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Deutsche Zusammenfassung

Die vorliegende Diplomarbeit beschäftigt sich mit dem Designprozess Ubiquitärer
Systeme. Ubiquitäre Systeme folgen einem anderen Paradigma als gewöhnliche
Systeme. Es werden Prinzipien verwendet die aus dem Gebiet der Verteilten Sy-
steme stammen. Der Fokus Ubiquitärer Systeme wird sehr stark auf den Kontext
ausgelegt, indem die Verarbeitung des gegebenen Kontextes zu einem Mehrwert
für den Nutzer führen und nicht das System selbst die Aufmerksamkeit des Nut-
zers auf sich ziehen soll.

Diese Zielsetzung führt zu veränderten Anforderungen im Designprozess gegen-
über dem Designprocess bei herkömmlicher Software. Ein zentraler Punkt ist die
Möglichkeit die Funktionsweise Ubiquitärer Systeme zu überprüfen, da die kom-
plexe Struktur zu einer erhöhten Anzahl potentieller Fehlerquellen führt. Auch Fra-
gen bezüglich Merkmalen wie der Skalierbarkeit, Robustheit und Latenz des Sy-
stems können nur mittels sorgfältiger Analysen beantwortet werden.

Die Arbeit wendet sich an Personen im Gebiet der Softwaretechnik und an Ent-
wickler Ubiquitärer Systeme. Sie basiert auf Technologien aus dem Bereich der
Modellgetriebenen Softwareentwicklung.

Der Designprozess ubiquitärer Systeme ist eine komplexe Aufgabe, die viel Zeit in
Anspruch nimmt, da Aspekte, die zu Fehlern und Problemen führen leicht überse-
hen werden können und somit potentiell viele Iterationszyklen, die den gesamten
Designprozess beinhalten, durchgeführt werden müssen.

Ziel der Arbeit ist es diesen Prozess zu verbessern, indem auf Domänenebene ge-
arbeitet wird und ein Großteil von Sourcecodes automatisch generiert wird. Dies
gilt vor allem für Sourcecode verschiedener Analyseplattformen, die dem Test des
Designs auf gute Erfolgsaussichten dienen. Somit soll eine schnelle Fehlererken-
nung auf verschiedenen Ebenen, zu einem frühen Zeitpunkt im Entwicklungspro-
zess, ermöglicht werden.

Im Gegensatz zu dem Gebiet herkömmlicher Software, die auf einem Rechner
basiert und nicht auf verteilten Systemen, fand im Bereich verteilter Systeme bis-
her kaum Forschung im Bereich der Modellgetriebenen Softwareentwicklung statt.
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Bisherige Ansätze auf diesem Gebiet haben einen deutlich anderen Fokus als die
vorliegende Arbeit. Dieser liegt z.B. auf dem automatische Verteilen einer Anwen-
dung auf verschiedene Knoten oder dem Generieren von Code für Middlewares,
allerdings nicht auf der verbesserten Analyse während der Design Space Explo-
ration und der Generation von Zielplattform-code.

Während der Bearbeitung der Arbeit wurden bestehende Systeme analysiert, mit
dem Ergebnis dass eine neue Domänenspezifische Sprache zur Beschreibung
Ubiquitärer Systeme benötigt wird welche es ermöglicht die zwei zentralen Kom-
ponenten dieser Systeme, Kontext und Verteiltheit, zu modellieren. Darauf wurde
ein Metamodel für UbiML, einer solchen graphischen Sprache, entworfen. UbiML
hat das Ziel, diese Domäne flexibel genug zu beschreiben um weit anwendbar zu
sein und präzise genug zu sein um leicht transformierbar zu bleiben. Zusätzlich
wurden ein Editor für diese Sprache und eine Transformation zur Netzwerksimu-
latorplattform GloMoSim implementiert.

Die Arbeit wurde qualitativ untersucht. Dazu wurde eine beispielhafte Design
Space Exploration durchgeführt. Im Rahmen dieses Beispiels konnte funktionie-
render GloMoSim-Code erzeugt werden. Da es sich bei der in GloMosim verwen-
deten Programmiersprache Parsec um einen C-Dialekt handelt liegt die Vermu-
tung nahe, dass es auch möglich ist auf diese Weise Zielplattform-Code zu gewin-
nen. Anhand diesem und anhand der Modellierung eines weiteren realistischen
Beispiels konnte gezeigt werden, dass UbiML flexibel und ausdrucksstark genug
ist um Ubiquitäre Systeme zu beschreiben während sie präzise genug ist um
zu prozeduralen Quellcode transformiert zu werden. Die Entwickler werden wäh-
rend des Entwurfs Ubiquitärer Systeme nicht nur dahingehend unterstützt dass
größere Teile von Sourcecode für z.B. Simulationen generiert werden können,
sondern zusätzlich durch die Möglichkeit das Design einfach zu refaktorisieren.
Diese Eigenschaften machen UbiML zu einer guten DSL um eine Design Space
Exploration für Ubiquitäre Systeme durchzuführen.



1. Introduction

Nowadays it is hard to imagine to work without the aid of computers. The vision of
Ubiquitous Systems is to advance further and support us in our daily lives while
becoming practically invisible to us [Weis99]. The new paradigm is to have multi-
ple small, ubiquitous computers surrounding us, configuring themselves instead
of few big ones that need our attention. This new paradigm requires changing
development practices to cope with the arising challenges. One does not develop
software for a single platform anymore, but for a potentially very heterogeneous
system of nodes with a lot of new points of failures. Today it is not possible to
easily explore the design space of Ubiquitous Systems in respect of errors and
implementation.

1.1 Problem Definition
The design process of Ubiquitous Systems, especially the design of large scale
Wireless Sensor Networks (WSN) has been practically based on trial and error
until now.

Systems are often designed and tested in a small-scale manner in a controlled
environment. The results gained from testing those unrealistic prototype systems
are then used to simulate a large deployment of the system with the intent to test
its scalability, often with poor results concerning predictability of the real system’s
behavior. An example project in which this caused major problems is described
in [TMSEFH06]. In the project a system has been implemented which enables
vehicles to automatically enter a motor-way coordinating the entrance with the
nearby vehicles which are already on the road via an ad-hoc network. This system
works well with a small number of involved cars, but failed when field-tested in a
realistic environment on an American freeway.

Many different analysis methods and platforms exist and they can be used to
study various details of a designed system. A major weakpoint of the current
design process is however, that all of the analysis platform specifications like
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simulation-code, the definition of Petri-Nets or Process-Algebras as well as the
code for the actual prototype and product itself are all hand coded separately. In
general, only a small portion of this code can be reused.
This makes a design space exploration very cumbersome with long-lasting itera-
tion cycles.

1.2 Objectives
The ultimate goal would be to create a Meta Model and all necessary tools to
describe Ubiquitous Systems and their instantiation in a way that allows trans-
formation to all useful analysis platforms and code generation for all reasonable
target platforms. With a huge repository of well designed components and proto-
cols at their fingertips, software engineers could easily explore the design space
of their targeted product and focus on the design instead of the implementation.

The first and one of the most important steps on the way to reach this vision
is to create a well reasoned Meta Model, a domain specific language (DSL) for
describing Ubiquitous Systems. This is the main objective of this thesis.

1.3 Methodology
Model Driven Software Development (MDSD) pursuits a similar vision. Therefore,
an evaluation whether formalisms and frameworks used in the field of software
engineering can be reused or modified to support modeling Ubiquitous Systems
will be done beforehand.

To show the applicability of the DSL to Ubiquitous Systems a simple Ubiquitous
System will be instantiated. The applicability to other, different types of Ubiquitous
Systems, will be shown also.

Since the main goal of the DSL is the possibility to transform its instances to
adequate target models, a possible transformation to simulator code will also be
discussed.

1.4 Contribution
The main contribution of the thesis is a structural and functional analysis of Ubi-
quitous Systems, and the design of a domain specific language (DSL), namely
UbiML, which can be used to describe Ubiquitous Systems in a way that makes
transformation to different analysis platforms and ultimately the target platform
possible. A graphical editor for the DSL was developed using the Eclipse Graphi-
cal Modeling Framework.

To demonstrate the functionality of UbiML a simple Ubiquitous System was instan-
tiated using the developed graphical editor. Furthermore, a transformation of the
instance to a simulation platform (GlomoSim) is described.

In short, this thesis provides a basis for Model Driven Software Development in
the field of Ubiquitous Systems.
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1.5 Thesis Outline
The rest of the thesis is structured in the following way: Chapter 2 gives the
reader background information about Ubiquitous Systems and Model Driven Soft-
ware Development. In Chapter 3 the requirements that UbiML needs to meet and
possible use of existing meta models, domain specific languages and tools are
elaborated after describing the current and a desired design process for Ubiqui-
tous Systems in more detail. It also points out related work and their capabilities
and limitations leading to central aspects in the design of a Domain Specific Lan-
guage for Ubiquitous Systems. Chapter 4 gives a high level description of the
semantics of such a Language, UbiML, which was designed in the context of this
thesis. The following chapter 5 describes how the implementation of UbiML was
done in Eclipse GMF. UbiML is evaluated in Chapter 6. A use case of how a
UbiML enabled design process may look like and the description of a transforma-
tion to GloMoSim can also be found there. The thesis concludes with chapter 7,
where the proposed solution and its evaluation is summarized. This chapter also
points out limitations of the solution and future work to be done.
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2. Background Information

This chapter provides background information about Ubiquitous Systems and
their current design and verification cycle in general. Furthermore, it introduces
the field of Model Driven Software Development (MDSD) with their primary nomen-
clature.

2.1 Ubiquitous Systems and its Nomenclature
The term Ubiquitous System was coined in 1988 by Mark Weiser in [Weis99]
where he foresaw Ubiquitous Computing to enhance “computer use by making
computers available throughout the physical environment, while making them ef-
fectively invisible to the user”. Embodied Virtuality refers to this “process of draw-
ing computers out of their electronic shells” [Weis99]. Computer devices become
smaller and smaller, they are embedded into our live and are disappearing from
our visual perception.

Mark Weiser also coined the term Calm Technology. It refers to technologies that
let the user chose which information shall be in the center of his attention without
losing peripheral awareness of other information. The goal is to stay focused
without neither missing important other information nor being distracted by them.
A good real-life example of a Calm Technology is a water level indicator of an
indoor plant. If information about the plant’s need for water is wanted, one can
check the water level indicator, but if the current task is unrelated to the plant’s
need for watering, the indicator is unobstructive enough not to draw attention to
itself. Ubiquitous Systems shall support humans in their every day life without
actively using them or needlessly disrupting their user.

A recent vision in this field is the Internet of Things. It refers to networking many
objects from the everyday life such as household appliances and to equip those
objects with their own intelligence and possibility to communicate with other ob-
jects in their environment with the goal that those objects organize their own pro-
cesses autonomously and collaborately.
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Typical characteristics of Ubiquitous Computers include their low computing power
and memory, finite energy due to the use of batteries and small form factor. Fur-
thermore, usually unreliable wireless communication with limited network band-
width and a peer to peer/mesh-like, dynamic and ad-hoc topology is used. Com-
putation is preferably done collaboratively in the network but can also be done on
a dedicated processing machine or sink where the data is accumulated.

Recently, a numerous variety of such systems has been designed, simulated and
deployed by the research community. They range from Wireless Sensor Networks
(WSN) like Collaborative Business Items [DRBS+07] to wearable computers pro-
viding an augmented reality [SMRL+97]. Older systems, like the cellular tele-
phone are already integrated in our lives.

Most Ubiquitous Systems can be separated into four functional parts: sensing,
processing, networking and acting. The sensing and processing parts detect the
user’s intention. Networking is used to be able to collaborate with other nodes
and the acting part supports the user in some task. A simple example would
be dialing a telephone number (sensing) and processing the pressed buttons to
detect that the user tries to call somebody, followed by the action of establishing
a connection to the other person’s telephone. Networking is used to establish the
call and to transmit the speech itself.
A more sophisticated example would be reading data from sensor nodes like light
intensity, temperature or the pressure applied to chairs to detect a conference in
a room with the intent to indicate the conference on a display at the conference
room’s door in order to avoid disturbance.

The network traffic in such systems differs significantly from the one observed in
the Internet due to the very different usage scheme [Feng04]. Often, Ubiquitous
Systems contain sensor nodes which only forward collected data to other nodes
or a sink. This data can be transformed in different ways along the path to the sink.
Examples include compression and data aggregation. The usage of gateways is
also common. Data storage can be done in many different places like on the node
itself, on a gateway or in a sink. The design space is huge and its solutions differ
greatly in their performance [Mill08].

The following paragraphs explain Ubiquitous System related terms and also give
an overview over the most important techniques used in the design of Ubiquitous
Systems.

2.1.1 Context and Real World Awareness

Context Awareness is the key concept of Ubiquitous Systems. Many different
authors have defined the contextual properties of Ubiquitous Systems.

Bill Schilit defines the three important aspects of context to mobile computing
[ScAW94] as:

• Connectivity: What resources are nearby?

• Social situation: Who you are with?

• Location: Where you are?
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Day et al. [ADBD+99] suggest the following three very similar categories for con-
text:

• Computing context: This category contains mainly hardware related prop-
erties, but also properties that are generated by the hardware with the goal
to compute or communicate. Typical examples are processors, memory
size, input/output devices and network connectivity.

• User context: The context related to interaction between artefacts is lo-
cated in this category. User context includes properties like the own location,
the location of nearby systems and people and the social situation.

• Physical context: This category contains the contectual properties that are
not the Ubiquitous System itself or its users, but are generated by the envi-
ronment. Examples for physical properties are the noise level in a certain
location, lighting and temperature.

Krogstie’s categories [KMPE05] (cf. figure 2.1) are more fine grained:

• Spacio-temporal context: Properties like time, movement speed and loca-
tion.

• Environmental context: Similar to Day’s Physical Context and Shilit’s Con-
nectivity, but also includes nearby services and the network connectivity
which is placed in the User and Computing contexts by Day and Shilit.

• Personal context: Physical and mental state of the user. Tired, angry and
sleeping are examples.

• Task context: Current goals, tasks and actions.

• Social context: Information about relatives and friends and the users cur-
rent role or status (i.e. “watching TV” or “working”). Sensitivity of the system
to the user’s identity is drawn from the social context.

• Information context: Available global and local information space.

Context Awareness refers to the idea to use information about the context of a
system to adapt its behavior [ScAW94].

Context is usually drawn from sensors in combination with classification (figure
2.2). One example of a Context Aware system is the “Intelligent Home” [eal99].
Another example would be a different rendering of web pages dependent on the
viewing device. To achieve that, one could write a Java-script which queries the
browser type and adapt the rendering to the target browser.

A sensor is a piece of hardware with the ability to sense a physical phenomenon
such as heat, light or position and transfer it into a signal which can be further
manipulated and worked with. The procedure is called sensing.

The discovery of a phenomenon is called detection. Often detection is done via
sensor readings in combination with classification techniques.
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Figure 2.1: The six categories for context defined by Krogstie.

Figure 2.2: Context Acquisition with Sensors.

There are many ways to classify data with different advantages and drawbacks.
The used algorithms are mainly results of research in the field of Artificial Intelli-
gence and Machine Learning.

A subset of frequently used classification techniques includes:

• Decision Trees

• Artificial Neuronal Networks

• Bayes Filters

• Fuzzy Logic

• Logistic Regression (Maximum-Likelihood-Estimation)

Inaccuracy of measurements and the dependence on seemingly orthogonal or
unknown parameters make classification a hard task. All those classificators are
actually estimators of the context that led to the measured inputs with imprecise
outputs.

Tracking produces a series of measurements over time to estimate the state of
a physical entity. One example for tracking is producing a movement vector from
multiple position triangulations of an object. A sample application would be the
tracking of packages at a parcel delivery service.
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2.1.2 Artefacts

An Artefact is an object — a mobile device which a human can interact with.
Interaction can be direct as it is the case by pressing buttons mounted on an
object. It can also be indirect through the detection of context.

A typical example of an artefact is a physical item equipped with a sensor node.
Sensor Nodes contain at least one sensor and computing/communication func-
tionality which usually includes a processor, memory, power supply (battery) and
a network radio to communicate the own state to other artefacts.

Common sensor node hardware ranges from embedded computers with 400MHz
Intel XScale processor, 64MB SDRAM, 32MB flash memory, IEEE802.11b WiFi
and a 6V DC battery with 105Ah total current draw like an eXtreme Scale Star-
gate [Aror05] to small UC Berkeley Mica Mote using a AtMega128 microcontroller
running at 4MHz and 4KB RAM/128KB flash memory available [HiCu02].

2.1.3 Networking

Since Ubiquitous Systems contain many subsystems that need to be connected
with each other to be able to cooperate, networking is an essential part for Ubi-
quitous Computers. Most techniques in Ubiquitous Systems are the results of
wireless sensor network and mobile ad-hoc networking research in general.

In systems with a highly dynamic topology due to mobile nodes it is often prefer-
able to address a service, or data (Data Centric) instead of a network address
(Address Centric). The use of Data Centric Addressing can ease the communi-
cation in Ubiquitous Systems. One is often interested in the context of a certain
location, not in the context of a certain node number.

Querying the temperature of node #23 would be Address Centric, while one would
query which nodes exceeded 25◦C recently or the temperature of surrounding
nodes in a Data Centric approach.

Data Centric routing can be achieved through anycast protocols by assigning an
anycast address to each service/data-type in the network and by using special
anycast routing protocols [Proc99].

2.1.4 Execution

The fundamentals of execution in Ubiquitous Systems come from the field of Dis-
tributed Systems. An important aspect of execution in Ubiquitous Systems is con-
text based execution, which refers to the paradigm that the execution flow may
change based on the context it is executed in.

Data is preferably processed in the network, close to the point where it is gener-
ated as opposed to using a dedicated data sink and processing machine — which
is typical for WSNs.

In-Network Processing can have a big impact on scalability by avoiding or mitigat-
ing bottlenecks, e.g. on network bandwidth through aggregation or compression.
These and other vantages also impact energy usage and performance of the com-
plete system.
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Collaboration between the artefact that share a common context is used to of-
fer services concerning this context. An example would be offering temperature
distribution information in the context of a room using multiple temperature sen-
sors on different artefacts. Due to very limited computing resources, data is often
processed collaboratively by many nodes using distributed algorithms.

Another reason for Collaborate Processing is that sometimes information can only
be extracted from multiple nodes’ data and no node could provide the data alone.
One example for this case would be triangulation, where one uses three distance
readings from spatially different reference points to calculate the position of a tar-
get object. The Implementation of Collaborative Processing Algorithms is usually
complex.

A state is a distinguishable configuration of sensor informations which can depend
on previous sensor configurations. Transition to a state can be purely internal, but
it can also trigger an action in the Ubiquitous System which might lead to further
state changes.

2.2 Model Driven Software Development
Model Driven Engineering (MDE) separates the specification of system functional-
ity and technology, enabling integration and interoperability into/between different
platforms via transformations and code generation. The development approach
is to specify an abstract model and generate program code from it.

Definition 2.1 Model
“A formal representation of entities and relationships in the real world with a
certain correspondence for a certain purpose.” Stachowiak [Kühn05]

The important aspects are:

• mapping: based on a real entity

• abstraction: only describe important details, remove everything else

• isomorphism: conclusions hold for the real world

• pragmatics: the model is usable in place of the original for some purpose

The first tools to support this development paradigm were developed in the 1980s
and became generally known as Computer-Aided Software Engineering (CASE)
tools. Unrealistic expectations, a lengthy training process, weak repository con-
trols and inadequate standardization [Vari96] are some of the problems why CASE
wasn’t widely accepted by the software development community.

Model Driven Software Development (MDSD) is an advancement of the CASE
approach. It uses Domain Specific Languages (DSL) to describe a problem do-
main. A modeling language which can be used in arbitrary contexts (domains) —
a general purpose modeling language — is either of infinite size or as problem-
unspecific as a conventional 3GL programming language. It would be of no more
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use than modeling the problem in the programming language itself. Domain Spe-
cific Languages aim to model a domain in a more concise, Platform Independent
way. The result is a so called Platform Independent Model (PIM). DSL instances
can then be transformed into target models like code of a higher programming lan-
guage. This target model is referred to as Platform Specific Model. This process
is depicted in figure 2.3.

Figure 2.3: The relationship of Platform Independent Model (PIM), Transformation
and Platform Specific Model (PSM). The PIM is transformed to PSM
with the help of additional information like source code snippets.

The main goal of a Domain Specific Language is the ability to express a particu-
lar type of problems or solutions precisely and easily, thus the improvement of the
software design process and the software product. In MDSD, the model (speci-
fied in a DSL) is the primary artefact. It is what is explicitly specified, developed
and versioned — not the target platform source code. The model is used for
documentation, communication, analyses, reasoning and code generation.

MDSD aims to improve [vDKV00]:

• reliability and testability

• maintainability

• portability

• reusability

• documentation and communication

• optimization and validation at domain level

• development speed

DSLs and MDSD in general are not a silver bullet, though. There are some disad-
vantages compared to the traditional development approach. The most important
ones are that firstly more time and effort needs to be undertaken specifying the
system. Secondly, transformations need to be written or adjusted which often re-
quires a reference implementation. Furthermore, it is not realistic to assume that
all target code can be generated automatically, some code will always need to be
hand-coded for each target platform.

A well known example of a DSL is the Extended Backus-Naur-Form (EBNF) which
can be used to formalize context-free grammars. A grammar specified in EBNF
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can then be transformed into a parser by a tool called Bison [biso]. The parser,
written in C-code, accepts the specified language. The target model in this ex-
ample would be the programming language C and the running binary parser a
runtime instance of the model.

Model Driven Architecture is a MDE initiative launched by the Object Management
Group (OMG) in 2001. It provides guidelines how to define models at various
levels of abstraction (figure 2.4).

Definition 2.2 Meta Model
A Meta Model is the language definition of a model [Kühn05]. It describes which
parts a model consists of and is used to build valid models.

Figure 2.4: The OMG defines 4 layers of abstraction. The Meta Object Facility
(MOF) is an instance of itself. The Domain Specific Language (DSL)
is an instance of the MOF and describes the User Model which in turn
describes an Instance of the problem domain.

The model layers suggested by the OMG are:

• M3 (MOF): The Meta Object Facility (MOF) is a Meta Meta Model and de-
scribes how to specify Meta Models (definition 2.2) — it also describes itself
and is therefore also an instance of itself. Ecore (cf. section 5.1.1) is a MOF
dialect.

• M2 (DSL): A Domain Specific Language is an instance of the MOF and is
build to describe instances of the modeled domain. In the example this is
the EBNF.

• M1 (User Model): The User Model describes a concrete problem and its
solution in the specific domain modeled by the DSL. In our example this is
a concrete grammar written in EBNF.
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• M0 (Instance): The Instance is the the lowest level of the modeling hierar-
chy. It can be executed or transformed into an instance of a target model.
This is a running instance of the actual parser in the Bison example.

2.2.1 Model-To-Model Transformations

Model-To-Model Transformations are an essential part of MDSD. They enable the
separation of the modeled specification from the functionality which is provided in
the target model.

Definition 2.3 Transformation
The transformation rules that describe how to automatically generate target mod-
els from source models are referred to as a Model-To-Model-Transformation
[MeCG05].

The source and target models in the definition can each also be a single model. Of
capital importance for a Model-To-Model-Transformation is that it is a computable
function. Figure 2.5 depicts the relationship between the Model Hierarchy and a
Model-To-Model-Transformation to the C-Programming-Language.

Figure 2.5: A sample Model-To-Model Transformation. The boxes to the left de-
pict the abstraction layers in modeling as defined by the OMG. The
boxes on the right side show a sample platform-specific target model
— the C-programming-language. Transformation rules are defined on
the DSL-layer but the actual transformation is performed on the User
Model.
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2.3 Summary of this chapter
This chapter gave background information about two topics that are of great im-
portance for the rest of the thesis. First, Ubiquitous Computing was introduced
and its key terms were pointed out and explained. Then, the reader was given
information about Model Driven Software Design with its history, strengths and
weaknesses. The term Domain Specific Languages was defined and the transfor-
mation to analysis models and source code identified as its main purpose.
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This chapter first identifies important goals in the design of Ubiquitous Systems
that ought to be reached (section 3.1). In section 3.2 it compares the requirements
of a design process for Ubiquitous Systems with the requirements of a design
process for traditional software systems. A Domain Specific Language is only
useful if it can be transformed to useful target models. Sections 3.3, 3.4 and 3.5
give an overview over interesting models for Ubiquitous Systems. Section 3.6
gives an overview over three important Meta Models which are used for software
or systems design. Finally, in section 3.7 the chapter compares the introduced
models and MDSD-Platforms with the goals of this thesis.

3.1 Design and Verification of Ubiquitous Systems

As Ubiquitous Systems are massively distributed systems with dynamic collabo-
ration over error-prone wireless links among their nodes and hard resource-, par-
ticularly energy-constraints, their design can be very challenging. Their design
must take this into account and find a balance between orthogonal design param-
eters. Typical orthogonal design parameters are price, radio distance, reliability
and form factor.

Design criteria or principles include:

• robustness: Failures, especially false alarms and service outages discour-
age the use of a system. A low error probability and an adequate response
to errors is essential. In Ubiquitous Systems it is much harder to accomplish
this due to the many additional points of failures that exist in such systems.

• longevity: The maintenance overhead must be minimal. Mechanical sur-
vival of hardware and sufficient battery capacity for the systems to run for
months or years is desirable.
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• form-factor: It should be able to embed the needed hardware without draw-
ing too much attention to it. The system should become invisible to the user
if it does not need attention.

• low latency: The time to reach a certain state or until a certain action is
performed must be adequate.

• scalability: The system should still function efficiently if the system size
increases by several orders of magnitude. It should also be able to handle
incremental deployment and usage.

• interoperability: The system should be able to operate in a heterogeneous
environment.

All of those design criteria have been in the attention of the research community
for a long time and many different approaches exist to address them. As every-
where else there is “no free lunch” here either, every optimization always has
drawbacks which can influence other subsystems in a way that the “optimization”
hurts the overall performance instead of helping it. One example to back this is
that removing redundant network traffic might help latency and scalability while
sacrificing robustness. Moreover the choice of a certain design decision is of-
ten influenced by the usage characteristics of the system and data processed by
the system — these characteristics might be different than anticipated or might
change in the future, retrospectively leading to a poor choice.

3.1.1 The Present Design-Process of Ubiquitous Systems

Today the design of Ubiquitous Systems is driven mainly by choosing technolo-
gies and hardware that seem right for the target application and then the effort to
build the system upon this hardware. The development cycle might do multiple
iterations on every level in the design process and each cycle takes a lot of time
since the entire system must be implemented and tested before the next cycle
begins (figure 3.1).

Another approach is to implement the target system in a simulator and do the
testing there. Although the focus of this technique should lie on the design of the
protocols, a lot of time goes into the implementation instead of the design.

Addressed tests are generally done under unrealistic conditions with a very small
subset of features, a small number of nodes and unrealistic environment. The
predictability gained from those isolated tests is basically zero [Kobb08].

3.1.2 Desired Design-Process of Ubiquitous Systems

The aspired design process is a top down approach as depicted in figure 3.2. The
business case, as the goal of the design process, stands in the center of atten-
tion. The first and foremost goal is to formalize it, along with the requirements,
constraints, features, and logic that are indispensable to reach the design goal.
This is what the Domain Specific Language is used for.
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Figure 3.1: Present Design-Process of Ubiquitous Systems. The iteration entails
re-writing big portions of simulation and target platform code.

After this the model is fix and the design space exploration can take place. From
now on only the hardware and protocols change. Different hard and software com-
ponents can be evaluated by parameterizing the model in different ways; model-
checking and simulation code are generated — rapid deployment can take place
by platform code generation.

The iteration cycle is much faster and the developer gains the possibility to easily
try out new ideas and to learn about unapparent tradeoffs. Higher startup costs
(figure 3.3) are caused by the significant learning effort needed to use a DSL and
the required tools. However, one can argue that high-level languages and their
respective tools would also require a significant amount of time to learn. These
costs are compensated by a higher product quality and lower total cost.

3.2 Requirements of Ubiquitous Systems

The design and the requirements of Ubiquitous Systems differ greatly from that
of conventional Software Systems. In short, the main difference is that context
and mobility play a fundamental role in Ubiquitous Systems while they play hardly
any role in traditional software engineering. This makes existing requirement engi-
neering and software development methods inadequate for Ubiquitous Systems
[KMPE05]. Following is a description of the most important properties of Ubi-
quitous Systems that need to be dealt with when designing a Domain Specific
Language.
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Figure 3.2: Desired Design-Process of Ubiquitous Systems. Specifying require-
ments and the creation of a formal model requires of significant
amount of time. Once the model is created, the iteration step can
be done quickly by using code generators.

Figure 3.3: Cost comparison between conventional and DSL enabled develop-
ment [Huda98]. The Model Driven Software Development approach
has a higher startup cost (c2) compared to the startup cost of the
conventional development paradigm (c1) due to the time needed to
formalize requirements and to specify models and transformations.
The higher startup cost is accompanied by a lower cost during the
life-cycle of the product and often pays off in the longrun.
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3.2.1 Dynamic Environment

There are many different environmental parameters that can be dynamic in a
particular Ubiquitous Subsystem. The most common one is dynamic location
due to mobility of a subset of the autonomous nodes. This mobility leads to the
dynamic behavior of a number of other parameters. For nodes with fixed location,
a relative location shift can be caused by the mobility of other nodes. The change
in node density can then cause the bandwidth to vary dramatically — a very high
density may lead to many collisions and thus a very low bandwidth while a very
low density may cause network partition. A change of relative positions also has
a significant impact on the user environment.

Another major dynamic parameter can be the target platform. It may not be known
in advance and it might change over time of the product’s life-cycle as new hard-
ware is engineered [FiSa01].

3.2.2 Modeling Context

Context has already been defined in section 2.1.1. The quality of persistence of
contextual properties is very diverse. Sensed context is biased heavily by noise
and sensing errors for example while user-supplied data is rather reliable but out-
dated. The context model needs to take this heterogeneity into account.

Kolos-Mazuryk compared different ways to model context in his Ph.D. thesis. In
[KMEW06], he suggests that a context model should consist of Context-attributes,
the specification how these attributes are changed, the reaction of the service
to changes and activities which cause attribute changes. Moreover the actors
which perform the activities and furthermore interdependencies between context
attributes. UbiML, the DSL designed in this thesis, models context very close to
this suggestion — details are given in section 4.2.

3.3 Formal Models
This section gives an introduction to two important Formal Models which can be
used to analyze different aspects of Ubiquitous Systems. Generally, static and
analytical analyses can be easily performed on formal models. But execution and
simulation sometimes possible as well, e.g. with Petri-Nets.

3.3.1 Process Calculi

Process Calculi, also known as Process Algebras, can be used to formally model
concurrent systems — their interactions, communications and synchronizations.
Algebraic laws which can be used to manipulate and analyze the model are also
provided [Hill05]. Most Process Calculi agree on basic operators, namely se-
quencing, nondeterministic choice, and parallel composition. They differ mainly
in the mathematical representation or extend those basic operators to make other
analyses possible [Lutt06].

A model which is formalized in a Process Algebra can be transformed into a
graph which can then be verified. Common analyses performed on the graph
are [Hill05]:
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• reachability analysis

• deadlock- and livelock-freedom

• matching of specification and implementation

• model checking

Well known examples of Process Calculi are Tony Hoare’s Communicating Se-
quential Processes (CSP) and Robin Milner’s Calculus of Communicating Sys-
tems (CCS). CSP and CCS both lack timing information and can thus make no
assumptions about performance. Stochastic Process Algebras close this gap
by associating timing information and relative probabilities of state-changes with
each activity. A widely used representative of this class of Process Algebras is
Jane Hillston’s Performance Evaluation Process Algebra (PEPA). The expected
rate at which an activity is performed is denoted as a negative exponentially dis-
tributed random variable. Assumptions about throughput and response time can
be drawn from PEPA. It also makes predictions such as how long it takes to reach
a certain state. [Baet05]

The main problem in the analysis of large systems using Process Calculi is state
space explosion. The following approaches try to mitigate its effects [Hill05]:

• Model simplification: replace submodels with simpler submodels via weak
isomorphisms and strong bisimulation.

• Model aggregation: abstract from submodels by finding equivalence rela-
tions and consolidate them to fewer states.

• Conversion to Product-Form: Models in product form are solvable effi-
ciently.

Important Process Calculi that emphasize on mobility and on wireless links are
the π-Calculus [MiPW89] and the ambient calculus [CaGo98].

Many tools exist to analyze the discussed target models. Typically static analysis
is performed on Process Calculi, but some tools are also capable of performing
simulation on the calculus. PRISM belongs to this category. Code Generation
can usually not be done from a Process Calculus.

For the PEPA Process Algebra, the PEPA Workbench is such a tool. It can con-
struct a deviation-graph and Continuous Time Markov Chains which can then be
analyzed further. The PEPA State Finder is capable of finding all states in PEPA
models. Petri-Nets can be constructed from PEPA with the Imperial PEPA com-
piler. A very popular tool to do probabilistic model checking is an open-source tool
called PRISM Model Checker. It supports model checking on Continuous Time
Markov Chains, Discrete Time Markov Chains and Markov Decision Processes
against properties expressed in continuous stochastic logic [Hill05]. PEPA mod-
els can be imported into PRISM via an included PEPA to PRISM compiler. The
Möbius Modeling Platform offers different ways to describe models and multiple
techniques to solve and analyze them. It was developed for studying availability,
reliability, and performance of networks. It supports Petri-Nets, Markov-Chains
and Stochastic Process Algebras as source models.
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3.3.2 Petri-Nets

Petri-Nets generalize deterministic finite state automatons to create a simple way
in which concurrency can be modeled formally. They offer a graphical notation
(figure 3.4) that consists of places, transitions, tokens and directed arcs which
form a bipartite graph. Arcs connect places and transitions, but never arcs with
arcs or transitions with transitions. Places may contain a non-negative number
of tokens. To fire is the term that describes that a transition takes place — the
involved tokens are transferred to the places connected to the firing transition by
outgoing arcs. Transitions fire at undetermined but discrete times if all places that
are connected via incoming arcs contain at least one token — multiple transitions
can fire in the same Petri Net at the same time simultaneously which models
concurrency in the system.

Figure 3.4: Simple Petri-Net synchronizing two processes. Transition A and B
cannot fire simultaneously due to semaphore (s), effectively allowing
only one process to be in its critical section (cs).

Coloured Petri-Nets (CPN) combine regular Petri-Nets with the possibility to de-
fine data types and the use of variables.

There are also extensions that add timing informations to Petri-Nets. In Timed
Petri-Nets, transitions can be associated with timing information. Stochastic Petri-
Nets (SPN) add nondeterministic time to transitions which are expressed as a
exponentially distributed random variables.

A whole variety of behavioral and structural properties can be analyzed on Petri-
Nets using static analysis techniques. Some important ones are [Mura89]:

• Reachability: Are there states that can never be reached?

• Boundedness: Is the number of tokens bounded for all places? Since
places usually represent buffers, this is equivalent to the question if it can
be guaranteed that no buffer overflow will take place.

• Liveness: Is there, at all times, at least one transition that can fire? This is
equivalent to deadlock freedom.

• Reversibility: Can the network get back to the initial marking? Together
with Reachability this implies livelock freedom.
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• Synchronic Distance: How closely related are events?

• Controllability: Is every marking reachable from any other marking?

• Consistency: Is there a marking and a firing sequence in which all transi-
tions occur at least once?

Petri-Nets can be transformed to simulation-code and real platform independent
code as well.

3.4 Simulation Models

Simulators which can be used to model and make predictions about distributed
systems like Wireless Sensor Networks and Ubiquitous Systems in general have
been developed in the past. Unfortunately the analysis is time consuming and one
needs to run many different simulations with different parameters to get statistical
significance. On the other hand Simulators are insensitive to state space size and
thus lack the main downside of Process Calculi.

Adrian Genaid compares different simulation platforms and analyzes their appli-
cability for simulating Ubiquitous Systems in [Ried09]. The most important simu-
lators which can be of use when designing Ubiquitous Systems are introduced in
the following.

3.4.1 DEVS

An important representative on this class of simulator models is the Discrete Event
System Specification (DEVS) formalism (figure 3.5). DEVS allows for modeling
distributed discrete event systems modularly. Every module is a black box which
transforms an input signal to a transformed output signal. This represents the
module’s interaction with the environment. Modules can be hierarchically made
of other modules [ASSDGC07].

Figure 3.5: A simple DEVS Model describing a Ping-Pong game [Hwan07].

Antoine-Santoni et al. have used a DEVS-based simulator to analyze a Wireless
Sensor Network used for environmental monitoring with focus on the network
management of the system [ASSDGC07].
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3.4.2 Ptolemy

Ptolemy is a component assembly framework with a graphical user interface and
a rich simulation backend. The key concept is the definition of models of com-
putations which describe the interaction between concurrent system components.
Multiple different such models of computations can be used in a single simulation.
The components themselves are called actors in Ptolemy. Their behavior can be
specified in Java. The described system can then be analyzed using many dif-
ferent so called domains for properties like dataflow or real-time characteristics.
[Lee]

Vergil

Vergil is an extensible, graphical user interface which can be used to enter Ptolemy
models. Figure 3.6 shows a block diagram representation of a system which plots
a set of differential equations.

Figure 3.6: Vergil, a graphical user interface for Ptolemy.

Viptos

Visual Ptolemy and TinyOS (Viptos) [ChLZ06] is a graphical development and
simulation environment build upon Ptolemy. It which can be used to describe
embedded systems using block and arrow diagrams in combination with nesC
[GLBW+03] (a C-Programming-Language dialect) code. The result can then be
simulated using the Ptolemy domains and also in the TinyOS simulator (TOSSIM)
[LLWC03].

3.5 Network Simulators
Network Simulators are useful to test protocols in a controlled environment. Net-
work Simulator Code is not a sophisticated model for static analysis. It can how-
ever be emulated to be tested on real hardware, e.g. with NS-2.

Network Simulators that can be used to simulate Mobile-Ad-Hoc networks are
generally also suited to be used for the networking part of Ubiquitous Systems.
Three common Network Simulators are introduced in the following paragraphs.
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3.5.1 Network Simulator 2

The Network Simulator 2 (NS-2) is a very popular discrete event network simula-
tor that is well-suited for wireless networks (but also wired networks). It actually
comes with a specific class for mobile ad-hoc networks called MobileNode. NS-2
can also be used as an emulator, which makes it possible to try out implemented
protocols on real networks, or on a network that consists of a mixture of real
and simulated nodes. NS-2 is often used to do small-scale simulations. It does
not scale well and has a very large memory footprint which makes simulations
with more than a few hundred nodes impossible. Small scale-simulations can be
undertaken very fine-grained and accurately [Di C03].

3.5.2 GloMoSim

The Global Mobile Information Systems Simulation Library (GloMoSim) [ZeBG98]
is another simulator for wireless mobile ad-hoc networks. Unlike NS-2, GloMoSim
was designed to support large-scale simulations which can be run in distributed
environments (SMP, Clusters). It is written in Parsec, a simulation language that
can be used to describe parallel execution of discrete simulation models in a
C-like syntax. GloMoSim is, as well as NS-2, structured similarly to the ISO/OSI-
Reference-Model which makes it possible to easily exchange layers without mod-
ifying other parts of the simulation code. Many popular protocols on different
layers, like IPv4 with AODV routing or UDP, are already implemented and can be
used off the shelf. GloMoSim also includes some basic movement models. The
Random-Waypoint-Model and a Trace-Based-Model are two examples. GloMo-
Sim will be used as the target simulation platform in the evaluation in chapter 6.

3.5.3 OMNeT++

OMNeT++ [KSWW+08] is a component based, open source network simulator
written in C++. It consists of hierarchically nested modules to reflect the structure
of the real system. The modules are implemented as coroutines and thus appear
to be running in parallel. Although it also scales well, it is not very well suited for
Ubiquitous Systems, since it lacks implementations of important protocols like the
ad-hoc routing protocols AODV and DSR.

3.6 Software-Engineering Meta Models
There is a row of general purpose modeling languages and domain specific lan-
guages that seem to be well suited for modeling Ubiquitous Systems. This section
introduces the most promising ones.

3.6.1 Unified Modeling Language

The Unified Modeling Language (UML) is a graphical, general purpose modeling
language that is used mainly to model object oriented software. It is standardized
by the OMG and through ISO/IEC 19501. UML does not strictly bind a semantic
to the defined syntax, but it enables developers to communicate and document
their software models more easily. Furthermore, some tools are able to generate
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programming language code stubs. Constraints can be expressed in the Object
Constraint Language (OCL).

UML is very large and complex. It takes a considerable amount of time to learn
it and even after having fully understood it, UML does not help much modeling a
specific problem domain. UML does not embody any domain knowledge in the
field of Ubiquitous Systems.

3.6.2 Systems Modeling Language

The Systems Modeling Language (SysML) is a UML2 profile for systems engi-
neering. It contains a subset of UML2’s diagrams with extensions (figure 3.7) and
some modifications to fit the needs that system model developers have.

Figure 3.7: SysML: Modifications applied to UML2[FrMS08]

SysML is also standardized by the OMG and, in contrary to UML, it provides se-
mantics. Dynamic in the model can be expressed but dynamic of the modeled en-
tities themselves can unfortunately not. Ubiquitous Systems are highly dynamic
though; one example would be mobility. Another reason against modeling Ubiq-
uitous Systems with SysML is, that it — like UML — doesn’t contain any domain
knowledge.

3.6.3 Pervasive Modeling Language

The Pervasive Modeling Language (PervML) is an MDA-approach specifically de-
signed to be used for modeling pervasive systems. It consists of different views
and models that form a Platform Independent Model. Requirements and abstract
functionality are specified in the Analyst-view. The Architect-view takes this spec-
ification and enriches it by describing how the functionality can be implemented in
soft- and hardware. UML State Transition Diagrams are used to specify the behav-
ior of the different components. The PIM can then be transformed into Java-code
which can then run on a SOA-Middleware. [Ried07]

The major downside of PervML is, that it is only transformable to a specific target
model which is not very well suited for small embedded devices. It moreover does
not allow for transformation to any of the numerous different analysis platforms
which are very helpful for a reliable and fast design space exploration.



26 3. Analysis

3.6.4 Visual Robotics Development Kit

The Visual Robotics Development Kit (VRDK) was designed to be a high-level
graphical modeling language for developing applications in Ubiquitous Comput-
ing scenarios [KWUB06]. The User Models can than be translated to different
programming languages. Currently, there are transformations available to C and
C#. The graphical model supports commands that are modeled closely after im-
perative programming languages. Commands like conditional forks, loops and
branches as well as the evaluation of formulas are part of the language, but also
commands to describe the parallel execution of different threads. [Ried07]

As described in section 3.2, a very important aspect of Ubiquitous Systems is
their extensive interaction with context. Unfortunately, VRDK does not take this
into account. The only context that one can access is the location which is not
sufficient for complex Ubiquitous Systems.

3.6.5 The Palladio Component Model

The Palladio Component Model (PCM) is a component-based software engineer-
ing (CBSE) framework. It was built to allow predictions about performance like
response time, throughput and resource utilization. Hardware details, usage pro-
file and other influence factors on performance are taken into account by speci-
fying them in a parametric way [BeKR07]. The main components PCM contains
are a domain specific language implemented in EMOF/EMF (cf. section 5.1) and
a performance simulation. Component behavior can be expressed via arbitrary
stochastic distribution functions.

Unfortunately, PCM cannot easily be extended by further analysis capabilities
due to major deficiencies in the Meta Model. The architecture modeled with PCM
is static. Connections cannot move, meaning components cannot dynamically
change with whom they are connected. This also limits the possibility to move
towards or away from resources, or changing the context of components which is
essential in Ubiquitous Systems. Another drawback of PCM is, that it can model
one influence factor only. However, more than one factor can be important when
trying to model context.

3.7 Deriving Design-Elements for UbiML

Many different Models have been explained in the sections 3.3 through 3.6.

Process Calculi were introduced as a formal Model. Since they are hard to write
directly, Process Calculi are rather a target model than a source model in a Model
Driven Software Development process. They can be used to answer several ques-
tions about i.e. deadlock- and livelock-freedom or the queuing behavior of the
network.

Petri-Nets on the other hand could be either a source and a target model in a
MDSD process for Ubiquitous Systems. Unfortunately there is no concept to
deal with context in Petri-Nets as only processes are modeled. Moreover there
is no domain knowledge about Ubiquitous Systems in Petri-Nets as they were
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originally created to describe chemistry processes. A transformation to computer-
processes is easily possible as the focus lies on describing processes already.
This does not only make Petri-Nets an attractive target model, but also an in-
termediate model in which the procedural part of Ubiquitous Systems could be
expressed in.

DEVS introduces a very good concept signals, signal-flows and for describing the
interaction with context intuitively. From an abstract point of view, DEVS describes
signals and their transformation to other signals. In DEVS there is no dissociation
between the description of the systems behavior which is very helpful when ex-
ploring the design space of a system.

The Ptolemy framework offers a very rich analysis backend and is very flexible in
the way it can model things. On the other hand it is very complex and was not
build to describe the domain of Ubiquitous Systems. In fact it is so flexible that
every process or system can be modelled.

The introduced network-simulators NS-2, GloMosim and OMNeT++ are specified
in general purpose programming languages and are thus entirely unsuitable as
source models for a MDSD process. They can be a very useful target model
in such a process while studying network protocols in the designed Ubiquitous
System though.

UML and the UML profile SysML were also introduced. UML is a general purpose
modeling language and is as such too powerful and hard to learn while contain-
ing no domain knowledge for being a valid source model candidate. SysML in
contrary to UML does contain domain knowledge in the field of engineering. Un-
fortunately, it is not possible to express a dynamic system with SysML. Only dy-
namic behavior in a static system can be expressed. Both, UML and SysML are
not good candidates for target models either because the analysis capabilities of
those languages are very limited.

PervML is coming close to a good source model. Its concepts and implementation
focuses very strongly on Java and Java middlewares instead of describing the
system neutrally to allow different transformations. VRDK comes even closer, but
it in turn does not allow to describe and interact with different types of context but
only covers the location.

A MDSD-process similar to the one in the Palladio Component Model is desirable
in the field of Ubiquitous Systems, although with a different focus. PCM is already
a well developed MDSD-process with a well defined MOF. It focuses on perfor-
mance modeling. While verification lies in the center of attention in the design of
Ubiquitous Systems, performance takes a subordinate role. Business Processes
and the integration of the new systems, their semantics and in particular their
failure probability — ultimately the price — are subject to modeling rather than
software components and their performance.

Another major difference between the described systems and a desired system
for modeling Ubiquitous Systems lies in the modeled entities. Ubiquitous Sys-
tems are supposed to be integrated into the workflow and hence depend greatly
on interaction with humans and other unknown, dynamic systems. Moreover, Ubi-
quitous Systems are, unlike usual software, used in highly dynamic environments.
Mobility, environment changes — and context in general — play a major role.
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In a nutshell, a new Domain Specific Language which is capable of easily and
comprehensively describing Ubiquitous Systems needs to be created with the
following properties:

• Clear Meta Model and a Model Driven Development workflow

• Containment of domain specific knowledge in the field of Ubiquitous Sys-
tems

• Possibility to cope with very dynamic systems

• Easy description of various types of context

• Possibility to transform to analysis-models

• Separated Models for modeling the behavior of the system and for it’s in-
stantiation

3.8 Summary of this chapter
This chapter first described the design decisions that need to be made when de-
veloping Ubiquitous Systems. The typical current design process and a visionary,
desired design process were depicted. Existing solutions that might have been
used for creating the desired design process were analyzed with the conclusion
that a new Domain Specific Language needs to be created. The chapter con-
cluded with guidelines how such a Model must look like.
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This chapter describes the domain specific language UbiML which is the main
contribution of this thesis. The language is divided into two Models, the Artefact
Model and the Instantiation Model. The former describes all entities in a Ubiqui-
tous System along with their behavior and influence on one another. The latter
is used to describe instances of the modeled artefacts and their parameters, i.e.
start positions in a simulation and the number of sensor nodes.

The major novelty to existing systems, like the Palladio Component Model, is
the very flexible way in which artefacts, their interaction with each other and the
interaction with context are modeled.

4.1 The UbiML Workflow
There are formal and informal requirements that UbiML needs to meet. The fore-
most requirements are the ability to easily specify Ubiquitous Systems and the
influences that affect the operation of the System, most importantly the context
3.2.2 and interaction between subsystems.

As described earlier in section 2.1 the typical Ubiquitous System consists of sens-
ing, processing, acting and networking. Mainly these tasks and their properties
and constraints need to be easily expressible in UbiML.

UbiML should support developers and engineers in analyzing and documenting
their design as well as in the communication with colleagues and in the implemen-
tation of the desired system. Moreover, it should be possible to create repositories
that make rapid development possible by the reuse of previously designed and an-
alyzed subsystems. Another requirement is that UbiML is flexible enough to be
extended to use new target platforms — it should be as independent from specific
target models as possible without degenerating to a general purpose modeling
language that does not contain any domain knowledge.

When using UbiML to design Ubiquitous Systems, the workflow (figure 4.1) is as
follows. After the vision becomes clear the driving force behind the project creates
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a high-level description of functionality, features, requirements and constraints.
Engineers then take this description, choose hardware subsystems and protocols
that seem adequate to reach the vision and map them, along with an anticipated
target environment and usage, to an UbiML Model specification. At this point
the designed system can be tested rapidly with many different analysis platforms
to find errors in the specification of protocols and identify inappropriate design
decisions. When the design seems to be solid, code generation can take place.
Since mostly not all of the target platform code can be generated, some hand-
coded parts need to be added at this point as well. A hardware prototype can
be soldered and if the prototype passes all tests in the “real world” the initial
development phase is completed.

Figure 4.1: Workflow when designing Ubiquitous Systems with UbiML.

Figure 4.2 depicts the tools and models involved from designing and implementing
UbiML to its usage. A detailed description of the Eclipse GMF-Tools is given in
section 5.1.
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Figure 4.2: Tools and Models in the UbiML enabled workflow. The Instance Model,
Artefact Model and Repository reference each other. The GMF-Tools
need additional models that define i.e. shapes and tools (cf. section
5.1).
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4.2 Artefact Meta Model
The Artefact Meta Model describes the entities in a Ubiquitous System as well as
communication, context and constraints. A simplified version of the Meta Model
is depicted in figure 4.3, the full Meta Model can be found in figure 5.6.

The Meta Model contains the following conceptual components that will be dis-
cussed in greater detail in this section:

• Artefacts

• Computation Models

• Values

• Signals

• Signal Transformations

• Timers

• Assertions

4.2.1 Artefacts

All physical things are modeled as Artefacts. Artefacts have a name and can
be assembled from other Artefacts — so called Sub-Artefacts. Artefacts are the
used to structure a modeled entity. It can be thought of as a casing that expe-
riences a context and that contains hardware to run code and to interact with
the environment. Typical examples that fall into this category are sensors, radios
and a processor which runs the program logic of a system. Sub-Artefacts allow
structuring a system for better clarity.

Sub-Artefact Connections

An Artefact is connected to a Sub-Artefact with a directed vertex — the Sub-
Artefact Connection. Artefacts and their Sub-Artefacts must form a directed acyclic
graph.

4.2.2 Computation Models

Dependent on the connection-type to an Artefact, the Computation Model rep-
resents an algorithmic representation of the context model (section 3.2.2) which
affects the connected Artefact or it represents a process (i.e. a protocol) that runs
on a processor integrated into the Artefact.

The semantic difference of computation and context is reflected in the UbiML
Model by defining that context is always passive, while processing can trigger the
flow of data. Context can only be interacted with by actively reading it through a
processing Computation Model. As a consequence of this, Computation Models
which represent context cannot be connected to Timers (section 4.2.6).
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Figure 4.3: Simplified version of the Artefact Meta Model. Connections between
components are shown in a simplified form. The Canvas-Root-Node
and its connections have been omitted. The full Meta Model can be
found in figure 5.6.
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The concept of the Computation Model is very close to the DEVS formalism,
which as been introduced in section 3.4.1. As in DEVS it is also possible to
couple Computations by assigning the outputs of different Computation Models
to another Computation Model which can reason on a higher level (see section
4.2.3 for an explanation how inputs and outputs of Computation Models are han-
dled in UbiML).

The representation of the actual computation that takes place in the Computation
Model is not specified by the Meta Model and can be chosen in the User Model
(cf. 4.2.8). Which representation is appropriate, depends greatly on the aspired
target models. I suggest to use generic, graphical representation of algorithms
where applicable. Two examples that should work well for many different target
models are Finite State Automata and as already elaborated in section 6.5 also
Petri-Nets (cf. section 3.3.2). Target platform source code could be written here
as well if supported by the transformation.

Context Connections

Computation Models can be connected to Artefacts by context connections in
which case the attached Computation Model is an algorithmic representation of
its (passive) context. Context in terms of UbiML is the computationally derivable,
external state which is a representation of the contextual properties previously
defined in section 2.1.1. An example is a function of time which can model the
temperature profile of a room over the course of a day.

Processing Connections

If a Computation Model is connected to an Artefact by a processing connection,
the Computation Model represents a process running on the Artefacts processing
unit.

4.2.3 Values

The interface of context and computations (Computation Models) are Values. Val-
ues can be bound to arbitrary Computation Models. In this binding the name,
which can be used to access the Value in the particular Computation Model, is de-
clared. There exist three types of Values: Local, Outgoing and Incoming Values.
The type defines the usage. Local Values are never used outside of a single Com-
putation Model and therefore cannot be bound to multiple Computation Models.
They can be used to hold internal states — variables that are needed internally
in an algorithm across calls. Local Values are analogous to static variables in C
or private member variables in C++. Outgoing Values are used for transferring
computation results to other Computation Models and Incoming Values are their
counterpart that are used to access Outgoing Values.

Outgoing Values can never be read directly, but have to always be read via a
Signal (section 4.2.4). This forces the creator of the User Model to think about
and model transmission errors and inaccuracies between contextual properties
and their sensor readings.

Signal Transformations (section 4.2.5) may also be connected to Local Values
which may be used for storing internal state across transformations. Furthermore,
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Transformations can directly access the contextual properties (the Outgoing Val-
ues of contextual Computation Models) of the sender and receiver of a Signal.
This is i.e. useful to apply a distance based fading model to radio signals. This is
the only place where a foreign Outgoing Value can be accessed directly.

Local Value Bindings, Outgoing Value Bindings, Incoming Value Bindings

Local-, Outgoing- and Incoming-Values are bound to Computation Models by the
Local-, Outgoing- and Incoming-ValueBinding connection, respectively. The con-
nection is also associated with a bindingName — a string which can be used as
an identifier to access the connected Value.

4.2.4 Signals

Outgoing Values and Incoming Values are connected by Signals. Signals corre-
spond to radios, shared memory and sensor sampling in the real world. There
are different types of Signals to reflect the different possibilities in the visibility
of emitted signals. Signals can have the types SubArtefactInstance, ArtefactIn-
stance and Remote. SubartefactInstance Signals are emitted to all Computation
Models of the current Sub-Artefact-Instance. They are not visible to other Sub- or
Super-Artefacts of the Instance. Signals of the type ArtefactInstance are visible
to the entire Artefact-Tree of the Instance, but not to other Instances. Remote
Signals are potentially transmitted to all Instances in the System.

Signal Sender Connections

Outgoing Values can be connected to a Signal with SignalSenderConnections
representing the fact that the value that is assigned to the OutgoingValue through
the OutgoingValueBinding is sent using this Signal.

Signal Receiver Connections

Incoming Values can be connected to a Signal with SignalReceiverConnections.
OutgoingValues which are connected to the same Signal are copied into the In-
comingValue on send.

4.2.5 Signal Transformations

Signals can be further associated with a Signal Transformation. The Transforma-
tion reflects the fact, that sensor-sampling and data-transfers are always error
prone and transferred values may change on the way. It is basically a stream
transformation — an algorithm or a function of contextual properties. One exam-
ple could be to specify Wireless-Radio-Signal-Fading as a Rayleigh distribution-
function based on the positions of the communicating nodes. Signal Transforma-
tion handling can also be handed off if supported by the analysis platform — to a
simulator for example. This is done in the example User Model in section 6.2.

Transformation Connections

Transformations are associated with Signals by connecting them with a Transfor-
mationConnection. OutgoingValues which are sent to IncomingValues through
the associated Signal are then modified by the Transformation.



36 4. The UbiML Meta Models

Sender- and Receiver-Context Connections

Signal Transformations may need to access the context of the sender and/or the
receiver of a Signal. In that case the needed contextual OutgoingValues are
bound directly to the Signal Transformation with SignalContext- or ReceiverContext-
Connections. Each such connection is also associated with a bindingName which
is used as an identifier to access the OutgoingValue.

Transformation Data Connections

Signal Transformations may also be connected to LocalValues. A LocalValue
is bound to the Transformation by connecting them with a TransformationData
Connection. The bindingName Attribute is used as an identifier to access the Lo-
calValue. The LocalValue can used to store internal Transformation-State across
calls.

A LocalValue must not be connected to both a Transformation and a Computation
Model at the same time.

4.2.6 Timers

Not only Signals can be the source for Incoming Values. Another possibility is to
connect Timers to Incoming Values. Timers are needed as triggers. When de-
scribing a Sensor-Node with the function to detect fires for example, one could
use Timers to model polling of a temperature sensor or smoke detector. An-
other example are timeouts in network protocols. There are two different types of
Timers: Periodic Timers and Single-Shot Timers. Periodic Timers are appropriate
to model polling while Single-Shot Timers are the better choice for timeouts. Pe-
riodic Timers are instantiated with a fire-probability, start-time and a fire-interval
while Single-Shot Timers are instantiated with fire-probability and fire-time.

Timer Receiver Connections

A Timer is connected to an IncomingValue which receives the timer-event via
TimerReceiver-connections.

4.2.7 Assertions

Assertions can be bound to arbitrary (even Local) Values and are used to formu-
late logical assumptions about the system in a Linear Temporal Logic [Emer90].
These Assertions are not meant to be transformed to constructs like Assertions
in the C-Programming-Language — Assertions across local memory boundaries
would not work well there. The main reason for Assertions in UbiML is verifica-
tion of the modeled system in the design-phase. One could formulate invariants,
logical and precision checks as Assertions that need to hold during simulations
and/or formal model analysis.

Assertion Binding Connection

The Values in the Assertion-expression are bound to an Assertion through the
AssertionBindingConnection. The connection carries a bindingName which rep-
resents the identifier which is used to access the bound Values.
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4.2.8 Types

All Values, Signal Transformations and Computation Models must have a Type.

Supported Value-, Transformation-, Model-Types

The Type is declared by attaching a SupportedValue-, SupportedTransformation-
or SupportedModelType respectively to the entity with a Value-, Transformation-,
ModelTypeConnection.

Value Types, Transformation Types, Model Types

There must be exactly one ValueTypes, TransformationTypes and ModelTypes
node in the User Model. The Value-, Transformation- and Model-Types must be
connected to their Value-, Transformation- or ModelTypes Node via a Supported
Value-, SupportedTransformation- and SupportedModelTypeConnection respec-
tively.

4.3 Instantiation Meta Model

While the Artefact Model specifies which parts the modeled system consists of,
the purpose of the Instantiation Model (figure 4.4) is to parameterize one instance
of the system. The Artefact Model describes which Artefacts exist and the Instan-
tiation Model specifies how many of that Artefact exist and where. While the
Artefact Model specifies what constants and variables the User Model contains,
the Instantiation Model specifies their values or initial values.

Figure 4.4: The Instantiation Meta Model in the Ecore Diagram Editor.
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The Instantiation in UbiML is done in a tree-like editor. Every Root-Artefact-
Node (that is an Artefact that no other Artefact is connected to by a Sub-Artefact-
Relationship) can be a top-level node in the Instantiation Model. All free values
and timers of that Attribute-tree can then be set using Attribute child elements of
that top-level node. Every Value element contains a reference to the instantiated
model-element and a string value which can be converted to the correct type of
the value. An Artefact-tree with Artefact-, and Attribute-sub-nodes represents an
instance. If multiple, equal sub-trees need to be specified, the subtree needs to
be duplicated.

Transformations and their values can also be instantiated as top-level nodes.

4.4 Summary of this chapter
This Chapter introduced the workflow when designing Ubiquitous Systems using
UbiML. It also gave a high-level overview of the components that UbiML is made
of. UbiML is a domain specific language that aims to improve the shortcomings
in the current design process of Ubiquitous Systems by giving the designer a
graphical language in which dynamic context can be easily expressed in.



5. Implementation of a Graphical
Editor for UbiML

The Eclipse Modeling Framework (EMF ) is an open source framework for mod-
eling structured data and generating a reflective, dynamic editor for that data. A
tree-based editor is generated through a transformation of the the EMF Model to
Java source code. The EMF Model is an instance of the Ecore metamodel. The
editor is then capable of validating, querying, changing and serializing instances
of the data model.

The graphical equivalent to EMF is the Graphical Modeling Framework (GMF ). It
is internally based on EMF and the 2D rendering component Graphical Editing
Framework (GEF ). GMF consists of six different models that, together, are trans-
formed to a graphical editor. Not all of the models have to be written by hand.
Different wizards help with most of the steps.

openArchitectureWare (oAW) is a workflow engine which makes it possible to
orchestrate different models and transform them into target models in possibly
multiple steps. It also contains languages to describe those transformations.

This chapter describes an implementation of the UbiML Artefact-Metamodel in
Eclipse GMF after describing the Graphical Modeling Framework with its models
and openArchtectureWare in general. An oAW based transformation of UbiML to
GloMoSim will be discussed in chapter 6.

5.1 Eclipse Graphical Modeling Framework
The Graphical Modeling Framework (GMF) provides a generative component and
runtime infrastructure that supports the development of graphical editors for dif-
ferent Meta Models in Eclipse. Typical examples for such editors, targeted by the
GMF Project, are UML and Business-Process Editors.

GMF consists of a collection of models. Each model describes a different aspect
of the targeted graphical editor.
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The GMF models are:

• EMF Domain Model: This is the actual model for the DSL. It is expressed
in Ecore.

• Domain Gen Model: Generated from Domain Model, generates Java code
needed for the other transformations.

• Tooling Definition Model: Defines the tool-palette that is used to create a
model-instance in the generated editor (figure 5.1b).

• Graphical Definition Model: Defines the visual representation of the dia-
gram elements. It includes shapes, decorations, graphical nodes and con-
nections.

• Mapping Definition Model: Maps the tooling and graphical definitions to
the corresponding model elements.

• Diagram Gen Model: Is generated from the Mapping Definition Model and
is transformed to the actual graphical editor for the model.

(a) (b)

Figure 5.1: (a) The Eclipse GMF-Dashboard depicting the interrelationship of the
GMF Models. (b) EMF Tool-Palette which can be used to specify
Ecore-Models in a graphical notation.

The first step of a simplified workflow (cf. also 5.1a) for creating such an editor
is to create a Domain Model, the Meta Model of the language that the editor is
written for. The Domain Model contains the non-graphical information and is the
result of a problem analysis. The actual semantics are defined there. The Do-
main Model can be expressed in different languages like UML2, XML and Ecore.
In the next step, the graphical representation for diagram nodes and links in the
resulting editor is defined in the Graphical Definition Model. The definition of the
so called Tooling Definition Model comes next. It specifies how the Tool-Palette
(figure 5.1) looks like. The Mapping Model which is defined then, combines the
Domain Model, Graphical Definition Model and Tooling Model by defining which
elements belong together (figure 5.5). For every element of the Domain Model,
the Mapping Model defines which tool creates the element and how this particu-
lar Domain Model element looks like (which element of the Graphical Definition
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Model describes appearance of this element) in the editor. After the definition of
those models, the graphical editor is generated and can be enhanced by editing
the generated plug-in code.

A more detailed description of the different models involved in the process follows.

5.1.1 Domain Model

The Domain Model can be expressed in different Modeling-Languages. One of
them is Ecore (figure 5.2).

Figure 5.2: Ecore-Metamodel [Co+ot]. Domain Models are specified using these
Entities. The most frequently used elements for specifying UbiML’s
Metamodel were EClass, EEnum, EAttribute and EReference.

This model is the actual semantic core of the Editor. Ecore can be written and
modified using the Eclipse Modeling Framework (EMF). EMF can be used for
code generation based on a structured data model. This structured data model is
expressed in Ecore which is why EMF provides an editor (figure 5.3a) for it. The
Ecore Model can be serialized as XMI and instantiated as a runtime model in Java.
Newer versions of GMF have the possibility to create a graphical representation
of the Domain Model and edit it in an UML-like notation (figure 5.3b).

5.1.2 Graphical Definition Model

The Graphical Definition Model defines the visual representation for diagram nodes,
links and labels in the editor. The model is very flexible and supports different
shapes, line-styles, fonts and spatial attributes.
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(a) (b)

Figure 5.3: Different representations of the same Artefact Model. (a) Eclipse
Modeling Framework’s “Sample Reflective Ecore Model Editor”
(b) Graphical-Representation of an Ecore Model

All visible objects are defined in the “Figure Gallery”. Each different graphical
element consists of a “Figure Descriptor” node which contains a hierarchy of child-
elements that describe the way it looks like.

Sibling nodes of the Figure Gallery represent different node, connection and la-
bel types and reference elements in the Figure Gallery. Elements in the Figure
Gallery are referenced through “Child Access” elements. This makes figures ac-
cessible by multiple nodes and thus reusable.

Figure 5.4a depicts how a simple Graphical Definition Model could look like.

5.1.3 Tooling Definition Model

The Tooling Definition Model defines which tools exist in the Tool-Palette (figure
5.1b) and how they are grouped. The Tool-Palette can also contain items for
zooming in and out of the canvas and selecting items.

GMF provides a tree-like editor 5.4b, the GMFtool Model Editor, to make the spec-
ification easier.

(a) (b)

Figure 5.4: (a) Graphical Definition Model in the “GMFgraph Model Editor”
(b) Tooling Definition Model in the “GMFtool Model Editor”
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5.1.4 Mapping Model

The Mapping Model links up the Tooling Definition, Graphical Definition and Do-
main Model (figure 5.5).

Figure 5.5: The Mapping Model links Tooling Definition, Graphical Definition and
Domain Model together. [TiSh]

It can be created and edited using the “GMFmap Model Editor” which is very
similar to the model Editors for the Tooling Definition, Graphical Definition and
Ecore Models.

Every User Model that ought to be used as a basis for a GMF Editor needs to
have a Canvas-Root-Node which represents the canvas of the editor. The nodes
that have an association with that root-node can be drawn directly on the canvas.

To add one of these nodes to the editor, a “Top-Node-Reference” needs to be
added to the Mapping Model with the association as the “Containment Feature”
of the Top-Node-Reference. Then, a “Node Mapping” child needs to be created
and the according Ecore-element specified as the “Element”. The correct Tool
and Diagram Node (appearance) is chosen here as well. The contained features,
like labels for instance, can be added by creating children to the “Node Mapping”,
such as the “Feature Label Mapping”.

Links (connections between nodes) can be added to the editor by adding a “Link
Mapping” node to the Mapping Model. When links are represented as classes in
the User Model, their source and target references can be chosen by the “Source
Feature” and “Target Feature” fields of the “Link Mapping”. The containment and
element, as well as the tool and diagram link can be chosen here as well.

It is also possible to nest diagram elements inside each other.
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5.1.5 openArchitectureWare

openArchitectureWare (oAW ) is a modular MDSD workflow engine implemented
in Java. Workflows, which specify generation and transformations of models, can
be expressed in a XML-based language. oAW can work on EMF Models, but
also on others like UML2, XML or JavaBeans. openArchitectureWare contains
several languages that can be used to do model transformations or to formulate
constraints. The most important ones are:

• Xpand: Model-To-Text Transformations — handwritten code can be inter-
mixed with generated code.

• Xtend: navigate source models to do a Model-To-Model Transformation.

• Xtext: Generate Text-Model-Editors using a language similar to EBNF.

• Check: Define constraints.

The implementation of a Transformation from UbiML to GloMoSim which has been
written in the context of this thesis makes extensive use of Xpand and Check.
Some source-code excerpts are shown in the section 6.3.

5.2 Implementation of the Artefact Meta Model
The Meta Model for UbiML’s Artefact Model is depicted in figure 5.6. The Canvas-
Root-Node and its connections are hidden for the sake of clarity. Connections
from the Canvas-Root-Node to all other classes exist in the User Model.

All classes that represent links in the editor, have been modeled as EClasses and
are colored white with gray lines. Types, Type collections and Enumerations are
also colored white, but with black lines.

The Incoming-, Outgoing-, Local-Values (dark blue) all inherit from the Value
class. This makes the specification of Value-Types and Assertions easier. The
Periodic-, and Singleshot-Timers do also have a common super-class, to prevent
re-specification of their common arguments.

Not all of the diagram elements have been implemented in the editor, as not all
parts are needed for basic functionality. The following figures depict the graphical
representation of UbiML’s elements that have been implemented. A reference to
the according section in chapter 4.2 where it is explained is also given for each of
the depicted elements.

A full example of how the graphical notation of UbiML looks like can be found in
section 6.2.

5.2.1 Artefacts

Single Artefact with the name “Artefact”.
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Figure 5.6: Artefact Metamodel (without canvas-root-node and its connections)
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SubArtefact-Connections

Artefacts and Sub-Artefacts connected to each other by Sub-Artefact-Connections.
Semantic description can be found in section 4.2.1.

5.2.2 ComputationModels

ContextConnection

Artefact connected to a ComputationModel with a ContextConnection.

ProcessingConnection

Artefact with a ComputationModel attached to it through a ProcessingConnection.
Semantic description in section 4.2.2.

5.2.3 Values

The three Values: Local Value, Incoming Value and Outgoing Value.
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Local Value Bindings, Outgoing Value Bindings, Incoming Value Bindings

The connections used for binding Values to a Computation Model.

Semantic description in section 4.2.3.

5.2.4 Signals

OutgoingValue and IncomingValue connected by a Signal. The Signal is of the
SignalType “SubArtefactLocal” which means that the Signal is only delivered to
this Sub-Artefact in the own instance. The OutgoingValue and IncomingValue
must have the same root-Artefact. No Transformation is attached.

Signal Sender and Signal Receiver Connections

An OutgoingValue connected to a Signal with a SignalSenderConnection. The
IncomingValue is connected to the Signal with a SignalReceiverConnection.

Semantic description in section 4.2.4.

5.2.5 Signal Transformations

Transformation Connections
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Sender- and Receiver-Context Connections

Transformation accessing the OutgoingValues of sender and receiver.

Transformation Data Connections

Semantic description in 4.2.5.

5.2.6 Timers

Timer Receiver Connections

A Process which is triggered by a PeriodicTimer. The Timer is connected to the
IncomingValue through a TimerReceiverConnection.

Semantic description in section 4.2.6.

5.2.7 Types

Supported Value Types

Value Type Collection
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A ComputationModel with three different Values attached to it. A LocalValue, In-
comingValue and OutgoingValue. The former two are of type “Type1”, while the
latter is of “Type2”.

Semantic description in section 4.2.8.

5.3 Implementation of the Instantiation Meta Model
The Instantiation Meta Model is located in a sub-package of the Artefact Meta
Model. It does not have an association to the canvas-root-node and is therefore
not visible in the graphical artefact editor.

Instead of instantiating the Artefacts in graphical notation, leading to a cluttered
model, the instantiation is done in a tree-like editor. The Instantiation Model is
reflecting the Artefact Model that lives in the same file. It is therefore possible
for the editor to check the validity of the instantiation and aid in the instantiation
process by finding unbound values.

5.4 Summary of this chapter
This chapter first gave a detailed description of the Eclipse Graphical Modeling
Framework and its models. Then a simple proof-of-concept implementation of
UbiML’s Artefact Model and Instantiation Model was depicted.
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6. Evaluation

This chapter provides a qualitative evaluation of the Domain Specific Language
UbiML. The first section explains the evaluation methodology that is used to eval-
uate the graphical language. It is followed by three related examples to show
how a design space exploration could look like. Moreover a transformation of the
presented examples to the Global Mobile Information Systems Simulation Library
(GloMoSim) is presented and analyzed.

In section 6.4 a more elaborate description of the real Ubiquitous System scenario
“Hazardous Goods” is given and it is sketched how the scenario could be modeled
in UbiML.

The chapter concludes with a summary of the evaluation results.

6.1 Evaluation Methodology

Unfortunately, a quantitative evaluation of this work is not possible, since no com-
parable framework exists that UbiML can be benchmarked against. It could only
have been benchmarked against hand-writing code. Furthermore, only a single
Model-To-Model Transformation, a transformation from UbiML to GloMoSim, ex-
ists. Due to those restrictions, different qualitative properties of UbiML are evalu-
ated instead.

The main hypothesis being evaluated is that UbiML is expressive enough to model
the vital parts of Ubiquitous Systems easily and unambiguously. This is done by
creating and analyzing User Models for two typical types of Ubiquitous Systems
and describing how commonly used parts can be expressed in UbiML. It is shown
that the typical features of Ubiquitous Systems can be modeled clearly and pre-
cisely. A transformation to the network-simulator GloMoSim is also depicted to
show the applicability of transformations for a rapid and reliable design space
exploration.
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6.2 UbiML User Model: Monitoring the Position of
Autonomous Robots

The goal of the first User Model example is to describe an ad-hoc network of au-
tonomous robots that need to monitor each others work to increase the reliability
that they perform a given task. This scenario has been thoroughly described in
[Mill08]. Simulation results for various communication protocols that can be used
for monitoring autonomous robots can also be found there.

A simple example could be a set of autonomous vacuum-cleaning robots with the
task of collaboratively cleaning a big house or construction robots deployed on
the moon’s surface to autonomously build a moon-station.

A developer aims to explore different communication-paradigms and optimiza-
tions in respect to scalability, latency, accuracy and robustness. Those param-
eters are not completely orthogonal and their interdependencies are not obvious.
The developer decides that the network simulator GloMoSim will answer most of
his questions concerning the performance of the used protocol.

Instead of developing a simulation from hand, he could design a simple UbiML
Model. In the following I describe three possible iteration steps of a design space
exploration for the vacuum robot scenario.

6.2.1 Periodic Single-Hop Broadcasting

A graphical representation of a possible UbiML User Model to reflect the design
of an autonomous vacuum cleaning robot is depicted in figure 6.1. Every robot
periodically broadcasts his current position to the other robots. When receiving a
position-message, the robot saves the received position in a log for later use in the
algorithm that determines where it needs to vacuum next. A GPS position read-
ing is always imprecise. The variation between the real position and the robots
GPS reading is introduced by the “GPS-Inaccuracy” Signal-Transformation. In our
simple model this inaccuracy is modeled through a uniformly distributed random
deviation within a certain interval. The maximum deviation is given through the
Local Value “inaccuracy” which is set in the Instantiation Model.

The UbiML Model can be instantiated, as shown in figure 6.2. The Computation
Model and Signal Transformation stubs (i.e. movement.pc, gps_transformation.pc)
can then be set by creating text files with the given name. They contain the actual
protocol logic, while the graphical notation only represents the data flow. Listings
6.1 through 6.6 illustrate how little code a developer has to write for basic func-
tionality. The generated portion of source-code — which would have had to be
written by hand if UbiML were not used — would have been more than 750 lines
of code.

pos.x = nodePtr->mobilityData.next.x;
pos.y = nodePtr->mobilityData.next.y;

Listing 6.1: movement.pc — We don’t implement our own mobility model, but use
GloMoSim’s Random-Waypoint mobility model and access the simu-
lators current position stored in mobilityData. Notice that pos is the
binding-name defined in the graphical UbiML notation.



6.2. UbiML User Model: Monitoring the Position of Autonomous Robots 53

Figure 6.1: User Model for a scenario in which mobile, autonomous robots broad-
cast their position periodically and log the positions received by other
robots. The broadcasts are triggered by the PollTimer. The data type
of the used Values (dark blue) are set by associations with the nodes
connected to the “Value Types”-node. Those connections are hidden
for reasons of clarity.

outgoingPos = posFromGPS;

Listing 6.2: gps.pc — outgoingPos and posFromGPS are the binding names from
the graphical UbiML User Model. outgoingPos has been declared
before our stub and will be passed to the SendPosition Computation
Model after the stub without further ado. posFromGPS has been de-
clared with the correct type prior to the stub and been initialized to the
position which was processed by the GPS-Transformation to model
the inaccuracy caused by using a GPS.

double deltax, deltay;
deltax = 2.0*inaccuracy*pc_erand(senderNodePtr->seed);
deltay = 2.0*inaccuracy*pc_erand(senderNodePtr->seed);
in.x = in.x - inaccuracy + deltax;
in.y = in.y - inaccuracy + deltay;
return in;

Listing 6.3: gps_transform.pc — The Value “in” is passed to the Signal Transfor-
mation function and needs to be transformed and returned. The trans-
formation which is applied here is to change the value by a uniformly
distributed random amount between 0 and the local value “inaccu-
racy”. pc_erand is a function defined by GloMosim and returns the
required uniformly distributed random double value between 0.0 and
1.0.

Position *mypos = (Position*) pc_malloc( sizeof(Position) );

*mypos = posToSend;
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outgoingDatagram.data = (void*)mypos;

Listing 6.4: send.pc — posToSend and outgoingDatagram are the named bind-
ings for our Incoming Value and Outgoing Values. All that needs to
be done is allocating memory for the position and adjusting the data
pointer in the datagram to point to the allocated memory. The GloMo-
Sim function to send the datagram is called after the stub.

receivedPos = *((Position*)(data->data));

Listing 6.5: receive.pc — We only need to copy the datum from the datagram to
receivedPos. Notice that we do not need to free the memory allocated
in send.pc since this is done by GloMoSim.

printf("[%d] logged Position(%lf, %lf)\n",
nodePtr->nodeAddr, data.x, data.y );

Listing 6.6: poslogger.pc — All received positions are written to the console and
can be processed after the simulation i.e. if the output has been redi-
rected into a file during the simulation.

The instantiated model can then be transformed into a GloMoSim simulation and
run to determine the parameters the developer is interested in. Section 6.3 gives
a detailed description of how this Model-To-Model Transformation from UbiML to
GloMoSim-code can be done.

(a) (b)

Figure 6.2: Example instantiation of the first autonomous vacuum cleaning robot
User Model. (a) The instantiation part of the User Model in the
Sample-Reflective-Model-Editor. Ten Instances of the Robot are de-
clared, each with the same PeriodicTimer settings, but mutually differ-
ent timers could have been set at this point. A maximum inaccuracy of
10 meters is set for the GPS-Inaccuracy Transformation. (b) A part of
the same Instantiation in XMI. The timings are given in nanoseconds,
thus the shown PeriodicTimer is set to start 2 seconds after the begin-
ning of the simulation and will fire every second with a probability of
1.
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6.2.2 Multi-Hop-Broadcasting

After analyzing the simulation results, the developer notices, that many position-
broadcasts only reach a part of the autonomous robots and concludes, that this
must be due to the single-hop broadcast in combination with far distances be-
tween the robots. He decides to change the communication-protocol by adding
the capability to do multi-hop broadcasting on application-layer. Modifications
need to be done in different parts of the simulation code, but using UbiML the
code can be refactored easily.

To avoid that position-updates circulate infinitely in the network, a message iden-
tification number (ID) is generated for every update. If a robot receives an update
with a new ID, it will forward the update to the PosLogger and then broadcast it to
all nodes in its range. If the ID has been received before, the packet is ignored.
To indicate that the broadcasted position is not the own but the position of another
robot, the source robot’s address is also included in the message.

Figure 6.3 depicts the refactored UbiML Model in graphical notation.

Figure 6.3: User Model for the adapted autonomous vacuum-cleaning robots ex-
ample with the goal to utilize multi-hop broadcasting. Received po-
sitions are now run through the new Computation Model “MultiHop-
Broadcaster” where the decision is made if the position is new, in
which case it is passed on to the PosLogger and repeated for other
nodes which are out of reach for the original sender. Duplicates are
dropped silently in the MultiHopBroadcaster. A new data type “Cache”
has been added to hold a fixed number of recently received IDs. Re-
ceived IDs are hashed into the cache “id_type”, owned by the “Multi-
HopBroadcaster” — duplicates are detected through this cache.

After changing the graphical UbiML User Model, the stubs need to be changed
to reflect the new semantics of the model. A very unsophisticated version of the
MultiHopBroadcaster could be written as shown in listing 6.7.

if( (cache[pos.id%1024].id == pos.id) &&
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(cache[pos.id%1024].addr == pos.addr) )
return; // ID is in cache, nothing else to do

cache[pos.id%1024] = pos; // put ID in cache
newPos = pos;

Listing 6.7: multihop.pc — Notice that the Position data type was changed to carry
an ID and source-address. The code was omitted for brevity. Calculat-
ing a modulus of the ID as a hash function may not be very collision
resistant, but should suffice for this demonstration.

6.2.3 Holding Back Minor Updates

Using application-layer multi-hop-broadcasting, the number of packets generated
by the protocol increases dramatically. The developer notices this and needs to
find a way to mitigate this effect. He decides to change the protocol again. The
protocol shall only broadcast a position-update if the robots position has changed
more than a certain threshold to the position broadcasted before. Again, due to
the use of UbiML the changes are trivial and easily done.

The GPS_Poll Computation Model is changed to implement the intended behavior.
A new LocalValue “lastPosSent” is added to hold the last position that the robot
has broadcasted. Another LocalValue (minDeviation) determines the minimum
Deviation from the last broadcasted position that is needed for the protocol to
send an update. minDeviation is set in the Instantiation Model. The refactored
UbiML User Model is depicted in figure 6.4. The gps.pc stub is changed to the
code shown in listing 6.8.

Figure 6.4: Another iteration of the vacuum-cleaning robots UbiML Model. Notice
the two additional LocalValues attached to GPS_Poll. Sent positions
are saved in “lastPosSent” and updated positions only broadcasted if
the distance to the current position is greater than “minDeviation”.
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if( (sqr(lastPosSent.x - posFromGPS.x) +
sqr(lastPosSent.y - posFromGPS.y))

< sqr(minDeviation) )
return; // nothing to do, only minor change in location

// store and broadcast new position
lastPosSent = posFromGPS;
outgoingPos = posFromGPS;

Listing 6.8: gps.pc — An adapted version of the stub to reduce redundant position
updates.

6.3 Code-Generation: A Transformation to GloMo-
Sim

A prototypical transformation to GloMoSim has been implemented for this thesis
and has been successfully used to create compiling and fully working GloMoSim
simulations from the examples introduced in section 6.2. The next section intro-
duces some implementation specific details of the GloMoSim network-simulator
— a high-level introduction has been given in section 3.5. Then, in the following
section the most important XPand-constructs used to write the transformation are
explained. A description how UbiML User Models can be transformed to GloMo-
Sim, including some XPand source-code excerpts follows.

6.3.1 GloMoSim
To create a simple GloMoSim application which can be run on a node in GloMo-
Sim one has to create at least three functions. One function which is called on
creating the application on the node, used for initializing data structures, called
${appname}Init where ${appname} denotes the name of the application. The
second function has the purpose to clean up dynamic data structures and write
log-files — it is called ${appname}Finalize. The third function which is needed
is the handler function for incoming messages from the Transport-Layer and for
Timers, it is called ${appname}.

void ${appname}Init( GlomoNode* );
void ${appname}Finalize( GlomoNode* );
void ${appname}( GlomoNode*,Message* );

Listing 6.9: Manditory functions when creating a GloMoSim application. ${app-
name} denotes the name of the application. Data structures needed
by the application can be initialized in ${appname}Init. They can be
cleaned up in ${appname}Finalize. ${appname} is called on a new
message (from transport or timer).

6.3.2 openArchitectureWare XPand
openArchitectureWare’s XPand transformation language has already been men-
tioned in section 5.1.5. This section gives a short overview over the most impor-
tant XPand statements. All XPand statements are enclosed in French quotation
marks — the so called guillemets.
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File

All text generated between the file statements will be written into a file with the
given filename.

<<FILE ‘‘filename’’>>
Hello World!

<<ENDFILE>>

Listing 6.10: Create a new file with the name “filename” and write the text “Hello
World!” into it.

Define

Define statements can be called with Expand and define what code shall be gen-
erated for a certain Domain-Element.

<<DEFINE definitionName FOR Element>>
ElementName = <<Element.name>>

<<ENDDEFINE>>

Listing 6.11: Element has an attribute called name, it will be printed after the text
“ElementName = “.

Expand

Definitions can be called with Expand. Targets can be single elements or for
instance all elements of a certain type. Define statements can contain multiple
Expand statements.

<<EXPAND definitionName FOREACH Element>>

Listing 6.12: Expand code for an element of the model.

Foreach

Foreach allows iteration over lists in the User Model.

<<FOREACH this.connection AS c>>
<<c.name>>

<<ENDFOREACH>>

Listing 6.13: Print all connection-names of the current node (“this”).

If-Else

If-Else constructs allow conditional transformation.

<<IF this.connection>>
empty

<<ELSE>>
<<EXPAND print FOREACH this.connection>>

<<ENDIF>>

Listing 6.14: Print “empty” if there are no connections, otherwise expand each
connection with the “print” definition.
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Rem

REM statements enclose a comment, which is removed from the file before doing
the actual transformation.

<<REM>>Comment<<ENDREM>>

Listing 6.15: A comment in XPand.

6.3.3 From UbiML to GloMoSim

We will generate the following files:

• transformation.h: Header file containing all Signal-Transformation defini-
tions.

• transformation.pc: Parsec file containing the implementation of all Signal-
Transformations used in the simulation.

• artefact_${artefactname}.h: Header file for the each root-Artefact (that is
an Artefact without parents) which contains all Computation Model defini-
tions.

• artefact_${artefactname}.pc: Parsec implementation of all Computation
Models in the Artefact ${artefactname}.

• mytypes.h: Header file containing the common data-types.

transformation.h

First the file is created and typical header and footer are written to prevent dupli-
cate inclusion, then the rest of the file is expanded in transformation_h:

<<DEFINE transformations_h FOR Map>>
<<FILE "transformations.h">>
#ifndef TRANSFORMATIONS_H
#define TRANSFORMATIONS_H
#include "mytypes.h"
<<EXPAND transformation_h FOREACH rootTranformations>>
#endif
<<ENDFILE>>

<<ENDDEFINE>>

Listing 6.16: Create the transformation.h file. The transformation-function-
headers are expanded in the transformation_h definition.

transformations_h defines one function declaration for each transformation in the
User Model:

<<DEFINE transformation\_h FOR Transformation>>
<<fromTransformationToSignal.toSignal.fromSignalToRecv
.toInValue.fromValueToType.toType.first().name>>
transformation\_<<name>>
( <<fromTransformationToSignal.toSignal.fromSignalToSender
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.toOutValue.fromValueToType.toType.first().name>> in,
GlomoNode *senderNodePtr, GlomoNode *receiverNodePtr );

<<ENDDEFINE>>

Listing 6.17: Follow the path in the model from the transformation to Incoming
Value which will receive the transformed signal to determine the cor-
rect return type. Then to the same for the Outgoing Value of the
sender to determine the type of the “in” parameter — the Value which
will be transformed.

transformation.pc

The previous paragraph illustrates how the transformation function-names are
generated. This must also be done in this file. The implementation for each
function is generated as follows:

First, create variables for the sender and receiver contexts and call the respec-
tive context-functions to retrieve the current context-values piping the return value
through the according transformation.

Second, create the local values as static variables and initialize them to the value
given in the Instantiation Model. Static variables are instantiated only at the first
call and keep their value across calls.

When this is done, create a new block containing a #include “«uri»” statement.
This is where the source-code, specified in the file with the filename given in the
User Model, is included.

Position
transformation_GPS_Inaccuracy( Position in,

GlomoNode *senderNodePtr,
GlomoNode *receiverNodePtr )

{
assert(senderNodePtr && receiverNodePtr);
{

// Local Values
static double inaccuracy = 10;
{

#include "gps_transform.pc"
}

}
}

Listing 6.18: There are no senderContext or receiverContext connections so no
code is generated at this point, the local value “inaccuracy” has
been bound to the name set in bindingName (which was also “in-
accuracy) and initialized to the value given in the Instantiation Model
(10). Then the gps_transform.pc file is sourced as defined in the
transformation’s uri attribute in the User Model.
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artefact_${artefactname}.h

In our vacuum-cleaning robot example (section 6.2) the created file is called “arte-
fact_robot.h”. The standard header and footer to prevent duplication are inserted
first. Then a structure is created to hold the Artefact’s internal state — it contains
all local values. The Value-names are prefixed by the path from the root Artefact
to the Computation Model, that is a underscore separated enumeration of the
element-names on the way from the root Artefact to the Local Value. Moreover, a
function declaration is created for every Computation Model in the Artefact. The
function-names use the same prefixing scheme as it was used for Local Values.
Two examples of this prefixing-scheme can be found in listing 6.19.

artefact_${artefactname}.pc

The function-implementations are created very similarly to the transformation func-
tions. First, the attached Values are bound to the names given in the ValueBinding
and initialized by calling the according functions. Then the uri is included. Con-
textual Computation Models return the Outgoing Value at this point. Procedural
Computation Models in turn call the next Computation Model in the dataflow with
the OutgoingValue as an argument.

The ${artefactname}_init() function is generated to initialize the Local Values in
the Artefact’s internal state structure. The ${artefactname} function (cf. listing
6.19) must handle all Timers and remote Signals sent to the Artefact. A switch
statement with a case block for each Timer and remote Signal is created, calling
the according Computation Model. The payload-data is passed to the function in
case of Signals.

void Robot(GlomoNode *nodePtr, Message *msg)
{

GlomoRobot *clientPtr = getRobot(nodePtr);

switch(msg->eventType)
{
case MSG_APP_FromTransport: // -> Received "Remote" Message
{

GlomoRobotMessage *data
= (GlomoRobotMessage*) GLOMO_MsgReturnPacket(msg);

assert(data);

switch (data->msgType)
{
case RADIO_SIGNAL:
Artefact_Robot_processing_ReceivePosition(nodePtr, data);
break;

}
break;

}

case MSG_APP_TimerExpired: // --> "Timer" Expired
{
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AppTimer *timer = (AppTimer*) GLOMO_MsgReturnInfo(msg);
assert(timer);

switch (timer->type)
{
case _ROBOT_POLLTIMER:
Artefact_Robot_processing_GPS_Poll(nodePtr, timer);
setTimer(nodePtr, _ROBOT_POLLTIMER, 1*SECOND);
break;

}
break;

}

GLOMO_MsgFree(nodePtr, msg);
}

Listing 6.19: Message handler function which was generated by a fully automatic
transformation from the example UbiML User Model (figure 6.1) to
GloMoSim. All Timers and Remote Signals are handled here.

mytypes.h

This file contains all common data-structures. As the current implementation has
only prototypical character it only supports different SupportedValueTypes. One
structure is created for each SupportedValueType.

6.4 UbiML User Model: Hazardous Goods
A high level overview of the purpose, functionality and design of the CoBIs Haz-
ardous Goods scenario has been given in section 6.4.1. A description of the
hardware, components, protocols and logic is given in the following sections. It is
also demonstrated how they can be modeled using UbiML.

6.4.1 Overview

The “Collaborative Business Items” (CoBIs) project was carried out by the Teleco-
operation Office (TecO) from the Universität Karlsruhe (TH), SAP, Infineon, Ambi-
ent Systems, Twente and Lancaster University in collaboration with BP in 2006.
Its goal was to enhance business processes through the usage of autonomous
sensor nodes (figure 6.5). One usecase for the CoBIs project was dealing with
the storage of hazardous chemical goods.

Management and monitoring of drums containing the chemicals and enforcing
storage regulations through alarms hence avoiding dangerous situations due to
improper storage and handling were main objectives in this usecase.

To achieve this, Particle sensor nodes [DKBZ05] (figure 6.6) were attached to
each drum in the project. Storage regulations were pushed onto the nodes from a
back-end system and the monitoring was done autonomously and collaboratively
by the nodes themselves. Alarming the workers of improper storage and providing
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Figure 6.5: Ad-Hoc communication in the Hazardous Chemical Goods usecase
[HSDR06]. Sensor nodes which have been attached to drums con-
taining chemical goods autonomously monitor their state with the goal
to enforce storage regulations.

Figure 6.6: Particle sensor node clip and drum with mounted Particle
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storage information was done on-site via the drums sensors and off-site via the
back-end system in management consoles.

The described system was deployed on 21 storage drums in a field test at the BP
Saltend Chemical Plant in England. Three storage areas in two buildings were
created for the trial. Two of the storage areas (Location A and B) were used for
actual storage while Location C was used as an initial/temporal storage area. The
different storage areas are depicted in figure 6.7.

Figure 6.7: The Storage Locations which have been set up for the CoBIs Haz-
ardous Goods field-test [HSDR06]. Location A and B were used to
simulate final storage locations while Location C was used for initial
or temporal storage.

The drums contained two different chemicals which cannot be stored together.
Workers interacted with the system in three ways. Technical support staff man-
aged the devices. They attached sensor nodes to the drums and replaced them
when they broke. Warehouse workers interacted with the system by moving
drums into and out of storage areas and obeying alarms triggered by the sys-
tem. Safety Officers monitored the drums off-site and created/changed storage
regulations. The interaction is depicted in a use-case diagram diagram in figure
6.8.

This introductory scenario poses a good example, because it contains many typ-
ical and challenging aspects of Ubiquitous Systems. The system contains au-
tonomous, context-aware artefacts (the particles) which interact and collaborate
in detecting illegitimate storage conditions. The interaction with different workers
on- and off-site is another central part of the system.

A more detailed description of hardware, software, process, field test setup and
storage regulation and analysis can be found in the following sections.

6.4.2 Hardware

The system consists of four major functional parts. The Particle sensor-nodes are
attached to the chemical drums. They communicate with Particle Gateways via
an 868MHz radio link using a proprietary protocol. Particle Gateways forward the
data received by Particles to a LAN and emit an infrared beacon signals with loca-
tion information. The Gateway Server provides a compatibility layer that makes it
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Figure 6.8: CoBIs’ Hazardous Chemical Goods usecase diagram [HSDR06]

possible to access the sensor-nodes without settling on a certain node-type. Infor-
mation can be pushed to the Particles from the Gateway Server and higher-level
information about the Particle-network can be queried. The Application Server is
also connected to the LAN and monitors the system. It can push new storage
regulations through the Gateway Server.

Particle Sensor-Nodes

Particle sensor-nodes were packaged in portable rear lights for bicycles (figure
6.6). Additionally to the radio, they contain an infrared sensor to read the IR-
Signal containing location information which is emitted by the Particle Gateway in
each location. They also have a temperature sensor and a LED build in. A duty
cycle of one second was configured, meaning that Particle nodes wake up every
second to make sensor readings and to communicate with other Particles and the
Particle Gateway.

Particle Gateways

Particle Gateways were off-the-shelf WiFi routers manufactured by Asus which
were equipped with an integrated Particle node in order to make communication
with the sensor-nodes possible. Furthermore, an infrared emitter was added. The
routers Linux-based operating system was customized to run the required proto-
cols.

Gateway and Application Servers

Standard PC-Hardware was used for the Gateway and Application Servers. They
are connected to the network via Ethernet.
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Hardware Setup

The hardware was set up as depicted in figure 6.9. A total of 21 drums were
equipped with Particle sensor nodes. The contents of the drums are listed in
table 6.1. Every one of the three storage locations (cf. figure 6.7) is equipped with
a Particle Gateway. The Gateways at storage locations A and B are connected
by a WiFi, while storage location C is connected through wired Ethernet. The
Application Server and Gateway Server are running on separate machines in a
fourth location.

Figure 6.9: Hardware setup of one of the CoBIs Hazardous Goods trials in
Saltend 2007. Particle sensor-nodes are spread over the three stor-
age locations. Every storage location has a Particle Gateway installed
relaying messages from the sensor-nodes to the backend LAN. There
are 2 PCs connected to the backend LAN. One of them is running a
UPnP Gateway software which represents the services offered by the
Particles as UPnP devices. The other one is running a Management
Application written by SAP. [DRBS+07]

6.4.3 Software

A short high-level description of the functionality that was implemented in software
on the different hardware-platforms is given in the next paragraphs. The storage
regulation and related alerts and notifications are also enumerated. All informa-
tion is taken from the two rolling reports on the application trials which have been
carried out during the project [HSDR06] and [DRBS+07].

Particle Sensor-Nodes

Particle sensor-nodes contain logic to check the imposed storage regulations col-
laborately and to communicate sensor-readings, alerts and notifications to the
back-end.
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Particle Gateways

The Particle Gateways basically acts as a network router between the WSN and
the backend LAN.

Gateway Server

The Gateway Server is capable of representing the Particle Nodes services as
UPnP-Devices thus making their discovery and control easy for the Management
Applications on the Application Server.

Application Server

The Application Server contains an SAP management application (SAP WebAS)
and uses the Gateway Server to communicate with the Particle sensor-nodes.

Storage Regulations

For the trial only very few and simple storage regulations were put into place.
The regulations concerning the storage temperature and the maximum number of
drums of a kind stored in the same location (limit) are listed in table 6.1. The only
additional rule was that water must not be stored together with either Energear or
Energol. All other combinations were allowed.

Max. Time in
Liquid Available Limit Min. Temp. Max. Temp. unknown Location

Autran 6 5 0 ◦C 40 ◦C ∞
Energear 3 3 0 ◦C 40 ◦C 600 s
Energol 2 3 0 ◦C 40 ◦C 120 s
Water 10 ∞ 0 ◦C 28 ◦C ∞

Table 6.1: Storage regulations for the chemical drums in the Hazardous Goods
field-test. Limit denotes the maximum number of drums of that kind
that is allowed to be stored together.

Alerts and Notifications

If storage regulations are violated, the system reacts with the alerts and notifica-
tions listed in table 6.2. If a particle receives an alarm, it broadcasts that alarm as
well — this “alarm infection” has the goal to increase the chance that the Particle
Gateway notices the alert.

6.4.4 Modeling the Hazardous Goods scenario

The following paragraphs explain how the hardware components that have been
described before, could be modeled using UbiML.
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Nr. Monitoring Rule Type Description

1. Storage Limit Alert The total amount that is allowed
to be stored for a certain chemi-
cal is exceeded.

2. Incompatible Goods Alert Two chemicals that are prohib-
ited to be stored in proximity are
placed too close to each other.

3. Min. Temp. Exceeded Alert The temperature of the node is
below the minimum temperature
defined for that chemical.

4. Max. Temp. Exceeded Alert The temperature of the node
is above the Exceeded max-
imum temperature defined for
that chemical.

5. Temporary Storage Time Alert A drum has been located in
a temporary storage Exceeded
area, i.e. an area without a lo-
cation beacon, for too long.

6. Node Failure Alert The node is close to failing, e.g.
because of low battery power.

7. Location Change Notification The drum is moved, i.e. the loca-
tion has changed. The ID of the
new location is sent to the back
end.

8. Voltage Change Notification The voltage of the battery
changed. The new value is
transmitted.

9. Temperature Change Notification The temperature changed. The
new value is transmitted.

Table 6.2: Alerts and Notifications which can be sent if storage regulations are
violated.
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Figure 6.10: A UbiML User Model for a Particle sensor-node. The node is only
active after being triggered by the DutyTrigger Timer. When active,
it tries to fetch the current location from the IR-Beacon sent by the
Particle Gateway. It also reads the temperature and voltage sensors
and communicates with reachable peers to verify that the current
storage situation complies with the regulations and with the Particle
Gateway to provide informations to the Management Server.
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Particle Sensor-Nodes

Particle sensor-nodes are designed to autonomously check that their storage sit-
uation complies with the storage regulations that are currently in place. They can
warn the local worker that a violation has been detected by blinking the build-in
LED and send the alerts and notifications listed in table 6.2. Particles can be
modeled in UbiML as shown in figure 6.10.

An implementation of the Computation Models and data types is not given for this
example because GloMoSim does not support the use of different node types and
different signals in one simulation. The implementation would need stationary
and mobile nodes as well as four different signals (Infrared, 868 MHz, WiFi and
Ethernet).

The information needed to write implementations for a flexible target model exist
in the User Model though. Alerts 1 and 2 can be detected through collaboration
using the 868 MHz Radio. Alerts 3 and 4 can be caught using the temperature
sensor. The time in an unknown location can be traced by putting the last time a
beacon was received in the “ownState” Local Value. This makes detecting Alert
5 easy. Alert 6 can be checked for by reading the Voltage Sensor. All conditions
in which notifications have to be sent, can be detected by storing sensor readings
in the “ownState” Local Value and comparing the stored value with the current
sensor readings.

Particle Gateways

A Particle Gateway has mainly two tasks. First, to inform the Particles about their
location. This is done by broadcasting an infrared beacon with the according
information. Second, to bridge the management LAN with the Particle network.
This is done in UbiML by simply emitting the data in all received packets on the
other network. The proposed User Model is depicted in figure 6.11.

Gateway and Application Servers

The Gateway and Application Servers are regular PCs with Ethernet connections
to the management LAN. Since they have no sensors or similar but only a single
interface to context — the network, UbiML does not help much designing those
systems. It does not hurt either, though, figure 6.12 depicts a User Model for the
Gateway and Application Servers.

6.5 Evaluation Results
An evaluation of the UbiML Meta Models and its tools has lead to the following
results. First of all UbiML is a model as defined in definition 2.1 as all four prop-
erties that constitute a model are given. UbiML is a mapping of a system in the
real world to an abstract description. It is moreover isomorph to the real world
in some respects as the analysis platforms it is transformed to allow conclusions
which hold in the real world and would not be possible otherwise (pragmatics).

UbiML can be very helpful for designing Ubiquitous Systems. Several properties
have been named in section 2.2 which are allegedly improved by using a MDSD
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Figure 6.11: UbiML User Model for a Particle Gateway. The IR-Beacon broad-
casts the programmed Location whenever triggered by the Beacon-
Timer. The Position context was added because it might be needed
i.e. for fading models. The Particle Radio transfers the message that
was received to the WiFi sender and vice versa which bridges both
networks.

Figure 6.12: The Gateway and Application Servers are regular PCs which only
interface with the other systems via their Ethernet link. The Server
Process represents the actual program running on the machine. De-
tails about Values have been omitted.
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approach. The evaluation shows that most of these properties significantly im-
prove by an UbiML enabled design. The testability, maintainability, reusability,
development speed and maintainability are such properties.

Especially the first example has shown, that modeling with UbiML leads to a clear
model of envisioned system while reducing the number of lines of code to a min-
imum. It was also shown in this example that UbiML supports the developer in
refactoring his design leading to a fast and easy design space exploration. When
progressing to a new iteration of the models only very few changes had to be done
in UbiML and the source code stubs. Although no repository support has been
implemented yet, the creation of a new User Model can be done very quickly.

CoBIs Hazardous Goods, the second example, made it clear that UbiML enables
system designers to model even complex Ubiquitous Systems which interact with
many different kinds of contexts (Temperature, Location, Dutycycle, Infrared etc)
easily and precisely. When modeling the server-components it became evident
though, that UbiML is not well suited for designing regular client-server software
for PC-Hardware. This field of application was not intended for UbiML though
and remains the domain for general purpose modeling tools or component based
systems like PCM.

The amount of code that can be reused when switching between target models
has not been evaluated. Only a single transformation has been implemented, a
transformation to GloMoSim, where all Computation Model and Transformation
stubs were implemented using target model code directly. Since GloMoSim ap-
plications are implemented in Parsec — which is a C-dialect — I anticipate that
it will be very easy to write a transformation to C-code which can be compiled to
the actual target platform.

In a nutshell one can say, that most of the code for interfaces, accessing context
and communication can be generated when using UbiML to design a system. One
can concentrate on the implementation of the actual functionality. In combination
with other models this part could also be generated as UbiML does not forbid but
encourage the use of i.e. automatons for the specification of program logic.

6.6 Summary of this Chapter
This chapter presented that UbiML is well suited for enhancing the design process
of Ubiquitous Systems. First it was shown how a design space exploration for a
system with autonomous robots could look like. Compiling and working simula-
tion code was generated for the simulation platform GloMoSim. Only a few lines
of code have had to be changed between the different designs. Then the code
generation from UbiML to GloMosim was explained in detail. For better compre-
hensibility, a short introduction to GloMosim and XPand was given beforehand.
Moreover a UbiML User Model for a real Ubiquitous System was depicted and it
was shown that UbiML is expressive enough to describe complex systems.
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This last chapter demonstrates that the objectives that have been defined in chap-
ter 1.2 have not only been met but have been excelled.

A domain specific language, namely UbiML, has been designed in the context of
this thesis as a result of analyzing many different existing modeling concepts and
tools. It has a clear Meta Model, Model Driven Development workflow and has
the capability to be transformed to analysis models. A strong emphasis has been
set to modeling dataflows and the easy descriptions of the very dynamic nature
of different types of context.

UbiML consists of two Meta Models — the Artefact Meta Model which can be
used to model subsystems and the interrelationship between subsystems and
the Instantiation Meta Model which can be used to describe an instance of the
previously modeled parts.

Furthermore, a UbiML editor has been implemented for the thesis in Eclipse GMF
and a transformation from UbiML to GloMosim has been created in openArchitec-
tureWare’s XPand transformation language.

Modeling realistic examples of Ubiquitous Systems, it has been shown, that UbiML
is flexible and expressive enough while remaining concise enough to be trans-
formed into procedural programing language source code. The designers of Ubi-
quitous Systems are not only supported by the generation of large portions of
simulation-code, but also in the refactoring process which is needed exploring the
design space of systems.

7.1 Future Work

The main question which remains unanswered is if all useful target analysis plat-
forms are reachable by transformations from UbiML. This question will have to be
answered in future research. Moreover, it is a open question if UbiML is easy to
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learn, understand and use for developers that wish to design a Ubiquitous Sys-
tem.

The UbiML Editor has only prototypical character and has to be improved in many
different ways in order to be usable for real projects. There is currently no reposi-
tory implemented.

Only one transformation to a target model has been implemented for this thesis.
Being similar (a C programming language dialect) to real target platform code it
can be assumed that a transformation to real target platform code can be easily
done. Nevertheless, many more transformations to different analysis models have
to be implemented for UbiML to unfold to its full potential.
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