability,i.e. the reported link will be
marked as inactive in each intermediate node’s route cache as well as in the mediator
or issuer node’s route cache.

3.5 State Maintenance

SSR guarantees consistent routing if and only if all nodes provide valid source routes to
their virtual neighbors, that is its predecessor and successor within the virtual address
ring. In this section we give a brief description of the algorithm that we currently use
to establish thisconsistencycondition of the virtual ring. Since this component of SSR
is still an issue of research and deployment, the version described below only reflects

16
C

H
A

P
T

E
R

3.
D

E
S

C
R

IP
T

IO
N

A
N

D
A

N
A

LY
S

IS
O

F
S

S
R

Querying
route cache

Reporting unavailable
link to issuer / mediator

Forwarding message
on source route

Discarding message
Report ing completed
source route to issuer

Handling message
at destination

Destination reached

Source route at end
& destination not reached

Source route appended

Subsequent hop
unavailable

Path
avoiding
unavailable
link required

Message received
by subsequent hop

Shortcut
aplied

No appropriate
path available

Stub path
at end

Forwarding message
on stub path

Issuer
!= media tor

Message received
by subsequent hop

Subsequent hop unavailable

F
ig

ur
e

3.
4:

P
ro

to
co

ls
ta

te
m

ac
hi

ne
vi

su
al

iz
in

g
S

S
R

m
es

sa
ge

fo
rw

ar
di

ng

3.5. STATE MAINTENANCE 17

the state of the stable SSR implementation at the beginning of this work.

The following algorithm is triggered by a periodic event denoted as
SSR NOTIFICATION event. In the first step, a node handling this kind of event has
to check - based on its local knowledge, i.e. the informationstored in its route cache
- whether its address could be the maximum address in the usedaddress space, i.e.
whether the current node itself could be the correct predecessor of the defined mini-
mum addresszero. If no other node with an address between the own address and the
zeroaddress was found in the route cache, anSSR MAX NODE ANNOUNCE message
would be assembled and sent per broadcast.

In case it is not possible for a given node to be the holder of the maximum ad-
dress, this node queries its route cache for the node, which could most likely be its
virtual neighbor and initiates anSSR NEIGHBOR NOTIFICATION message to that
node. Like payload messages,SSR NEIGHBOR NOTIFICATION messages are hop-
by-hop messages containing a source route to the currently assumed virtual neighbor.

On receiving anSSR MAX NODE ANNOUNCE message, a node needs to check
whether - up to its current knowledge of the network topology- there is another node
whose address is bigger than the issuer’s address. If such a node was found in the
node’s route cache, flooding of theSSR MAX NODE ANNOUNCE message would be
aborted. Otherwise, the current node also checks whether the message’s issuer could
be its virtual neighbor and, if so, initiates anSSR NEIGHBOR NOTIFICATION mes-
sage to that node. Either way, flooding of theSSR MAX NODE ANNOUNCE message
continues.

The handling ofSSR NEIGHBOR NOTIFICATION messages proceeds as fol-
lows. Each intermediate node on the message’s source route queries its route cache
whether it contains a better neighbor candidate (i.e. a nodewhose address is between
the issuer’s address and the message’s current destination’s address) of the message’s
issuer than the message’s current destination. In case a better neighbor candidate is
found the message’s source route is updated. Eventually, the message is forwarded
along the (new) source route to its (new) destination.

In figure 3.4 we depict a protocol state machine that summarizes the particular steps
of message forwarding in SSR as described in the previous sections.

18 CHAPTER 3. DESCRIPTION AND ANALYSIS OF SSR

Chapter 4

Approach Based onPartial Sink
Trees

In this chapter we propose an algortihm for detecting and resolving asymmetric links.
It is based on an approach byJorge A. Cobb[3]. We extend the basic algorithm that is
described in section 4.2 by applying certain assumptions about wireless sensor network
topologies (as described in section 4.3) and integrate it into theScalable Source
Routing protocol (see section 4.4). Finally, we discuss some limitations and special
cases in section 4.5.

4.1 Assumptions and Simplifications

Within this work (as well as in each related work that is summarized in section 2.2),
we assume that for each pair(p, q) of nodes in a given network topology, there exists
a path in the direction from nodep to nodeq as well as in the reverse direction from
nodeq to nodep. Formally expressed, we assume adirected graph, which moreover is
strongly connected.

A directed graphG is defined as a pairG := (V, E), whereasV represents
a set ofvertices(here: the nodes in the given network topology) andE represents
a set of directed edges, i.e. a set of ordered pairs of vertices (here: the links in the
given network topology). Moreover, if such a directed graphis strongly connected, this
graph will contain at least onedirected cyclefor each particular link(p, q), i.e. as
(p, q) represents an edge, which is directed from vertexp to vertexq, the existence of
a sequence of edges{(q, i), . . . , (j, p)} in the reverse direction is assured.

This common assumption is necessary to exclude nodes with only incoming or only
outgoing links.

Furthermore, we assume that each node learns about the nodesin its physical neigh-
borhood through periodically exchanged HELLO messages. Incase of a symmetric
link between two neighborsp andq, both nodes will automatically learn of the exis-
tence of this link.

If, for example, the link between the nodesp andq is an asymmetric link, which
is directed from nodep to nodeq, nodeq will learn of this link, i.e. nodeq will learn

19

20 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

that nodep is abackward neighbor, on receiving nodep’s HELLO messages, whereas
nodep will not ever learn that nodeq is a forward neighbor.

4.2 Basic Algorithm

In the subsequent sections we describe the basic idea ofCobb’sapproach [3], which
uses so-calledsink treesto detect and resolve occurring asymmetric links. Finally,we
discuss this approach with regard to its scalability.

4.2.1 Sink Tree Data Structure

As mentioned above, the approach to asymmetric link detection that we pursued during
this work is based on asink treedata structure, which each participating node needs
to hold. Physical neighbors exchange their sink trees within their periodically broad-
casted HELLO messages.

Basically, a node’s sink tree is a second route cache (which is also referred to as a
node’ssource tree, see section 3.1), but semantically, paths stored in the sink tree are
directed towards the given node, i.e. the node itself is the common sink for all paths
contained in its sink tree. In a route cache/source tree, however, paths are directed from
the given node to various destinations in the network, i.e. the owner of a source tree is
the common source of all paths contained in its source tree.

Furthermore, within the sink tree, we store two additional properties of each link:
the asymmetric linkproperty and theunresolved linkproperty. Virtually, theasym-
metric linkproperty is a flag, which we use to mark a link as asymmetric whereas the
unresolved linkproperty is a flag denoting (potentially asymmetric) links to whom the
given node does not provide a reverse path yet.

4.2.2 Sink Tree Construction andMerging Sink Trees

As mentioned above, physical neighbor exchange their sink trees periodically within
HELLO messages. On joining the network, a node’s sink tree only contains the sink,
i.e. its own address. Paths are added gradually on receptionof periodic HELLO mes-
sages broadcasted by its neighbors. We denote this procedure that is described within
this section asmergingof sink trees. Since it is essential to clearly distinguish between
a node’s local sink tree and a foreign sink tree received in a HELLO message, we will
refer to the latter asHELLO sink treehenceforth. Within SSR, we denote this type of
HELLO messages containing a sink tree asSSR HELLO WITH TREE messages.

Once a node receives a message of typeSSR HELLO WITH TREE, it foremost
checks whether its local sink tree already contains the sender of this HELLO message.
If no entry is found in the first level of the local sink tree, the given node inserts the in-
coming linkfrom the sender, which - at least preliminary - is marked as an asymmetric
link.

The second step is the previously mentioned procedure ofmergingthe paths con-
tained in the HELLO sink tree into the node’s local sink tree.This is achieved with

4.2. BASIC ALGORITHM 21

an iteration over the set of the HELLO sink tree’s leaf nodes.For each leaf node, we
extract the path towards the HELLO sink tree’s sink, i.e. thepath to the sender of the
givenSSR HELLO WITH TREE message, from the HELLO sink tree. Beginning with
the link from the node next to the sink up to the sink itself, weneed to check for each
particular link of the current path, whether the node’s local sink tree already contains
the considered link or not yet. The first case indicates, that, at the most, we have to
update the asymmetric link property of the corresponding entry in the local sink tree.
In the latter case, we need to copy the considered entry from the received HELLO sink
tree to the node’s local sink tree.

Note that we initially assume each link to be asymmetric, i.e. the asymmetric link
property of each entry in the local sink tree is set, but once the asymmetric link property
of an entry is removed, we will not ever set it again based on information contained in
a received HELLO sink tree. Since we do not assume synchronous clocks among the
nodes, a node is not capable to decide whether the information contained in a received
HELLO sink tree is more up to date than the information that isstored in its local sink
tree. Therefore, we solve this issue usingSSR ROUTE UPDATE messages (see section
3.4).

4.2.3 Resolving Asymmetric Links

A node uses its knowledge about the network topology, which it gathers on the basis of
received
SSR HELLO WITH TREE messages from physical neighbors and which it stores in
its local sink tree, to detect asymmetric links and to discover appropriatereverse paths.
In this case, the termreverse pathdenotes a source route around an occurring asym-
metric link, for instance a source route to a backward neighbor whose messages are
received but that cannot be reached in the reverse direction. We refer to this procedure
asresolving asymmetric linksand describe it in detail within this section.

Figure 4.1: Detecting a symmetric link to a physical neighbor

22 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

The algorithm is based on the following elementary observation: If we found aloop
pathwithin a node’s local sink tree, i.e. a path that contains thecurrent node’s address
twice, we could obtain a new source route. Potentially, thisnew source route might
be used to forward messages to some backward physical neighbor that has not been
reachable so far due to an asymmetric link.

First of all, this explanation will concentrate on finding a loop within one dedicated
path that has currently been added to a given node’s local sink tree. As suggested
above, a loop path is detected once the node’s own address, i.e. thesinkor equivalent
theroot of the sink tree, occurs again within the considered path.

A loop paths← ni ← s (s denoting the sink, i.e. the owner of the given local sink
tree) of length2 indicates that the link between the sinks and the physical neighbor
denoted asni has to be a symmetric link. Hence we add the paths→ ni to the source
tree of nodes whereas the duplicated entry for nodes at the second level of the local
sink tree will be deleted.

Figure 4.1 illustrates the described procedures employinga simple setting with
three nodesA, B andC with a single asymmetric link that is directed from nodeC to
nodeA.

When being viewed from behind, a loop path with a length ofk hops,k > 2,
formally expressed ass ← n1 ← n2 ← . . . ← nk−1 ← s provides a source route
s → nk−1 → . . . → n2 → n1 to the physical neighborn1. Assuming an incoming
asymmetric links ← n1, nodes could resolve this incoming asymmetric link by in-
serting the currently discovered source route into its source tree.

Figure 4.2: Resolving an incoming asymmetric link(i)

Continuing the example started above (see figure 4.1), this time we consider the
loop pathA ← C ← B ← A. Viewing this loop path from behind leads to a source
routeA → B → C to nodeC. Since there is an incoming asymmetric linkA ← C

4.2. BASIC ALGORITHM 23

in this examples’s setting (i.e. nodeC is an unresolved backward neighbor of node
A), nodeA adds the new source routeA → B → C to its source tree whereas the
duplicated entry at the second level (sink ↔ levelzero) of the local sink tree is being
deleted. We depict these steps in figure 4.2.

On detecting a loop paths← n1 ← n2 ← ...← nk−1 ← s spanningk > 2 hops,
there is another potential of resolving an incoming asymmetric link.

Obviously, there is an - at least - outgoing links→ nk−1 from nodes to the second
node of the loop path,nk−1, i.e. nodenk−1 is in reach of nodes. If we found a disjoint
paths← nn ← ...← nk ← nk−1 down from this physical neighbornk−1 in the local
sink tree withs ← nn being an incoming asymmetric link, we could resolve this link
with the source routes → nk−1 → nk → ... → nn. This source route is assembled
of the first hop of the loop path,nk−1 ← s, and the disjoint path tonn excluding the
incoming asymmetric links← nn.

Figure 4.3: Resolving an incoming asymmetric link (ii)

Figure 4.3 shows an example setting where we apply the procedure as described
above to resolve the incoming asymmetric linkA ← D at nodeA. After merging the
HELLO sink tree received from nodeB into the local sink tree of nodeA, the loop path
A ← B ← C ← A is detected and thus the source routeA → C → B is extracted as
has been shown in figure 4.2 and described in the previous example.

24 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

The first hop of the loop path provides an outgoing linkA → C. Within this ex-
ample, the local sink tree contains a disjoint pathA← D ← C originating at nodeC.
Concatenating this path excluding the last hopD ← A onto the outgoing linkA→ C,
we assemble a new source routeA→ C → D to the unresolved neighborD.

4.2.4 Scalability Issues

If the proposed algorithm was used as described above, a node’s local sink tree would
grow continuously until it contained any link of the given network topology. As each
symmetric link may occur twice, i.e. once for both directions, the storage complexity
for the local sink tree would be inO(2n) whereasn is the number of directed edges in
the network graph. Even if we assume nodes, which provide sufficient storage capacity
to hold this amount of information, the given algorithm doesstill not scale to larger
sized networks, since it is not practicable to exchange periodic HELLO messages of
this dimension.

Technically, the primary contraint to meet is theMTU (maximum transfer unit),
which is specific to the underlying MAC layer protocol. In practice - depending on
the actual node density - even HELLO messages compliant to the given MTU could be
to large. In wireless settings, the higher propagation delay of large messages implies
an increasing collision probability at media access, whichhas to be avoided in order to
prevent a grave break-in of overall network throughput. Furthermore, it is a principle of
network protocol design to spend as little bandwidth as possible for control overhead.

In the subsequent section we discuss how the given algorithmcould be adapted
to larger sized networks while concurrently dealing with appropriately small HELLO
messages.

4.3. SCALABILITY ENHANCEMENTS 25

4.3 Scalability Enhancements

Within this section, we propose several strategies on filling SSR HELLO WITH TREE
messages, which physical neighbors periodically exchange, with partial information of
a node’s local sink tree. Furhtermore, we analyze these strategies with regard to their
intended impact and potential side effects.

First of all, it is mandatory to include a node’s currently known physical neighbors
in each HELLO message. Otherwise, these HELLO messages would not be useful
with regard to their intrinsic purpose of efficiently integrating new nodes into the SSR
protocol anymore.

Basically, we integrated three strategies on selecting local sink tree information
to be copied toSSR HELLO WITH TREE messages into the basic algorithm that we
described in section 4.2:

• SSR UNRESOLVED LINKS FIRST

• SSR DELTA TREE

• SSR RANDOM TREE

Effectively, we only employ the third strategy to obtain comparative data during
the evaluation stage of this work (as explained below).

The proposed strategy referred to asSSR UNRESOLVED LINKS FIRST strategy
is based on specific assumptions, which we derived of common wireless sensor net-
work settings. First of all, we assume an uniform distribution of the wireless sensor
nodes, which implies an at least approximately uniform nodedensity within the net-
work topology. Furthermore, we assume that a major fractionof the wireless sensor
nodes provides an equal minimum transmission range whereasa minor fraction of the
wireless sensor nodes provides an enhanced transmission range. Thus, asymmetric
links induced by this kind of wide transmission range nodes usually are links that are
non-essential with regard to the overall network connectivity, i.e. the network topol-
ogy would still be compliant to the conditions of a connectedgraph (see section 4.1)
if these asymmetric links were ignored respectively blocked. Nonetheless, these links
could provide reasonable shortcuts when utilized in sourcerouting. Besides that, the
latter assumption suggests that the loop paths, which our algorithm requires to resolve
this kind of asymmetric links, should only span a few hops.

Taking these assumptions as a basis, we propose the following approach. As
long as the local sink tree’s size is below or equals the space, which is provided in
SSR HELLO WITH TREE messages, we completely copy the local sink tree into the
current HELLO message. Upon exceeding the space provided inHELLO messages,
we apply the following priorization to select partial information of the local sink tree:

close unresolved links > remote unresolved links > close resolved links >

remote resolved links

According to this order, paths containing close unresolvedlinks are primarily copied
to the HELLO sink tree. If there is still some space left within the HELLO message,
paths containing remote unresolved links will be selected and so forth. On the other

26 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

hand, there could be a potential for paths only containing resolved links to be helpful
at resolving asymmetric links as well. Therefore two alternative perceptions of this
priorization seem to be reasonable.

If we enforce this priorization for each particularSSR HELLO WITH TREE mes-
sage, paths containing close unresolved links will be sent in each HELLO message until
they get resolved. Then the same procedure continues with farther unresolved links and
so on. Thus, we denote this strategy on selecting partial information of the local sink
tree to be copied to current HELLO messages asSSR UNRESOLVED LINKS FIRST
strategy. Depending on the space provided in HELLO messages, it could take a con-
siderably long period of time, until paths only containing resolved links are selected
and copied to a HELLO message - if at all.

Thus, particularly if the space provided for the local sink tree was relatively small,
it would be reasonable to enforce the priorization as described above by sending the
entire local sink tree divided up to severalSSR HELLO WITH TREE messages, i.e.
we send close unresolved links in the first HELLO message(s),subsequent HELLO
messages contain farther unresolved links and so forth, until the local sink tree
has been entirely transmitted. We refer to this variant of the currently proposed
SSR UNRESOLVED LINKS FIRST strategy asSSR DELTA TREE strategy.

Obviously, theSSR UNRESOLVED LINKS FIRST is aimed at predominantly re-
solving asymmetric links within a node’s local area. Consequently, there is a potential
to enhance the overall routing performance of the SSR protocol with support for asym-
metric links by trying to improve a hop-by-hop message’s source route at each interme-
diate hop, i.e. each forwarding node attempts to immediately utilize currently resolved
asymmetric links, which could possibly abbreviate the message’s current source route.
Furthermore, if this so-calledSSR EARLY PATH OPTIMIZATION extension accom-
plishes to improve a message’s source route, we initiate anSSR ROUTE UPDATEmes-
sage to the node (issuer or mediator) that most recently modified this source route.
Thereby, that node could apply this source route opimization by itself in the future and
thus shortcuts are gradually being distributed across the network.

As discussed in section 3.3, one of the principles of SSR is not to transfer
routing information, which could possibly be overaged, from one route cache to
another and thusSSR ROUTE UPDATE messages reporting route optimizations
should not be initiated until the intended destination has been reached. The proposed
SSR EARLY PATH OPTIMIZATION extension of course offends this principle, but
nonethelss, there is at least one argument supporting an implementation of this exten-
sion:

If we utilize asymmetric links during the SSR routing process, the source route a
message has traversed upon reaching its destination will typically not be identical to
the reverse path back to the message’s issuer, which would beused by a subsequent
SSR ROUTE UPDATE message (see section 4.4.1). Thus, the source route is not orat
least not completely validated upon the reception of theSSR ROUTE UPDATE mes-
sage at the precedent hop-by-hop message’s issuer and therefore could possibly be
overaged as well.

Clearly, theSSR EARLY PATH OPTIMIZATION extension will also have an im-
pact on SSR source routing without utilizing asymmetric links, which we need to ob-
serve during the evaluation stage of this work.

Our third strategy on selecting paths to be copied toSSR HELLO WITH TREE
messages virtually fills the HELLO message with paths that wepick of the local sink

4.3. SCALABILITY ENHANCEMENTS 27

tree at random and thus is referred to asSSR RANDOM TREE strategy. Using this strat-
egy, each path in a node’s local sink tree has the same probability to be sent in the sub-
sequent HELLO message. As mentioned above, this is more of abrute forcemethod
than any kind of sophisticated strategy and thus is basically employed to compare the
simulations results of theSSR UNRESOLVED LINKS FIRST strategy as well as the
SSR DELTA TREE strategy to.

Obviously, the proposed strategies on constructing HELLO sink trees according to
a priorization of local sink tree information as described above aim at efficiently re-
solving asymmetric links within the proximal environment of a given node. As long as
occurring asymmetric links are the exception rather than the rule and the corresponding
loop paths are not exceptionally long, asymmetric links should be resolved within few
HELLO message intervals, i.e. the calculational best case would be:

timeresolving asymmtric link = #hops of loop path ∗ periodHELLO messages

28 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

4.4 Integration into SSR

Having introduced the proposed algorithm to detect and resolve asymmetric links in
the previous sections, in the subsequent sections we describe modifications specific to
SSR, which are essential in order to utilize asymmetric links within the source routing
process.

4.4.1 Link Substitution

Before detection mechanisms for asymmetric links have beenimplemented in SSR,
source routing was based on the assumption of paths being completely bidirectional,
i.e. the destination node of a hop-by-hop message could simply reverse the contained
path and send its reply to the message’s issuer node. Clearly, if source routes contain
asymmetric links are, this assumption will not apply any more.

We apply a principle referred to aslink substitutionin order to construct a reverse
path back to the issuer while forwarding a message on the contained source route. For
this purpose, we introduced a so-calledpath-to-issuerfield within the header of hop-
by-hop messages. On receiving a hop-by-hop message, each node has to check whether
the incoming hop is a symmetric link or an asymmetric link. Obviously, we merely
need to reverse symmetric links before we append them to the message’s current path-
to-issuer. In the latter case, i.e. the message was receivedover an asymmetric link, the
current intermediate node needs to query its source tree fora path back to the previous
hop on the message’s source route in order to conveniently complement the reverse
path to the hop-by-hop message’s issuer. If the node’s source tree does not provide
an appropriate path, i.e. the message has recently been forwarded by an unresolved
backward neighbor, the message will be discarded.

It is important to note that, at this particular point, initiating SSR’s route update
mechanism, i.e. distributing the information that the corresponding link should not
be used any further, is not desirable at all. Such an approachwould simply exploit
this operation for asymmetric link resolving issues. Asymmetric links should only be
resolved by using the proposed algorithm based onHELLO WITH TREE messages as
described above (see section 4.2.3).

A solution compliant to SSR could be a time-delayed retransmission of the corre-
sponding hop-by-hop message, assuming that the concerningunresolved link would be
resolved shortly.

Figure 4.5 depicts a short example of the currently described link substitutionprin-
ciple. NodeA is sending a message with source routeA → B → C → E containing
an asymmetric link, which is directed from nodeB to nodeC. On receiving this
message, nodeC needs to replace the incoming asymmetric linkB → C by some
appropriate reverse path back to nodeB. In this example’s setting, nodeC already
provides the knowledge about the pathC → D → B and thus replaces the asymmetric
link B → C by the reverse pathC → D → B.

For the sake of clarity, this figure only shows how the path to amessage’s issuer
is constructed by substituting each asymmetric link on the corresponding source route
with an appropriate reverse path. However, it is important to note that thesource route
field and thepath-to-issuerfield actually are distinct fields within the header of hop-
by-hop messages and therefore intermediate nodes do not modify the source route field

4.
4.

IN
T

E
G

R
AT

IO
N

IN
T

O
S

S
R

29

Querying
route cache

Reporting unavailable
link to issuer / mediator

Forwarding message
on source route

Discarding message
Report ing completed
source route to issuer

Handling message
at destination

Destination reached

Source route at end
& destination not reached

Source route appended

Subsequent hop
unavailable

Path
avoiding
unavailable
link required

Message received
over symmetr ic l ink

Shortcut
aplied

No appropriate
path available

Stub path
at end

Forwarding message
on stub path

Issuer
!= media tor

Querying route cache
for path to previous hop

Message received over
asymmetr ic l ink

Asymmetr ic incoming l ink
substi tuted with reverse path

Message received
over asymmetr ic l ink

Asymmetr ic incoming l ink
substi tuted with reverse path

No path to previous hop available

Message received
over symmetr ic l ink

Subsequent hop unavailable

F
ig

ur
e

4.
4:

P
ro

to
co

ls
ta

te
m

ac
hi

ne
of

S
S

R
m

es
sa

ge
fo

rw
ar

di
n

g
su

pp
or

tin
g

as
ym

m
et

ric
lin

ks

30 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

Figure 4.5: Example for asymmetric link substitution

during the link substitution procedure.

As described in section 3.3, SSR provides two options of extending incomplete
source routes by some mediator node. The last node on a hop-by-hop message’s source
route either has to append further hops towards the message’s destination or to apply
a shortcut to the message’s source route. In case of an occurring link failure on a cur-
rently traversed source route, we intend to notify the node that most recently modified
this source route. As explained earlier, we use thestub pathfield in a hop-by-hop mes-
sage’s header to either record a mediator node appending further hops to the message’s
source route or to insert a ’real’ stub path carrying the message onto its new source
route after applying a shortcut.

Since naturally a stub path may contain asymmetric links, too, analogous to the
previously introducedpath-to-issuerfield, we need to add apath-to-mediatorfield to
hop-by-hop messages’ headers. While a message is being forwarded on a stub path, we
likewise employ thelink substitutionprinciple as described above to obtain a reverse
path to the mediator node, that most recently applied a shortcut to the message’s source
route.

Figure 4.6 shows an example setting where thelink substitutionprinciple is applied
on a stub path as well as on the regular source route. NodeA demands to send a
message to nodeF , but is only able to provide a source routeA → B → C → D to
the proxy destinationD. While message forwarding is proceeded as described above,
the asymmetric linkB → C is substituted with the reverse pathC → E → B.

The mediator nodeD applies the a shortcut to the hop-by-hop message’s source
route by cutting off the pathB → C → D and appending the linkB → F instead, i.e.
the message’s new source route isA → B → F . In order to carry the message onto
this source route, nodeD adds the stub pathD → C → E → B to the message. While
traversing this stub path, the corresponding reverse path to nodeD is being constructed
and recorded within the message’spath-to-mediatorfield. Since the stub path contains

4.4. INTEGRATION INTO SSR 31

Figure 4.6: Link substitution on a stub path after applying ashortcut

32 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

the asymmetric linkE → B, nodeB needs to substitute this link with the reverse path
B → C → E. This link substitution induces a loopC → E → C within thepath-to-
mediatorB → C → E → C → D, which is detected and cut out from the current
path-to-mediator.

Consequently, the message has reached its new source route at nodeD and is fi-
nally forwarded to its destination, nodeF .

Recapitulatory, figure 4.4 highlights the modifications to the basic SSR protocol
state machine as shown in figure 3.4, which were required in order to provide support
for the utilization of asymmetric links.

Furthermore, the implementation of theSSR EARLY PATH OPTIMIZATION ex-
tension as described in section 4.3 of course requires additional modifications to the
SSR protocol state machine. We emphasize these modifications in figure 4.8.

Each intermediate node handling a hop-by-hop message needsto query its route
cache in order to improve the remaining part of the currentlytraversed source route or
stub path. If an optimization is accomplished, the current mediator node needs to send
an SSR ROUTE UPDATE message reporting the optimized source route to the node
that most recently modified this source route, i.e. a previous mediator respectively the
issuer node.

4.4.2 Inconsistencies of Knowledge

An asymmetric links always has the property that it takes more time for its source
to learn about its existence than it takes for its sink. In early states of SSR bootstrap-
ping, this property could induce inconsistent knowledge ofthe actual network topology
among neighboring nodes.

Figure 4.7: Example setting inducing an inconsistency of knowledge

Due to these inconsistencies of knowledge, it is possible for a node to receive a
hop-by-hop message and not to know the next hop (i.e. an unknown forward neigh-
bor) on the contained source route yet, although this node isactually active and thus
could receive and forward the corresponding message. However, since SSR already
provides the possiblity to distinguish between unknown andbroken links (we do not
instantaneously delete a broken link from the outgoing interface store, but mark it as
unavailable, see section 5.1.4 and 5.2.6), we can solve this issue by forwarding
the message per broadcast. Based on the hop-by-hop message’s source route and hop
count, any node receiving the broadcasted message is capable of determining whether
it is the message’s intended subsequent recipient or not. Clearly, each false recipient

4.4. INTEGRATION INTO SSR 33

would discard the message.

Figure 4.7 illustrates a setting that could lead to a temporary inconsistency of
knowledge as described above. As nodeB would definitely learn of the asymmet-
ric link C → A prior to nodeC, nodeB could use this link at source routing and node
C would - at least for a short period of time - not even know aboutthe existence of
nodeA.

34
C

H
A

P
T

E
R

4.
A

P
P

R
O

A
C

H
B

A
S

E
D

O
NP

A
R

T
IA

L
S

IN
K

T
R

E
E

S

Querying
route cache

Reporting unavailable
link to issuer / mediator

Forwarding message
on source route

Discarding message
Report ing completed
source route to issuer

Handling message
at destination

Destination reached

Source route at end
& destination not reached /

Source route appended

Subsequent hop
unavailable

Path
avoiding
unavailable
link required

Message received
over symmetr ic l ink

Shortcut
applied /
stub path
opt imized

No appropriate
path available

Stub path
at end

Forwarding message
on stub path

Issuer
!= media tor

Querying route cache
for path to previous hop

Message received over
asymmetr ic l ink

Asymmetr ic incoming l ink
substi tuted with reverse path

Message received
over asymmetr ic l ink

Asymmetr ic incoming l ink
substi tuted with reverse path

No path to previous hop available

Message received
over symmetr ic l ink

Trying to
opt imize
stub path

Trying to optimize
source route

Reporting optimized
source route to

mediator / issuer

Source route / stub
path opt imized

SSR_ROUTE_UPDATE
message sent

Subsequent hop unavailable

F
ig

ur
e

4.
8:

P
ro

to
co

ls
ta

te
m

ac
hi

ne
of

S
S

R
m

es
sa

ge
fo

rw
ar

di
n

g
su

pp
or

tin
g

as
ym

m
et

ric
lin

ks
an

dS
S
R
E
A
R
L
Y
P
A
T
H
O
P
T
I
M
I
Z
A
T
I
O
N

4.5. DISCUSSION 35

4.5 Discussion

In the subsequent sections we discuss some issues that are not finally solved within our
approach.

4.5.1 Limitations of the Proposed Approach

As explained in 4.1, for each pair of adjacent nodes in the network we assume the
existence of at least one directed cycle containing both of these nodes. Thus, for each
occurring asymmetric link in the network topology, the existence of at least one reverse
path that could resolve this asymmetric link is assured.

Figure 4.9: Example setting containing an isolated node

In practice, this assumption does not necessarily apply. Therefore in this section
we discuss some consequences that could be anticipated if the proposed approach is
employed in certain settings that are not compliant to the assumption described above.

The first setting to be discussed is depicted in figure 4.9. Dueto the asymmetric
link C → D, nodeD will never be discovered by any other node in this example’s
network topology. NodeD receives the periodic HELLO messages of nodeC, but the
asymmetric linkC → D cannot be resolved since no reverse path to nodeC exists.

Figure 4.10: Example setting containing a partitioned network topology

36 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

Figure 4.10 illustrates a network topology, which is partitioned due to the unresolv-
able asymmetric linkD → C. Analogous to the previous setting, the lower partition of
the given network does not learn of the upper partition’s existence at all. Nevertheless,
neither source routing nor the algorithm resolving asymmetric links is affected within
the lower partition. As nodeD actually is a backward neighbor of nodeC, this kind of
network partition, which is hidden behind an asymmetric link, is also referred to as a
backward partition.

However, within the upper partition (which analogously is denoted as aforward
partition), the algorithm resolving asymmetric links indeed is affected, since nodeC
receives the HELLO messages of nodeD and merges the contained HELLO sink tree
into its local sink tree (see section 4.2). Consequently, nodeC will propagate the asym-
metric link D → C (and, subsequently, the asymmetric linkF → D as well), which
actually is a close unresolved link of nodeC, across the forward partition of the net-
work topology. Obviously, this information is of no use for any of the nodes within the
forward partition, since that link is not resolvable at all.Furthermore, some space in
the local sink trees of the forward partition’s nodes as wellas in the HELLO sink trees
that are exchanged between those nodes is wasted by including (superfluous) topology
information of the backward partition.

Assuming a large backward partition containing plenty of asymmetric links that are
relatively close to the forward partition, the forward partition will constantly get flushed
with superfluous sink tree information of the backward partition. Consequently, the
proposed algorithm will not be able to utilize the space provided in HELLO messages
optimally and thus will take a considerably longer period oftime to resolve occurring
asymmetric links within the forward partition.

4.5.2 Detecting Broken (Asymmetric) Links

If we utilize asymmetric links during the routing process, agiven source route and its
reverse path typically are - at least partially - different from each other.

Figure 4.11: Example setting containing an asymmetric linkthat becomes unavailable

Within the SSR protocol, we detect a failing symmetric link once no HELLO mes-
sage of the corresponding physical neighbor is received within a defined link timeout
interval.

Considering an asymmetric linkA → B as depicted in figure 4.11, nodeA of
course does not receive HELLO messages that are sent by nodeB at all. Thus, on the
basis of HELLO message reception, only the sink, nodeB, is capable of detecting a
failing asymmetric link.

4.5. DISCUSSION 37

In order to solve this issue, nodeB could employ the reverse pathB → C → D →
A to send anSSR ROUTE UPDATE message reporting the broken linkA → B to its
former source, nodeA (as well as to each intermediate node on the reverse path). How-
ever, in the worst case, a failing asymmetric link could leadto a partitioned network
topology if there is no redundant directed cycle containingboth of the nodes that are
adjacent to this failing asymmetric link (see section 4.1).Clearly, the same considera-
tion applies to a failing link on the reverse path: If a redundant reverse path existed, it
would eventually be discovered, otherwise SSR would necessarily fail.

As long as an unavailable asymmetric link has not been detected due to absent
HELLO messages, there is no possibility to efficiently detect this link failure dur-
ing the routing process. Ordinary per hop acknowledgementsare not efficiently ap-
plicable when utilizing asymmetric links. If, referring tothe above example, per
hop acknowledgements from nodeB to nodeA were tunnelled over the reverse path
B → C → D → A (as proposed byNesargi et al.[14]) or if end-to-end acknowl-
edgements were applied, nodeA would not be able to definitely identify the link that
actually has become unavailable on the basis of an absent acknowledgement of node
B. Thus, the tunnelled or end-to-end acknowledgement is required to be hop-wise ac-
knowledged as well and - if a single per hop acknowledgement gets lost - the routing
protocol has to be employed do discover an alternative reverse path that could carry the
tunnelled or end-to-end acknowledgement to its destination (nodeA).

Due to the considerable complexity of such enhanced acknowledgement mecha-
nisms, it seems to be rather recommendable (within the SSR protocol at least) to rely
on local detection of link failures, discarding potentially overaged source routes and
time-delayed message retransmissions instead.

In case of a broken asymmetric link, the sink needs to notify the source by em-
ploying the corresponding reverse path or - if the current reverse path is overaged - by
employing the routing protocol to discover a new reverse path. Basically, any tech-
nique of reporting broken (asymmetric) links will only workif the network topology
still provides a directed cycle containing both of the nodesthat are adjacent to the
broken link.

38 CHAPTER 4. APPROACH BASED ONPARTIAL SINK TREES

Chapter 5

Implementation

The scope of this chapter is to provide as much documentationas necessary to orient
oneself within the implementation and to be able to use or to extend it.

Foremost, we give a brief overview on all classes of thessr-core library that are
relevant to the integration of the proposed algorithm and extensions as described in the
previous chapter 4.

In the subsequent sections we locate specific implementation parts within the
ssr-core library and explain major extensions or modifications that have been inte-
grated during the implementation stage of this work.

A complete and exhaustive analysis of thessr-core library is given in the study
thesisScalable Source Routing in the AmbiComp Environmentby Fabian Knittel[12].

5.1 Overview on thessr-core Library

Within the following sections, we outline the purpose of each class of thessr-core
library that has been added or extended during the implementation stage of this work.
Furthermore, we provide some basic information on the architecture of thessr-core
library, which is crucial to understand how the accomplished modifications fit into the
context of this architecture.

5.1.1 cNode Class

cNode

Figure 5.1: Abstract class cNode

The cNode class is an abstract class representing an SSR node in the network.
It contains any functionality related to interaction within the implementation of SSR
and defines interfaces for interaction with upper and lower layers of the protocol stack.
The latter is implemented providing a set of pure virtual functions (for example
sendToNic, sendUp). By implementing these functions within a child class of

39

40 CHAPTER 5. IMPLEMENTATION

cNode, thessr-core library could be adapted to various environments and applica-
tions.

5.1.2 cMessage Class and Subclasses

This section will give a brief description of the hierarchical architecture of message
classes within thessr-core library, which is depicted in the class diagram 5.2.

The abstract superclasscMessage of all message classes provides common prop-
erties of all derived types of messages, such as fields fornetwork layer addressof the
source node and the message’shop count.

cMessage

cMsgHopByHop

cMsgConnect

cMsgPayloadcMsgNeighborNot i f i ca t ion

cMsgRou teUpda te

cMsgHel lo

cMsgHel loWi thTree

cMsgKi l l cMsgMaxNodeAnnounce

Figure 5.2: Minimal class Diagram of SSR messages

SSR HELLO messages as derived from thecMsgHello class are sent per broad-
cast in order to distribute information about the physical environment and contain a list
of the sender’s currently known physical neighbors.

We added the subclasscMsgHelloWithTree in order to create extended HELLO
messages of typeSSR HELLO WITH TREE containing a sink tree (see sections 4.2 and
4.3). We provide further details concerning this class in section 5.2.2.

Once a node running SSR is going down, a message of typeSSR KILL (an in-
stance of the classcMsgKill) is sent out per broadcast in order to preliminary inform
the node’s physical neighbors.

Messages of typeSSR MAX NODE ANNOUNCE (cMsgMaxNodeAnnounce) are
- as well asSSR NEIGHBOR NOTIFICATION messages, which we describe below -
used by the SSRstate maintenancealgorithm (see section 3.5) in order to establish the

5.1. OVERVIEW ON THESSR-CORE LIBRARY 41

consistencystate of the virtual ring, i.e. to discover each node’s virtual neighbors.

ThecMsgHopByHop class is the abstract superclass of any message type contain-
ing a source route to the intended destination or at least a source route towards a proxy
destination. These messages contain a path and potentiallya stub path (see section 3.3).

As described in chapter 3, we employ messages of typeSSR ROUTE UPDATE,
which are created as instances of thecMsgRouteUpdate class, for at least two
reasons. We either use these messages to report a broken linkto the - issuer or me-
diator - node that most recently modified a previous hop-by-hop message’s source
route or to report a complemented or improved source route toa previous hop-by-hop
message’s destination to the corresponding issuer node.

Furthermore, if we enable the proposedSSR EARLY PATH OPTIMIZATION ex-
tension (see section 4.3), each time an intermediate node optimizes a hop-by-hop mes-
sage’s source route, it will send anSSR ROUTE UPDATE message to the node that
most recently modified this source route. Consequently, messages of this type contain
complete source routes, which should not be modified by the SSR routing algorithm
(see sections 3.3 and 3.4).

In contrast to that, a node sending anSSR NEIGHBOR NOTIFICATION or
SSR PAYLOAD message occasionally cannot provide a complete source route to reach
the intended destination. Thus we implemented the basic mechanisms of appending
source routes and applying shortcuts (see 3.3) within the abstractcMsgConnect su-
perclass of thecMsgNeighborNotification andcMsgPayload classes.

When sending anSSR NEIGHBOR NOTIFICATION message, the issuer node
selects the - up to its local knowledge - most likely virtual neighbor candidate and
provides a source route to this potential virtual neighbor.As each intermediate
checks whether it could update the message’s current destination with a
better virtual neighbor candidate,SSR NEIGHBOR NOTIFICATION messages usu-
ally contain a relative destination, i.e. we aim at discovering the virtually closest node
to theSSR NEIGHBOR NOTIFICATION message’s source.

5.1.3 Cache Classes

cRouteCache

cSourceRouteCache cSinkRouteCache

Figure 5.3: Simplified class diagram of route cache classes

Within the hitherto existing implementation of thessr-core library, a node’s
route cache has been created as an instance of thecRouteCache class. This class
contains the actual route cache functionality, such as assembling a path to or towards

42 CHAPTER 5. IMPLEMENTATION

a given virtual address, inserting, removing or refreshinglinks (i.e. cache lines) and
a replacement algorithm applyingLRU (least recently used)replacement policy (see
section 3.1).

5.1.4 Interface Store Classes

An instance of thecNode contains one instance of thecInterfaceStore class,
which an SSR node uses to hold its physical neighbors. This interface store basically
provides anARP-like mapping of the physical neighbors’ network layer addresses to
their MAC layer addresses.

c In te r faceStore

cPointToPoint In ter face

Figure 5.4: Simplified class diagram of interface store classes

For each physical neighbor, an instance of thecPointToPointInterface
class is created, which the SSR node uses to store the physical neighbor’s MAC ad-
dress and to observe its state, i.e. a physical neighbor is marked asactiveas long as its
periodic HELLO messages are received within a defined link timeout interval.

In order to support the utilization of asymmetric links in SSR, we need to distin-
guish betweenincomingandoutgoingphysical neighbors. We provide further details
on this issue in section 5.2.6.

5.2. MODIFICATIONS WITHIN THESSR-CORE LIBRARY 43

5.2 Modifications within the ssr-core Library

In the subsequent sections we describe major modifications and extensions to the
ssr-core library, which have been integrated during the implementation stage of
this work.

Thereby we outline how the novel functionality of the algorithm and extensions
as proposed in the previous chapter 4 has been implemented and explain where these
particular components or modifications are located within thessr-core library.

5.2.1 Extensions of thecNode Class

Basically, we extended the cNode class by adding a local sinktree, i.e. an instance of
thecSinkRouteCache class (see section 5.2.5), as well as a second instance of the
cInterfaceStore class, since it is required to distinguish between incomingand
outgoing interfaces henceforth (refer to section 5.2.6 forfurther details).

The novel functioncheckForUnresolvedLinks() performs an iteration over
the links stored in the local sink tree updating theisUnresolved property of each
particular entry by querying the node’s source tree for a matching reverse path. We
employ this functionality to implement a priorization of unresolved links when select-
ing paths of the local sink tree to be copied to anSSR HELLO WITH TREE message.
Thus, we call the functioncheckForUnresolvedLinks() each time after having
processed a received HELLO sink tree.

Furthermore, some minor modifications were required to store some parameters,
which we need to configure the HELLO sink tree contruction procedure, namely the
maximum HELLO sink tree size provided inSSR HELLO WITH TREE messages, the
strategy that is used to select local sink tree information to be copied to the HELLO
sink tree, or to enable/disable theSSR EARLY PATH OPTIMIZATION extension (see
sections 4.3 and 5.2.5).

5.2.2 cMsgHelloWithTree Class

The novelcMsgHelloWithTree class is derived of the cMsgHello class of regular
HELLO messages. Instead of a list of a node’s physical neighbors, HELLO messages
of this type contain a HELLO sink tree, i.e. an instance of thecSinkRouteCache
class, which we create by using a dedicated constructor for HELLO sink trees (see sec-
tion 5.2.5).

Within this class, the mandatoryhandle(...) function of thecMsgHello
class is overwritten. First of all, we either have to add the sender of a currently re-
ceivedSSR HELLO WITH TREE message to the incoming interface store or we have
to refresh the corresponding instance of thecPointToPointInterface class. If
the HELLO sink tree contains a link directed from the currentnode towards the sender
of the HELLO sink tree, we will add the sender to the outgoing interface store as well
(see section 5.2.6). Furthermore, this function provides the implementation of the al-
gorithm searching for loops within paths that have recentlybeen merged into the local

44 CHAPTER 5. IMPLEMENTATION

sink tree (see sections 4.2.3 and 5.2.5).

5.2.3 Modifications to thecMsgConnect Class

As described in section 4.4.1, each intermediate node handling a message of type
SSR NEIGHBOR NOTIFICATION or SSR PAYLOAD needs to extend the message’s
path-to-issuerfield and potentially itspath-to-mediatorfield by appending a reverse
path to the previous hop on the message’s source route or stubpath.

Since this operation is required for both,SSR NEIGHBOR NOTIFICATION and
SSR PAYLOAD messages, it has been implemented within the common superclass
cMsgConnect.

5.2.4 Early Path Optimization in the cMsgPayload class

If we enable the application of theSSR EARLY PATH OPTIMIZATION extension,
each intermediate node receiving anSSR PAYLOAD message will need to query its
route cache in order to attempt to improve the message’s source route or a currently
traversed stub path (see section 4.3). Regular SSR message forwarding would only
append routing information or apply a shortcut if either themessage’s source route was
at its end or the subsequent hop on the message’s source routehad become unavailable
(see sections 3.2 and 3.4).

5.2.5 cSinkRouteCache Class

As described in section 4.2.1, a sink tree virtually is a route cache and thus the
cSinkRouteCache class is derived from thecRouteCache class. Since HELLO
sink trees are created as instances of thecSinkRouteCache class as well as nodes’
local sink trees, but have different attributes, we implemented two different construc-
tors within this class.

address uplink . . . asymLink isUnresolved sentInPrevHelloMsg time

Table 5.1: Cache columns provided by an instance ofcSinkRouteCache class

The constructor used to instantiate local sink trees practically creates an empty
route cache object of typeSINK TREE. Optionally, a maximum number of cache lines
can be passed to this constructor. Table 5.1 illustrates theadditional cache columns
that had to be established in order to implement specific functionality of the local
sink tree data structure, namely the propertiesasymLink, isUnresolved and
sentInPrevHelloMsg.

On receiving a message of typeSSR HELLO WITH TREE, we use a node’s
local sink tree’s member functionmergePathIntoLocalSinkTree(path,
helloSinkTree) in order to merge the currently selected path of the given HELLO
sink tree into the node’s local sink tree (see section 4.2.2). For each link that is already

5.2. MODIFICATIONS WITHIN THESSR-CORE LIBRARY 45

contained in the local sink tree, we increment the time stampof the corresponding
cache line.

We will update the asymmetric link property as well if and only if the considered
link is marked as symmetric in the HELLO sink tree, but is marked as asymmetric
in the local sink tree. Since we do not assume synchronized clocks, a node is not
capable of distinguishing whether the information stored in the local sink tree or the
information received with the HELLO sink tree is more up-to-date. Thus, once we have
marked a link as symmetric in the local sink tree, we assume this link as symmetric
until we receive anSSR ROUTE UPDATE message, reporting that the link has become
unavailable in a given direction.

Once a node’s local sink tree is running short of space, we usea cache line replace-
ment algorithm enforcing anLRU (least recently used)replacement policy, i.e. entries
are discarded in ascending order of their time stamps (see section 5.1.3).

As described in the sections 4.2 and 4.3, HELLO sink trees maybe constructed
as identical copies of a node’s local sink tree. This is the default mode (referred to as
SSR SINK TREE COPY), which we apply as long as the current size of the local sink
tree is below or equals the maximum size of provided for a HELLO sink tree.

As soon as the local sink tree’s size exceeds the spaceSSR HELLO WITH TREE
messages provide for the the HELLO sink tree, thisSSR SINK TREE COPY mode
is not applicable any longer and thus we employ one of the following strategies (see
section 4.3):

• (SSR SINK TREE COPY)

• SSR UNRESOLVED LINKS FIRST

• SSR DELTA TREE

• SSR RANDOM TREE

Independent of the configured strategy, it is mandatory to include a node’s physical
neighbors in the HELLO sink tree (this is equivalent to copying the first level of the
local sink tree to the HELLO sink tree). Once this step is finished, the constructor
branches out depending on the selected strategy (↔ SSR SINK TREE MODE).

The functionsgetClosestUnsentUnresolvedLink(localSinkTree)
andgetClosestUnsentResolvedLink(localSinkTree) are used for the
SSR UNRESOLVED LINKS FIRST strategy as well as for theSSR DELTA TREE
strategy. Basically, these functions deliver paths containing the closest unresolved re-
spectively resolved link of the local sink tree that has not been copied to the currently
contructed HELLO sink tree yet.

Furthermore, these functions utilize thehasBeenSentInPreviousHelloMsg
property of the local sink tree’s sink tree cache lines in order to delimit their selection
procedure on links that have not been sent within the currentseries of HELLO mes-
sages. We only need this property while applying theSSR DELTA TREE strategy.
Thus it is being ignored by other strategies.

Employing theSSR RANDOM TREE strategy, random paths of the local sink tree
(that have not been copied to the HELLO sink tree yet) are delivered using the HELLO
sink tree’s member functiongetFurtherRandomPathOfLocalSinkTree(
maxHopDepth, localSinkTree) and copied to the HELLO sink tree until the

46 CHAPTER 5. IMPLEMENTATION

provided space is entirely filled up.

The function copyPathToHelloSinkTree(path, localSinkTree,
maxHopDepth) is used to copy a selected path from the local sink tree to a HELLO
sink tree. Once the remaining spacek in the currently constructed HELLO sink tree
is not sufficient for a selected path of lengthl > k to be copied to the HELLO
sink tree completely, only the firstk hops of the given path will be copied. We
need this functionality in order to be able to optimally utilize the space provided in
SSR HELLO WITH TREE messages.

Furthermore, if amaximum hop depthparameterk is passed to this function, only
the firstk hops of the given path will be copied to the HELLO sink tree. Using this
optional parameter we are able to create hop depth restricted HELLO sink trees.

5.2.6 Incoming and Outgoing Interface Stores

In order to support the utilization of asymmetric links, an SSR node needs to distin-
guish betweenincomingandoutgoinginterfaces. Therefore it is required to maintain a
second instance of thecInterfaceStore class.

If a given node receives anSSR HELLO WITH TREE message, it will add the
sender to its incoming interface store. Moreover, if the current node itself is con-
tained in the first level of the received HELLO sink tree, the sender will be added to
the outgoing interface store as well. Consequently, in caseof a symmetric link, the
corresponding neighbor finally occurs in the incoming interface store as well as in the
outgoing interface store.

Contrariwise, if a HELLO sink tree contains a link directed from the current node
towards another node whose HELLO messages are not being received by the current
node, thisforward neighborwill be added to the outgoing interface store and it will be
tagged with the MAC addresszero. This specific MAC address denotes that there is
an outgoing asymmetric link, which we could utilize in source routing by forwarding a
corresponding hop-by-hop message per broadcast.

Actually, utilization of asymmetric links in source routesimplies that we have to
send messages per broadcast across occurring asymmetric links. In the first place,
this is due to the fact that a given node will not ever learn theMAC layer address of a
forward neighbor beyond an asymmetric link. Furthermore, if unicast at the underlying
MAC layer relied on acknowledged transmission (as for example within the IEEE-
802.11standard [9]), it would not be possible to use unicast acrossasymmetric links,
anyway.

Chapter 6

Simulation Environment and
Evaluation

The initial sections of this chapter give a brief overview onthe simulation environment
and the test arrangements that we used during the evaluationstage of this work. En-
hancements and extensions to this simulation environment are subjects of other current
works, thus we will concentrate on information that is relevant to the interpretation of
our simulation results, which we present and discuss subsequently.

6.1 Overview on the Simulation Environment

The simulation environment that we used to evaluate the proposed SSR extension sup-
porting asymmetric links has been implemented inOMNeT++ [20]. This simulation
environment already existed for various evaluation purposes concerning the SSR pro-
tocol and thus we only had to apply some minor modifications inorder to be able to
configurate additional parameters specific to the extensionand to record further statis-
tical data during simulations runs.

6.1.1 Simulator Functionality in the OM SSR Class

TheOM SSR class, which is derived of theOMNeT++ cSimpleModule class, rep-
resents the centralOMNeT++ simulation module containing any simulation related
logic, such as initializing a simulation run, event registering and handling or recording
and calculating of statistical data during simulation runs.

Basically, we had to slightly modify the simulation initialization step in order to be
able to import additional parameters that we need to configurate our SSR extension for
support of asymmetric links (see section 6.1.4).

Since the simulator has already been capable of generating statistics of routing
performance characteristics like the average accumulatedhops declined by payload
messages and the average payload message delay, we furthermore had to
add the functionality of printing information concerning the period of time the SSR
protocol needed to converge, i.e. to establish theconsistencycondition described in

47

48 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

section 3.5, into an additional result file, which is named according to the scheme
ssrConverge-[...].txt.

6.1.2 cSsrNode Wrapper Class

ThecOmSsrNode class is derived of thecNode class of thessr-core library (see
section 5.1.1). Thus, it virtually implements an SSR node within the simulation envi-
ronment and routes events and messages between actual SSR protocol and the central
OMNeT++ simulation module, which we described in section 6.1.1 above.

6.1.3 Simplified MAC Layer

The primary concern of the evaluation of this work is to investigate whether the al-
gorithm described in section 4.2 could be adapted to scale inmedium size wireless
networks using the extensions proposed in section 4.3 and tothe determine the impact
of certain parameters, which are specific to these extensions, on the overall routing
performance of the SSR protocol.

Therefore and since implementations of realistic wirelessMAC layers (likeIEEE
802.11(WLAN, [9]), IEEE-802.15.1(Bluetooth, [1]) or IEEE-802.15.4(ZigBee, [5]))
are still in a stage of development respectively have only recently been finished (IEEE-
802.11), we employed a simplified MAC layer implementation denotedaseasyOmMac
during the evaluation stage of this work, which is based on unidirectional point-to-point
connections.

However, an evaluation of the proposed algorithm on the basis of realistic MAC
layers will be a subject of our future work.

6.1.4 Simulation Scenarios

The scenarios that we used during this evaluation stage weregenerated on the basis of
randomn× n grids, i.e. network layer addresses are arbitrarily distributed all over the
grid. Furthermore, we supplied these grids with varying fractions of nodes providing
a larger transmission range. Whereas nodes with a default transmission range do only
reach (and thus are being reached by) physical neighbors that are located in the same
line or in the same column of the grid, these enhanced transmission range nodes are
capable to transcend the diagonals of adjacent grid cells.

Figure 6.1 shows a simple example of a3× 3 grid containing one single node with
an enhanced transmission range.

Consequently, such a wide transmission range node induces up to four asymmetric
links (one asymmetric links for each wide transmission range node located at a corner
of the grid and two asymmetric links for each wide transmission range node located at
a border of the given grid). However, the fraction of wide transmission range nodes is
not equivalent to the actual fraction of asymmetric links within the resulting physical
network topology.

6.1. OVERVIEW ON THE SIMULATION ENVIRONMENT 49

Figure 6.1:3× 3 grid containing one wide transmission range node

50 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

The number of symmetric links, i.e. the number of regular edges of ann x n grid,
can be calculated using the formula:

#edges = 4(n− 2)2 + 4(n− 1) = 4(n2 + 3n + 3)

Assuming for example that there are20% of wide transmission range nodes within
a10×10 grid, i.e. there are up to20 nodes each inducing up to4 asymmetric links, the
given grid has a total of≤ 612 links whereof≤ 80 are asymmetric links. Hence the
resulting fraction of asymmetric links in the given grid could be estimated to≤ 13%.

Fraction of high range nodes:0% 10% 20% 30%
Fraction of asymmetric links: 0% ≤ 7% ≤ 13% ≤ 18, 5%

Table 6.1: Estimated fractions of asymmetric links within the used configurations

Within this evaluation stage, we employed scenarios containing fractions of0%,
10%, 20% and30% of wide transmission range nodes. Table 6.1 shows the fractions
of asymmetric links corresponding to these values.

We wrote aPython-script to automatically generate scenarios as described above.
This script demands the following parameters:

• Number of nodes

• Distance between adjacent nodes [m]

• Fraction of wide transmission range nodes [%]

• Local sink tree size [# of cache lines]

• HELLO sink tree size [# of cache lines]

• HELLO sink tree mode [SSR SINK TREE MODE]

• HELLO sink tree maximum hop depth [# of hops]

• Enable/disableSSR EARLY PATH OPTIMIZATION [BOOL]

• Seed [numeric] (optional)

On the basis of these parameters, the script generates apositions-[...].ini
file defining the position of each node within the grid topology, aranges-[...].ini
file defining each node as default or wide transmission range node and a
scenario-[...].ini file providing further parameters configuring the SSR pro-
tocol respectively the simulation environment, which are briefly described in the subse-
quent section 6.1.5. Furthermore, this script appends the source code, which is required
to interprete the described*.ini files, to theNetGrid.ned file of theOMNeT++
simulation environment.

This NetGrid.ned file basically contains source code that is required to build
the described scenarios within theOMNet++ simulator and thus is written in theNED
language ofOMNet++.

6.1. OVERVIEW ON THE SIMULATION ENVIRONMENT 51

6.1.5 Further Simulation Parameters

This section describes some further parameters occurring within the
scenario-[...].ini file that are used to configure the corresponding simula-
tions run. We did not modify these parameters during the evaluation stage of this work
and thus have them set to certain default values by our scenario generator script (see
section 6.1.4). As these parameters specify our test arrangement, we provide a list as
well as a brief description of each parameter below.

Basically, parameters of the formssr.* denote parameters that are specific to the
SSR protocol whereas the remaining parameters define properties of theOMNeT++
simulation environment.

• ssr.broadcastInterval

• ssr.notificateInterval

• ssr.cacheSize

• ssr.useAsymLink

• simTimeLimit

• activeTime

• activeTimeEnd

• packetSize

• requestRate

The parameterssr.broadcastInterval defines the period of time between
subsequent HELLO messages in seconds (default value:2s). Analogously,
ssr.notificateInterval denotes the interval between subsequent intiations of
the SSR state maintenance algorithm, which is extensively described in section 3.5 (de-
fault value:10s). ssr.cacheSize defines the size of a node’s route cache measured
in cache lines (default value:255). The boolean valuessr.useAsymLink is used
to enable/disable the extension providing support for asymmetric links within the SSR
protocol (default value:true).

The first parameter concerning the simulation environment,simTimeLimit, de-
notes the virtual time span of SSR protocol activity that is being simulated within
the specified simulation run. The default value is derived ofobserved convergence
time values of particular network sizes:90s for #nodes ≤ 49 respectively120s for
64 ≤ #nodes ≤ 100. The same applies for the subsequent time valuesactiveTime
andactiveTimeEnd, which define the points of time each node starts respectively
stops generating random requests, i.e. sending messages oftype SSR PAYLOAD to
arbitrary destinations (default values:30s / 90s for #nodes ≤ 49 and60s / 120s for
64 ≤ #nodes ≤ 100). Finally, the parameterrequestRate denotes the number of
these random requests each node generates and sends per second during the active time
(default value:1).

52 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

6.2 Simulation Results

Within the subsequent sections we present the simulation results that we gathered dur-
ing the evaluation stage of this work. Predominantly, we illustrate the obtained overall
routing performance on the basis of the average path length of SSR PAYLOAD mes-
sages measured in hops. Since we have been using a simplified MAC layer during
these simulations (see section 6.1.3), the also recorded average message delay values
are not equally meaningful.

We furthermore recorded the period of time the SSR protocol required to converge,
i.e. to establish theconsistencycondition as described in 3.5. But since for any sce-
narios as described in section 6.1.4 the corresponding results do - as expected - not
significantly vary from simulations result obtained using standard SSR, this data is
only crucial to observe in specific scenarios as considered in section 6.2.6.

Foremost, we investigate the inherent impact of the proposed
SSR EARLY PATH OPTIMIZATION extension on the overall routing performance of
SSR by using standard SSR, i.e. support for asymmetric linkshas been disabled during
these simulation runs. We need this evaluation step in orderto be able to estimate a
potential additional benefit of theSSR EARLY PATH OPTIMIZATION extension in
scenarios containing asymmetric links.

We simulated each HELLO sink tree strategy as proposed in section 4.3 using sce-
narios as described in section 6.1.4 with up to100 nodes and fractions of10%, 20%
and30% of wide transmission range nodes. Furthermore, we performed each of this
simulation series having theSSR EARLY PATH OPTIMIZATION extension disabled
as as well as enabled.

Finally, in section 6.2.6 we investigate the applicabilityof our proposed algorithm
in specific scenarios containing asymmetric links that require exceptionally long loop
paths to be resolved.

6.2.1 Impact ofSSR EARLY PATH OPTIMIZATION on SSR Over-
all Routing Performance in Absence of Asymmetric Links

Clearly, theSSR EARLY PATH OPTIMIZATION extension as described in section
4.3 could obtain a positive impact on the overall routing performance of SSR.

Originally, within the SSR routing process, source routes of hop-by-hop messages
would only have been modified if necessary, i.e. if the message’s source route was
at its end or if the subsequent hop had become unavailable in the meantime. If now
each intermediate node attempts to improve a hop-by-hop message’s source route, it is
reasonably likely that the length of the resulting source route will be reduced, but on
the cost of enforcing each particular intermediate node to query its route cache and - in
case of a successful route optimization - an additionalSSR ROUTE UPDATE message,
which has to be sent to the message’s mediator respectively issuer.

Indeed, these additionalSSR ROUTE UPDATE messages are optional, but seem
quite reasonable in order to propagate source route optimizations back to the most re-
cent mediator node, which consequently could apply the corresponding optimization
by itself henceforth.

6.2. SIMULATION RESULTS 53

Impact of SSR_EARLY_PATH_OPTIMIZATION

in settings without asymmetric links

A
v
e
ra
g
e
 m

e
s
s
a
g
e
 h
o
p
s

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Network size [# of nodes]
0 20 40 60 80 100 120

SSR without

SSR_EARLY_PATH_OPTIMIZATION

SSR with

SSR_EARLY_PATH_OPTIMIZATION

Figure 6.2: Impact ofSSR EARLY PATH OPTIMIZATION on the average path
length perSSR PAYLOAD message

In order to estimate the impact of theSSR EARLY PATH OPTIMIZATION ex-
tension on the overall routing performance of SSR independent of the utilization of
asymmetric links, support for asymmetric links has been disabled within this simula-
tion series.

The graph depicted in figure 6.2 shows that the application ofthe
SSR EARLY PATH OPTIMIZATION extension could reduce the number of hops tra-
versed bySSR PAYLOAD messages up to about15%.

54 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

6.2.2 Results ofSSR RANDOM TREE Mode

local sink tree size = 50, HELLO sink tree size = 10, mode =

SSR_RANDOM_TREE (max. hop depth = 3) without

SSR_EARLY_PATH_OPTIMIZATION

A
v
e
ra
g
e
 m
e
s
s
a
g
e
 h
o
p
s

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Network size [# of nodes]
0 20 40 60 80 100 120

Fraction of wide

transmission range nodes:

0%

10%

20%

30%

Figure 6.3: SSR overall routing performance usingSSR RANDOM TREE mode to re-
solve asymmetric links

Using theSSR RANDOM TREE strategy, the local sink tree information to be copied
to a HELLO sink tree is selected at random. Thus, this mode rather tends to fill up the
nodes’ route caches with source routes to various destinations than to efficiently resolve
occurring asymmetric links. Consequently, this could possibly result in a positive im-
pact on SSR’s overall routing performance, which we cannot clearly put down to the
utilization of asymmetric links.

In order to delimit this bias, we used an additionalmaximum hop depthparameter
during this series of simulation runs:

As in scenarios as described in 6.1.4 each asymmetric link could be resolved by
a loop path of3 hops length, we predefined a maximum hop depth of3 hops for the
HELLO sink trees during this series of simulations. The figures 6.3 and 6.4 visualize
the SSR overall routing performance obtained inSSR RANDOM TREE mode depend-
ing on the application of theSSR EARLY PATH OPTIMIZATION extension.

Subsequently, we use the results of this non-sophisticatedstrategy as reference val-
ues for the simulation results of theSSR UNRESOLVED LINKS FIRST strategy and
theSSR DELTA TREE strategy.

6.2. SIMULATION RESULTS 55

local sink tree size = 50, HELLO sink tree size = 10, mode =

SSR_RANDOM_TREE (max. hop depth = 3) with

SSR_EARLY_PATH_OPTIMIZATION

A
v
e
ra
g
e
 m
e
s
s
a
g
e
 h
o
p
s

2

3

4

5

6

7

8

9

10

11

12

13

14

Network size [# of nodes]
0 20 40 60 80 100 120

Fraction of high

transmission range nodes:

0%

10%

20%

30%

Figure 6.4: SSR overall routing performance usingSSR RANDOM TREE mode with
SSR EARLY PATH OPTIMIZATION extension

56 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

6.2.3 Results ofSSR UNRESOLVED LINKS FIRST Mode

local sink tree size = 50, HELLO sink tree size = 10, mode =

SSR_UNRESOLVED_LINKS_FIRST without

SSR_EARLY_PATH_OPTIMIZATION

A
v

e
ra

g
e

 m
e

s
s

a
g

e
 h

o
p

s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Network size [# of nodes]
0 20 40 60 80 100 120

Fraction of high

transmission range nodes:

0%

10%

20%

30%

Figure 6.5: Overall routing performance usingSSR UNRESOLVED LINKS FIRST
mode

The results of this series of simulations show the performance of the
SSR UNRESOLVED LINKS FIRST mode. This strategy is the most focussed on ef-
ficiently resolving asymmetric links and thus should least of all strategies affect the
overall routing performance of SSR by distributing source routes to various destina-
tions across the network.

Compared to the simulation results presented in the previous section, which we
obtained while applying theSSR RANDOM TREE strategy, the relative benefit at the
overall routing performance of SSR dependent on the fraction of wide transmission
range nodes is significantly increased.

Observing the graphs depicted in figure 6.5 and 6.6, it is furthermore
remarkable that the relative benefit of utilizing the occurring asymmetric
links within SSR source routing is not considerably increased when using the
SSR EARLY PATH OPTIMIZATION extension as proposed in section 4.3.

6.2. SIMULATION RESULTS 57

local sink tree size = 50, HELLO sink tree size = 10, mode =

SSR_UNRESOLVED_LINKS_FIRST with

SSR_EARLY_PATH_OPTIMIZATION

A
v

e
ra

g
e

 m
e

s
s

a
g

e
 h

o
p

s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Network size [# of nodes]
0 20 40 60 80 100 120

Fraction of high

transmission range nodes:

0%

10%

20%

30%

Figure 6.6: Overall routing performance usingSSR UNRESOLVED LINKS FIRST
mode withSSR EARLY PATH OPTIMIZATION extension

58 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

6.2.4 Results ofSSR DELTA TREE Mode

local sink tree size = 50, HELLO sink tree size = 10, mode =

SSR_DELTA_SINK_TREE without SSR_EARLY_PATH_OPTIMIZATION

A
v
e
ra
g
e
 m
e
s
s
a
g
e
 h
o
p
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Network size [# of nodes]
0 20 40 60 80 100 120

Fraction of wide

transmission range nodes:

0%

10%

20%

30%

Figure 6.7: SSR overall routing performance usingSSR DELTA TREE mode to re-
solve asymmetric links

This section presents the simulation results that we obtained with SSR
while constructing HELLO sink trees with theSSR DELTA TREE strategy.
Since physical neighbors exchange their entire local sink trees within several
SSR HELLO WITH TREE messages, there certainly is a considerable impact on the
overall routing performance beyond the utilization of asymmetric links. Based on the
distribution of extensive sink tree information, the algorithm as proposed in section
4.2.3 is able to extract many additional source routes to various destinations within the
given network topology.

The graphs depicted in figure 6.7 and figure 6.8 illustrate thesimulation results,
which we obtained using theSSR DELTA TREE strategy with as well as without the
SSR EARLY PATH OPTIMIZATION extension.

As the overall routing performance of SSR is again increasedcompared to the simu-
lation results of theSSR UNRESOLVED LINKS FIRST mode presented in the previ-
ous section, the supposed impact of distributing extensivesink tree information seems
to be confirmed.

6.2. SIMULATION RESULTS 59

local sink tree size = 50, HELLO sink tree size = 10, mode =

SSR_DELTA_SINK_TREE with SSR_EARLY_PATH_OPTIMIZATION

A
v
e
ra
g
e
 m
e
s
s
a
g
e
 h
o
p
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Network size [# of nodes]
0 20 40 60 80 100 120

Fraction of wide

transmission range nodes:

0%

10%

20%

30%

Figure 6.8: SSR overall routing performance usingSSR DELTA TREE mode with
SSR EARLY PATH OPTIMIZATION extension

60 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

6.2.5 Comparison of the Proposed HELLO Sink Tree Strategies

Comparison of HELLO sink tree modes without

SSR_EARLY_PATH_OPTIMIZATION

A
v
e
ra
g
e
 m
e
s
s
a
g
e
 h
o
p
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Network size [# of nodes]
0 20 40 60 80 100 120

No asymmetric links supported

SSR_RANDOM_TREE

SSR_UNRESOLVED_LINKS_FIRST

SSR_DELTA_TREE

Figure 6.9: Observed benefit of the particular HELLO sink tree strategies

In order to be able to compare the overall routing performance obtained by the
proposed HELLO sink tree strategies, all simulation results of scenarios containing a
fraction of20% of wide transmission range nodes are accumulated and depicted within
the graphs 6.9 and 6.10. As usual, the latter illustrates thecorresponding simulation
results when additionally employing theSSR EARLY PATH OPTIMIZATION exten-
sion.

The remarkable fact that the routing performance obtained when using the
SSR DELTA TREE strategy exceeds the routing performance obtained with the
SSR UNRESOLVED LINKS FIRST strategy is not completely unexpected. As dis-
cussed in the previous section as well as in section 4.3, a positive impact on the overall
routing performance beyond the utilization of asymmetric links could reasonably be
assumed.

Although the obtained overall routing performance while employing the
SSR DELTA TREE strategy exceeds the obtained overall routing performancewhile
employing theSSR UNRESOLVED LINKS FIRST strategy, the latter strategy is rather
recommended to be applied within the SSR protocol, as we willpoint out in the subse-
quent section.

Table 6.2 summarizes the observed benefits and drawbacks of the previously com-
pared HELLO sink tree strategies.

6.2. SIMULATION RESULTS 61

HELLO sink tree modes Benefits Drawbacks

SSR RANDOM TREE
Poor efficiency at
resolving asymmetric links

SSR UNRESOLVED LINKS FIRST
Good efficiency at
resolving asymmetric links

SSR DELTA TREE
Most significant benefit at Not as efficient as
overall routing performance SSR UNRESOLVED LINKS FIRST

mode at resolving asymmetric links

Table 6.2: Benefits and drawbacks of each particular HELLO sink tree strategy

Comparison of HELLO sink tree modes with

SSR_EARLY_PATH_OPTIMIZATION

A
v
e
ra
g
e
 m
e
s
s
a
g
e
 h
o
p
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Network size [# of nodes]
0 20 40 60 80 100 120

No asymmetric links supported

SSR_RANDOM_TREE

SSR_UNRESOLVED_LINKS_FIRST

SSR_DELTA_TREE

Figure 6.10: Observed benefit of the particular HELLO sink tree strategies using
SSR EARLY PATH OPTIMIZATION extension

62 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

6.2.6 Further Simulation Results

Figure 6.11: Scenario scheme, which is referred to asbridge setting, type 1

In addition to the simulations scenarios as described in section 6.1.4, we built sev-
eral further scenarios, which are kind of worst case scenarios to the SSR protocol.
Basically, these additional scenarios follow two explicitschemes, which we outlined in
the figures 6.11 and 6.12.

Both scenario schemes provide a network topology, which is almost divided into
two partitions. In the first scheme, which is referred to asbridge setting, type 1, these
partitions are connected through a single symmetric and a single asymmetric link. As
we placed these links at opposite borders of the given topology, the loop path resolving
the asymmetric link is exceptionally long.

However, in theory even standard SSR without support for asymmetric links should
converge (and thus provide reliable source routing) withina tolerable period of time as
at least one symmetric connection between the two partitions exists. In practice though,
standard SSR did not converge in atype 1bridge setting containing36 nodes within a
time span of300s.

Within the second scheme, which is denoted asbridge setting, type 2, we replaced
the remaining symmetric connection between the two networkpartitions by a second
asymmetric link, which is directed contrariwise to the firstasymmetric links that is
already contained in the describedtype 1bridge setting scheme.

Obviously, it is impossible for standard SSR to converge at all since virtual neigh-
bors that are located in different partitions of the networkhave no chance to ever dis-
cover each other.

6.2. SIMULATION RESULTS 63

Figure 6.12: Scencario scheme, which is referred to asbridge setting, type 2

SSR convergence behaviour in bridge settings

S
S
R
 c
o
n
v
e
rg
e
 t
im

e
 [
s
]

20

30

40

50

60

70

80

90

100

Network size [# of nodes]
0 20 40 60 80 100 120

Standard grid

Bridge setting, type 1

Bridge setting, type 2

Figure 6.13: Applicability of SSR extension for asymmetriclink extension support in
bridge scenarios

64 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

The graph depicted in figure 6.13 shows the simulation results concerning the con-
vergence behaviour that we obtained with SSR while employing the proposed
SSR UNRESOLVED LINKS FIRST strategy to construct HELLO sink trees. Miss-
ing results indicate that the SSR protocol did not converge within a time span of300s.
Figure 6.14 depicts the associatedaverage message hopsgraph.

Average message hops in bridge settings

A
v
e
ra
g
e
 m

e
s
s
a
g
e
 h
o
p
s

2

4

6

8

10

12

14

Network size [# of nodes]
0 20 40 60 80 100 120

Standard grid

Bridge setting, type 1

Bridge setting, type 2

Figure 6.14: Associated average message hops graph of 6.13

Applying theSSR DELTA TREE or SSR RANDOM TREE strategy, the obtained
simulation results were significantly worse, i.e. the SSR protocol did not converge
within a time span of300s in type 1or type 2bridge scenarios containing36 nodes.

6.2. SIMULATION RESULTS 65

6.2.7 Expanded Simulation Results Obtained with SSR Applying
the SSR UNRESOLVED LINKS FIRST Strategy

As illustrated in the previous sections, theSSR UNRESOLVED LINKS FIRST strat-
egy seems to be the most recommendable strategy to be employed in order to support
the utilization of asymmetric links within the SSR protocol. Thus, we expanded the
corresponding simulation series to5 seeds per particular setting, i.e.5 random sce-
narios of each network size containing a fraction of20% of wide transmission range
nodes have been simulated. The graphs depicted in figure 6.15and figure 6.16
show the obtained simulation results depending on the application of the
SSR EARLY PATH OPTIMIZATION extension.

These simulation results basically confirm the simulation results introduced in sec-
tion 6.2.3. Furthermore, this expanded study shows the impact of the actual physical
topology on the overall routing performance of SSR.

Comparison of several seeds in scenarios containing 20%

of wide transmission range nodes

A
v
e
ra
g
e
 m

e
s
s
a
g
e
 h
o
p
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Network size [# of nodes]
0 20 40 60 80 100 120

Standard SSR

SSR using SSR_UNRESOLVED_LINKS_FIRST mode

Figure 6.15: Expanded simulation results usingSSR UNRESOLVED LINKS FIRST
strategy

66 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

Comparison of several seeds in scenarios containing 20%

of wide transmission range nodes

A
v
e
ra
g
e
 m

e
s
s
a
g
e
 h
o
p
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Network size [# of nodes]
0 20 40 60 80 100 120

Standard SSR

SSR using SSR_UNRESOLVED_LINKS_FIRST

mode and SSR_EARLY_PATH_OPTIMIZATION

Figure 6.16: Expanded simulation results usingSSR UNRESOLVED LINKS FIRST
strategy andSSR EARLY PATH OPTIMIZATION extension

6.3. SUMMARY OF THE SIMULATION RESULTS 67

6.3 Summary of the Simulation Results

Summarizing the simulation results introduced and visualized within the sections 6.2.2
to 6.2.4, we showed that the proposed algorithm based on exchanging partial sink tree
information between physical neighbors is capable of locally resolving relatively close
asymmetric links at an acceptable cost, i.e. physical neighbors exchange HELLO mes-
sages containing a total of10 entries, which are selected from a node’s local sink tree
according to one of the proposed HELLO sink tree strategies.

As the simulation results of each particular HELLO sink treestrategy indicate, the
application of theSSR EARLY PATH OPTIMIZATION extension proposed in section
4.3 does not obtain a significant additional benefit in scenarios containing asymmetric
links compared to scenarios not containing any asymmetric links, i.e. the extension
seems not to achieve a more extensive utilization of shortcuts induced by occurring
asymmetric links. However, as the overall routing performance actually is significantly
better (up to about20% in certain scenarios) when utilizing occurring asymmetriclinks,
we could argue that asymmetric links are already used quite frequently without employ-
ing theSSR EARLY PATH OPTIMIZATION extension.

Thus it is arguable whether to use this extension within the SSR protocol at all,
since - as previously explained in section 4.3 - it produces additional control overhead.

The simulation results as presented in section 6.2.6 show that the proposed strate-
gies on utilizing the delimitted space provided in HELLO messages do not provide a
convenient performance at resolving asymmetric links whenexceptionally long loop
paths are required. We could alleviate this issue somewhat by increasing the space
provided for HELLO sink trees, but that does not seem to be a practicable solution
with regard to the MTUs of some MAC layers, which are commonlyused in wireless
sensor networks. Nevertheless, using our extension for support of asymmetric links,
SSR actually worked in some special scenarios where standard SSR did not converge.

One of the most promising approaches on establishing reliable routing within these
kinds of scenarios seems to be theDynamic Source Routingprotocol proposed byJohn-
son et al.[10], which is briefly described in section 2.2.3 - but on the considerable cost
of flooding the network twice.

Maybe the basic idea of this approach could be borrowed to SSRin order to be
applied for asymmetric links that could not be resolved within a considerably long
period of time.

68 CHAPTER 6. SIMULATION ENVIRONMENT AND EVALUATION

Chapter 7

Conclusion

Within this diploma thesis, we proposed a scalable approachon resolving asymmetric
links in ad hoc network settings, which is based on the idea ofexchanging partial sink
trees between neighboring nodes within a regular HELLO protocol. We introduced a
priorization of local sink tree information that aims at resolving asymmetric links in
ascending order of their distance to a given node. This priorization strategy allows us
to deal with relatively small HELLO message sizes as required in practice due to the
small MTUs of MAC layers that are commonly used in wireless sensor networks.

Our algorithm has been integrated into theScalable Source Routing pro-
tocol and evaluated in a simulation environment based on thenetwork simulator
OMNeT++. We thereby obtained a benefit of up to about20% at the overall routing
performance of SSR in scenarios containing asymmetric links.

Furthermore, we were to some extent successful at employingour extended SSR
protocol in certain scenarios where standard SSR did not converge at all.

While applying the proposedSSR EARLY PATH OPTIMIZATION extension, we
could enhance the overall routing performance of SSR up to about15% even in scenar-
ios without asymmetric links.

7.1 Final Remarks

Having empirically validated the algorithmically correctoperability of the proposed ap-
proach, our efforts have to be expanded towards more realistic studies, i.e. we need to
generate scenarios, which are closer to real world settingsof mobile ad hoc networks
and wireless sensor networks and we further have to verify our results and observa-
tions using realistic abstractions of common MAC layers during future simulations.
The latter implicitly denotes that we have to accurately adapt the parameterization of
our simulation environment based on restraints, which haveto be derived of specific
real world settings and MAC layers.

Furthermore, it seems to be quite promising to combine the proposed approach on
utilizing asymmetric links inScalable Source Routing with theVirtual Route
Compressiontechnique developed byAndŕe Kaustell[11] (a short summary is given in

69

70 CHAPTER 7. CONCLUSION

section 2.3) in order to improve the fraction of actual payload data that could be carried
in SSR PAYLOAD messages.

Finally, as proposed in section 6.3, it could be reasonable to employ a DSR-like
flooding technique in order to resolve asymmetric links whose corresponding loop path
is exceptionally long and thus would not be discovered by ouralgorithm within an
acceptable period of time.

Bibliography

[1] Ieee std 802.15.1 - 2005 ieee standard for information technology - telecommuni-
cations and information exchange between systems - local and metropolitan area
networks - specific requirements. - part 15.1: Wireless medium access control
(mac) and physical layer (phy) specifications for wireless personal area networks
(wpans). IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), pages
001–580, 2005.

[2] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Looking up data in p2p systems.Commun. ACM, 46(2):43–48, 2003.

[3] J. A. Cobb. Forward-only uni-directional routing. InProceedings of International
Conference on Computer Communications and Networks ’02, pages 370–375,
University of Texas at Dallas, 2002.

[4] D. De Couto, D. Aguayo, B. Chamber, and R. Morris. Performance of multihop
wireless networks: Shortest path is not enough. InWorkshop on Hot Topics in
Networkin (HotNets), Princeton, NJ, 2002.

[5] L. De Nardis and M.-G. Di Benedetto. Overview of the ieee 802.15.4/4a standards
for low data rate wireless personal data networks. pages 285–289, March 2007.

[6] Thomas Fuhrmann. Scalable routing for networked sensors and actuators. In
Proc. 2nd Annual IEEE Communications Society Conference onSensor and Ad
Hoc Communications and Networks, September 2005.

[7] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. An
empirical study of epidemic algorithms in large scale multihop wireless networks.
Intel research, tech. rep., 2002.

[8] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica.
The impact of dht routing geometry on resilience and proximity. In Proceedings
of the SIGCOMM 2003 conference, pages 381–394, ACM Press, 2003.

[9] IEEE 802.11 Working Group. IEEE Std. 802.11-1999: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications., 1999.

[10] D. B. Johnson, D. A. Maltz, and J. Broch. Dsr: The dynamicsource routing
protocol for multi-hop wireless ad hoc networks. InAd Hoc Networking, pages
139–172, 2001.

[11] A. Kaustell. Scalable routing in mesh networks for devices with limited resources:
Scalable source routing and optimization proposals, 2009.

71

72 BIBLIOGRAPHY

[12] F. Knittel. Scalable source routing in the ambicomp environment. Study Thesis,
2009.

[13] M. K. Marina and S. R. Das. Routing performance in the presence of unidirec-
tional links in multihop wireless networks. InMOBIHOC ’02: Proceedings of the
3rd ACM International Symposium on Mobile Ad Hoc Networking& Computing,
pages 12–23, Lausanne, Switzerland, June 9–11 2002.

[14] S. Nesargi and R. Prakash. A tunneling approach to routing with unidirectional
links in mobile ad-hoc networks. InProceedings of International Conference
on Computer Communications and Networks ’00, pages 522–527, University of
Texas at Dallas, 2000.

[15] Charles E. Perkins and Elizabeth M. Royer. Ad hoc On-Demand Distance Vec-
tor Routing. InProc. 2nd IEEE Workshop on Mobile Computing Systems and
Applications, pages 90–100, New Orleans, LA, USA, February 1999.

[16] R. Prakash. A routing algorithm for wireless ad hoc networks with unidirectional
links. In Wireless Networks 7, pages 617–625, University of Texas at Dallas,
2001.

[17] V. Ramasubramanian and D. Mossé. Bra: A bidirectional routing abstraction for
asymmetric mobile ad hoc networks. InIEEE/ACM Transactions on Networking
16, pages 116–129, 2008.

[18] P. Sinha, S. V. Krishnamurthy, and S. Dao. Scalable unidirectional routing with
zone routing protocol (zrp) extensions for mobile ad-hoc networks. InProceed-
ings of Wireless Communications and Networking Conference(WCNC), pages
1329–1339, 2000.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. InProceedings of
the SIGCOMM 2001 conference, pages 149–160, ACM Press, 2001.

[20] András Varga and Rudolf Hornig. An overview of the omnet++ simulation en-
vironment. InSimutools ’08: Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and systems
& workshops, pages 1–10, ICST, Brussels, Belgium, Belgium, 2008. ICST (In-
stitute for Computer Sciences, Social-Informatics and Telecommunications Engi-
neering).

[21] G. Wang, Y. Ji, D. C. Marinescu, and D. Turgut. A routing protocol for power
constrained networks with asymmetric links. InPE-WASUN ’04: Proceedings
of the 1st ACM international workshop on Performance evaluation of wireless
ad hoc, sensor, and ubiquitous networks, pages 69–76, Venezia, Italy, October 7
2004.

[22] J. Zhao and R. Govindan. Understanding packet deliveryperformance in dense
wireless sensor networks. InProc. Conf. Embedded Networked Sensor Systems
(SenSys), Los Angeles, CA, 2003.

