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Abstract

Contemporary operating systems use schedulers which select the next task to run due to
its priority and/or its workload. In the past it was hard or even impossible to get more
information about the tasks, but most modern architectures have performance moni-
toring counters (pmc) with which you can get much better information about task’s
characteristics in terms of usage of a CPU’s functional units and the machine’s bus-
system. The scheduler can use this information to schedule similar tasks so that they
keep a distance in time as well as in space which means that two similar tasks do not run
at the same time on different cores (distance in time) or consecutively on the same core
(distance in space). The purpose of this is the reduction of hotspots and the avoidance
of stall cycles due to busy shared CPU units.

In this thesis we present an implementation which adds this functionality to the
current Linux kernel scheduler. Additionally, the scheduler’s migration-mechanism is
modified to consider the task’s characteristics while deciding which task to migrate to
maximize the dissimilarity between the tasks in each run queue. We also implement a
CPU frequency and voltage scaling system based on the information about the tasks’
characteristics we get from the performance monitoring counters.
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Chapter 1

Introduction

1.1 Scheduler
Today’s operating systems still use schedulers which choose the next task to run be-
cause of its priority and/or its workload. These simple methods were extended to con-
sider characteristics like interactivity measured by the difference between the time a
task could have been used due to its time slice and the time it has really used. This
method has been used by the old Linux scheduler and gives you only a very vague
idea of the task’s characteristics. For a more detailed profile you could use another
approach, for example a syscall a task could use to tell the operating system what re-
quirements it has, but therefore all applications must be modified to use this syscall.
Furthermore programs could misuse this feature. If you know how the scheduler works
and how it distributes the system resources among the running tasks you can fake your
profile to get more system resources.

1.2 Performance Counter and Activity Vector
In this thesis we want to use performance monitoring counters (PMC), which are in-
tegrated in most modern CPU architectures. These counters deliver information about
how often certain events such as the number of instructions, the number of branches or
the number of cycles while the bus-queue is empty, occur. These numbers are put to-
gether to a so-called task activity vector or just activity vector (AVEC), which describes
the characteristics of a task, a run queue or any other type of job or set of jobs. These
AVECs are not only preciser than the metrics the scheduler has used yet, but they also
do not depend on any support from userspace applications as syscalls would do.

1.3 Goals

1.3.1 Reducing Hotspots
With the help of these AVECs the scheduler can make better decisions. It can take
care that whenever two following tasks are too similar another, more dissimilar, task is
scheduled between them so that different CPU units (integer/floating-point arithmetic,
branch prediction, caches, ...) are stressed during a certain time interval. This leads
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2 CHAPTER 1. INTRODUCTION

to a better distribution of power consumption on the CPU die and therefore reduces
hotspots on the die which always appear when the same units are constantly stressed.
This could lead to unstable behaviour or even to a complete failure of the CPU although
its overall temperature and therefore the temperature which is measured by the ”ondie”
temperature sensors is not critical.

1.3.2 Increasing Performance
Another benefit of this kind of scheduling has become relevant with the introduction
of multicore CPUs. Those CPUs have almost independent cores but there are often
some units left which must be shared between the cores. For Core2-Architecture these
shared units are the L2 cache1 and the frontside bus. That means all instructions which
does not use memory or other hardware attached to the frontside-bus can be executed
completely independently but whenever more than one running task needs a shared unit
all but one of them have to wait. Core2’s L2 cache is dual-ported, which means that
both cores could use it concurrently, but you should remember that the L2 size is very
limited in comparison to the RAM. Therefore it could result in a small performance
benefit if you do not schedule two cache intensive tasks at the same time.

The knowledge of the task’s requirements can help the scheduler to choose the tasks
in a way that preferably only one running task needs the L2 cache, the memory or the
the bus. This can reduce the number of memory accesses caused by a full L2 cache and
stall cycles provoked by occupied shared CPU units.

1.3.3 AVEC-Based Frequency- and Voltage-Scaling
Today there are three commonly used classes of algorithms for frequency and volt-
age scaling in the Linux kernel. These algorithms are encapsulated in so-called gov-
ernors, which are just sets of functions with a defined interface. The simplest class
(performance and powersafe governor) sets the frequency and voltage statically to the
highest/lowest possible value. The second class (ondemand governor) sets the values
dynamically according to the CPU’s average load in a defined period of time. The
problem is, that this algorithm needs some time to adjust to new loads. If you let two
tasks run, one which causes high load and one which does not, it can happen that the al-
gorithm reduces the CPU frequency when the high-load task is scheduled and increases
the speed when the low-load task is scheduled because of the delay with which the load
is measured. The third class does not make any decisions on its own but provides an
userspace-interface.

Using AVECs instead for choosing the CPU speed makes the algorithm task-sensitive
so that the CPU is switched to highest speed just before the high-load task is scheduled
and the other way round. A problem with this kind of scaling could be the delay for
changing the CPU voltage if the tasks’ timeslices get too short, but normally choosing
a very short timeslice is not a good idea for most cases anyway.

1.4 Implementation
We implement AVECs for the Core2 Architecture and modify the scheduler to use this
additional information. The modified scheduler considers the previously running task

1Actually the Core2Quad consists of two Core2Duo dies ”glued together”. They have two separate L2
caches shared only among the cores on the same die.
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on the same core and the currently running tasks on the other cores while deciding
which task to run next. Additionally we adapted the migration mechanism for the use
of AVECs. At last we implement a CPU frequency governor which uses AVECs to
choose the frequency/voltage.
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Chapter 2

Background

2.1 Completely Fair Scheduler
Since version 2.6.23 the Linux kernel scheduler and its infrastructure has been changed
almost completely. With the new infrastructure the policies such as CFS or the RT-
Policy has been encapsulated into so called scheduling classes. This does not make
the policies modular in terms of kernel modules. They cannot be loaded at runtime,
but it has become much easier to integrate new policies and use them together with
the existing ones. The idea behind CFS is very simple. Each task should get the same
amount of CPU time. The task which should run next is determined by the difference
between the time a task has run and the minimum runtime of a task in the runqueue.
(this difference is called ”entity key”) The CFS uses a rbtree, sorted by this entity key,
instead of a classical runqueue.

Additionally, scheduling groups have been integrated into the CFS. You can group
tasks by the user who has started them or you can group them manually. These groups
can consist of tasks or other groups. The scheduler goes through the tree and chooses
the leftmost and therefore fairest-to-schedule entity.1 Preserving this group mecha-
nism makes it necessary to modify the CFS class on the lowest level, because the code
contains a caching mechanism which is updated whenever the tree is searched. After
searching for the fairest task once, the caching mechanism would lead you to the next
group instead of to the next entity in the same group. [1, 9].

2.2 Task Activity Vectors
Our main source of inspiration has been Andreas Merkel’s and Frank Belossa’s paper
about Task Activity Vectors [13]. We use the same approach of Activity Vectors to
characterize a task’s usage of functional units (FU). The most important changes have
been provoked by the change of infrastructure. The switch from the old O(1) Linux
scheduler to the new Completely Fair Scheduler makes changes necessary because of
its completely different data structures.

Moreover, in contrast to the old scheduler the CFS has no explicit protection against
starvation, because it does not need it. CFS’s runqueue is sorted by the entity key
which gets smaller while a task is not scheduled2. The algorithm always chooses the

1a scheduling entity (SE) could be either a task or a group
2Actually the key does not get smaller, but the other tasks’ keys get bigger when scheduled.
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6 CHAPTER 2. BACKGROUND

task with the smallest key so that it is just a matter of time until the task is scheduled.
But with the implementation of runqueue-sorting it becomes important again, because
these algorithms ruin CFS’ implicit protection completely.

The second change is about the CPU architecture. They have used a Pentium 4
CPU for their paper. For our paper we use a Core2 CPU, which gives us at least
an additional core, a shared L2 Cache and a much smaller number of performance
monitoring counters. Hyperthreading is also not supported by the new architecture.
Because of that we could simplify the AVEC part. The increased number of cores and
the shared cache must also be considered by the scheduler while making its decision,
because of them some instructions cannot be executed concurrently, although we have
multiple cores.

For the Core2 architecture we cannot find any plan which describes the physical
layout of the CPU die. But these plans would be necessary to run an accurate temper-
ature simulation. The simulation would show us how much and where on the die heat
is produced. The place is important because heat does not stay where it has been pro-
duced but spread throughout all neighbouring units. We have decided not to run these
simulations because the results would not be worth the effort. Besides, the hotspot be-
haviour has been evaluated for the Pentium 4 in the above mentioned paper so that we
can assume that it also works on the Core2 architecture considering that the missing
information about the die layout lets the algorithms work less efficient.

We also add AVEC-based frequency and voltage scaling, which should react faster
and more specific to thread switches in terms of choosing the frequency and voltage by
the task’s characteristics and not by the global load. This load would be most likely the
load of the previous task and not the current task’s one.



Chapter 3

Proposed Solution

3.1 Implementation Environment
We use the Linux Kernel 2.6.26 ”Vanilla” in the 64bit version on a Core2Duo Dual-
Core CPU for our work. We choose the 64bit version because all Core2 CPUs supports
this and it makes some workarounds for 64bit calculations in the kernel unnecessary
and therefore should improve the speed of our implementation.

We put most AVEC-stuff into an own module but that was not possible for some
parts which must be integrated directly into the scheduler’s migration- and task-picking-
algorithms. These parts were implemented in a way that the scheduler uses the un-
modified algorithms as long as the AVEC-module is not loaded and switches to the
AVEC-code thereafter.

The frequency/voltage scaling code is encapsulated in a governor for the kernel’s
cpufreq-module. This makes the implementation easy but it is also the reason why
we cannot change the frequency during scheduling. The cpufreq-module has not been
designed for that purpose and so it does not work if called from there. We integrate a
workaround which uses a kernel-thread to switch the frequency, but this method suffers
from a very bad performance because the kernel-thread must be executed between
every two tasks. A better solution would be setting the CPU’s registers directly.

3.2 Activity Vectors
For our purpose the activity vector should give us information about which of the
CPU’s functional units are used by a task. Therefore we have to determine which
instructions the task uses. For determining the cache and bus usage we do not count in-
structions, because there is no special instruction to use the cache and bus transactions
must not be triggered by explicit instructions (e.g. prefetcher). Instead we count the
cycles in which they are busy. Some values can be counted directly, some others must
be calculated.

All Instructions This value is used only as reference for the other instruction events.

instrall = #eventinstr retired any

Floating Point, MMX, SSE, Branch Instructions The CPU has special events to count

7
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these instructions directly.

instrx87 = #eventx87 ops retired any

instrmmx = #eventsimd instr retired

instrsse = #eventsimd inst retired any

instrbranch = #eventbr inst retired any

Non-Memory Instructions We count these instructions only to calculate the number
of integer instructions. This value is neither used for scheduling, nor for fre-
quency scaling.

instrnomem = #eventinstr retired other

Integer Instructions This value is often incorrect or at least imprecise due to the num-
ber of needed values and some overlapping of memory and MMX/SSE instruc-
tions. (3.6)

instrint = instrnomem − instrx87 − instrmmx − instrsse − instrbranch

All Cycles This value is only used as reference for the following events. It is not used
for scheduling or frequency scaling.

cyclesall = #eventcpu unhalted clk

L2 Cache Cycles We count the number of cycles in which the L2 cache is busy, be-
cause there are no special instructions to access the cache.

cyclesL2 = cyclesall −#eventl2 no req

Bus Cycles We count the number of cycles in which the bus is in use, because not
every bus usage is triggered by an explicit instruction.

cyclesBus = cyclesall −#eventbusq empty

3.3 Special Data Structures and Parameters
We implemented some special datastructures. Some of them have been implemented
only to test the algorithms, others are used for scheduling or migration.

3.3.1 avec boosted data structure
This value tells us how fair a task has been treated in terms of being scheduled when
it has the biggest runtime-deficit. Whenever a task is scheduled the leftmost task’s
avec boosted value is decremented (The leftmost task is the task the original scheduler
would take.) and the scheduled task’s avec boosted value is incremented. A positive
value means that the task has been scheduled more often than it would have been with
the old scheduler because of its characteristics. This is a very simple indicator of
unfairness but therefore it always gives us a very significant result, what makes it very
useful in comparison to average AVEC based mechanisms, which tends to give us
inconclusive results if too many tasks are in the runqueue.
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3.3.2 scheduling position data structure
This value is an integer-array which tells us how a task has been ranked according to
CFS’ rbtree when it gets scheduled. It is only used for testing purposes. Its size is
always AVEC RANGE.

3.3.3 AVEC RANGE parameter
The AVEC scheduling algorithm takes the n fairest tasks into account while searching
for the next task to run. This n is called AVEC RANGE. There is another similar value
used in the migration code. Up to now we have used the same value for both, but that
is not a must.

3.3.4 runtime deficit limit parameter
This threshold is the maximum entity key a task may have to get scheduled (3.1).

3.3.5 soft protection threshold parameter
The distance between a task and the average task (a non-existing task with a AVEC
which is absolutely average) must exceed this threshold in order to replace a actually
fairer-to-schedule task (3.2).

3.4 The Avec Scheduling Algorithm

3.4.1 The Basic Algorithm
We let the standard algorithm search for the fairest task, but instead of taking the first
one we take the AVEC RANGE fairest tasks from the same group. Choosing the right
value for AVEC RANGE is some kind of trade-off. Higher values increase the prob-
ability to find a better matching task but they also increase the time needed to iterate
through these tasks. They also increase the temporary imbalance among the tasks, be-
cause also tasks which are far behind in the fairness-sorted rbtree could get scheduled.

For each of them we calculate the distance to the average task and take the most
dissimilar one. The distance function should be simple, but nevertheless give us clear
results. The probably simplest approach would be just adding up the differences be-
tween the two AVEC’s elements. This method would work for us, but it would have
a drawback. If you have two tasks using the same functional units but stressing them
unequally, their distance could be bigger than between two tasks not sharing any func-
tional units, but stressing a smaller number of units. For our purpose less big differ-
ences are better than many smaller ones. That’s why we use the AVEC elements to the
power of two instead.

d =
∑

i

|avec[i]2 − avecavg[i]2| (3.1)

For our dual core system the average AVEC consists of the arithmetic average of
all running tasks’ AVECs, but there are also other possibilities. Core2Quad CPUs
consist of two separate dual core-dies in the same package. That means they share the
same frontsidebus, but both parts have their own L2-Cache which would have been an
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impact on our scheduling-decisions. It gets even more complicated, if you have more
than one CPU. The Linux-Kernel can make a difference between the CPU-packages
but not between the dies in the same package or at least it does not use this information
while partitioning the CPU cores into scheduling-domains. The ACPI subsystem might
deliver these information, but for this thesis we do not take it into account, because its
impact should be small enough.

3.4.2 The Starvation Problem
Our modifications cause some problems with starvation which cannot occur in the orig-
inal code. For example, if we have three tasks running, the first stressing only the fpu,
the second stressing the integer unit and a third stressing both. Without any further pro-
tections the third one would never run because the other not-running task would always
have a bigger distance. That is why we implement an explicit starvation-protection.
Strictly speaking we have two ones and use them together. A soft one which tries to
preserve fairness without affecting the AVEC scheduling and a hard one which enforces
fairness whenever it gets too unfair.

While going through the sorted task list1 the hard protection discards the following
tasks when it comes to a task which’s runtime deficit is too high. This task is then
scheduled without any further considerations (Figure 3.1). That means if you set the
deficit-limit to 0ms you would just get the unmodified scheduler’s behaviour. Higher
possible deficit-limits improve the scheduler’s capability to optimize but decrease the
fairness and therefore it can also have a bad impact on the reactiveness of interactive
tasks.

FOR i = 0 TO (num_tasks - 1)
IF ENTITY_KEY(i) > runtime_deficit_limit THEN

SELECT_TASK(i)
BREAK

Figure 3.1: hard protection

The soft protection is just a threshold. The algorithm tests the tasks in order of their
fairness. A task’s distance to the average AVEC must exceed the previously chosen
one’s distance by at least this threshold to replace it (Figure 3.2).

FOR i = 0 TO (num_tasks - 1)
IF DISTANCE(i) > (DISTANCE(best) * soft_protection_threshold) THEN

best = i
SELECT_TASK(best)

Figure 3.2: soft protection

3.4.3 Migration
For a better distribution of the tasks among the present cores we modified the migration
mechanism to consider the task’s AVECs. We took two different methods into consid-

1Remember: Tasks in CFS’ rbtree are sorted by their fairness.
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eration. The first approach uses a runqueue-AVEC which is calculated as the average
AVEC of all tasks in the runqueue. We let the old migration mechanism decide from
which runqueue a task should be moved, but we decide which task should be moved
and where it should be moved to. This is done by comparing the tasks’ AVECs with all
runqueue-AVECs and choosing the most different one using the distance metric (3.1).

The second method uses the avec boosted value to decide which task to move to
another runqueue. It goes through the given runqueue and chooses the task which has
been mostly displaced. We do not modify the algorithms for determining to which
runqueue the task should be moved, because it is still the primary goal to distribute
the load. That is why we let the default load-balancing-algorithm decide from which
runqueue and to which runqueue a task should be moved. We just take care that it
moves the most disadvantaged tasks from the given runqueue. Tests show that this
works quite well, at least on our dual core machine. After each migration we have to
reset the avec boosted value or at least reduce its absolute value or the task would be
migrated again because its value would be still very low.

The first method tells us not only which task should be migrated but also where
it should be moved to. But some tests with different numbers of running tasks show
that the runqueues’ AVECs tend to get very similar with an increasing number of tasks,
so that decisions are made on the basis of very small differences. The second method
gives us a more significant metric but cannot be used to determine where a task should
be moved to. Its advantage is its simplicity and its less impact on the general load-
balancing. We decide to use the second method mainly because of the better signifi-
cance of its results.

3.5 The Avec CPU Frequency/Voltage Scaling Algorithm
We use the cpufreq subsystem which comes with the Linux kernel [4]. For our Core2
CPU we choose the ACPI cpufreq-driver instead of the speedstep-driver, which is
marked as deprecated. The driver takes every positive integer value as valid fre-
quency. If this is not a frequency the CPU supports the driver sets the nearest pos-
sible frequency. For our further calculations we take only the AVEC values which are
frequency-sensitive (all but bus/mem) into account. These values are taken from any
running tasks’ AVEC and their maximum defines the frequency. At first we calculate
the frequency which would be set if only element i of the AVEC would be considered.
Then we take the maximum of all these frequencies.

f(i) = avec[i] ∗ fmax/avecmax (3.2)
fmax = max

i
(f(i)) (3.3)

3.6 Restrictions
For best results we would have to count any event at any time, but the CPU has
only three fixed function pmcs and only two freely programmable counters so that
we must use time-multiplexing to count more than two/five events. That means we
change the events the counters count from time to time (We call such a set of counter-
configurations a ”rotation”). Reprogramming the pmcs is very time-consuming so that
we have decided to ”rotate” only each 100th scheduling pass. Most tasks do not change
their requirements or at least not in a short period of time so that the impact of time-
multiplexing on the resulting AVEC should be low enough.
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Another problem is that you cannot count all events needed directly so that you
must calculate some events on the basis of other countable events [8] which could be
possibly on different rotations which makes the result even more inaccurate. But again
it is not a problem as long as the requirements do not change too fast in terms of a small
number of timeslices. For the calculation of the integer value we need the MMX/SSE
and the Load/Store value, but there are instructions which are counted for both values
so that we get a too low integer value whenever MMX/SSE is used.

For performance reasons we never reset the performance counters so that the they
will overflow after a while but we do not treat this specially but let it just happen. This
problem occurs very rarely (once in some years) and it is temporarily very limited (a
few timeslices). In the worst case two very similar tasks are scheduled at the same time
which leads to many stall-cycles during these timeslices.

With the integration of the new ”Completely Fair Scheduler (CFS)” many new fea-
tures were added to the scheduler infrastructure like scheduling classes and scheduling
groups. For the implementation of AVEC scheduling we need access to the low level
datastructures (the runqueue or a equivalent datastructure). That makes it impossible
to implement the AVEC parts in the global schedule function, because the current CFS
implementation just ignores some parameters from the main scheduling function. So
we have decided to integrate the AVEC routines directly into the CFS scheduling func-
tion, because it is the standard class for all non-realtime tasks and therefore sufficient to
test if AVEC scheduling works. But that also means that tasks which are in a different
scheduling classes ignore the AVECs 2

The AVEC frequency and voltage scaling was implemented as an usual governor
for the ACPI module. It is designed to be callable either from scheduler or from a
separate kernel-thread. In the current version calling it from scheduler does not work
because of some issues of the ACPI driver when called from the scheduler. Switching
the frequency/voltage directly should solve this problem, but we run out of time so that
we do not implement this but use a kernel thread to set the frequency instead. This
solution has of course a very bad impact on the performance. That is why we run only
functional, but no performance tests while AVEC frequency/voltage scaling is active.

The current implementation works mostly with static parameters and sizes of datas-
tructures which are sufficient for test-runs because we can adjust them and then recom-
pile it for the certain test. For regular use this of course not an option. In our current
version do not implement algorithms to adjust these parameters automatically, but due
to the fact that they mostly depend only on the number of tasks it should be not much
a problem to implement them later.

2The latest vanilla kernel only includes CFS- and RT-class.



Chapter 4

Experimental Results

4.1 Functional tests

4.1.1 Testing the Scheduling Algorithm
For our first experiment we use the burn-testprograms consisting of burnP5, burnP6,
burnK6, burnK7 which mainly stresses the fpu, but also partly the branch-prediction
units. burnMMX stresses the MMX-Unit and burnBX the memory subsystem. We let
them run concurrently for about 10 minutes and then take the AVECs, avec boosted
values and scheduling positions (Table 4.1 and 4.2).

Task Instr Cycles L2 Bus MMX SSE x87 BR Integer
burnP5 6822 10000 0 178 0 0 3208 201 202
burnP6 8559 10000 0 11 0 0 2443 1833 0
burnK6 8514 10000 68 0 0 0 2444 1833 0
burnK7 9096 10000 0 110 0 0 2139 1070 1607
burnMMX 7891 9999 10258 24 4925 0 0 1316 0
burnBX 2 9999 10386 11187 0 0 0 0 1

Table 4.1: Example: AVEC

Task avec boosted pos1 pos2 pos3
burnP5 -4778 29769 2138 760
burnP6 -11925 32358 298 38
burnK6 -9936 32080 426 36
burnK7 -9980 31707 812 350
burnMMX 13004 15724 4089 12696
burnBX 25045 7458 4555 20747

Table 4.2: Example: avec boosted value and scheduling positions

13
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4.1.2 Testing the Migration Algorithm
Our first test is quite simple. We start ten instances of burnP6, burnBX and burnMMX,
let them run some time and then look to which core they have been assigned to. The
results of this test are quite similar with AVEC-kernel and standard Vanilla-kernel, with
both kernels delivering an almost perfect distribution. Repeating the test with changed
sequences, in which the tasks are started, does not affect the results significantly.

Our second test should make it harder for the kernels. We used the same test, but
pinned all tasks to the first core. After that we changed the tasks affinity so that they
can run on both cores again. This test shows a different behaviour; with a starting
sequence such as P6,BX,MMX,P6,BX,MMX,... the results are similar to the first test’s
ones. The starting sequence P6,...,P6,BX,...,BX,MMX,...,MMX shows a completely
different behaviour. The Vanilla-kernel moves all burnMMX tasks to one core and all
burnP6 tasks to the other, while half of the burnBX tasks were moved to the second
core and the other half stay on the first one. The AVEC-kernel delivers a different
result which is better but far from perfect. We repeat the test three times and take the
average distribution.

Task Vanilla # tasks/core AVEC # tasks/core
burnBX 4,33/5,67 5,33/4,67
burnMMX 0,67/9,33 6,33/3,67
burnP6 9,67/0,33 3,33/6,67

Table 4.3: Test: Migration

The distribution delivered by the Vanilla-kernel is not surprising because it always
migrates the first movable task. On the other side the results of the AVEC-kernel is not
as good as expected. The reason is most likely the scheduling behaviour and therefore
the the avec boosted value. At the moment we would have to adjust the static parame-
ters for the AVEC subsystem (e.g. thresholds, number of considered tasks) according
to the environment (e.g. number and sort of tasks) to get better results. In later versions
we could probably replace some of these static data structures with dynamic ones so
that the system becomes more adaptive.

4.2 Performance tests

4.2.1 Single Task
For each of these performance tests we have written a small shell-script and have mea-
sured the runtime with ”time” command. We run each program three times and take
the average runtime. The biggest deviation from the average was less than 3% so that
we do not list the results for the single runs. The three tests we used here are prime, a
simple prime number tester, kernel-build which compiles the AVEC Linux kernel with
two threads (-j2) and mbw, a synthetic memory benchmark (used options: 7000 loops,
fixed-block-read, 512MB/loop).
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Figure 4.1: Single Tasks
Kernel prime kernel-build mbw0
AVEC 7m56.2s 3m54.9s 7m25.5s
Vanilla 7m56.1s 3m54.8s 7m24.8s

Table 4.4: Single Tasks

4.2.2 Multiple Tasks
This tests consists of a shell-script which starts 2x prime, 1x kernel-build, 2x mbw0 at
the same time. We run this test three times.

Figure 4.2: Multiple Tasks
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Kernel 1. Run 2. Run 3. Run Average
AVEC 21m34.020s 20m44.431s 20m50.232s 21m02.894s
Vanilla 23m43.726s 23m47.670s 23m21.588s 23m37.661s

Table 4.5: Multiple Tasks

4.2.3 Results
The results show what we have exspected. The Vanilla kernel is a little bit faster with
one or two threads running. This can be explained with the overhead from the AVEC
subsystem. On the other side, the AVEC kernel is significantly faster when it comes
to multiple threads running. We tested it with six running threads which fits to the
AVEC RANGE of ten we have chosen as default.
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Conclusion

5.1 Conclusion
In retrospect the most difficult part has been the adaption of the AVEC subsystem
for the CFS. The CFS works according to a simple principle, fairness. But it is this
simplicity which makes it hard to modify the scheduler without disturbing the fairness,
so that most of our modifications to the scheduler increases unfairness. That is why we
let as many parts of the scheduler as possible untouched. Although you can definitively
notice the unfairness introduced by our modifications. Watching the distribution of cpu-
time with top shows that the modified scheduler produces some big spikes from time to
time whereas the original one does not. This is caused be another mechanism integrated
in the CFS. The CFS determines the length of a timeslice by the number of running
tasks, but also by the tasks runtime-deficit, which can be significantly increased due to
task-reordering. We can limit this behaviour as described (3.4.2), but that also limits
the effect the implementation can have in terms of reducing hotspots and increasing
performance. Generally speaking the CFS is not the best starting point for an extension
like the AVECs, but due to the fact that CFS is the best scheduler for Linux at the
moment so we have to live with it. Perhaps another scheduling algorithm, which is in
the best case a priori designed for the use of AVEC would be a better solution and with
the introduction of scheduling classes such a scheduler could be easily added.

The performance tests shows that this kind of scheduling surely have some po-
tential. That hotspot-reduction through AVEC-Scheduling works has been shown in
earlier papers. How good it works in combination with the aim of increasing per-
formance is still to test. Using AVEC-based frequency/voltage scaling together with
AVEC-scheduling is hard to combine, because most of today’s CPUs allow only a sin-
gle frequency for all cores, so that at first glance scheduling similar tasks in terms of
needed CPU frequency would be the best solution. Combining this with the aim of
reducing hotspots would be possible as long as there are enough tasks which need the
same CPU frequency but stress different functional units. But this has a bad impact on
the performance due to the fact that memory-intensive tasks would be scheduled to-
gether and the memory is already a bottleneck for most architectures [12]. The energy
you would save by letting them run with lower frequency and voltage is overcompen-
sated by the energy you loose because of a longer runtime, not to mention the worse
performance. The CPU companies could solve this problem by supporting different
frequencies/voltage for every single core.

17
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5.2 Outlook
We have implemented AVECs to improve scheduling and frequency and voltage scal-
ing. But there also other scopes for what you can use AVECs. An example, for what
it could be possibly used for in the future, are power and clock gating. These mech-
anism are used to reduce power-consumption by switching off the power supply or at
least the clock-signal for functional units which are temporary not in use. CPU makers
use some sort of heuristics to determine when it is the best time to switch off/on each
functional unit. But it is the same problem as with frequency-scaling. The CPU cannot
know which functional unit the next task will need, because it cannot know which task
that would be. On the other hand the scheduler obviously has this information. That
is why the scheduler could iniate such a switch off/on even while switching the task.
Because of the next’s task AVEC the scheduler would perfectly know which units can
be deactivated and which must be activated again. The present problem is that most (or
even all?) CPU makers do not support software-controlled power and clock gating yet.

Another CPU feature which we do not include in our thoughts is multithreading
(Intel calls it hyperthreading or just HT), because the Core2 architecture lacks this
feature. Intel’s older NetBurst architecture (e.g. Pentium 4 CPUs) and their new ar-
chitecture Nehalem (e.g. Core i7 CPUs) supports hyperthreading so that it is quite
interesting to think about how good AVEC-Scheduling would work on such a architec-
ture. Multithreading is a technique to improve the efficiency of superscalar CPUs [14].
Superscalar cores have multiple functional units (FU) which can not always be fully
utilised because of data dependencies in the code. A CPU with multithreading support
provides virtual CPUs. The instructions for these virtual CPUs are executed in the same
pipeline in the same time. The dispatcher can now choose between instructions from
two different threads which are per se independant. This leads to a higher utilisation
of the CPU’s FUs and therefore to a improved performance due to a higher degree of
parallelism. In some cases, if very similar threads are scheduled on the virtual CPUs,
there will be no benefit because they want to use the same FUs. The AVEC-scheduler
knows which FUs the tasks need and so it can schedule tasks on the virtual CPUs which
do not interfere. It is the same mechanism which is used for scheduling on multicore
CPUs, but for multithreading it should work even better because in this case all FUs
are shared and not only the L2 cache, bus and memory.
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