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Abstract

Optimizing power consumption of computer systems has been a key objective in
operating systems-related research formany years. Toward this goal, suspending a
system to a sleep state while it is not in use has proven invaluable. Regarding sleep
states, a trend away from ACPI-defined modes, such as S3, and towards operating
system-directed sleep can be observed. While this development improves resume
latency, it sacrifices on energy conservation, as the system cannot be powered off
entirely when employing these modes. In this thesis, we present a novel approach
to system suspend, Suspend-to-CXL, using CXL-based persistent memory to store
the context of the system, allowing the machine to be powered off completely,
thus consuming little energy during sleep. In order to ensure rapid recovery
of the system after sleep, we propose an asynchronous resume strategy, which
initially only restores context necessary for the operating system to resume and
returns state of user applications to system memory only when the system is
responsive again. We implement our design on physical hardware, employing a
CXL-capable FPGA to mimic persistent CXL storage. Our evaluation reveals that
Suspend-to-CXL exhibits constant resume times of approximately 11 s, regardless
of system memory usage. Moreover, our implementation is able to undercut
hibernation on Linux in terms of energy consumption by as much as 5.5 times on
suspend and 6 times on resume.
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Chapter 1

Introduction

Optimizing energy consumption is an important topic in computer science, for
consumers and large businesses alike. For example, consumers may prioritize
the battery life of their laptops, while large businesses focus on reducing energy
costs in data centers. A crucial component for optimizing energy consumption
is saving on energy while the computer is not in use. For achieving this goal,
computers can temporarily transition to different low-power states, also called
sleep states [64, Chapter 16], in which power draw is greatly reduced.

These sleep modes vary in the way they save the current state of the system as
well as the low-power states connected devices are able to reach. Simultaneously,
it is equally important for devices to be able to wake from sleep in a timely manner,
so they can be used when they are needed. For this reason, a balance must be
found between the energy saved while sleeping and the wake latency until the
machine is able to resume normal operation. Finding this balance has proven to be
difficult, as reducing the energy consumption during sleep often penalizes wake
latency. Ultimately, the preferable power state depends heavily on the use case of
the system. For instance, in laptops, enduring a brief delay upon waking up in the
morning might be acceptable if it ensures sufficient battery life for the commute
to work. Sleep states are formally specified by the Advanced Configuration and
Power Interface (ACPI) [64, Chapter 16]. For this thesis, three sleep states are
relevant: S3, S4, and Suspend-to-Idle.

In S3, also called “Suspend-to-RAM,” all devices not actively maintaining
memory are turned off, the processor halts execution, and system memory is
left in a low-power, self-refreshing state. Thus, S3 ensures fast wake-ups, as all
system state is still present in memory, and setting the system back up can be
done quickly, only requiring minimal initialization. Also, significant amounts of
energy are conserved, as only system Dynamic Random Access Memory (DRAM)
is actively powered. Regardless, self-refreshing RAM continuously consumes
power during sleep, resulting in non-negligible energy consumption.
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More energy can be saved in the S4 power state, also called “hibernate,”
“hibernation,” or “Suspend-to-Disk.” When entering S4, the entire system state is
persistently saved to disk. S4 thus permits a complete power-down of the machine
including RAM, resulting in essentially no power consumption during sleep. The
drawback to this approach is a much larger latency on wake-up compared to
S3. For resuming from S4, the system has to effectively complete a full boot
sequence, including platform initialization and discovery and setup of devices
in firmware. Firmware is low-level software that is tasked with setting up the
machine, including system memory and connected devices, to a point where the
operating system is able to take over. At the end of this sequence, memory context
is restored by reading the data from disk and restoring it to memory.

Suspend-to-Idle, called S0Ix by Intel and S2Idle [67] by the Linux kernel,
is a pure software implementation of sleep which is fully implemented in the
operating system, requiring no firmware support. Nonetheless, depending on the
system, S0Ix can provide substantial energy savings, in some cases even close to
those of proper ACPI sleep states, such as S3, while simultaneously ensuring near-
instant wake latencies [26]. Moreover, since Suspend-to-Idle operates without
the need for additional firmware assistance, it is compatible with a wide range of
devices.

In this thesis, we present Suspend-to-CXL (S2CXL), an implementation of
system suspend to persistent memory. We use byte-addressable Compute Ex-
press Link (CXL) memory to store operating system and user data during sleep,
subsequently restoring it on resume. In theory, this allows the machine to be
powered off completely during sleep, consuming energy comparable to S4. Addi-
tionally, we promise low resume latencies by only copying necessary kernel data
back to DRAM on resume and initially mapping user applications to memory on
the CXL device. We then perform a priority analysis on user applications and
asynchronously transfer their data back from CXL memory to system memory
based on these priorities. Our design contains components in firmware and the
operating system. For our implementation, we employ the open-source firmware
coreboot [45] and the open-source operating system family Linux [61], which both
allow the modification of their source code, thus enabling us to adapt functionality
as needed. Using firmware for the initial restore process enables us to leverage
existing mechanisms for jumping back to the operating system from suspend,
avoiding the need for complicated, low-level bootstrap code for Linux to restore
itself. Furthermore, using firmware for restoring the kernel to memory allows
us to skip large parts of the boot process, thus ensuring short resume durations.
On the other hand, implementing the asynchronous resume component in Linux
provides the benefit of being able to utilize existing functionality in Linux to
identify memory ranges used by the kernel and user processes, which need to be
saved.
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In the following chapters, we describe Suspend-to-CXL in great detail. We
begin by providing necessary background information and touch on related work
in Chapter 2. We continue by presenting the theoretical design and practical
implementation of Suspend-to-CXL in Chapter 3 and Chapter 4, respectively. Next,
we evaluate our proposed sleep mechanism on real-world, commodity hardware
and discuss our findings in Chapter 5. We compare Suspend-to-CXL to hibernation
on Linux in terms of resume latency, suspend latency, power consumption and
reliability. Our analysis demonstrates that Suspend-to-CXL is able to reduce
resume and suspend durations by at least 78% and 58%, respectively, compared
to hibernate. Moreover, the implementation of our proposed sleep mode is able
to successfully resume in at least 97% of cases, thus proving reliable. Lastly, we
propose further improvements and opportunities for future work in Chapter 6
and finally conclude this thesis in Chapter 7.
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Chapter 2

Background

In this chapter, we cover important concepts for the rest of this thesis. We start
by giving a short introduction to system firmware, focusing on the open-source
firmware coreboot, which was used to implement the sleep mode proposed in this
thesis. Additionally, we present details on the Advanced Configuration and Power
Interface and the therein defined sleep states, their properties, and performance
characteristics. We continue by providing some information on Compute Express
Link, a high-speed interconnect between CPU and peripheral devices, which we
use to implement our suspend functionality. Lastly, we explain important aspects
of memory allocation on Linux, before ending this chapter by touching on some
related work concerned with suspending to persistent memory.

2.1 Firmware
System firmware is software that has fine-grained control over the hardware
of the machine. In contrast to the operating system (OS) on most computers,
firmware is typically stored in some form of read-only memory, e.g. electrically
erasable programmable read-only memory (EEPROM), requiring external tools and
software like flashrom [8] to modify its contents. Firmware is responsible for
setting up the machine to enable the OS to use abstractions from the hardware,
similarly to how user applications leverage abstractions from hardware provided
by the operating system. Thus, the primary task of firmware is to initialize the
machine and all its devices to a predefined state and provide the operating system
with vital information on the hardware of the system. Additionally, firmware can
provide runtime services for power management, device configuration, and gen-
eral system information [41, Chapter 1, Page 7]. For example, an essential piece of
information that an operating system needs for correct setup and which we use
for our implementation, is a map of physical RAM (random access memory) in the

7
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system. This information cannot be obtained by the OS directly, as the detection
mechanism is highly platform-dependent and must be performed before system
RAM is usable [29]. Since the firmware initially runs on read-only memory and
does not require system memory to be available, in contrast to conventional
operating systems, firmware is tasked with detecting memory. Moreover, the
firmware might reserve parts of physical RAM for its own data structures or
runtime functionality such as System Management Mode as described in Sec-
tion 2.1.2, which the OS must respect. The standard way for the operating system
to detect the memory map on x86 is by leveraging a Basic Input/Output System
(BIOS) function termed the “E820 call” [64, Chapter 15]. This call to firmware
functionality is performed by storing the value 0xE820 in the EAX register and
issuing a 0x15 software interrupt. The BIOS then fills a given buffer with entries
of the memory map on subsequent calls, containing a base address, the length of
the region, and its type, describing how each memory region is used and whether
the operating system may access it.
BIOS-e820: [mem 0x0000000000000000-0x000000000009efff] usable
BIOS-e820: [mem 0x000000000009f000-0x00000000000bffff] reserved
BIOS-e820: [mem 0x0000000000100000-0x0000000009afffff] usable
BIOS-e820: [mem 0x0000000009b00000-0x0000000009dfffff] reserved
BIOS-e820: [mem 0x0000000009e00000-0x0000000009efffff] usable
BIOS-e820: [mem 0x0000000009f00000-0x0000000009f3bfff] ACPI NVS
BIOS-e820: [mem 0x0000000009f3c000-0x0000000049b5ffff] usable
BIOS-e820: [mem 0x0000000049b60000-0x000000005a77efff] reserved
BIOS-e820: [mem 0x000000005a77f000-0x000000005af7efff] ACPI NVS
BIOS-e820: [mem 0x000000005af7f000-0x000000005affefff] ACPI data
BIOS-e820: [mem 0x000000005afff000-0x000000005affffff] usable
BIOS-e820: [mem 0x000000005b000000-0x00000000ffffffff] reserved
BIOS-e820: [mem 0x0000000100000000-0x000000047fffffff] usable

Listing 2.1: Example results of an E820 call, logged to the Linux kernel ring buffer
and obtained via dmesg. Each line describes a single contiguous memory region
with its associated type.

2.1.1 UEFI, ACPI, and SMBIOS
Modern computers use the Unified Extensible Firmware Interface (UEFI) [65] and
the Advanced Configuration and Power Interface (ACPI) [64] as both a specifi-
cation for firmware functionality and an interface between firmware and the
operating system. To share data between firmware and operating system, the
ACPI specification defines nested data structures called ACPI Tables [64, Chap-
ter 21]. These tables contain entries describing “devices on the system board or
devices that cannot be detected or power managed using some other hardware
standard, plus their capabilities.” [64, Chapter 5] Additionally, they also list other
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system capabilities such as “the sleeping power states supported, a description
of the power planes and clock sources available in the system, batteries, system
indicator lights, and so on.” [64, Chapter 5] This allows the operating system to
utilize these capabilities and functions without requiring detailed knowledge of
the specific hardware control mechanisms. When initializing the system, the
firmware populates these tables with ACPI Machine Language (AML) code, which
the operating system then parses to create a database of all devices and their
supported functions. The OS then can interpret the AML code to execute the
provided functions [64, Chapter 20]. For example, if the operating system wishes
to power off the machine, the corresponding AML code would be called, contain-
ing implementation details on how to power off the specific hardware found in
the system. Furthermore, most systems share hardware information like serial
numbers and memory slot population with the operating system via System Man-
agement BIOS [52] (SMBIOS). Similarly to ACPI, SMBIOS defines a table format
containing this information, which can be read by the OS.

2.1.2 SMM
An x86 CPU can operate in different modes, which determine the availability of
specific parts of the instruction set. One of these modes, SystemManagement Mode
(SMM) [20], is discussed in detail in the following section. SMM is entered by
creating an interrupt called System Management Interrupt (SMI). Creating an SMI
can either be performed by issuing a hardware interrupt on the designated SMI#
pin of the processor or by triggering a software interrupt by writing to a specific
I/O port. After receiving an SMI, the processor saves context and performs a jump
to firmware SMM code. In addition to the mechanisms described in Section 2.1.1,
the x86 architecture thus provides SMM as an additional means for firmware code
to run after control of the system has been handed over to the OS. The operations
then performed in SMM are completely transparent to the operating system.

As a result of firmware having complete control over the system, SMM is a
popular target for attackers looking for a way to execute code without knowledge
of the OS [7]. For this reason, SMM code is executed in a separate address
space called system management RAM (SMRAM), which is not accessible to the
operating system or user programs. When it was introduced, SMM was used to
provide an operating system “with a transparent mechanism for implementing
platform-specific functions such as power management and system security.” [20,
Volume 1, Chapter 3.1] If the OS signals that it is ACPI compliant, the firmware
will refrain from performing these low-level functions and instead only update
ACPI table structures if needed and return from SMM after an SMI occurred.
However, as essentially every x86 machine built in recent years is ACPI compliant,
responsibility for low-level control of the hardware has increasingly shifted to the
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operating system, making SMM less important. Despite its decreasing importance,
SMM continues to be supported on all x86 and x86_64 processors and still contains
code for device management on most platforms, as the firmware cannot assume
that the operating system it will load is ACPI compliant and capable of completing
generic low-level functions.

2.2 coreboot
Traditionally, firmware implementations for desktop and server platforms are
proprietary, meaning their code is private, and therefore, their behavior cannot
be easily adapted. Since firmware tasks are highly dependent system hardware,
most original equipment manufacturers (OEMs) often only implement needed
functionality for the specific platform and then rarely update the firmware. This
development style results in fragmented source trees and a “throw-away” men-
tality, where older platforms rarely receive updates unless addressing critical
security issues [2, Chapter 1, Page 3]. In contrast, coreboot [45] is an open-source
firmware implementation focusing on speed and simplicity. The project attempts
to “do the bare minimum necessary to ensure that hardware is usable and then
pass control to a different program called the payload.” [47] Therefore, coreboot
provides no user interface at runtime and is solely concerned with platform and
device initialization, handing over control to the payload binary as early as possi-
ble to implement further functionality. As is common for firmware, the majority
of the source code is written in C or architecture-specific assembly, with some
exceptions like x86 graphics code written in ADA SPARK. coreboot’s boot flow
is divided into different stages, each responsible for a different part of hardware
initialization, and is described further in Section 2.2.1.

This design choice ensures a flexible boot sequence, enabling the use of an
adequate payload for varying situation. Popular payloads include Intel’s reference
implementation of UEFI called TianoCore EFI Development Kit II (EDK2) [18]
providing UEFI runtime services, an EFI shell and user interface, SeaBIOS [39] for
legacy BIOS systems, and LinuxBoot [62], which attempts to use the Linux kernel
to complete common UEFI functionality. coreboot is primarily compatible with
x86 and x86_64 CPUs from AMD and Intel but also supports ARM and RISC-V
CPUs. The project uses a single source tree for all platforms and architectures,
guaranteeing that older platforms benefit from newer code changes. Although
the coreboot code is entirely open source, certain architectures, particularly
x86 and x86_64, require additional proprietary BLOBs (binary large objects) to
fully initialize hardware such as the CPU and RAM. For this reason, coreboot
allows for the integration of these binaries and invokes their functions when
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required. Intel provides a Firmware Support Package (FSP) [14], which fills this
role. coreboot recently introduced stable 64-bit support [46], which is essential
for our implementation, as we have to be able to address memory over 4GiB,
which is not possible in 32-bit mode.

2.2.1 coreboot Architecture
coreboot’s boot process is divided into multiple, separately compiled stages [49].
These stages have different responsibilities and after one stage has finished, it
loads and runs the next stage. As a result, each stage has access to a different
set of library functions and data structures. An overview of coreboot’s stages is
given in Figure 2.1.

bootblock verstage romstage postcar ramstage
SMM payload

language

stage

Assembly C

memory
location

Cache DRAM

timepower on

Figure 2.1: Simplified overview of coreboot’s boot stages on x86, including the
source code languages and the memory locations used in each stage.

The first stage to run is the bootblock, which is written mostly in assembly and
is tasked with setting up an environment for the C code of following stages to run.
C relies on byte-addressable memory for its stack and heap; however, at the initial
stages of system startup, system memory is not yet initialized. For this reason,
coreboot uses CAR (cache-as-RAM) in its early stages, allowing the CPU cache
to be used as system memory, thus enabling C code to run. On x86 systems, the
bootblock is additionally responsible for updating microcode, setting up hardware
timers and switching from 16-bit real-mode to 32-bit protected mode.

After the bootblock finishes, it may load the optional verstage. This stage is
used to establish a “root-of-trust” [49] for verified boot, a security mechanism
to ensure firmware integrity. Next, the romstage is run. The romstage primarily
sets up the system’s DRAM for the following stages to use. On x86, the very
short postcar stage then disables CAR and loads the ramstage to run from regular
system memory.

The ramstage accomplishes the majority of actual device initialization. It
enumerates and initializes Peripheral Component Interconnect (PCI), Peripheral
Component Interconnect Express (PCIe), and on-chip devices and sets up graphics
output if supported. The ramstage also configures SMM, as discussed in Sec-
tion 2.1.2, to handle SMIs, by establishing memory regions, such as CPU stacks,
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necessary for executing SMM code. Lastly, information on the system is written
to the ACPI and SMBIOS tables for the OS to read and process. Additionally, core-
boot maintains its own tables called coreboot tables, in which it saves information
like the system memory map, log messages, and timestamps. After the ramstage
has written its data to these tables, the payload binary is loaded and executed, at
which point coreboot has finished initializing the system.

2.2.2 Hardware Specialization
As mentioned in Section 2.2, every platform uses the same coreboot source tree.
Necessary modifications for varying hardware are performed in the subdirectories
of the src directory of the coreboot repository [51]. For example, modifications
to the mainboard, e.g., memory module slot population restrictions or available
general-purpose input/output (GPIO) pins, are applied in the mainboard-specific
subdirectories of src/mainboard/. Similarly, CPU-architecture specific code is
placed in src/arch/, including assembly implementations for low-level func-
tionality, which inherently differs between architectures. Similar to the Linux
kernel, coreboot makes use of Kconfig [59], a mechanism based on configura-
tion files for selecting specific high-level options such as the target mainbard,
PCI support, 64-bit execution, or serial port logging, for example. Based on the
selected values, a .config file in the project root is generated, containing the
project-wide configuration state, based on which the firmware binary is built.
To then create the binary, a collection of GNU make [42] files is employed to
decide which source files are compiled, based on the variables set in the .config
file. To enable modules belonging to specific hardware to modify the behavior
of the firmware, coreboot defines abstract functions in header files and provides
default implementations with weak linkage, which can be overridden. For ex-
ample, we require some dynamic memory management for our suspend and
resume logic (see Section 4.4.1 for more details). For this reason, we override the
empty, weakly-linked function bootmem_platform_add_ranges [51] defined
in src/include/bootmem.h to reserve a memory region for us to use, which
the operating system recognizes as firmware-reserved and refrains from using.

Given that system firmware is highly hardware-dependent, coreboot requires
critical hardware information about each mainboard, such as present devices,
slots, and buses for devices that cannot be easily probed at runtime. To address this
issue, coreboot interprets a mainboard-specific devicetree.cb file containing
information on connected devices, including daughter boards, serial ports, and
baseboard management controllers.
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2.2.3 CBMEM
While coreboot adopts a minimalistic approach to firmware runtime services
and strives to remove itself entirely from memory before transferring control
to the payload, certain memory regions, such as those designated for setting up
SMM, must remain in memory even after coreboot completes its initialization.
Furthermore, the tables outlined in Section 2.1.1 must be retained as well for
the OS to use. These tables are placed in a memory area called CBMEM [48].
Additional data, such as boot logs and timestamps may also be saved to CBMEM.
After the system has booted, the data in this memory region can be read, but not
written, from Linux using coreboot’s cbmem program [51, util/cbmem/]. We
use both the boot logs and timestamps to collect information on latencies and
memory amounts for the evaluation of our implementation, as we describe in
further detail in Section 4.5. On top of saving messages to CBMEM, coreboot
also supports logging these messages in real time to on-board serial ports. We
make use of this fact for debugging purposes as it does not require the system to
successfully boot to Linux.

2.3 System Suspend
Energy consumption makes up a large chunk of the total cost of ownership of
a computer. For optimizing energy consumption, it is of upmost importance to
reduce the power consumption of a system while it is not in use. While placing a
computer in a low-power state when it is not used is no novel idea, the approaches
toward achieving this goal have changed over time.

Before the release of ACPI, as introduced in Section 2.1.1, power management
relied on complicated, platform-dependent firmware code, which provided less
flexibility in terms of usable policies than the OS-directed configuration and power
management (OSPM) [64, Chapter 1] provided by ACPI. For managing the system
and connected devices, ACPI defines power states and transitions between them,
which the operating system can invoke, for example when the user requests the
system to shut down. To enter a selected sleep state, OSPM has to follow specific
steps defined by the ACPI specification [64]. This specification additionally defines
different sleep states [64, Chapter 16.1], called S0 to S5, which all exhibit different
power characteristics.

While powered on and executing instructions normally, an ACPI compliant
computer is in sleep state S0, also called the Working state. On the other hand,
a system in S5, also called Soft Off, is completely powered down and waiting
for the power button to be pressed to begin a full boot sequence, consuming
only minimal energy. S1 to S4 progressively power down more hardware and
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are described in greater detail in the following sections. In recent years, a trend
toward putting the OS in charge of power management by using pure software
solutions rather than involving the firmware with ACPI sleep states can be seen.
Despite this fact, ACPI sleep states still remain relevant today.

2.3.1 Suspend-to-Idle
Suspend-to-Idle [67], also called S2Idle or S0Ix, is not a proper sleep state as defined
by ACPI [64, Chapter 16]. As far as ACPI is concerned, a system in S0Ix is running
normally, meaning it is in the S0Working state and is able to execute instructions.
Instead, Suspend-to-Idle is a pure software implementation of suspend. When in
this state, the entire user space is frozen and all I/O devices are put into low-power
states. As a result, the CPU stays in its lowest power idle state, thus consuming
little energy. Since S0Ix is no proper, ACPI-defined sleep state, code execution
can still occur, resulting in both more devices being able to wake the system and
important kernel tasks theoretically being able to continue execution. A system
in S0Ix can be woken up by interrupts from I/O devices like a keyboard and even
from network events [67].

2.3.2 ACPI Sleep States
Entering an ACPI sleep state requires writing values to different hardware and
software structures defined by ACPI [64, Chapter 16.1]. To control power man-
agement, ACPI defines the PM1 control register, PM1_CNT [64, Chapter 4.8.3.2],
which is located in I/O space on x86 or mapped in physical memory space. The
exact location of this register can be found by walking the ACPI tables, more
specifically it is given in the Fixed ACPI Description Table (FADT). To enter an
ACPI sleep state, OSPM first sets the 3-bit field SLP_TYPx in the PM1_CNT
register to the target sleep state. Afterward, the SLP_EN bit in the same register
is set, initiating the transition to the specified state.

Moderate energy savings can be achieved by employing the sleep state S1 [64,
Chapter 16.1.1]. Before entering S1, user space is frozen and I/O-devices are
placed in low-power states, similar to S2Idle. Additionally, CPU caches are flushed
before sleep [64, Chapter 16]. Aside from these caches though, the system context,
system memory in particular, is further maintained during sleep. An example
implementation of S1 is “standby” on Linux [67] which leaves the CPU powered
and disables all non-boot CPUs, allowing further energy savings.

S2 [64, Chapter 16.1.2] builds upon S1 but allows the entire CPU to be powered
off. It only requires system memory to remain powered, while other devices can
be put into low power states or turned off completely. When going to sleep,
important context is saved to memory, including the wake vector, a memory



2.3. SYSTEM SUSPEND 15

address the OS writes before suspend where it has prepared code to resume itself.
Analogous to S1, CPU caches are flushed before suspend, however the CPU and
cache can then be completely powered off, which is not possible in S1. On waking
up, the firmware must identify that the system was sleeping, restore context like
the CPU cache, enable the previously disabled devices, and jump to the wake
vector rather than running the normal OS entry code. S2 thus focuses on low
wake-up latencies, while sacrificing on energy savings compared to S3 and S4.

Similarly to S2, S3 [64, Chapter 16.1.3] powers off external devices as well as
the CPU while keeping RAM in a self-refreshing state. A system in S3 experiences
a further reduction in energy consumption by permitting certain devices, such as
the system power supply, to be placed in a lower power state, thus consuming
even less energy. Until recently, S3 was a very popular sleep state to implement,
though operating systems have started to encourage the usage of Suspend-to-
Idle, as S0Ix allows the OS to control the entire sleep process [26]. In theory, S3
provides substantial power savings and quick resume times, but requires low-
level platform support. Especially on x86, this platform code is often proprietary
in nature, preventing third parties from providing S3 capabilities. This, paired
with additional hardware requirements, hinders S3 from being available on every
platform.

S4 [64, Chapter 16.1.4], also called Suspend-to-Disk or hibernation by the
Linux kernel, is the lowest power sleep state that still maintains system context.
When entering S4, system context is written persistently to disk. Subsequently,
all devices can be powered down, resulting in a situation similar to when the
machine is powered off completely, thus ensuing minimal power consumption
during sleep. A core advantage of S4 is that it can be implemented without support
from the underlying platform and needs no support from the firmware at all to
wake correctly. On the other hand, resuming from S4 essentially requires an
entire boot sequence after which the OS restores system context from the disk,
resulting in the slowest resume of all sleep states. The transition to S4 can either
be issued from the OS or from platform firmware, in which case the transition is
called S4BIOS. To enter S4 via the S4BIOS mechanism, the OS generates an SMI
with the value of S4BIOS_REQ, which can also be found in the FADT, stored in
the SMI_CMD register [64, Chapter 5.2.9]. As S4BIOS is both very rarely used
today and requires additional platform support, we focus on the entry to S4 from
the operating system.
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2.3.3 Linux Hibernation
To understand the performance comparison between our implementation and
hibernation on Linux, we broadly sketch out the sequence of events after a
hibernation call [67] in the following. To initiate the transition to S4, the low-level
kernel sysfs [27] interface can be used directly by writing the string “disk” to
/sys/power/state. Alternatively, the high-level interface via systemd [44] can
be used, which performs various sanity checks and supports the execution of
user-defined scripts before hibernation, after which the kernel interface is also
used to initiate the transition. Afterward, all user processes are frozen to prevent
applications from ending up in unexpected states on resume. Next, so called
“nosave pages” are identified, which are pages that do not require saving in the
hibernation image as they are either reserved by the platform or not mapped
to DRAM at all, such as memory-mapped I/O (MMIO) regions of PCI devices
[20, Volume 1, Chapter 19.3.1]. Linux allows configuring the target size of the
hibernation image through the sysfs interface at /sys/power/image_size
[67]. Values written to this file “will be used as a best-effort upper limit of the
image size.” [67] By default, the image_size is set to 2/5 of the size of system
memory. Tweaking this image size is important for our evaluation, which is
elaborated further upon in Section 5.1. For OS-initiated S4 on Linux, the entire
system context is compressed with a compression algorithm, for example LZ4 [4]
or LZO [28], to create the hibernation snapshot and then copied persistently
to a swap partition or swap file on disk. As the time needed for copying and
compressing increases with the amount of data being processed, both suspend
and resume latencies are significantly dependent on the size of the hibernation
image. When writing is completed, the system may enter the low-power S4 state
to permit waking up by means of keyboard or other device interrupts. By default,
Linux deviates from the ACPI specification and simply shuts down the machine
by entering S5, enabling further energy savings. Although putting the system in
S5 saves more energy, it also prevents the machine from being able to wake up
from interrupts generated by devices such as keyboards and laptop lids.

When the system is powered on again, firmware initializes the system as usual
and starts a fresh instance of the Linux kernel. This kernel then searches the swap
file for a hibernation image and loads it if present. Before loading it to memory, the
kernel performs some sanity checks in arch_hibernation_header_restore
[61, arch/x86/power/hibernate.c], one of which is ensuring that system
firmware has initialized thememorymap in the sameway as when the hibernation
call wasmade [61]. If these checks pass, the fresh kernel then overwrites itself with
the loaded image and restarts user space, thus completing the suspend/resume
cycle.
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2.4 Compute Express Link
The rising need for storing and processing ever-growing volumes of information
in data centers and cloud applications demands new memory interfaces without
the limitations in bandwidth and scalability of traditional Double Data Rate (DDR)
memory. Normally, computer systems fall back to block devices, most commonly
SSDs, for storage when running out of DDRmemory. Despite providing large stor-
age capacities, SSDs introduce latencies multiple orders of magnitude greater than
DRAM-based memory, severely reducing application performance. Furthermore,
the growing interest in machine learning, data analytics, and cloud computing
has increasingly transformed the computing landscape toward heterogeneous
systems, employing various accelerators, GPUs, memory expanders, and FPGAs
in addition to conventional CPUs for their calculations.

Compute Express Link (CXL) [5] attempts to fill this gap between DRAM-based
DDR memory and SSDs by providing a standardized interface for accessing ac-
celerator memory. CXL is an open standard interconnect for high-bandwidth,
low-latency, and cache-coherent data transfer between the processor and afore-
mentioned devices. After its initial release in 2019, the standard continues to be
actively developed by a group composed of researchers, hardware vendors, and
cloud providers. For its implementation, CXL builds upon PCIe point-to-point
infrastructure for communication between devices.

CXL defines three protocols for communication between components [5,
Chapter 3]:

• CXL.io supplies the fundamental operations of CXL on top of PCIe, such
as device discovery, link initialization, interrupt controlling, and register
I/O.

• CXL.mem enables the CPU to coherently access the memory attached to
CXL devices with conventional load/store instructions.

• CXL.cache provides a way for devices to cache data from host memory
while ensuring consistency.

While these protocols are employed by devices and the host, they are transparent
to the applications using CXL. The CXL standard categorizes CXL-capable devices
into three distinct categories [5, Chapter 2]:

• Type 1 devices expose no memory to the host but might maintain a private
cache for their operation. Such devices might employ complex atomic
operations, which standard PCIe does not provide. The cache-coherent
transactions provided by CXL.cache enable both flexibility in the choice
of atomic operations and ordering used by the device when accessing host
DRAM.
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• Type 2 devices, such as FPGAs and GPUs, contain own memory. They use
all three CXL protocols to expose their memory to the host and access the
host’s memory transparently during their computations.

• Type 3 devices such as passive memory expanders rarely carry out com-
puting work themselves and rather expose memory for the CPU or other
CXL devices to use, increasing the capacity and bandwidth of host memory.
These CXL devices may use any memory type internally, enabling the host
to access both persistent and non-persistent, byte-addressable memory with
conventional load/store operations.

For this thesis, we require a coherent memory space to be maintained between
the CPU and the device, enabling byte-granular memory access from both com-
ponents. This memory space is detected in firmware and passed to the OS as
a separate ACPI proximity domain. Once configured, there is no discernible
difference from the user’s perspective between accessing conventional system
DDR memory and utilizing the memory of the CXL device, which is crucial to
our implementation and discussed in greater detail in Chapter 3. Since CXL only
defines the interface for accessing memory, the type of backing storage can be
chosen freely, as long as it is able to implement CXL semantics. Although we
desire persistent storage to be able to retain the system state even when the
machine is not powered, these solutions are not yet commercially available, as
described further in Section 2.4.1.

2.4.1 CXL-based Memory Expander
While CXL has only begun to be supported on newer computing platforms [19],
hardware manufacturers have announced first products using CXL as an interface,
such as the CXL Memory Module - Hybrid (CMM-H) by Samsung, which supplies
persistent, byte-addressable storage [40] to the host system. In theory, this type
of device is perfectly fit for our use case. Due to its byte-addressable nature,
CMM-H enables storing data effortlessly via conventional load/store instructions
while simultaneously saving said data persistently without requiring additional
measures. Therefore, devices such as CMM-H, could enable a system to save its
context and fully power off to save energy. Then, when powering back on at a
later time, retrieve the data to restore the state of the system, thus implementing
a type of system suspend as described in Section 2.3.

Unfortunately, none of these products are commercially available at the time
of writing this thesis. As a result, we cannot evaluate our implementation on
persistent and CXL-capable hardware. Instead, we use an FPGA-based memory
expander that is capable of communicating via CXL. Internally, the FPGA is
equipped with a single DDR4-3200 memory module to emulate persistent storage.
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Although the performance characteristics of our FPGA will certainly differ from
actual CXL hardware, our evaluation in Chapter 5 is nonetheless able to provide
insights into performance and the characteristics of using CXL for system sus-
pend. Furthermore, the perspective of the operating system and firmware on
CXL memory, as described in the following section, remains unchanged when
transitioning to commercial hardware such as CMM-H. This consistency ensures
that switching to these devices will be trivial once they become available.

2.4.2 NUMA
The conventional paradigm of Symmetric Multiprocessing (SMP) [30, Page 509]
describes a system topology containing multiple CPUs with identical access times
to resources like memory, block storage, or networking. Although this view
is easy to understand and sufficient for many situations, it is not accurate on
modern systems. For example, a system might contain multiple CPU sockets
with their own physical CPUs and memory controllers. In a system like this,
a CPU experiences greater latencies when accessing memory belonging to the
other memory controller than when accessing memory connected directly to its
own memory controller. As a result, contemporary operating systems such as
Linux consider such a machine to possess a Non-Uniform Memory Access (NUMA)
architecture [37]. In this view, resources are assigned to NUMA nodes, which
may or may not have one or more CPUs and some amount of memory and I/O
buses. Each node associates the other nodes with a distance based on how large
the bandwidth and latency is when accessing resources belonging to the other
node. According to this model, conventional SMP systems can simply be treated
as a system with a single NUMA node containing all CPUs and the entire system
memory. NUMA promises to improve both performance and scalability of systems
by optimizing resource usage. For example, a NUMA-aware operating system
scheduler might decide to only schedule a compute-intensive task on the NUMA
node with memory containing the task’s data structures. By default, the CXL
memory devices described in Section 2.4 appear to the operating system as a
separate NUMA node with the memory capacity of the device and no CPUs. As
such, their memory is mapped to the physical address space and can be used to
satisfy allocations for both the OS and user applications.

To ensure availability of CXL memory at the time of suspend, some changes
to the Linux kernel are necessary, which is elaborated on in further detail in
Section 4.1. For this reason, a basic understanding of how the Linux kernel
handles NUMA policies and allocations is essential. Internally, the kernel uses
“memory policies” to decide which node to use for an allocation [12]. To allow for
more flexibility in allocations, memory policies are assigned to a scope, enabling
different treatment of tasks and use cases. These scopes include the system default
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scope, a per-process scope, a scope for a specific part of the virtual address space
of a process, and a scope shared between multiple processes. These memory
policies contain a “mode” describing the allocation strategy, the most important
of which are described in the following.

• MPOL_DEFAULT is only used internally and by default for new processes
and simply falls back to the next specific scope.

• MPOL_BIND exclusively allows allocations from the set of nodes specified
in the policy.

• MPOL_PREFERRED and MPOL_PREFERRED_MANY specify a sin-
gle or multiple preferred nodes respectively, from which allocations are
attempted initially. If obtaining memory from the preferred node(s) fails,
the other nodes are checked in increasing order of distance. This policy is
used in the system default scope with the preferred node set as the node of
the CPU the process is running on.

• MPOL_INTERLEAVE ensures that allocations are interleaved across nodes
on a page granularity. To distribute memory usage evenly during booting,
Linux uses this policy in the early boot phase before switching the mode of
the system default scope to MPOL_PREFERRED.

User applications can request specific NUMA policies via system calls such as
set_mempolicy [12]. Furthermore, kernel device drivers can also use provided
functions to allocate from and even migrate already running processes to different
NUMA nodes. Lastly, the command-line tool numactl [22] enables users to
launch programs with specific NUMA policies, inspect memory capacity and
usage of nodes present in the system and display the memory policy for the
current process. Further details on the memory allocation interface on Linux are
given in the following section.

2.5 Linux Memory Management
For our implementation, we make use of the memory management implementa-
tion of the Linux kernel to find the memory regions that must be persisted before
powering off the system. Linux provides several APIs [57] for memory allocation,
each designed for different use cases [60]. At the physical page-level, Linux uses
a buddy allocator which maintains free-lists for multiple orders of pages. Mem-
ory can be allocated from the buddy allocator directly via alloc_pages [57].
Additionally, for smaller allocations, calls to kmalloc [57] can be made, which
internally allocates pages from the buddy allocator if needed. For allocations
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larger than a single page that do not require pages to be physically contiguous,
vmalloc [57] can be employed. Lastly, for use cases requiring repeated allocation
and freeing of custom, similar-sized objects, the Linux kernel provides a slab cache
allocator via kmem_cache_create and kmem_cache_alloc, which caches cur-
rently free blocks for fast reallocation [57]. Additionally, physical pages can also
be mapped directly to the virtual address space of the kernel via vmap [57].

Since the buddy allocator requires some setup to complete allocations, it
cannot be utilized immediately during the early boot stages of Linux. For this
reason, Linux employs a different allocator during boot time calledmemblock [53].
Simply put, from memblock’s point of view, system memory is a collection of
contiguous regions which are either free or reserved. Allocations can be made by
calling memblock_alloc or memblock_phys_alloc, which return a virtual
or physical address, respectively. During the allocation of a region, its type is
changed to reserved. At some point in the boot process, the memory allocated via
memblock is freed to the buddy allocator [53]. As all allocations during normal
operation are fundamentally provided by the buddy allocator, it is sufficient to
traverse its data structures to find the parts of physical memory that are in use.
Section 3.2.1 further describes how we capitalize on this fact to identify used
memory regions that have to be saved on suspend and restored on resume for
the implementation of Suspend-to-CXL.

2.6 Related Work
Previous work on optimizing system suspend in terms of latency and energy
consumption has been conducted with varying approaches. We begin by giving
an overview of relevant publications and conclude with a discussion of a closely
related approach to our proposed sleep mode in Section 2.6.1.

Lo et al. [23] present swap-before-hibernate, a modification to conventional
hibernate, employing the properties of flash storage devices such as SSDs. When
a hibernation request is made, all swappable pages are moved to swap space on
the flash device while static data, like code and file content, is simply discarded,
reducing the amount of memory that has to be saved. As flash storage exhibits low
seek times as well as fast reads, this introduces acceptable latencies. Swap-before-
hibernate then bundles together non-swappable pages, such as kernel pages, and
writes them to a hibernation file. On resume, Lo et al. copy back data from one of
three sources: non-swappable memory is transferred back from the hibernation
file, static data is read back from disk via demand paging, and swappable user
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data is read back from swap space via demand paging. Subsequent hibernation
requests then complete even faster, as pages that have not changed since their
last write to swap do not need to be copied again. Lo et al. manage to achieve a
5× speedup in resume times compared to conventional hibernate on Linux.

To combat larger hibernation latencies due to increasing application memory
footprints, Ho et al. [13] propose a classification scheme for prefetching memory
pages for user applications. Pages are classified based on their access pattern
into priorities and written to the hibernation image in this order. On resume,
pages belonging to the Linux kernel are loaded first, allowing interactions with
the system, like logging in and starting applications. Afterward, user pages are
prefetched to memory in decreasing priority from the image, allowing urgent
applications to access their pages quicker. In this sense, Ho et al. also implement
the concept of an “asynchronous” resume. However, their approach does not
profit from the flexibility offered by byte-addressable persistent storage, such as
the capability to map regular memory pages directly, similar to system memory.
Nonetheless, they show an improvement of up to 30.8% in suspend and resume
latencies compared to conventional hibernate. The sleep mechanism presented in
this thesis implements a comparable strategy to the one described by the authors
by prioritizing applications on resume, which is further described in Section 3.3.2.

Zi et al. [68] present a comparable approach to system suspend by saving
the contents of system memory to Phase-change memory (PCM), a type of non-
volatile memory capable of retaining data without continuous power supply. The
authors implement their proposal, Suspend-to-PCM, entirely in software, utilizing
the capabilities of the QEMU emulation platform. In this context, they emulate
a PCM device, though they give no details on how this is accomplished. On
a suspend request, the operating system completes the usual task of freezing
user processes and subsequently transfers control to firmware. QEMU then
saves the entire contents of DRAM to an emulated PCM device and powers the
system off. On resume, the data saved in PCM is loaded back to DRAM, from
where the operating system can resume. The authors evaluate their Suspend-to-
PCM implementation by comparing it against Suspend-to-Disk and Suspend-to-
RAM, conducting tests on both physical hardware and in the same virtualized
environment used for Suspend-to-PCM. They find that both suspend and resume
latencies are heavily dependent on system memory utilization. For instance,
resume times are reported to be 36.7 s for 128MiB of memory usage and 66 s for
1GiB. However, the authors do not explain the consistent observation that resume
latency exceeds suspend latency, despite the fact that reading from most types of
storage is typically faster than writing. Zi et al. compare the latency of Suspend-
to-PCM to Suspend-to-Disk and Suspend-to-RAM as described earlier, claiming
that resume latencies are comparable to those of Suspend-to-Disk on bare-metal,
though they do not elaborate further at whichmemory usage level this comparison
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holds. Since no physical hardware was available for direct measurement, the
authors calculate the theoretical energy consumption of their implementation by
assuming values for the power draw of the system in idle, load and suspended
states. However, they do not clarify how they derive these numbers. Notably,
the power draw of 2.5W Zi et al. assume the system exhibits when sleeping
seems curious, as a system suspended to persistent memory should, theoretically,
only consume negligible energy. How the results the authors present relate to an
application on real hardware is not clear, as the authors do not reveal how they
emulate the PCM device. Although this work leaves room for further investigation,
we share the author’s vision of suspending the system to non-volatile storage,
nonetheless.

2.6.1 Suspend-to-PMem
In his thesis, Meyer [24] presents Suspend-to-PMem, a mechanism for suspending
a system to Intel Optane [16] memory, a form of persistent memory. They
implement this functionality entirely in firmware by copying the complete system
memory to Optane on suspend via an FPGA connected to the system over PCIe.
On resume, the firmware detects that the system was suspended via Suspend-to-
PMem, reads memory back from Optane to host memory and subsequently jumps
to the ACPI wake vector to resume. While the wake latency of Suspend-to-PMem
is higher than that of normal S3, thus requiring more energy to resume due to
necessary initialization of the FPGA, Meyer shows a larger reduction in energy
consumption during sleep, due to the machine being able to completely power off.
In their test setup, this results in a break-even point in energy consumptionwith S3
at a suspend duration of approximately one hour, past which their implementation
provides substantial energy savings over S3.

Similar to our implementation, Suspend-to-PMem is implemented using core-
boot [45] for copying memory in firmware. We build upon Meyer’s idea of
transferring memory in coreboot and expand on it by using CXL as our storage
interface. Moreover, since Suspend-to-PMem is implemented entirely in firmware,
the entire systemmemory is copied to Optane, which may contain memory ranges
that are not used and thus copied in vain. We avoid this issue by incorporating
a component into the Linux kernel that identifies utilized memory ranges and
hands over this information to coreboot, as detailed in Section 3.2.1.
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Chapter 3

Design

Building upon the fundamentals discussed in the last chapter, we present the
design of Suspend-to-CXL (S2CXL), our proposal for a persistent system suspend.
Our suspend mechanism borrows characteristics from S3, namely the straight-
forward access of byte-addressable memory and fast resume times, as well as
from S4 in the form of persisting memory and powering down the system entirely
during sleep and having to copymemory back on resume. We construct our design
with components within the open-source firmware coreboot the Linux kernel.
The high-level approach of our proposal is illustrated in Figure 3.1. Other sleep
modes to persistent memory, such as hibernation, as described in Section 2.3.3,
do not require firmware support. Instead, the conventional boot procedure is
followed until the operating system registers that it is resuming from hibernation,
at which point the previously saved system context is restored. In order to avoid
the additional latency of completing an entire boot sequence, we opt to copy the
data of the kernel back to system memory in firmware on resume. Furthermore,
we use the ACPI wake vector as a means to jump back to the OS, similar to S3.
We also employ firmware to save kernel memory on suspend, as opposed to
copying memory directly from Linux, ensuring that no kernel data structures are
changed at a later stage in the suspend process. For the above described reasons,
we require components in Linux as well as in coreboot.

25
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Figure 3.1: High level approach of Suspend-to-CXL. Applications are restarted
after resume, initially accessing CXL memory until their data has asynchronously
been transferred back to system memory.

3.1 Requirements
Our implementation is designed to be able to compete with existing mechanisms
such as S3 and hibernate, which are characterized in further detail in Section 2.3.2
and Section 2.3.3, respectively. Toward this goal, we establish four key require-
ments, based on which we create and evaluate our implementation.

Resume latency

For users of a system, resume latency is the most noticeable metric, as it essentially
measures the time in which a user wants to use the system, but is barred from
doing so. As such, we focus on keeping resume latencies as close to Suspend-to-
Idle and S3 as possible.

Suspend latency

Although arguably less important than resume latency, suspend latency nonethe-
less poses a metric worth optimizing for. Especially in settings where sleep times
are small, a lower suspend latency can mean the difference between saving energy
or issuing a suspend request, simply to power on the machine again immediately,
thus wasting more energy than if the system had been left in an idle state.
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Reliability

The fastest suspend mechanism is unusable, if it is not reliable. In fact, an unreli-
able suspend is worse than no suspend at all. For example, if a user expects their
work to be present when they open their laptop lid in the morning, only to find
all their progress lost due to a faulty suspend, this is a worse user experience than
forcing the user to save their work, power off their computer and start it again
when it is needed. We measure reliability as the ability of a system to achieve the
target low power state and successfully recover to normal operation again.

Energy consumption

As the main objective of suspend is the system using less power than when re-
maining in idle, the energy savings that can be achieved with our implementation
are of key interest. Specifically, we attempt to minimize energy consumption
during both the suspend and resume processes by reducing the duration of these
phases and ensuring that the system enters a low-power state to maintain minimal
power draw while sleeping.

3.2 Suspend
Our suspend implementation is made up of a Linux component and a coreboot
component. While we chose Linux to be able to directly modify kernel code, there
is no reason why other operating systems should not also be able to suspend
in the proposed way as long as they use the same interface for communicating
necessary information with coreboot. In the following, both of these components
are described in further detail. We start by offering details on the design of our
Linux component, followed by a description of the functionality implemented in
coreboot required for Suspend-to-CXL.

3.2.1 Linux
The first stage of our implementation is executed in the Linux kernel when
suspend is requested. We require the following steps to be completed:

1. Move user space pages to CXL device

2. Identify physical pages used by the Linux kernel in DRAM

3. Identify physical pages used by the user space applications in CXL memory

4. Save metadata information on kernel memory usage for coreboot to process
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In the following, the aforementioned steps are described individually in greater
detail.

Moving user space

To move pages from Linux between host memory and CXL memory we capitalize
on the fact that the CXL device memory and host DRAM are located on two
separate NUMA nodes. As mentioned in Section 2.4.2, Linux provides a “page
migration” API, which is capable of migrating memory between NUMA nodes.
We employ this mechanism to move all user space processes to the CXL device
before handing over control to firmware on suspend. Choosing this existing
mechanism conveniently relieves us from having to manually track used memory
on the CXL device and update the kernel’s memory data structures. We explore
possible enhancements to performance of this procedure in Chapter 6.

Identifying physical host memory usage

Since our goal is to save and then restore only data required for the Linux kernel
to resume, we need to identify which pages in physical memory this data resides
in. To achieve this, we walk the Linux buddy allocator’s data structures, which
provide information on free page ranges of different sizes. We then simply “invert”
this information on free pages to receive the memory ranges that are in use. While
this approach provides us with all pages used by the Linux kernel, it is likely not
fine-grained enough to supply the minimal set of pages required for Linux to
resume, allowing for further optimizations, as examined in Chapter 6.

Identifying physical CXL memory usage

As we copy the Linux kernel’s memory to CXL memory from coreboot, it is
essential to explicitly inform coreboot of the memory ranges on the CXL device
that are already occupied by user processes to prevent overwriting any data.
Specifically, we lack direct control over the placement of user data on the NUMA
node corresponding to CXL memory, making it impossible to simply relocate
everything to a contiguous block. It is therefore necessary to track the entire CXL
memory space instead of a simple upper boundary. Luckily, because we use the
existing page migration mechanism of the kernel, the pages in CXL memory used
by user space processes are also allocated by the page allocator. As a result, we
can traverse the allocator’s data structures for the NUMA node corresponding to
CXL memory in the same manner as for host memory to find the used pages on
the CXL device.
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Saving metadata for coreboot

Lastly, the gathered information on used memory has to be saved for coreboot to
use. To convey this information, we employ two bit vectors as a memory map, one
for host and one for CXL memory. Semantically, a set bit at index i represents
the physical page at page frame number i being in use in the respective memory
space. To convey this information to coreboot, we reserve some memory at the
beginning of the CXL memory space as a metadata header tracking important
information for performing Suspend-to-CXL. The implementation details and
members of this header are further explained in Section 4.2. Placing metadata
in CXL memory yields the advantage of both coreboot and Linux being able to
easily read and write to the contained fields while simultaneously being persistent
across reboots to ensure the system is resumed correctly.

3.2.2 coreboot
Next, coreboot is responsible for persisting kernel memory and powering the
machine off. To do this, the following steps are performed:

1. Identify that the system is about to suspend and call Suspend-to-CXL logic

2. Copy marked kernel memory to CXL device memory

3. Save the ACPI wake vector

4. Mark the system as being suspended

5. Power off the system

Jumping to S2CXL logic

After Linux finishes its suspend procedure, it generates an SMI as described in
Section 2.3.2 to enter S3. We adapt the SMM trap handler in coreboot to call
into our suspend function. Building the coreboot suspend component into SMM
allows us to program in C and use the elevated privilege level of SMM to access
host DRAM as well as CXL memory. Unfortunately, the majority of coreboot’s
data structures generated during initialization, including the E820 tables and
proximity domains, become inaccessible in SMM. Hence, it is necessary to save
this information to the metadata header during the boot process, specifically
within the ramstage which is described in further detail in Section 4.4.
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Copying marked kernel memory to CXL memory

To copy kernel memory to CXL memory, we traverse the bit vector mapping all
physical pages of host DRAM provided by Linux as described in Section 3.2.1. This
allows us to identify contiguous ranges, which can be copied at once, sidestepping
the inefficient burden of copying memory page-by-page. Since only memory
belonging to the operating system is to be copied, we filter out memory ranges
belonging to firmware or marked as hardware-reserved in the E820 table. We
successively copy each range to CXL memory, resulting in a contiguous range of
CXL memory being occupied. As we already copied user space memory to CXL
from Linux using the page migration mechanism, we must be cautious not to
overwrite this data. For this reason, we skip over the pages marked as being used
in the CXL bit vector and split up memory ranges when needed to ensure that
the entire memory space supplied by the CXL device is usable for persisting data.

Saving the ACPI wake vector

As described in Section 2.3.2, ACPI tables contain an address called the “ACPI
wake vector.” This value is written into the table by the OS on suspend. When
the system is suspended to conventional S3, RAM remains powered, so that
the wake vector can be read on resume. However, as our implementation is
designed to power off the system during suspend, and we only save kernel and
user application data, but not the ACPI tables located in the firmware-reserved
regions of RAM, this information is lost. Therefore, we obtain the wake vector
from the ACPI tables in SMM before powering off the machine and save it to our
metadata header located at the beginning of CXL-memory.

Marking system as being suspended

When the system is powered on again, the firmware begins initializing the system.
At some point, coreboot must detect that the system was suspended, or else it will
simply perform a normal boot sequence. To keep the implementation simple, this
is done by adding the boolean suspended value to our header in CXL memory,
which is set to true right before the system powers off. Another possibility would
have been to create an EFI variable [65, Chapter 8.2], i.e., a UEFI-defined key-value
mapping, which can be accessed from firmware as well as from the operating
system. EFI variable storage does not require system power, as data is typically
saved to Non-volatile Memory (NVRAM) chips, e.g. flash, located directly on
the mainboard. Despite these advantages, using EFI variables requires additional
logic and can be less reliable, which is why we opted for the simpler approach of
writing the variable to the metadata header discussed in detail in Section 4.2.
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Powering off the system

As a last step to suspending the machine, the system is placed in ACPI S5 as
described in Section 2.3.2, waiting to be powered on again for the resume mecha-
nism to begin. Placing the system in S5 allows for minimal energy consumption
during sleep, thus contributing to the goals described in Section 3.1.

3.3 Resume
In the following section we describe the steps necessary for the system to resume
successfully from CXL memory. Similar to suspend, our resume algorithm is
also divided into a coreboot and a Linux component. While coreboot performs
similar tasks as on suspend, i.e., restoring kernel memory, the Linux component
refrains from copying any memory directly. Instead, it queues page migrations
for asynchronous execution. In a manner similar to the previous section, the
following sections details the roles played by coreboot and subsequently by Linux
during the process of resuming from Suspend-to-CXL.

3.3.1 coreboot
On suspend, our code is called from the SMI handler in case of an S3 request.
When the system is powered on again, initially no SMM is set up and no way
to enter it is available, necessitating direct modification of existing functions
to ensure our resume code is called correctly. Since the system was previously
fully powered off, coreboot must reinitialize the machine again by completing
the stages outlined in Section 2.2.1, including most of the ramstage. However,
before the ramstage completes, our code must be invoked to prevent coreboot
from loading a new instance of the payload, and consequently, a new instance
of the operating system. Unfortunately, we are unable to utilize the code branch
of conventional S3 as detailed in Section 2.3.2. This stems from the fact that S3
preserves the entire system memory, eliminating the need for coreboot to write
the ACPI and coreboot tables to memory during resume, as these tables persist
from the previous boot sequence. In contrast, our approach fully powers off
the system, and only saves the memory ranges usable by the operating system,
requiring the tables to be rewritten upon resume. Instead, we must ensure that
the function responsible for executing our resume algorithm and subsequently
jumping to the ACPI wake vector is invoked during the ramstage, prior to booting
the payload. To accomplish this, we branch to our resume code right before
coreboot would, under normal circumstances, load the payload. This shortcut
comes with the added benefit of eliminating the need to decompress the payload,
thereby conserving valuable resume time, as covered in Section 5.2. Calling
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into our Suspend-to-CXL code after coreboot has finished initializing the system
ensures that the machine is set up properly and able to jump to the operating
system. Analogous to suspend, our coreboot resume component must complete
these tasks:

1. Identify that the system was suspended

2. Copy back marked kernel memory to host DRAM

3. Cleanup to ensure that subsequent suspend calls succeed

4. Jump to the ACPI wake vector

Identifying suspend

We employ our saved metadata to identify whether the system was suspended
just before coreboot would normally load the payload at the end of ramstage. If
suspend is detected, we transition to our resume logic, where we handle resuming
the system, thus skipping loading and execution the payload entirely.

Copying marked kernel memory to host memory

Similarly to suspending, resuming involves traversing the reserved memory bit
vector again, this time using the page frame numbers as destination for the copy
operation. We fill these ranges sequentially with memory from the CXL device.
To ensure we copy the correct memory back we use the CXL bit vector once more,
skipping the memory ranges marked as “used,” as these contain user data we do
not want to copy back. Again, we ignore firmware-reserved memory regions.
Skipping these regions is possible and even necessary to ensure correct operation,
because the firmware-reserved parts of memory have freshly been set up by
coreboot, likely with different contents entirely. Copying the old contents back
to these regions would thus result in an inconsistent state and potentially even
crash the system.

Cleanup

We want to ensure that subsequent suspend-resume cycles succeed as well. For
this reason it is necessary to clean up the metadata header structure. First, the
suspended boolean is reset to false, ensuring that the next normal boot cor-
rectly loads the payload instead of erroneously executing the resume code and
jumping to the wake vector. Additionally, we zero the memory of both of the bit
vectors to avoid unnecessarily copying pages in case the system is to be put to
sleep again.
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Jumping to wake vector

As previously stated, we explicitly skip over regions marked as firmware-reserved.
Consequently, the wake vector contained in the ACPI table is lost when RAM
loses power upon entering S5 during suspend. To resume to the OS we instead
jump to the wake vector we saved in our header data structure in CXL memory.
Since Linux saves the wake vector to the ACPI on every suspend request, writing
it back to the table from coreboot is not necessary.

3.3.2 Linux
After copying the required data back to DRAM and jumping to the wake vector,
Linux resumes execution, enabling secondary CPUs and restarting user space. Our
implementation then requires some last steps to complete the suspend/resume
cycle:

• Perform priority analysis of processes

• Migrate user pages back to host DRAM in order of priority

• Run the above tasks asynchronously

We modify the kernel to call our resume code right before exiting the S3 sleep
code path. As page migrations occur asynchronously, all calls made in our resume
code are non-blocking. This behavior results in our resume function returning
almost instantly, ensuring that resuming the system completes quickly, which is
further analyzed in Section 5.2. At this point, we capitalize on the capability of
CXL to provide byte-addressable memory mapped to the physical address space
by allowing user processes to continue their execution. Instead of accessing their
data in system RAM, user applications then transparently use the memory on the
CXL device, as their pages were migrated to CXL memory on suspend. In the
following, we supply comprehensive details on the above-mentioned steps.

Priority analysis

For achieving a satisfactory user experience in general, processes the user interacts
with should feel responsive, especially directly after resume. As previous work by
Sun et al. [43] shows, running applications on CXL memory induces a significant
impact on performance. For example, the authors identify an approximately 2.2×
lower memory access latency and 7.7× lower maximum bandwidth when using
the same non-temporal store instructions we use in this thesis for CXL memory
compared to the DDR5 memory of their test system. We strive to ensure that
the processes for which the user could notice these performance impairments
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are migrated back to host memory first. Toward simplifying our approach, we
decide to complete migration of pages back to system memory on a per-process
granularity, as opposed to a per-page granularity. Our reasoning for this design
decision is that determining priorities per processes is both algorithmically easier
andmore time efficient. Further optimizations to this priority analysis are explored
in Chapter 6. Additionally, desktop computers run certain applications, such as
desktop environments that are more latency-critical than background processes,
for example. For instance, the user might not care about a memory-hungry
background process requiring a few more seconds to finish. Moreover, migrating
a process with significant memory usage back to host memory can be time-
consuming, adversely impacting the performance of latency-critical processes
still running on CXL memory. If this background task were to be relocated to
host DRAM before an interactive process, such as the aforementioned desktop
environment, the overall user experience would deteriorate. Therefore, we choose
to use a process’s interactivity as a criterion for prioritizing its restoration to
system memory. To achieve this, we leverage Linux’s extensive process-specific
tracking of scheduling data, specifically using the time a process last started
running on a CPU, known as the arrival time, as a measure of priority. We
associate a recent arrival time with high a priority. The rationale behind this is
that a process that frequently runs and quickly releases the CPU likely corresponds
to the type of interactive application we aim to prioritize, as opposed to a process
that runs less frequently but for longer durations.

Migrating user pages back to system memory

After retrieving a list of current processes in the system and subsequently sort-
ing them based on the priorities described earlier, we are ready to migrate
back user pages to host memory. To do this, we employ the same page mi-
gration API as on suspend, detailed in Section 3.2.1, this time migrating from
the CXL node to the node containing system memory. In theory, the kernel API
supports different migration modes defined in the enum migrate_mode [61,
include/linux/migrate_mode.h]. These modes include settings for both
synchronous and asynchronous migration, with a particularly noteworthy mode
for non-CPU copying, which could benefit from accelerators such as Intel’s
Data Streaming Accelerator [15] explored further in Chapter 6. However, the
high-level function utilized in this work exclusively employs synchronous migra-
tion [61, mm/mempolicy.c]. Therefore, an alternative mechanism is required to
achieve our objective of asynchronously migrating pages. In the next section we
present further details on how we implement the asynchronous migration of user
pages after resuming.
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Asynchronous execution

Toward keeping resume durations as short as possible, we avoid migrating pages
synchronously like we do on suspend. Instead, we tolerate reductions in applica-
tion performance in favor of reducing resume durations by first resuming tasks
and then migrating pages back to host DRAM asynchronously. To accomplish
this asynchronous migration, we employ the Linux kernels’ workqueue API [11].
The workqueue (wq) API provides an interface for submitting tasks to a queue,
which will then be executed asynchronously by a kernel-owned thread called
“worker.” The kernel maintains a pool of these workers, supporting concurrent
processing of tasks. The extensive API allows for the use of highly customized
queuing tailored to the current use case. For example, tasks can be submitted to
two distinct worker pools, one for normal jobs and one for high priority work.
Additionally, the API exposes various configuration options, such as cache affin-
ity, i.e., whether the job is only allowed to run on specific CPUs. We submit our
asynchronous restore function to the global workqueue as we do not have any
special requirements for our task, which could be satisfied by the more specialized
functions the API provides.
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Chapter 4

Implementation

In the following chapter, we present our implementation of Suspend-to-CXL,
following the theoretical design we described in the previous chapter. When
building our sleep implementation on commodity hardware, the selection of
mainboards was severely limited due to our extensive requirements. Specifically,
our implementation requires a board that supports CXL and is compatible with
coreboot as its firmware. Although coreboot supports CXL and initialization
thereof is the responsibility of the FSP, as characterized in Section 2.1, none of the
commercially available mainboards currently maintained by upstream coreboot
are capable of using CXL. For this reason, we utilize a coreboot port to the ASRock
SPC741D8-2L2T/BCM [1] mainboard, developed by Meyer and Khalil [25]. In the
following, we simply refer to the SPC741D8-2L2T/BCM as the “ASRock board.”
Most importantly, the board’s PCIe slots support the CXL protocols outlined in
Section 2.4. This allows the integration of the persistent storage modules needed
for Suspend-to-CXL, making the ASRock board well-suited to our use case. In
the following, we discuss necessary modifications, crucial additions, and other
implementation details of implementing Suspend-to-CXL in coreboot and Linux.

4.1 Using CXL memory
Although CXL memory is set up by the FSP (Section 2.2) and can from then on
be addressed identically to normal system memory, making it very comfortable
to access from both firmware and the operating system, this behavior is not
entirely unproblematic for our use-case. Specifically, coreboot marks the CXL
memory region as normal system RAM in the E820 tables described in Section 2.1.
From Linux’s point of view, the region contains perfectly usable memory, simply
located on a different NUMA node. For our implementation, we wish to retain

37
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as much of this CXL memory as possible for our suspend purposes even when
the system experiences high memory loads, which is why we attempt to prevent
Linux from using this region for normal allocations. In theory, this problem can
be approached from two angles: From firmware and from within Linux.

A firmware-based solution would include marking the entire CXL memory
range as firmware-reserved in the E820 table, prohibiting Linux from using it
entirely. Despite the simplicity of this implementation, it is not suitable for our
needs. Most importantly, Linux would not create the data structures required for
using CXL memory as a target for the page migration mechanism mentioned in
Section 2.4.2. Having to manually remap pages would drastically increase the
complexity of our Linux components, especially for pages also shared with the
kernel, which is why we avoid this approach.

Instead, we opt for an OS-centric path to achieve our goal. Luckily, only minor
changes in a handful of files, which are described in Section 4.3.1, are needed in
order to prevent Linux from allocating user memory from the CXL device. On the
one hand, it is necessary to ensure that memblock, i.e., the allocator described in
Section 2.5 used during early boot phases, does not allocate CXL memory while
setting up the operating system. On the other hand, we must make changes to
the system default memory policy. Section 2.4.2 highlights the allocation rules
enacted by the system default policy. Essentially, allocations are attempted from
the memory belonging to the node the process is running on. In this situation,
no memory is ever allocated from the CXL device, since the CXL node possesses
no CPUs. The problem only arises if physical RAM is exhausted, as allocating
memory from other nodes is permitted in these cases. To deal with this issue, the
hard-coded system default policy is adjusted to use the MPOL_BIND mode, which
only allows for allocations to be satisfied from the specified nodes.

4.2 Cross-component Communication
Chapter 3 explains how we leverage Linux as well as coreboot for our implemen-
tation. This split software stack necessitates a method for passing data between
these distinct components. Fortunately, since both Linux and coreboot are primar-
ily written in the C programming language, the same data structure definitions can
be shared between the two. To facilitate this, we place a structure at the beginning
of CXL memory, containing the fields necessary for performing Suspend-to-CXL.
This structure is mapped to virtual memory in both coreboot and Linux, enabling
direct access to its members due to CXL memory’s byte-addressable nature. Fur-
thermore, this structure is expected to persist across resets, as Suspend-to-CXL is
designed to utilize persistent CXL memory for storage. An excerpt of the fields
contained in our metadata header struct is given in Table 4.1.
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Name Type Description

suspended boolean True, if the system is currently sus-
pended to CXL, false otherwise.

wakeup_vector pointer Pointer to the ACPI wake vector,
must be saved before power off

bootmem_ram array of E820 entries Entries of the E820 table represent-
ing system memory usable by the
operating system.

ram_pfns bit vector Bit vector representing a memory
map of system memory. For each
page frame number, a set bit indi-
cates that the page is in use.

cxl_pfns bit vector Bit vector representing a memory
map of CXL memory. For each
page frame number, a set bit indi-
cates that the page is in use.

Table 4.1: Example definition of the metadata header we employ to communicate
and transfer data between coreboot and Linux. We place this header at the
beginning of CXL memory in order to ensure it is available after the system is
powered off during sleep. The exact sizes of the bit vectors depend on the size of
installed system and CXL memory.

In particular, the struct contains bit vectors mapping out system as well as CXL
memory and the parts of system memory usable by the OS in form of E820 table
entries. In the following, we describe how these fields are used to complete the
tasks necessary in Linux and in coreboot to successfully perform Suspend-to-CXL.

4.3 Linux Kernel
We build our mechanism for the latest stable Linux kernel version at the time of
writing this thesis, version 6.9.6 [61]. In order to maximize compatibility with dif-
ferent versions, we try to keep our modifications to the kernel source code as slim
as possible. The implementation of our Linux components consists of changes to
two files. First, we create a header file, include/linux/s2cxl.h, containing
constants and structure definitions such as our header struct. Second, the sus-
pend and resume algorithms are implemented in kernel/power/suspend.c.
Additionally, minor changes to other files are necessary, for example to prevent



40 CHAPTER 4. IMPLEMENTATION

Linux from allocating from the CXL NUMA node when memory is scarce. In the
following, we present implementation details and describe necessary changes to
the Linux kernel source code for implementing Suspend-to-CXL on our ASRock
board.

4.3.1 Memory Management
By default, Linux uses all available memory when confronted with memory
pressure. Since we do not want the OS to treat CXL memory as normal memory
that can be utilized for general purpose allocations and instead want to preserve
this memory for suspending the system, as outlined in Chapter 3, we must
prevent allocations explicitly. Toward hindering Linux from claiming memory for
allocations on the CXL device, individual changes are required for both boot-time
allocations and allocations when the system running.

As described in Section 2.5, the Linux kernel leverages the memblock allocator
[53] in its early boot stages. Among other tasks, memblock must decide whether
to begin allocating from the bottom, i.e., at low physical addresses or from the
top of physical memory, returning high physical addresses. Toward the goal of
maximizing available storage space on the CXL device for suspend, this decision
is very important, as some structures allocated by memblock, such as page tables,
are kept in memory for the entire lifetime of the operating system. We ensure
that memblock_set_bottom_up [61, arch/x86/mm/init.c] is called with its
parameter set to true to prevent memblock from allocating CXL memory, which
is located at the top of the physical address space. Furthermore, we hard code the
NUMA node ID in the memblock allocation function [61, mm/memblock.c] to
the default node containing system DRAM, ensuring NUMA-aware allocations
are only satisfied from DRAM. These measures ensure that memblock refrains
from placing vital kernel data structures in CXL memory.

Additionally, we must prevent the page allocator from handing out pages
from CXL memory. Fortunately, this only requires changing the static system
default policy to use the MPOL_BIND mode. To implement this, we add code
in numa_policy_init [61, mm/mempolicy.c] to configure the default policy
to use MPOL_BIND and only allocate from the node containing system memory,
which is node 0 in our case. Furthermore, we disable the boot-time interleaving
of nodes as our system possesses sufficient memory on a single node to boot
successfully.

Finally, an additional modification to Linux’s memory management is re-
quired for the implementation of Suspend-to-CXL. By default, automatic NUMA
balancing [35] ensures that application memory is kept near the CPU where
the corresponding process is executing. However, since we relocate memory
to the NUMA node associated with CXL memory, which lacks any CPUs, this
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memory is immediately transferred back to system memory upon resume. This
behavior interferes with our ability to collect accurate timestamps and other
evaluation data and thus must be prevented. To address this, we disable automatic
NUMA balancing by appending the numa_balancing=disable parameter to
the Linux kernel command line [55]. The above changes ensure that Linux’s
memory management system does not interfere with the Suspend-to-CXL.

4.3.2 Suspend
To integrate our suspend logic into Linux’s suspend procedure, it is necessary
to call our hooks on both suspend and resume. To guarantee execution of our
code, we add a call to s2cxl_suspend in the suspend_enter function [61,
kernel/power/suspend.c]. Our suspend component begins by mapping the
CXL header, which is located directly at the beginning of CXL memory space, to
virtual memory to be able to access its members directly. We request a new map-
ping of the physical pages to a virtually contiguous range via vmap as described in
Section 2.5. To reduce the amount of memory copied in coreboot, we flush Linux
caching data structures. Specifically, we drop the page cache to avoid having to
needlessly copy pages that can be retrieved from persistent block storage anyway.
Additionally, we free the cached blocks of the slab allocator. Before identifying
used memory, we make use of the Linux kernel’s page migration mechanism. We
call do_migrate_pages [61, include/linux/mempolicy.h] for each user
process with arguments ensuring that all the memory used by the process is
migrated to the NUMA node containing CXL memory. After moving user mem-
ory to persistent storage, we begin identifying memory used by the kernel. For
convenience, we begin by setting all bits of both bit vectors to 1, as we can then
simply set the bits we receive from walking the free lists of the buddy allocator
back to 0, resulting in the semantics described in Section 3.2.1. For each free
page, we unset the corresponding bit in either the CXL bit vector or the system
memory bit vector, depending on where the page is located in physical memory.
After finishing walking the buddy allocator, we are left with two bit vectors
mapping the used regions of both system and CXL memory. We complete the
Linux component of suspend by copying both bit vectors to the header at the
beginning of CXL memory.

4.3.3 Asynchronous Resume
After coreboot has copied kernel data back to system memory and jumped back
to Linux, the Linux resume code executes almost identical to when resuming
from ACPI S3. Necessary setup such as bringing other CPUs back online and
restarting user applications is completed before unfreezing user space processes.
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We add a call to our resume function, s2cxl_resume, at the very end of Linux’s
S3 resume procedure in enter_state [61, kernel/power/suspend.c], right
before user space is restarted. This function then returns quickly, only performing
a single call to schedule_work [61, include/linux/workqueue.h], schedul-
ing the function s2cxl_async_migrate for execution by the kernel workqueue
framework as covered in Section 3.3.2. The queued function is then executed
asynchronously to the rest of the Linux resume procedure.

The asynchronous migration function begins by performing a priority analysis
on all user processes to determine the order in which processes are migrated back
to system memory. This is done by sorting processes by the last_arrival field
of the sched_info struct [61, include/linux/sched.h] of each thread. For
the task of sorting, we employ Linux’s sort function [61, linux/sort.h], which
internally utilizes heapsort. In comparison to quicksort, heapsort has an average-
case and worst-case time complexity of O(n log n), allowing for more consistent
sorting durations by avoiding quicksort’s O(n2) worst-case time complexity.
Afterward, the sorted list of processes is traversed, migrating the pages of each
task back to host memory. Upon finishing this step, the asynchronous resume
function exits and thus fully concludes the suspend/resume cycle.

4.4 coreboot
As mentioned in Chapter 3, we make use of coreboot’s weakly linked symbols to
execute our functionality. Unfortunately, this approach is not sufficient for fully
implementing our mechanism, which is why it is necessary to directly modify
the source code in a few locations described in the following.

mainboard_smi_sleep

As described in Section 3.2.2, we use the SMI generated by the operating system
when suspending to execute our custom code. The SMI handler in coreboot
identifies that the system is to be suspended and determines the requested sleep
state. Before performing the ACPI state transition, it calls the weakly linked
function mainboard_smi_sleep [51, src/include/cpu/x86/smm.h]. We
override this function to test whether calling our suspend code is necessary.
Specifically, we jump to our suspend entry point only when the requested sleep
state corresponds to the constant representing S3. This ensures that coreboot
does not execute our suspend logic during other transitions, such as system
shutdown. Example code we employ for performing this procedure can be found
in Listing 4.1.
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Since S3 is fundamentally not supported on our platform, we do not require
additional logic to maintain the capability of executing regular S3 and simply
perform S2CXL on every S3 request. Nonetheless, other boards still support-
ing S3 might want to retain this option by including additional conditions in
mainboard_smi_sleep before jumping to the Suspend-to-CXL entry point. En-
abling conventional S3 only requires changes in the corresponding mainboard’s
directory, no alterations to the existing Suspend-to-CXL code are necessary.

Listing 4.1: Minimal implementation for intercepting the default S3 code path
and calling Suspend-to-CXL logic.
1 void mainboard_smi_sleep(u8 slp_typ)
2 {
3 if (slp_typ == ACPI_S3) {
4 s2cxl_sleep();
5 }
6 }

bs_payload_load

According to Section 3.3.2, we call our custom resume code at the end of core-
boot’s ramstage, immediately before the payload is loaded. Specifically, we mod-
ify bs_payload_load [51, src/lib/hardwaremain.c]. Here, we query the
header to find out whether the system is suspended and call our resume func-
tion, skipping the rest of the ramstage, which mainly consists of loading and
decompressing the payload. Bypassing payload decompression allows us to save
considerable time on resume, which is explored further in Section 5.2. In case the
machine was not suspended, i.e., is currently completing a normal boot sequence,
we handle necessary tasks for subsequent suspend calls to complete successfully.
In particular, we initialize the metadata header, as outlined in Section 4.2, which
includes saving the E820 table. This table is essential for managing memory
during both the suspend and resume processes as described in Section 3.2.2 and
Section 3.3.1. Persisting the E820 table in our header is necessary, since coreboot
does not permit reading it in SMM.

4.4.1 Memory Management
Although firmware can, in theory, simply write to any valid memory location
it pleases, we want to avoid overwriting any operating system or application
data, as our code runs after the operating system has booted. For this reason,
we create entries in the system memory map and mark these additional regions
as firmware-reserved by making use of coreboot’s weakly linked symbols once
more, preventing Linux from using our reserved ranges.
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bootmem_platform_add_ranges

When setting up the machine, this hook [51, src/include/bootmem.h] is
called to allow for platform components to reservememory regions for themselves.
These reserved ranges are then marked as firmware-reserved in the E820 table,
signaling the operating system to refrain from using them. We implement this
hook and reserve two memory ranges.

First, we reserve the memory occupied by our metadata header, which is
characterized in Section 4.2. If memory is marked as normal RAM in the memory
map, the operating system may do as it pleases with this region, for example
allocate from it on requests from applications. To avoid our critical data structures
being overwritten, we prevent Linux from using the region altogether. As touched
on in Section 4.3.1, we maintain the ability to explicitly map the header to virtual
memory and access it from Linux, nonetheless.

Second, we require some space for the dynamic allocation of data structures
required for our implementation. As described in Section 3.2.2, we copy memory
to the CXL device while skipping pages marked as being used in the CXL bit
vector. Our resume algorithm relies on the assumption that both bit vectors
remain unchanged during sleep, offering the same information on traversal as
during suspend. This allows us to copy the kernel data back to its original location
in host memory, where it was situated prior to suspending. To avoid having to
walk the CXL bit vector for every copy operation, we walk it once at the beginning
of our suspend and resume procedures, creating a list of structures representing a
free, contiguous range of CXLmemory. The amount of structures created this way
is unknown at compile time and can grow very large depending on the degree of
fragmentation. For this reason, we create a simple arena allocator that is tasked
with answering allocation requests. The allocator exposes a straight-forward
malloc-style interface for allocating new memory from the reserved area and
only supports freeing the entire space at once. Despite its simplicity, this interface
is sufficient for our use case, since we only request new memory when traversing
the CXL bit vector once during suspend and once during resume.

4.4.2 Copying Memory
Owing to CXL memory being addressable in the same way as host memory, we do
not require any setup or complicated logic for copying memory between system
DRAM and CXL memory.

coreboot offers a traditional memcpy [51, src/include/string.h] inter-
face for copying n bytes from a source to a destination address, whichwould satisfy
our needs. However, memcpy in coreboot is rarely tasked with moving gibibytes
of data at a time and thus not optimized for this use case. For this reason, we
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create our own memcpy implementation, s2cxl_memcpy. To improve transfer
speeds, we capitalize on the “direct stores” instruction set extension [20, Vol-
ume 2B, Chapter 4] available on newer Intel processors such as the Sapphire
Rapids CPU running in our test system. To construct our custom memcpy imple-
mentation, we create a new Kconfig variable, CPU_HAS_MOVDIR64B, and select
the option for our ASRock board. If the variable is set, s2cxl_memcpy leverages
the MOVDIR64B instruction and falls back to regular memcpy on systems that
do not support the extension. Whether a processor supports the extension is
also indicated by the presence of the CPUID feature flag for MOVDIR64B [20, Vol-
ume 2B, Chapter 4] at runtime. Since we require memcpy to be as performant as
possible, we avoid checking the feature flag at runtime and instead rely on the
config option being set at compile time.

Basing our memcpy version on the MOVDIR64B instruction grants two key
benefits over other memory operations. First, the number of bytes moved with
MOVDIR64B exceeds the logical memory data bus width, which is 8 bytes on
x86_64. Instead, it “moves 64-bytes as direct-store with 64-byte write atom-
icity from source memory address to destination memory address” [20, Vol-
ume 2B, Chapter 4]. Moving 64 bytes at once compared to only 8 bytes for
coreboot’s memory copy operation results in fewer instructions that have to
be executed. Second, when copying memory with MOVDIR64B, the processor
completely bypasses the entire cache hierarchy, i.e., refrains from both writing
data to a cache line and fetching the corresponding data from memory into cache.
For conventional memcpy operations, moving the copied data into CPU cache
is usually beneficial, as the copied data might be accessed afterward. However,
our use case requires moving data in bulk without ever accessing it afterward,
even resetting the entire CPU before reading it the next time. For this reason,
MOVDIR64 is perfectly fit for our situation, resulting in our memcpy implementa-
tion averting the latency penalty incurred by storing data in cache on every copy
request.

4.4.3 System Reset
Unfortunately we did not have access to real persistent CXL storage devices for
this thesis. As mentioned in Section 2.4.1, we avert this roadblock by using a CXL-
capable FPGA as our storage backend. While the exposed functions of the FPGA
are identical to that of real hardware, its performance characteristics and attributes
are quite different. Most importantly, the FPGA is equipped with DDR4 memory
to expose as CXL memory, which is not capable of persistently storing data and
thus would essentially defeat the entire purpose of our proposal. Therefore, to
retain the capability of implementing and evaluating our mechanism, we must
abstain from fully powering off the system. Instead, we perform a “warm” reset,
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meaning the CPU is reset without ever power-cycling the board. Specifically, this
enables the CXL FPGA to remain powered, thereby preserving the contents of its
DRAM and preventing data loss. This method of resetting enables the CXL device
to behave as though it can persistently retain data across reboots. Issuing a warm
reset in place of properly powering off the system entails some side effects, which
is discussed in further detail in Chapter 5. It is essential to highlight that this
limitation arises from the currently available hardware and our test system, rather
than from any inherent issues with our implementation. With an actual persistent
CXL device, such as the ones mentioned in Section 2.4.1, the system is placed in
ACPI S5 instead of being reset, thus enabling the use of our implementation in
real-world scenarios.

4.5 Development and Debugging
The following section examines the challenges and opportunities associated with
workingwith firmware. We give details on the steps required to configure, develop,
and deploy coreboot to physical hardware. Furthermore, we discuss firmware-
related problems linked to 64-bit execution of coreboot we encountered and how
we managed to solve them. Lastly, we review the debugging capabilities that
firmware provides.

4.6 Deploying coreboot
Modifying firmware behavior requires recompiling the coreboot project and
writing the output binary to the mainboard’s firmware flash chip. Depending on
the hardware, this can require different hardware and software tools. Fortunately,
the ASRock board we utilize features a socketed flash chip for its firmware image,
offering two significant advantages. First, the flash chip can be easily removed
from its socket, allowing the use of an external flash programmer to write the
image before reinserting the chip. For this task, we used a Raspberry Pi Pico [33]
running the pico-serprog [31] firmware together with the flashrom [8] command
line utility, which supports providing a reference file containing the current flash
contents. Supplying flashrom with the current flash contents eliminates the need
for reading the entire data before flashing in order to determine regions that have
to be replaced, which results in drastically shorter write durations. Second, we
do not require the machine to be able to boot back to the OS to flash a different
firmware image. This way, if booting fails we can simply remove the firmware
chip, flash the patched binary and boot successfully after inserting the chip back
into its socket.
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As described in Section 2.2.2, coreboot employs a wide variety of Kconfig files
containing variables signaling hardware capabilities and enabling or disabling
functionality based on these capabilities at compile time. From these individ-
ual Kconfig files a single .config file in the root of the directory structure is
generated, which contains the configuration used when compiling the project.
Modifying these variables can be performed by directly editing the respective
Kconfig file, which permits committing these changes to a git repository, allowing
persisting of the configuration for others to utilize. Additionally, the Kconfig
system provides a configuration terminal user interface, enabling navigating
settings by categories and even supplying a search function, which proved very
useful for finding the defining Kconfig file. Upon quitting, values can then be
saved directly to the .config file. While variables can be changed quickly via
the menu, these changes are not reflected in version control and overwritten
when changing target mainboards for example. For this reason, we found using
the menu to only be practical for quickly changing single variables and preferred
changing the Kconfig files directly. Typically, most of the configuration options,
such as supported CPUs, valid architecture, and hardware capabilities are set
in the Kconfig file of the target mainboard and then transferred to the global
.config by building the config of the target mainboard via make defconfig.

4.6.1 64-bit coreboot
Traditionally, coreboot is built for 32-bit execution, which is sufficient for most
situations. However, as touched on in Section 2.2, we require 64-bit execution
to be able to address the memory of our CXL device, which is placed well above
the 4GiB limit for 32-bit addressing. Although the coreboot port of Meyer and
Khalil we utilize supports 64-bit execution of all stages, some minor changes to
configuration, as well as to code, were necessary.

For example, coreboot uses a simple identity page mapping scheme [50],
essentially creating a 1:1 mapping from virtual address to physical address. By
default, coreboot builds this identitymapped page table only for the lower 4GiB of
memory, even if 64-bit execution is activated and thus the CPU could address more
than 4GiB of memory. To circumvent this limitation, coreboot instead supports
the use of 1GiB pages, allowing for the identity mapping of up to 512GiB of
physical memory. We activate this option via the USE_1G_PAGES_TLB Kconfig
variable [51, src/cpu/x86/Kconfig].

While the above changes enable the construction of 1GiB pages for the regular
coreboot page table, this does not apply to SMM. As mentioned in Section 2.1.2,
SMM lives in its own address space to prevent exploit capabilities. As a quick
and dirty fix to allow coreboot to address memory over 4GiB in SMM as well,
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we modify the SMM entry code to simply load the page table used by coreboot’s
other stages instead of the SMM page table. While this is sufficient for our
implementation, it is not a viable long-term fix for the security reasons mentioned
in Section 2.1.2.

4.6.2 Debugging
During development of firmware and low-level operating system functionality,
debugging capabilities are severely limited compared to traditional user space
applications. Debugging in coreboot is primarily possible through the use of the
printk function [51, src/include/console/console.h]. These log mes-
sages can then be placed in a buffer in CBMEM as described in Section 2.2.3.
While this does not demand any additional hardware capabilities, retrieving logs
requires the operating system to boot successfully. Fortunately, our ASRock
board is equipped with a serial port, which supports logging from both coreboot
and Linux. For coreboot, this requires setting the CONSOLE_SERIAL Kconfig
variable to true, configuring the baudrate, and specifying the correct I/O port
address. When configured correctly, all output generated via printk is outputted
over the serial port and can be followed in real time on a different system via a
serial communication program such as minicom [66].

An additional advantage of debugging via serial is the ability to output indi-
vidual bytes directly and without buffering from assembly code, as illustrated in
Listing 4.2. This capability was particularly useful when debugging the transition
from coreboot to Linux during the resume process, where the low-level resume
code failed before the Linux console could be properly initialized.
1 mov $0x3f8, %dx
2 mov $’a’, %al
3 out %al, (%dx)

Listing 4.2: x86 assembly code to output the single character “a” to the serial port
located at I/O port 0x3f8.

Outputting all messages logged to the kernel ring buffer to the serial console can
be configured on Linux via the console kernel command line parameter [55],
which enabled us to debug Linux’s early initialization code before VGA output
becomes available. The ability to read log messages produced by low-level code in
real time proved invaluable during the development of our sleep implementation.
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Evaluation

In the following, we analyze the performance of our implementation of Suspend-
to-CXL and compare the results to other available sleep modes. While a compar-
ison of Suspend-to-CXL with more widely used sleep modes, such as Suspend-
to-Idle and S3, would have been desirable, neither of these modes functioned
correctly at the time of writing. Although Suspend-to-Idle could be successfully
initiated and exited, power consumption remained unchanged compared to the
system’s idle state. In contrast, while the system successfully entered S3 sleep
and achieved energy savings, it was unable to resume operation due to the lack
of support from the FSP. For this reason, Suspend-to-CXL is matched against
Linux’s implementation of S4, hibernate, further detailed in Section 2.3.3. We
perform our evaluation according to the requirements defined in Section 3.1:
resume latency, suspend latency, reliability, and energy consumption. Before
presenting our results for each requirement, we give a detailed description of our
test setup and measurement methods.

5.1 Methods
As mentioned in Chapter 4, we implement and evaluate Suspend-to-CXL on
the ASRock SPC741D8-2L2T/BCM server mainboard. We pair this board with
a 4th-Gen Intel Xeon Silver 4410Y CPU [17] (12 cores, 24 threads), which is
part of the Eagle Stream server platform. The SPC741D8-2L2T/BCM supports
CXL 1.1 at PCIe 5.0 x16 speeds [1], which, although superseded by the CXL 3.0
specification, is sufficient for our implementation. The system contains a single
module of Kingston 16GiB DDR5-4800 ECC memory [21]. Power is provided by
a Seasonic PRIME TX 650W power supply [38]. The PRIME TX is 80 PLUS [3]
certified, a widely recognized certification program for power supplies, and holds
the highest certification level, Titanium. In the 80 PLUS certification scheme for
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230W power supplies sold in the EU, Titanium is the highest available rating
and attests efficiencies of 90%, 94%, 96%, and 91% at loads of 10%, 20%, 50%,
and 100%, respectively. Due to our Xeon CPU having no onboard GPU, we use a
dedicated AMD Radeon RX 550 2GiB GPU from PowerColor [63], mainly due
to its low power consumption and compatibility with the open source amdgpu
Linux kernel driver [54]. Our test machine is equipped with a single Samsung
980 PRO 1TB PCIe 4.0 NVMe SSD [36], which contains both our root partition
and our swap space. The system runs the Linux distribution Fedora 40 on kernel
version 6.9.6, containing the modifications described in Section 4.3. We choose
to perform our benchmarks while running a desktop environment, GNOME
Shell [32], as we want to evaluate Suspend-to-CXL from a consumer perspective.
The port of coreboot to the ASRock board is forked from the mainline coreboot
project at commit 2de0e87. We build upon this commit for our implementation of
Suspend-to-CXL, as detailed in Section 4.4, as well. For conducting our hibernation
experiments, we leave configuration options at their default settings, specifically
hibernation image size, which is set to about 2/5 of available system RAM [58],
which equates to roughly 6GiB. Also, we configure hibernation for OS-managed
mode, as opposed to S4BIOS mode, for the reasons discussed in Section 2.3.3.

To conduct our measurements, we operate two external devices. The first
device is a GPM-8213 power meter from GWINSTEK [10] to measure power draw
and analyze energy consumption of our implementation. We place the power
meter between our system’s power supply and the power outlet to capture the
active power draw inWatts of our machine. The second external device we employ
is a PiKVM [6], a simple KVM device based on a Raspberry Pi mini-computer [34].
Although our server board features an ASPEED AST2600 Baseboard Management
Controller [1], which supports basic KVM functionality such as video capture,
USB input, and power button control, the provided shell lacks the automated
scripting capabilities we require for our evaluation. For this reason, we use
the aforementioned PiKVM, which runs a modified version of Arch Linux, thus
allowing convenient script execution. The PiKVM provides access to its API via
an HTTP interface, enabling shutting down, powering on, and monitoring VGA
output from a script.

In our analysis, we opted to use themedian and theMedian Absolute Deviation
(MAD) instead of themore commonmean and standard deviation due to the nature
of our data distribution. The mean and standard deviation are sensitive to outliers
and skewed data, which can distort results, especially in cases of measurements
not following normal distributions. In contrast, the median provides a more
robust metric, as it represents the midpoint of the data, unaffected by extreme
values. Similarly, the MAD offers a more reliable measure of dispersion for data
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with outliers or skewness, as it calculates variability based on the median rather
than the mean. This choice ensures that our analysis remains representative of
typical system behavior, minimizing the influence of anomalous data points and
providing a clearer picture of performance characteristics.

5.1.1 Hibernation
When attempting hibernation on Linux with less than half of system memory
available, such as in our case with a 12GiBmemory load, Linux is unable to create
the hibernation image due to insufficient space in memory for copying pages for
compression. To address this issue, we install a second, identical 16GiB DIMM,
increasing the system’s total RAM to 32GiB during our hibernation benchmarks.
Since this modification only affects the initial page copying before compression,
we expect its impact on the benchmark results, such as a small increase in power
draw due to the additional DIMM, to be negligible. For all configuration op-
tions discussed below, we aim to replicate the original system configuration with
16GiB of memory, as outlined in Section 5.1. As described in Section 2.3.3, one
such configuration involves setting the image_size parameter, which defines
the maximum memory footprint of the hibernation image. Preserving the base
level of 2/5 of system RAM, i.e., roughly 6GiB on our original test system, leads
to unforeseen effects. Specifically, pages we allocate to fill memory to the target
threshold are swapped out before hibernation, as they would not fit inside the
image for high memory utilization. The process of swapping out user pages can
be prevented by setting sysctl.vm.swappiness=0 in the Linux command line
parameters [55]. In order to receive a full picture of hibernate’s capabilities, we
conduct two hibernation benchmarks: one with the default setting of 2/5 of mem-
ory for image_size, allowing for processes to be swapped out, and one with
image_size set to the entire system RAM capacity and prohibited swapping
of processes via sysctl.vm.swappiness=0. We refer to these benchmarks as
“hibernate-swap” and “hibernate-noswap”, respectively, in the following. While
forcing Linux to store the entire system memory in the hibernation image aligns
more closely with the traditional concept of hibernation, allowing the system to
swap out memory-intensive processes resembles our asynchronous resume strat-
egy employed in Suspend-to-CXL.We show that allowing swap before hibernation
results in lower resume latencies in Section 5.2. However, unlike our approach,
swapping out processes before suspending leads to a significant number of page
faults upon system resume, as user processes attempt to access their memory
pages. These page faults, in turn, introduce substantial performance penalties, as
the system must transfer the data back into memory. Although Suspend-to-CXL
also moves pages to persistent storage, it avoids these page fault-related issues by
allowing virtual memory mappings directly to CXL memory. Additionally, Linux
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allows configuring the compression algorithm for the hibernation image between
LZO, LZ4, and no compression at all [55]. We choose to keep the default setting
of LZO for our benchmarks, as this likely represents the situation most end users
experience.

5.1.2 Benchmarking
We conduct benchmarks at system memory usages of 4GiB, 8GiB, and 12GiB.
For each benchmark, we complete 100 successful suspend-resume cycles for both
Suspend-to-CXL and hibernate. To fill system memory to the desired value, we
fetch the current memory utilization by reading the MemAvailable line from
/proc/meminfo via ssh and allocate accordingly by executing a basic C program
containing calls to malloc. Measuring a single suspend-resume cycle consists of
the following steps:

1. Ensure the machine is powered on, outputting video, and responding to
SSH requests.

2. Fetch memory information and allocate to target usage.

3. Request target ACPI sleep state via SSH.

4. Wait for the system to stop outputting a video signal.

5. Wait for the system to indicate it is off via monitoring the system LEDs
from the PiKVM’s HTTP interface.

6. Power the machine back on immediately via the PiKVM’s HTTP interface.
(not necessary for Suspend-to-CXL)

7. Wait for the system to resume outputting a video signal.

8. Wait for asynchronous migrations to complete.

9. Collect power measurements and timing information.

To identify unsuccessful runs, time limits are introduced at each step. Most
notably, we employ these timeouts when waiting for a specific state to be reached,
for example when expecting the system to respond to pings over the network
or waiting for video output to the PiKVM to stop or resume. As described in
Section 2.3.3, hibernate initially loads a fresh instance of the Linux kernel, and
performs sanity checks before overwriting itself with the hibernated data. In case
these sanity checks fail, the fresh instance is simply kept, resulting in a functional,
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although not resumed operating system. As this behavior does not result in any
externally noticeable failures, we additionally search the kernel log for messages
indicating successful hibernation resume when benchmarking hibernate and fail
if none are present.

5.1.3 Measuring Power Consumption
We collect power measurements from the GPM-8213 throughout the entire dura-
tion of the benchmark, specifically while suspending and resuming the system,
and during the brief period the machine is sleeping. We use the power meter to
monitor active power, measuring approximately three values per second. The
GPM-8213 supports remote control via Ethernet, which we employ to gather data
on power usage programmatically [9].

5.1.4 Measuring Time
Benchmarking sleep modes involves significantly different challenges compared
to evaluating conventional user applications. Since the timings we need to capture
originate from various components, including firmware, the operating system,
and external events such as power button presses, our evaluation requires the use
of multiple clocks to accurately measure these interactions. We count on three
sources for measuring timings during our benchmarks, Linux on the PiKVM,
coreboot on the test system, and Linux on the test system. From our script
running on the PiKVM, we generate a high-resolution timestamp synchronized to
Universal Time via the Network Time Protocol for every action we issue via the
PiKVM’s HTTP interface, such as waiting for video output or pressing the power
button. For benchmarking the initialization code in coreboot, we make use of
coreboot’s capabilities to generate timestamps and save them to CBMEM. When
timestamping is enabled, coreboot generates timestamps on entry and exit of
every stage, as described in Section 2.2.1. To enable the creation of timestamps for
our sleep implementation as well, we create the timestamp IDs TS_S2CXL_START
and TS_S2CXL_END. On resume, we save the timestamps to CBMEM with a call
to timestamp_add_now with the corresponding IDs as parameters at the start
and end of our resume implementation, respectively. Although using the same
mechanism for suspend would be ideal, the timestamps would be lost when the
system is reset, as the CBMEM buffer is located in systemmemory. For this reason,
we capture timestamps during suspend by reading the processor’s Time Stamp
Counter (TSC) register [20, Volume 3B, Section 18.7], and, instead of saving it to
CBMEM, we save the value to our header in CXL memory, ensuring the timing
value is not lost. Saving these timestamps involves writing only two values to
CXL memory, a process that requires negligible time and does not impact our
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benchmark results. Then, on resume, we simply log the measured suspend timing
values via printk, and collect them by reading the logs saved in CBMEM from
Linux when the system has resumed. Lastly, obtaining certain timestamps from
Linux on the test system is necessary. Although reading timestamps from the
kernel ring buffer is feasible, timekeeping is halted during sleep, preventing
accurate tracking of sleep duration on the test system. Therefore, we focus on
gathering timestamps related to the asynchronous migration of pages back to
system memory, as this process is initiated only after the system has resumed,
ensuring it is not affected by the described timekeeping limitation. A selection of
the timestamps and durations we collect is given in Table 5.1. In the following,
we reference these times when applicable in order to identify comparable time
frames between the different sleep modes we evaluate.

Name Description

tsuspend_request Suspend request by PiKVM (step 3)
tvideo_suspend Test system stops outputting video signal (step 4)
tpower_off Test system’s ATX LED turns off (step 5)
tvideo_resume Test system resumes outputting a video signal (step 7)
tkernel_resume The test system logs that suspend is completed to ring buffer
tasync_complete The test system logs that all asynchronous migrations back to

system memory are completed (step 8)
∆tasync Duration of asynchronouslymigrating user pages back to system

memory in Linux on resume

Table 5.1: Selection of timestamps and durations collected during each benchmark
run and their corresponding benchmark steps according to Section 5.1.2.

5.2 Resume Latency
In Section 3.1 we identify resume latency as being the most important metric for
system suspend. The subsequent section describes our measurements of resume
latency and presents our findings.

For our implementation, two key time durations are of particular interest. The
first duration measured extends from the moment the power button is pressed
to the point when video output resumes, making the system usable for the end
user. The second relevant duration is the time from pressing the power button
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until the asynchronous migrations are completed. The primary objective of our
implementation is to minimize the first duration, as it defines the wake latency
of the system, marking the point when the user can begin interacting with their
machine.

At tpower_off, when the power LED turns off, as indicated by the PiKVM, we
immediately press the power button, allowing the resume latency to be calculated
as tvideo_resume − tpower_off. To further analyze resume times, we break down the
resume latency by collecting timestamps in coreboot, as detailed in Section 5.1.4.
For Suspend-to-CXL, coreboot logs are retrieved from CBMEM to measure the
time spent restoring kernel data to system memory during the ramstage in core-
boot. To assess the execution times of the various coreboot stages outlined in
Section 2.2.1, as well as the overall duration of our Suspend-to-CXL code, CBMEM
is accessed again to retrieve the saved timestamps. An overview of resume times
is given in Figure 5.1. Resume latencies of Suspend-to-CXL and hibernate-swap
remain nearly constant across varying memory usages, whereas resume durations
for hibernate-noswap show a steady increase as memory utilization rises. On
median, resume latencies for Suspend-to-CXL are at least 78 % lower than for
hibernation, on average. Furthermore, the time required to migrate user memory
back to system memory after resuming from Suspend-to-CXL also grows with
higher memory utilization. The subsequent sections provide a more detailed
analysis of our results, focusing on the constituent components of resume times.

5.2.1 Suspend-to-CXL
As shown in Figure 5.1, resume latencies of Suspend-to-CXL do not vary signifi-
cantly relative to memory usage. This is expected, as the majority of memory is
occupied by user processes, whose pages are migrated to CXL on suspend and
only moved back asynchronously after the system has resumed. By collecting
fine-grained timestamps, we are able to break down the resume process into its
constituent durations, visualized in Figure 5.2.

Although not strictly a requirement for sleep modes identified in Section 3.1,
a primary objective of our implementation of Suspend-to-CXL is to minimize
the amount of memory copied synchronously on resume and to offload the bulk
of the copy operations to our asynchronous component to be run when the
system is already resumed and responsive to the user as described in Section 3.3.2.
Moreover, we aim to keep the amount of data requiring synchronous copying
constant, regardless of system memory usage. Suspend-to-CXL achieves these
goals by first migrating memory of all user space processes to CXL memory
as detailed in Section 4.3.2. As a result, our implementation maintains a low
and consistent synchronous copy duration in coreboot during the resume phase,
regardless of memory usage, as shown in Table 5.2.
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Figure 5.1: Violin plot of resume latencies encountered with Suspend-to-CXL and
hibernate. The upper and lower ticks on each component mark the minimum
and maximum durations measured, respectively. The ticks inside the components
represent the median of resume durations.

Furthermore, Figure 5.2 demonstrates that resume times in general remain
constant across varying memory usages. While latencies specifically introduced
by Suspend-to-CXL code, namely “s2cxl init” and “s2cxl restore mem” in Figure 5.2,
only make up about 4% of the total resume duration, Figure 5.2 clearly illustrates
that nearly half of the resume delay is caused before coreboot’s bootblock even
commences. We refer to this time frame as “platform delay,” as it likely involves
low-level platform initialization required for coreboot’s bootblock to be able to
begin execution. Moreover, our coreboot component spends minimal time on data
structure initialization and traversal, depicted as “s2cxl init” in Figure 5.2, with the
majority of its time dedicated to copying memory back to system RAM, which is
labeled “s2cxl restore mem” in Figure 5.2. “coreboot misc” encompasses all periods
not clearly assignable to a specific stage, such as loading or decompressing the
next stage. The use of MOVDIR64B, as described in Section 4.4.2, outperforms
coreboot’s memcpy implementation during resume when moving data from the
CXL device to host DDR memory by approximately 10%. While coreboot’s
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bootblock consistently completes in under 1ms, the next stage, the romstage,
dominates the time spent in coreboot on resume and accounts for approximately
25% of Suspend-to-CXL’s total resume latency. Due to the bootblock and postcar
stages both being very short, we choose to omit them from Figure 5.2, as they
would not be visually discernible and do not contribute to the total suspend latency
in any meaningful way. The latencies introduced by resume code in Linux prove
to be independent of memory usage as well. Our resume component in Linux in
particular returns control back to the normal resume recovery procedure almost
immediately, as it is solely responsible for registering our asynchronous migration
functionwith the Linuxworkqueue system, as described in Section 3.3.2. We assert
that this function call introduces a delay of under 1ms, which is insignificant
compared to the latency sources discussed earlier.
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Figure 5.2: Breakdown of resume latency for Suspend-to-CXL at different memory
usages. Each component is calculated as the median of 100 successful runs.
Resume delays appear mostly independent of total system memory load.
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4GiB 8GiB 12GiB

Copy amount [GiB] 1.485± 0.004 1.497± 0.006 1.501± 0.006
Copy duration [GiB] 0.421± 0.003 0.438± 0.010 0.441± 0.014

Table 5.2: Median andMAD ofmemory copied back to systemmemory in coreboot
(in GiB), along with the median and MAD of the copy durations (in s) relative to
system memory usage.

Asynchronous Migration

Although resume latency is of primary interest to us, we analyze the time until
asynchronous migrations complete as well, as this event marks the time at which
all applications are able to run without the performance impact induced by
accessing CXL memory. As expected, the time from pressing the power button
to asynchronous migrations concluding is dependent on the system memory
utilization and, as seen in Figure 5.1, follows a similar linear trend to hibernate.
The exact durations Linux is busy migrating back user pages in given in Table 5.3.
Although three data points do not allow for a meaningful regression analysis, it
is safe to assume that the duration of migrating pages back to system memory
is linearly dependent on the system memory usage. Our timestamps further
indicate that our asynchronous resume function’s execution time is dominated by
page migrations, while initialization and the priority analysis on processes only
requires negligible time. This can be attributed to the simplicity of our priority
analysis, which first retrieves and then sorts all user processes, as highlighted in
Section 4.3.3.

Duration 4GiB 8GiB 12GiB

Migration duration [s] 1.929± 0.038 4.424± 0.295 6.891± 0.575

Table 5.3: Median and MAD of∆tasync after resuming from Suspend-to-CXL (in s).
The latency increases in accordance with system memory load.

5.2.2 Hibernation
Evaluating resume latencies for hibernation proved to be significantly more
challenging than for Suspend-to-CXL. The reason for this problem mainly lies in
the additional sources introducing delays. In particular, we observed that the FSP,
as introduced in Section 2.2, resets the CPU of our test system during the romstage.
This phenomenon occurs exclusively on cold boots, which is why these effects
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cannot be observed for Suspend-to-CXL, since it only performs a warm reset due
to the limitations explained in Section 4.4.3. In order to be able to accurately
account latencies to their sources, we introduce a new delay to our analysis, the
“romstage reset delay,” spanning from the initial power button press up to the
point the FSP performs the aforementioned reset. Unfortunately, this type of CPU
reset is very difficult to measure automatically for three reasons. First, the CPU
is completely restarted, resulting in traditional timekeeping measures, such as
the CPU TSC, mentioned in Section 5.1.4, also being cleared. Second, since this
reset happens early in the romstage, system memory is not set up yet, resulting
in severely limited means to measure and persist any data on timings. Third,
the reset occurs in the FSP binary, which generates neither logs nor timestamps,
making it impossible to pinpoint the exact timing of the reset with these methods
alone. Toward resolving this problem, we settle on separately measuring the time
between initial power button press and the bootblock starting for the second
time after the reset with the serial logging capabilities described in Section 4.5.
This approach allows the generation of timestamps for incoming log messages,
enabling us to obtain an average total delay value. In combination with the
platform delay reported by coreboot’s timestamps after the system is booted, we
are able to reconstruct the “romstage reset delay.” Further details on the exact
sequence and measurement of events can be found in Figure 5.3.

1st platform delay 2nd platform delay

timeframe measured via timestamps from serial logging and PiKVM

bootblock
romstage

time

Stage

"romstage reset delay"

initial 
power on
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bootblock

begins

1st
romstage
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1st
romstage
calls FSP

FSP reset
(no exact

timing)

2nd
bootblock

begins

2nd
romstage

begins

2nd
romstage
calls FSP

2nd
romstage
exits FSP

Figure 5.3: Chronology of the romstage reset encountered on our test system, in-
cluding coreboot stages involved and measurable durations. The second platform
delay, bootblock, and romstage durations are reported by the coreboot timestamp
system and used in Figure 5.4.

Additionally, hibernation introduces EDK2, whose role is detailed in Sec-
tion 2.2, as a further source of delay compared to Suspend-to-CXL. Since coreboot
performs all platform initialization, EDK2 is mostly tasked with setting up UEFI
features, such as identifying boot devices, providing a UEFI shell, and displaying a
graphical boot menu. As a result, the execution time of the release build of EDK2
we use is dictated by a built-in 3-second timeout, allowing a user to press the
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necessary button on the keyboard to enter the boot menu, for example. We decide
to assume the delay introduced by EDK2 to be exactly 3 s for our analysis for two
reasons. First, capturing exact timestamps for the execution time of EDK2 would
have required introduction of another, external time source, such as serial logging
timestamps, since EDK2’s release build does not expose timekeeping information
like coreboot does, as described in Section 2.2.3. Second, although execution time
of EDK2 may vary slightly, these variations do not contribute significantly to the
resume times of hibernation.

Complementary to the last section, we showcase our results for resuming from
hibernation in the following. As mentioned in Section 5.1, we conduct hibernation
benchmarks with swapping turned on and off, in the following referred to as
“hibernate-swap” and “hibernate-noswap”. Resume latencies for hibernate-swap
and hibernate-noswap can both be found in Figure 5.4.
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Figure 5.4: Breakdown of resume latency for hibernate-noswap and hibernate-
swap, each component calculated as the median of 100 successful runs. Linux
dominates resume times for hibernation in general. Allowing the system to swap
out processes results in lower resume latencies, regardless of memory usage.
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Figure 5.4 demonstrates that, across all memory utilization levels, resume laten-
cies for hibernation are primarily driven by the time spent within the Linux kernel,
reaching a maximum of 71% of the total resume duration for hibernate-noswap
at 12GiB of memory usage. This result coincides with our expectations, as all
resume operations are handled exclusively by the kernel without any firmware
involvement. As outlined in Section 2.3.3, a new kernel image is initially loaded,
which subsequently decompresses and restores the hibernation image. The time
required for decompression and loading is directly related to the size of the image
and, consequently, the amount of system memory in use at the time of suspending
for hibernate-noswap. Allowing the system to swap out processes during hiber-
nation, however, decouples resume performance from system memory usage, as
the hibernation image size is constrained by the upper limit for image_size
defined in Section 5.1. Although resuming the system is accelerated when process
swapping is enabled, as can be seen in Figure 5.4, tasks that were swapped out
suffer significant performance degradation upon resume due to the need to reload
data from the backing storage into system memory on demand. In theory, this
backing storage could be any persistent storage medium, which may be substan-
tially slower than the NVMe SSD used in our test environment, resulting in an
even greater impact on application performance.

A notable amount of resume latency is caused by the delays the test system
experiences. In total, platform delay and romstage reset delay account for up to
21% of the total resume latency of hibernation (hibernate-swap at 12GiB load).
Similar to Suspend-to-CXL, we choose to exclude the bootblock and postcar stages
from Figure 5.4 due to their brevity. After the reset caused by the FSP described
earlier, the romstage requires significantly more time to complete when resuming
from hibernation compared to Suspend-to-CXL. The timestamps collected from
coreboot indicate that this difference can be attributed to the FSP memory setup
function call. We presume that more initialization is required to set up system
DRAM when waking from hibernation, since the machine has undergone a
cold reset during hibernation, whereas Suspend-to-CXL only performs a warm
reset, as explained in Section 4.4.3. We expect this difference to disappear when
using persistent CXL memory, allowing a complete power off of the system
during Suspend-to-CXL sleep and thus resulting in identical romstage latencies
for Suspend-to-CXL and hibernate. Figure 5.4 further reveals that resuming from
hibernation introduces an added 0.7 s of latency in coreboot’s ramstage compared
to Suspend-to-CXL. This can be attributed to one of the advantages of our design
discussed in Section 3.3.1, where the use of the ACPI wake vector enables a direct
jump back to the operating system, thus bypassing the time-consuming payload
decompression step.
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Moreover, Figure 5.4 emphasizes that permitting the system to swap out pro-
cesses benefits resume latency greatly. Not only are resume times up to 20%
lower, latencies stay constant, regardless of current system memory load. How-
ever, as mentioned previously, we expect these improved resume latencies caused
by swapping out applications to come with the cost of considerable performance
impairments for these applications after resuming, since pages must first be loaded
from storage when initially accessed. Interestingly, while hibernate-swap with
memory loads of 8GiB and 12GiB exhibits nearly identical performance, resume
latency increases when hibernating with only 4GiB of memory utilization. We
infer that this occurs because Linux opts to compress most of the system memory
into the hibernation image, as the threshold of approximately 6GiB image size
is not exceeded. This leads to hibernate-swap at 4GiB exhibiting resume times
similar to those of hibernate-noswap. Once the maximum image size would be
surpassed, however, it appears that the higher memory usage forces Linux to
swap pages more aggressively, resulting in smaller and more consistent image
sizes. Additionally, allowing the system to swap out pages before hibernation
results in significantly greater variability in resume times, as seen in Figure 5.1.
We presume this can be traced back to Linux swapping out different amounts of
memory between runs, thus leading to a larger variance in hibernation image
sizes, despite identical total system memory load.

5.3 Suspend Latency
While not the primary focus, we also identify suspend latency as a relevant met-
ric for evaluating our implementation in Section 3.1. Our methodology largely
mirrors the approach used for measuring resume latency, as described in Sec-
tion 5.2. Suspend latency is defined as the interval between initiating the suspend
command via SSH and the machine signaling it is powered off through its power
LEDs and can thus be written as tpower_off − tsuspend_request. For Suspend-to-CXL,
we determine the duration of page migrations by using timestamps obtained
from calls to ktime_get [56], which we obtain after finishing the benchmark
from kernel logs via dmesg. For Linux, we differentiate between the time spent
migrating pages in our code and the rest of the suspend procedure. “s2cxl init”
represents the latency introduced by Suspend-to-CXL code in coreboot, excluding
data copying, while “s2cxl save mem” depicts the timespan during which system
memory is copied to CXL memory in coreboot.
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Figure 5.5: Breakdown of suspend latency for Suspend-to-CXL, each component
calculated as the median of 100 successful runs. Suspend duration increases with
rising memory load.

Sleep Mode 4GiB 8GiB 12GiB

Suspend-to-CXL [s] 3.215± 0.035 5.971± 0.087 8.417± 0.060
Hibernate-noswap [s] 15.347± 0.183 20.034± 0.269 24.908± 0.331
Hibernate-swap [s] 14.665± 0.477 17.986± 0.167 20.365± 0.135

Table 5.4: Median and MAD of suspend durations (in s) for Suspend-to-CXL and
hibernate for the different system memory loads used in our benchmarks.

In contrast to resuming, suspending the system with Suspend-to-CXL is
strongly influenced by the system’s current memory utilization, as shown in Fig-
ure 5.5. Suspend latency is primarily determined by user process page migrations,
which require more time with growing memory usages. Meanwhile, the durations
of other components, including the Linux overhead, which encompasses freezing
user space and suspending devices, for example, and our suspend code in coreboot,
remain constant, as visualized in Figure 5.5.

Notably, migrating pages back from CXL memory in Linux takes longer than
migrating them to CXL memory, which is unexpected given that read operations
are typically faster than write operations on most conventional types of storage.
At the same time, these results are similar to the findings of Sun et al. [43],
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4GiB 8GiB 12GiB

Copy amount [GiB] 1.485± 0.004 1.497± 0.006 1.500± 0.006
Copy duration [s] 0.244± 0.003 0.245± 0.003 0.256± 0.008

Table 5.5: Median and MAD of memory (in GiB) copied from system memory to
CXL memory in coreboot, along with the median and median absolute deviation
of the copy durations (in s).

who report higher bandwidth when transferring data from system DRAM to
CXL memory compared to the other way around. Due to time constraints, we
were unable to further explore this discrepancy. Regardless, Suspend-to-CXL
consistently achieves lower suspend latency compared to hibernation. When
resuming from Suspend-to-CXL, using our memcpy implementation employing
MOVDIR64B resulted in shorter copy times when moving data from the CXL
device to system memory, as mentioned in Section 5.2. On suspend, the difference
between coreboot’s memcpy and s2cxl_memcpy becomes oven more noticeable.
Table 5.5 shows that we were able to cut our copy time nearly in half by utilizing
MOVIDR64B, compared to on resume (Table 5.2). We did not further investigate
whether this behavior is expected when using CXL or if it is a property of our
device. Similar to resume, we achieve approximately constant copy durations in
coreboot across system memory loads, which is expected since the copy amount
remains constant as detailed in Table 5.5.

As outlined in Table 5.4, suspend durations for hibernate-swap are at least 4%
shorter than those for hibernate-noswap, though the difference between the two is
not as substantial as during resume. This is likely due to the reduced effort needed
to compress a smaller amount of memory into the hibernation image. However, it
is important to note that hibernate-swap loses its advantage of being independent
of system memory usage, as observed during the resume process in Section 5.2.
Both hibernation variants and Suspend-to-CXL thus exhibit increasing suspend
times as memory load increases.

5.4 Reliability
A crucial metric to determine the usability of sleep mechanisms is their reliability.
As argued in Section 3.1, the usability of a system unable to resume from sleep is
worse than the usability when unable to sleep entirely. The test system may fail to
resume for a variety of reasons, including failures while copying data on suspend,
data corruption while the system is sleeping, and failures while restoring data
back to system memory.
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To measure reliability, we conduct 100 successful benchmark runs for both
Suspend-to-CXL and hibernate. To calculate our metric, we divide the number
of successful runs by the total number of attempts needed to achieve them. As
outlined in Section 4.4.3, our test system is unable to fully power off during sleep,
which necessitates the use of a warm reset. A consequence of this reset method
is that system memory is retained, even after resetting. This could result in a
significant overestimation of Suspend-to-CXL reliability, as the system could
theoretically resume successfully without our implementation performing any
operations, simply because the system memory remains unchanged from the
point of suspending. To address this, modifications to the coreboot code were
required for the reliability benchmark. Specifically, to simulate conditions akin to
cutting power to system memory, the entire usable memory is zeroed after its
contents are copied to the CXL device during suspend. The results for reliability
are given in Table 5.6.

Mode 4GiB 8GiB 12GiB

S2CXL 99.01% (100 / 101) 98.04% (100 / 102) 97.09% (100 / 103)
Hibernate 69.93% (100 / 143) 47.17% (100 / 212) 48.54% (100 / 206)

Table 5.6: Reliability of Suspend-to-CXL and hibernate on Linux. We observed
no difference between different image_size settings, which is why we chose
to only evaluate reliability for hibernate-noswap. The hibernation reliability we
observe is likely not representative of hibernation in general.

Our implementation of Suspend-to-CXL endured 1 to 3 failures every 100
successful suspend-resume cycles. This indicates that there are no substantial
differences in sleeping at different memory usages in terms of reliability. The logs
of our benchmark reveal two distinct types of failures of Suspend-to-CXL. In the
first scenario, the system fails to transition to the ACPI wake vector from Linux
due to improper saving or restoration of memory at that location, causing the
system to hang and the benchmark to time out while awaiting the resumption of
video output. The second issue encountered pertains to the system successfully
resuming execution in Linux; however, the file system recovery process fails,
resulting in the file system being left in a read-only state. This scenario is classified
as a failure, as it would likely require a system reboot for the user to restore full
functionality and perform productive tasks.

For hibernation, we anticipated that most, if not all, runs would complete
successfully, as the resume process is entirely managed by Linux without any
firmware participation. However, our results suggest the opposite, though we
believe these findings do not accurately reflect the reliability of hibernate. Upon



66 CHAPTER 5. EVALUATION

analyzing the benchmark logs, we determined that all failures are caused by
the sanity checks outlined in Section 2.3.3 failing. Specifically, on resume, the
firmware often configures the system memory map in a slightly different manner,
which is then stored in the E820 table, leading Linux to abort the resume process
on almost every second attempt. Due to time constraints, and as this issue is
not directly related to our proposal, we did not further investigate whether this
behavior is caused by coreboot or the FSP.

5.5 Energy Consumption
As described in Chapter 1, a sleep implementation must balance wake latency
with energy conservation. For this reason, the last requirement we identify
in Section 3.1 is energy consumption. For analyzing energy consumption, we
measure the power draw of our system with our GPM-8213 power meter as
described in Section 5.1.3. We define the base energy consumption of each sleep
mode as the sum of the energy it takes to suspend the machine and the amount
of energy required to restore video output on resume. The suspend duration is
defined as the timespan between requesting suspend and the system indicating
power off, while the resume duration encompasses the time from powering
on the machine to video output resuming, analogous to the previous sections.
Furthermore, we continue measuring the power draw of our test machine for
Suspend-to-CXL until all asynchronous migrations are completed. Due to the
wider variation in timings for hibernate-swap, as illustrated in Figure 5.1, power
consumption also exhibited greater fluctuations, making it challenging to achieve
reproducible results. Additionally, the energy consumption of hibernation is
mostly dominated by the boot process, leading to similar results for hibernate-
swap and hibernate-noswap in terms of energy consumption. For these reasons,
we chose to solely focus on hibernate-noswap in this section. Our measurements
for Suspend-to-CXL and hibernate are displayed in Figure 5.6. We adjust the 0 s
mark to align with tsuspend_request.

The power draw over time follows a similar pattern for both Suspend-to-
CXL and hibernate, with power consumption dropping briefly to approximately
0.12W when the system is powered off for hibernate. Since the test system
is not placed in S5 for Suspend-to-CXL, as detailed in Section 4.4.3, the power
draw stays at a high level of approximately 110W. When using persistent CXL
hardware, we expect the power draw to drop to the same 0.12W. Subsequently,
power consumption rises sharply to approximately 150W, peaks at 180W, and
then begins to fluctuate. While power measurements were fairly consistent for
hibernate, the power draw of the Linux suspend component of our implementation
seems to exhibit three distinct levels 161W, 167W, and 171W. While we suspect
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Figure 5.6: Power draw over time of 100 successful runs of Suspend-to-CXL and
hibernate for different memory usages (inW), overlapped. The time axis is aligned
so that 0 s coincides with the remotely issued sleep request for each run.

this phenomenon can be attributed to operating system power management, we
did not have time to further investigate this assumption. From these power
measurements, we additionally calculate the total energy consumed to suspend
and resume the system for Suspend-to-CXL as well as for hibernate, found in
Table 5.7 and Table 5.8, respectively. We arrive at these values by integrating the
curve derived from our power measurements over the respective intervals.

As anticipated based on the results from Section 5.2, the energy consumption
for Suspend-to-CXL during the suspend phase is highly dependent on memory
usage, whereas the energy consumption during the resume phase remains largely
constant. Conversely, for hibernate, the energy consumption for both suspend
and resume phases is significantly influenced by the system’s memory load.
Regarding energy consumption during suspend, Suspend-to-CXL outperforms
hibernate, reducing expended energy by approximately a factor of 5.6 with 4GiB
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Stage 4GiB 8GiB 12GiB

Suspend [J] 472± 3 938± 16 1350± 7
Resume [J] 1686± 58 1680± 65 1694± 32

Table 5.7: Median and MAD of consumed energy for Suspend-to-CXL (in J).
“Suspend” is the energy consumed from requesting suspend to the system being
powered off. “Resume” is from system power on to video output resuming. The
values are calculated from our 100 successful test runs.

Stage 4GiB 8GiB 12GiB

Suspend [J] 2602± 41 3461± 42 4351± 39
Resume [J] 8722± 129 9552± 166 10401± 161

Table 5.8: Median and MAD of consumed energy for hibernate (in J). “Suspend”
is the energy consumed from requesting suspend to the system being powered
off. “Resume” is from system power on to video output resuming. The values are
calculated from our 100 successful test runs.

of memory usage and by a factor of 3 with 12GiB of memory usage. An even
more pronounced disparity can be observed during the resume phase, where our
implementation of Suspend-to-CXL demonstrates an energy consumption that is
6× lower than that of hibernate-noswap with 12GiB of memory in use.

Despite not being noticeable in our benchmarks, another noteworthy obser-
vation influencing energy consumption during extended sleep durations is the
increase in power consumption of our test system to approximately 12W after
remaining in the S5 state for around one second. This relatively high power
draw, despite the system being powered off, is likely attributed to the Baseboard
Management Controller, which remains active in the S5 state to allow remote
system startup by an administrator.

5.5.1 Asynchronous Resume
In addition to the results on energy consumption presented in the previous section,
we further examine the energy required for asynchronously migrating pages back
to system memory for Suspend-to-CXL. To achieve this, we perform an additional
100 modified Suspend-to-CXL runs, ensuring the system is idle and has fully
completed the resume process whenmigrating pages back to systemmemory. This
is accomplished by introducing a 10-second delay in our Suspend-to-CXL resume
hook, as detailed in Section 4.3.3, before scheduling the asynchronous resume
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function for execution. In order to assess energy consumption of the asynchronous
migration procedure, we require the baseline idle energy consumption our test
system would consume in the same time frame. Toward obtaining this value, we
measure a median idle power draw of 136W with our power meter and calculate
the energy consumed by multiplying the idle power draw with each migration
duration. Information on the energy consumed during migration can be seen in
Table 5.9.

Activity 4GiB 8GiB 12GiB

Idle [J] 287 636 958
Migrating [J] 315 770 1220

Difference (absolute) [J] 28 134 262
Difference (relative) 9.8% 21.1% 27.4%

Table 5.9: Median and MAD of consumed energy during idle and when working
on asynchronous migrations (in J). We measure the idle power draw to be 136W.
The difference between “idle” and “migrating” is given absolutely and relatively.

As expected, Table 5.9 shows that the energy required to migrate pages back
to system memory depends on system memory load. During the asynchronous
migration phase, our test system consumes at least 9.8% more energy compared
to the base idle energy consumption. Even when factoring in the energy cost of
asynchronous migrations, Suspend-to-CXL consistently demonstrates superior
energy efficiency compared to hibernation at all memory load levels. In particular,
Suspend-to-CXL consumes at least 3× less energy than hibernation during system
resume from sleep.

5.6 Discussion
After evaluating our implementation, we present key takeaway points concerned
with the performance of Suspend-to-CXL and competing sleep mechanisms.
Although the contrast with hibernate on Linux enables a fundamental assessment
of the performance aspects of our implementation, a comparison with a sleep
mode with similar latency characteristics, such as ACPI S3, would have been
valuable to fully identify the performance detriment of offloading data to CXL
memory. As explained at the beginning of this section, a comparison with S3 was
unfortunately not possible due to the low-level code of the FSP being incapable
of recovering from S3 on the platform of our test system. As this shortcoming
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results from a failure in proprietary code, we regrettably had no direct way of
fixing this issue. Nonetheless, the benchmark results for each of the requirements
outlined in Section 3.1 provide valuable insights into the characteristics of our
sleep implementation.

Among the evaluated metrics, resume latency stands out as the most critical
factor for end-user sleep mode performance. In our test setup, Suspend-to-CXL
significantly outperforms hibernate in terms of resume latency. While hibernation
exhibits median resume times ranging from 54 s to 68 s, the resume duration
for Suspend-to-CXL remains consistently at approximately 11.3 s, regardless
of memory usage, observable in Figure 5.4 and Figure 5.2. As mentioned in
Section 5.2, nearly half of the total resume time is due to the platform delay
occurring before the execution of coreboot’s bootblock begins. Based on our
experience, this delay is considerably shorter on consumer platforms compared
to the server platform used in our benchmarks, suggesting the potential for faster
resume times for desktop and laptop users. Although this approximately fivefold
reduction in resume latency appears massive, it is important to consider that
our test system lacks persistent storage and instead profits from the increased
latency and bandwidth of the DDR4 DIMM on our FPGA. Consequently, Suspend-
to-CXL likely demonstrates better performance in our controlled environment
than it would in a real-world scenario with devices such as Samsung’s CMM-H.
Additionally, the warm reset employed in our setup significantly reduces latency
during the coreboot romstage, further enhancing the observed performance.
This advantage is also unlikely to transfer to real-world deployments, where
the system is fully powered down during sleep. Nevertheless, we anticipate
that Suspend-to-CXL will continue to outperform hibernate even when using
persistent CXL storage, as our approach bypasses EDK2 and the entire Linux
boot process during resume by leveraging the ACPI wake vector. Moreover, the
asynchronous resume component of our implementation is expected to continue
improving resume latencies, particularly when utilizing persistent CXL storage,
as it avoids the extended read times associated with the sequential approach
of hibernate described in Section 2.3.3. Since resuming from Suspend-to-CXL
follows the same procedure as ACPI S3, except for the initialization and memory
copying functionality we add to coreboot and the enqueueing of the asynchronous
migration task in Linux, we expect resume latencies to be very similar to S3.

For suspend latency, Figure 5.5 shows that migrating pages introduces consid-
erable delays for Suspend-to-CXL, especially for high memory usage, where page
migration to CXL memory makes up 88.5% of the total suspend time. Nonethe-
less, Suspend-to-CXL outperforms hibernate by a factor of 2 to 5 on suspend
duration. While providing moderate performance benefits on resume, Section 5.3
details that using our own MOVDIR64B-based memcpy implementation cut copy
time in coreboot nearly in half on suspend, compared to resume.
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Suspend-to-CXL demonstrates reasonable reliability in our test environment,
experiencing only 6 failed suspend-resume cycles out of 306 runs. In terms
of reliability, it would have been desirable to compare our implementation to
ACPI S3, as hibernate’s reliability is theoretically expected to approach 100%,
despite our benchmarks suggesting otherwise, making it a suboptimal competitor.
Notably, the failure rates of Suspend-to-CXL do not appear to be influenced by
system memory usage, which is expected as the amount of memory required by
the kernel during resume remains constant across different memory loads. While
the evaluation of our other requirements defined in Section 3.1 are impacted in
some way by the fact that we do not have access to real persistent CXL storage,
the values we determine for reliability are likely not dependent on the concrete
device we use as a storage backend.

Our benchmarks establish that substantial amounts of energy can be saved by
using Suspend-to-CXL over hibernation. As both implementations fully power
off the machine in a real-world setting, and thus draw equal power when sleeping,
it is sufficient to solely consider energy consumption on suspend and resume. For
example, Suspend-to-CXL on our test system achieves a 3.5× lower energy con-
sumption in total with 12GiB of memory used, compared to hibernate-noswap.
Despite our benchmarks indicating the potential for significant energy savings, it
is important to reiterate that our test setup is not equipped with persistent CXL
storage and predicting energy consumption in particular without access to real
hardware is difficult. Specifically, reading and writing data to DDR4 DRAM is
significantly faster and more energy-efficient than writing to persistent storage.
Simultaneously though, implementations of persistent CXL storage such as Sam-
sung’s CMM-H may consume less power in general than the FPGA we use for
providing the CXL interface for accessing DRAM. In addition to the idle power
consumption including the FPGA reported in Section 5.5.1, we conduct additional
measurements of the power draw of our test system without the FPGA. From
the measured value of 83W, we infer that the FPGA consumes approximately
53W, which significantly exceeds the typical power consumption of conven-
tional NVMe SSDs, such as our Samsung 980 PRO, which consumes no more than
9W [36].
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Chapter 6

Future Work

After giving a detailed insight into the performance characteristics of Suspend-to-
CXL in the previous chapter, we describe ideas for possible future enhancements
of our implementation in the following.

Commercial CXL Hardware

As discussed throughout this thesis, the implementation and evaluation of Suspend-
to-CXL were conducted using a CXL-capable FPGA equipped with a DDR4 DIMM,
necessitated by the unavailability of commercially available persistent CXL stor-
age solutions, such as Samsung’s CMM-H. This constraint implies that the bench-
mark results obtained from our test system are not directly comparable to those
of other sleep modes, such as Suspend-to-disk, which operate under real-world
conditions. As CXL hardware becomes available in the future, an evaluation based
on this hardware will prove invaluable to properly assess the characteristics of
Suspend-to-CXL.

Priority Analysis

For analyzing the priority of processes to restore to system memory on resume,
we identify processes that have recently run on the CPU. While this metric results
in interactive applications being migrated back to system memory earlier, it is
a very rudimentary algorithm and does not take into account any other metric
except the last time the process ran on a CPU. For this reason, a more sophisticated
policy involving various thread and process characteristics could be employed to
further improve the user experience directly after resume.
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Furthermore, a possible enhancement of our method could enable memory
migrations at a page-level granularity. This could allow for the identification and
subsequent transfer of frequently accessed ("hot") pages back to system memory,
irrespective of the process to which they belong. By prioritizing the migration of
hot pages, this strategy has the potential to enhance user-perceived performance,
as time is not spent moving less frequently accessed ("cold") pages of prioritized
applications.

Kernel Page Filtering

As detailed in Table 5.2, roughly 1.5GiB of memory are transferred to and from
CXL memory in coreboot, regardless of system memory usage. While this value
for the identified minimum amount of memory the kernel requires to resume
remains constant across system memory loads, it is greater than we initially
expected. Aside from identifying used pages according to the Linux page allocator
described in Section 3.2.1, we do not employ additional filtering techniques to
further reduce the amount of pages to be copied in coreboot. We suspect that this
load of 1.5GiB can further be reduced, though we did not have time to accomplish
this in the context of this thesis.

Accelerator-aided Page Migration

Although not supported on consumer platforms at the moment, server and work-
station platforms have begun to support on-die accelerators, such as Intel’s Data
Streaming Accelerator [15] (DSA), which can be found on their Sapphire Rapids
CPUs. In theory, an Intel DSA can be used to perform the page migration compo-
nent of our sleep algorithm. Sun et al. [43] demonstrate that copying memory
in this manner not only permits a reduced CPU load but also an up to 6× im-
proved throughput compared to performing copy operations on the CPU. The
page migration mechanism we leverage inside the Linux kernel as described
in Section 4.3.2 fundamentally supports different migration modes, including
MIGRATE_SYNC_NO_COPY, which “will not copy pages with the CPU. Instead,
page copy happens outside the migratepage() callback and is likely using a
DMA engine.” [61, include/linux/migrate_mode.h] Despite this low-level
capability, the high level interface of do_migrate_pages we utilize only sup-
ports synchronous migrations performed by the CPU. A future implementation
could expand the interface to different migration modes and leverage the potential
of Intel’s Data Streaming Accelerator to achieve page migrations with less CPU
overhead.
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Comparison with S3

Suspend-to-CXL is designed to directly compete with ACPI S3 on resume latency
and energy conservation. However, as mentioned throughout Chapter 5, it was
not possible for us to compare Suspend-to-CXL to ACPI S3 on our test system
due to the feature not being supported by the FSP on this platform. We are
optimistic that as CXL becomes more widely adopted in the future, an evaluation
of Suspend-to-CXL on a platform still supporting ACPI S3 will be possible.
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Chapter 7

Conclusion

In this thesis we presented Suspend-to-CXL, a novel sleep mode that capitalizes on
CXL, a high-speed interconnect built upon PCIe that is able to provide persistent,
byte-addressable storage for conventional computer systems. The design of
Suspend-to-CXL relies on components in both firmware and the operating system
for its sleep procedure. CXL supports exposure of byte-addressable memory to
the host system, which allows regular memory pages to be mapped directly to
it. Suspend-to-CXL leverages this capability by implementing an asynchronous
resume strategy. This approach selectively restores only the essential operating
system data needed to resume the system, followed by the retrieval of application
data after the system is online, thus accomplishing the primary goal of minimizing
resume delays. Further goals we strived to achieve are low suspend latencies,
high reliability, and low energy consumption. Apart from the theoretical design
of our sleep mechanism we also supplied a practical implementation of Suspend-
to-CXL utilizing the open-source firmware coreboot for creating the firmware
component and built the operating system component for Linux. We constructed
our suspend mode for Intel’s Eagle Stream server platform, which supports CXL.
Suspend-to-CXL is designed to be compatible with other upcoming CXL-capable
x86 platforms, as well. As a storage backend, we equipped our machine with an
FPGA containing a DIMM of DDR4 memory, which is exposed as CXL memory to
the system. Before suspending the system, we move the pages of user applications
to CXL memory and identify the physical memory regions used by the Linux
kernel. We modified the suspend code path in coreboot, ensuring execution of our
own functionality to move the kernel memory regions to CXL memory as well,
subsequently powering off the system. When the system is powered on again,
Suspend-to-CXL ensures low resume times by only moving strictly necessary
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kernel data structures back to system memory and subsequently jumps back to
the operating system without having to complete a normal boot cycle. Lastly,
Suspend-to-CXL begins asynchronously migrating back processes while they are
running on CXL memory.

We evaluated our implementation in terms of the aforementioned goals and
compared the results to Linux’s implementation of Suspend-to-Disk, called hiber-
nate. We measured a resume latency of approximately 11 s for Suspend-to-CXL.
Due to the asynchronous resume scheme leveraged by our sleep implementation,
this latency remains independent of system memory usage. This behavior distin-
guishes Suspend-to-CXL from conventional persistent sleep modes using a single
image containing the entire system memory, such as hibernate, which performs
worse as memory loads grow. In comparison, our analysis reveals that resum-
ing from hibernation is approximately 5× slower, and consumes significantly
more energy. Although our benchmarks are no replacement for an evaluation
on commercial persistent CXL storage, we prove our implementation is capable
of suspending and resuming a system reliably and with vastly smaller latencies
compared to hibernation. In conclusion, Suspend-to-CXL lays the groundwork
for efficiently suspending a system to CXL memory, offering very fast resume
durations in particular due to the asynchronous migration strategy employed by
our implementation.
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