
Fundamental OS Design Considerations for CXL-based
Hybrid SSDs

Daniel Habicht∗
Karlsruhe Institute of Technology

Yussuf Khalil∗
Karlsruhe Institute of Technology

Lukas Werling∗
Karlsruhe Institute of Technology

Thorsten Gröninger∗
Karlsruhe Institute of Technology

Frank Bellosa
Karlsruhe Institute of Technology

Abstract
The first commercial implementations of CXL-based hybrid
SSDs (i.e., SSDs that are both byte- and block-addressable)
are looming on the horizon. Although previous works have
conducted design studies on hardware concepts as well as
potential use cases, none have analyzed operating system
considerations and abstractions for such storage devices.
We find existing abstractions (i.e., DAX in Windows and
Linux) to be insufficient for hybrid SSDs and propose more
appropriate resource management techniques and interfaces.
In our evaluation we improve throughput by up to 4.1× for
applications with strong persistence requirements using the
in-memory key-value store Valkey.

1 Introduction
Hybrid SSDs are an emerging storage technology that com-
bines Direct Access (DAX) known from persistent memory
technologies like Intel’s Optane DCPMM [6], with conven-
tional block-based I/O. To enable load/store semantics on
top of conventional Flash memory, hybrid SSDs feature a
small on-device cache that guarantees persistency of writes.

First introduced by Bae et al. in 2018 [4], hybrid SSDs did
not gain significant traction due to limitations of PCIe [8].
With the rise of the cache-coherent Compute Express Link
(CXL) [5], this situation is about to change and first hybrid
SSD offerings, like Samsung’s CXL Memory Module – Hybrid
(CMM-H) [12] or Wolley’s NVMe over CXL (NVMe-oC) [13],
are on the horizon. Contrary to PCIe, CXL.mem enables host-
side caching of device-attached memory. Further, CXL 2.0
introduces the notion of persistent memory together with
a flush-on-fail mechanism known as Global Persistent Flush
(GPF) [5] that enables persistent CPU caches, similar to In-
tel’s eADR feature on past Optane platforms [7].

Although several studies previously explored hybrid SSD
designs as well as potential use cases [3, 4, 8, 16], they focused
on hardware design aspects without exploring the design
space for storage abstractions in operating systems.

In this work, we review existing OS abstractions for byte-
addressable storage and explain why they are inadequate for
hybrid SSDs. Based on these insights, we propose modifica-
tions to existing POSIX APIs for interacting with storage and
present a new take on resource management of hybrid SSDs
∗PhD student

that leverages the operating system’s page cache. In order to
showcase the potential of hybrid SSDs for real-world work-
loads with strong persistence requirements, we modify the
key-value store Valkey [1] to utilize the modified DAX in-
terface for its append-only file (AOF) [2]. Our measurements
show a throughput improvement of up to 4.1× for write-
only workloads while also reducing the per-request CPU
and energy overhead by up to 78 % and 74%, respectively.

2 Problem Analysis
Motivated by the launch of Intel’s Optane DCPMM [6],
several operating systems, including Linux [9] and Win-
dows [11], introduced interfaces for leveraging DAX capa-
bilities of byte-addressable storage devices. DAX allows ap-
plications to map storage contents directly to user space
bypassing the volatile OS page cache. While these abstrac-
tions work well for uniform persistent memory solutions
like Optane, we claim that they are not suitable for hybrid
SSDs because they assume a different device model.

Linux’s existing DAX support, for example, assumes non-
blocking load/store access on the entire storage capacity at
all times [9]. Hybrid SSDs, however, can only provide this
access through the much smaller cache. Consequently, when
applications access an uncached file range, i.e., one that is not
present in the on-device cache, through memory-mapped
I/O, the resulting memory access stalls the CPU. There is no
mechanism in place to defer this access to schedule another
process in the meantime.

A second problem is the lack of fine-granular control over
DAX. In Linux, a per-file flag determines whether storage
contents are buffered in system memory or directly accessed
with load/store semantics [9]. On Windows, DAX control
is even more limited as DAX can only be toggled on en-
tire NTFS volumes [14]. Assuming that the entire storage
device is byte-addressable at all times, supporting more fine-
granular control over DAX even when only a small subset of
a file requires strong persistence guarantees of DAX provides
a negligible benefit. If we apply the same approach to hybrid
SSDs, pressure on the already small on-device cache is in-
creased, leading to less effective cache usage and potentially
thrashing.



Daniel Habicht, Yussuf Khalil, Lukas Werling, Thorsten Gröninger, and Frank Bellosa

1 10 100 1000

Pipeline Length [#cmds]

0

200 K

400 K

600 K

800 K

Th
ro

ug
hp

ut
[r

eq
u
es

ts
/
s]

(a) Throughput

1 10 100 1000

Pipeline Length [#cmds]

0

2

4

Sp
ee

du
p

Fa
ct

or

(b) Speedup

1 10 100 1000

Pipeline Length [#cmds]

0

20

40

60

80

100

Pe
r-

R
eq

ue
st

C
P

U
C

os
t

[%
] (c) CPU E�iciency

1 10 100 1000

Pipeline Length [#cmds]

0

20

40

60

80

100

Pe
r-

R
eq

ue
st

En
er

gy
C

os
t

[%
] (d) Energy E�iciency

mmap on hybrid SSD mmap on NVMe SSD default on NVMe SSD

Figure 1. Performance metrics (as a function of the pipeline length) for write-only Valkey workload using AOF persistence.

3 Design and Implementation
Based on our problem analysis, we now propose our OS-
centric approach to managing the hybrid SSD’s cache as
well as a revised user space interface for DAX that enables
fine-granular cache control. We implement our approach for
Linux version 6.6.0 [15] and the ext4 file system.
As Linux’s per-file DAX flag forces applications to put

more pressure on the small on-device cache than necessary,
we introduce the MAP_DAX mmap() flag for requesting DAX
mappings on sub-ranges of a file. This flag guarantees direct
access to storage only on the requested range. In addition
to the MAP_DAX flag, we also introduce a new resource limit
(rlimit) for pinning DAX pages into the on-device cache
using mlock(). As all DAX users have to share the limited
cache capacity available, pinning pages to the cache can
provide better performance isolation between tasks.

For supporting our proposed DAX interface in Linux, we
introduce a persistence-aware page cache. DAX mappings
established with the MAP_DAX flag are tracked in a per-file in-
terval tree [10] of all DAX virtual memory areas (VMAs). The
page cache uses this interval tree to determine the page type,
i.e., either on-device cache for DAX mappings or volatile sys-
tem memory otherwise, when allocating page cache pages.
When a newly-established DAX mapping overlaps a file
range buffered in volatile system memory, the DAXmapping
takes precedence and forces a migration (DAX upgrade) of
file contents from system memory to the on-device cache.
Further, the page cache tracks the mappings between

cache and storage and enables the operating system to reflect
the cache state in its page tables. When a load/store access
misses the on-device cache, a page fault is raised and the
operating system fetches the storage contents while sched-
uling another process, thus preventing slow synchronous
memory accesses.

Apart from direct access to storage, our persistence-aware
page cache can leverage persistence guarantees of the on-
device cache to optimize synchronous writeback, e.g., fsync.
During synchronous writeback, a hybrid SSD-aware file
system can skip the writeback of dirty storage pages over-
lapped by DAX mappings. The skipped DAX pages remain
dirty without breaking any of the persistence guarantees of

fsync(). Only during asynchronous writeback, like the peri-
odic writeback of dirty pages, or when being evicted from the
page cache, file contents in the on-device cache are synced
with the backing storage. With this approach, our design
aims to defer the heavy cost of fsync() on DAX mappings
to a non-performance-critical context.

4 Evaluation
We evaluate our design using the key-value store Valkey [1]
with AOF persistence [2] and the strongest persistence con-
figuration, i.e., calling fsync() after each write to the AOF.
At the time of writing, there is no hybrid SSD available for
purchase. Because of this, we emulate a hybrid SSD using
CXL-attached DRAM for the on-device cache and a commod-
ity NVMe SSD for the backing storage.
As Valkey does not use memory-mapped I/O for writing

to the AOF, we implement an AOF mmap backend that can
optionally use the MAP_DAX flag for the AOF mapping. Our
AOF mmap backend only keeps the most recent AOF con-
tents in the page cache (at most 40MiB) and resizes the AOF
in a background thread when running out of space.
Figure 1 shows our measurements of the throughput as

well as the per-request CPU and energy overhead for the
mmap backend and the default AOF implementation on a
write-only workload. Our design improves the throughput
by up to 4.1× while reducing the CPU and energy overhead
by up to 78 % and 74%, respectively. As the number of AOF
writes per request decreases with the pipeline length, and
with it the fsync() overhead, the impact of the hybrid SSD
decreases.

5 Conclusion
In this work, we explored emerging hybrid SSDs from the
operating system’s perspective. Based on our analysis of ex-
isting operating systems, we identified insufficient resource
management in existing DAX abstractions as a major ob-
stacle in the adoption of hybrid SSDs and proposed an OS-
centric design for managing hybrid SSDs as well as a revised
user space interface for DAX. Our evaluation using Valkey
with an emulated hybrid SSD shows that our design can
improve throughput by up to 4.1× on workloads with strong
persistence requirements.



Fundamental OS Design Considerations for CXL-based Hybrid SSDs

References
[1] 2024. Valkey: an open source, in-memory data store. https://valkey.io/
[2] 2024. Valkey Persistence. https://valkey.io/docs/topics/persistence/
[3] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang,

Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu. 2019. FlatFlash:
Exploiting the Byte-Accessibility of SSDs within a Unified Memory-
Storage Hierarchy. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 971–985. https:
//doi.org/10.1145/3297858.3304061

[4] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang,
Sangyeun Cho, Dong-Gi Lee, and Jaeheon Jeong. 2018. 2B-SSD:
The Case for Dual, Byte- and Block-Addressable Solid-State Drives.
In 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, Los Angeles, CA, 425–438. https:
//doi.org/10.1109/ISCA.2018.00043

[5] CXL Consortium. 2023. Compute Express Link Specification Revision
3.1.

[6] Intel Corporation. 2019. Intel® Optane™ DC Persistent Memory Prod-
uct Brief. https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/optane-dc-persistent-memory-brief.pdf

[7] Intel Corporation. 2021. eADR: New Opportunities for Persistent
Memory Applications. https://www.intel.com/content/www/us/en/
developer/articles/technical/eadr-new-opportunities-for-persistent-
memory-applications.html

[8] Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCIe storage meets
compute express link formemory expansion (CXL-SSD). In Proceedings
of the 14th ACM Workshop on Hot Topics in Storage and File Systems
(Virtual Event) (HotStorage ’22). Association for ComputingMachinery,

New York, NY, USA, 45–51. https://doi.org/10.1145/3538643.3539745
[9] Linux kernel contributors. 2023. Direct Access for Files – The Linux

Kernel Documentation. https://docs.kernel.org/6.6/filesystems/dax.
html

[10] Rob Landley. 2023. Red-Black Trees (Rbtree) in Linux – The Linux Kernel
Documentation. https://docs.kernel.org/6.6/core-api/rbtree.html

[11] Microsoft Corporation. 2022. Understand Direct Access (DAX)
and create DAX volumes with persistent memory devices.
https://learn.microsoft.com/en-us/windows-server/storage/storage-
spaces/persistent-memory-direct-access

[12] Rekha Pitchumani. 2023. CMM-H (CXL Memory Module – Hybrid):
Samsung’s CXL-based SSD for the Memory-centric Computing Era.
Samsung. https://semiconductor.samsung.com/us/news-events/tech-
blog/webinar-memory-semantic-ssd/

[13] Bernard Shung, San Chang, and Terry Cheng. 2023. NVMe over
CXL (NVMe-oC): An Ultimate Optimization of Host-Device Data Move-
ment. https://sc23.supercomputing.org/proceedings/exhibitor_forum/
exhibitor_forum_files/exforum118s2-file2.pdf

[14] Tom Talpey. 2017. Persistent Memory in Windows Server 2016.
In Persistent Memory Summit 2017. SNIA.org, SNIA 5201 Great
America Parkway Suite 320 Santa Clara, CA 95054, 23 pages. https:
//www.snia.org/sites/default/files/PM-Summit/2017/presentations/
Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf

[15] Linus Torvalds. 2023. Linux Kernel. https://git.kernel.org/pub/scm/
linux/kernel/git/stable/linux.git/tree/?h=v6.6

[16] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin yong
Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S. Kim.
2023. Overcoming the Memory Wall with CXL-Enabled SSDs. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). USENIX Asso-
ciation, Boston, MA, 601–617. https://www.usenix.org/conference/
atc23/presentation/yang-shao-peng

https://valkey.io/
https://valkey.io/docs/topics/persistence/
https://doi.org/10.1145/3297858.3304061
https://doi.org/10.1145/3297858.3304061
https://doi.org/10.1109/ISCA.2018.00043
https://doi.org/10.1109/ISCA.2018.00043
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://doi.org/10.1145/3538643.3539745
https://docs.kernel.org/6.6/filesystems/dax.html
https://docs.kernel.org/6.6/filesystems/dax.html
https://docs.kernel.org/6.6/core-api/rbtree.html
https://learn.microsoft.com/en-us/windows-server/storage/storage-spaces/persistent-memory-direct-access
https://learn.microsoft.com/en-us/windows-server/storage/storage-spaces/persistent-memory-direct-access
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/
https://sc23.supercomputing.org/proceedings/exhibitor_forum/exhibitor_forum_files/exforum118s2-file2.pdf
https://sc23.supercomputing.org/proceedings/exhibitor_forum/exhibitor_forum_files/exforum118s2-file2.pdf
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v6.6
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v6.6
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng

	Abstract
	1 Introduction
	2 Problem Analysis
	3 Design and Implementation
	4 Evaluation
	5 Conclusion
	References

