
Towards Fast and Power-Efficient System Suspend
Yussuf Khalil∗

Karlsruhe Institute of
Technology

Felix Zimmer†
Karlsruhe Institute of

Technology

Fabian Meyer†
Karlsruhe Institute of

Technology

Frank Bellosa
Karlsruhe Institute of

Technology

Abstract
Suspend is a common operating system feature that puts a
system into a state with minimal power consumption while
it is not being actively used with the aim of being able to
resume to the previous state as quickly as possible. Two com-
mon approaches are suspend-to-memory (e.g., ACPI S3, S0ix)
and suspend-to-disk (e.g., ACPI S4). The former allows for fast
resume times by keeping system memory (i.e., DRAM) alive,
and hence requires some energy to uphold the suspended
state. The latter, in contrast, does not require any energy
while suspended and therefore allows for indefinitely long
sleeps in battery-powered systems, but in turn suffers from
long resume times. In ourwork-in-progress effort, we present
a novel approach to this decades-old problem that combines
the best of both worlds by leveraging upcoming CXL-based
persistent memory technologies (e.g., hybrid SSDs) in an
OS/firmware co-design approach. Specifically, we enable
cooperation between firmware and the OS to shortcut the
startup process when resuming from a powered-off state
and minimize copying effort from non-volatile storage by
mapping memory pages via CXL. Preliminary results show
a 5.8× faster wake-up from a powered-off state vs. S4.

1 Introduction
Common consumer use cases involve computers that are
used only for certain periods during the day, e.g., a laptop
that is only in use during work hours. Keeping the system in
full operation during the remaining time would be a waste
of energy, however, users expect their computer to be ready
to use with only minimal delay when returning. In turn,
several designs for system suspend have been developed in
the past that provide various trade-offs regarding resume
time, energy consumption, and crash resiliency.

Traditionally, ACPI S3 and S4 have been widespread stan-
dardized design concepts for system suspend [19]. S3 is a
suspend-to-memory approach that turns the system off except
for systemmemory. Given that all system state is still present
in memory when resuming, the system is ready again very
soon when desired by the user. However, keeping memory
contents alive requires (in the case of typical DRAM tech-
nology) continuous energy supply, which in turn creates a
risk of data loss for battery-powered systems. S4, in contrast,
realizes the suspend-to-disk idea where all memory contents
are copied to non-volatile storage before powering off the
system. Although this allows resuming the system into the

∗PhD student, † Undergraduate student

previous state from a powered-off state, it requires complet-
ing most of a typical cold boot process before the operating
system can restore memory contents from mass storage.

In recent years, suspend-to-idle (also known as S0ix, mod-
ern standby, or low-power idle) has evolved as a new approach
that can be considered a subtype of suspend-to-memory [11,
16, 19]. While ACPI S3 requires the help of system firmware,
S0ix is a pure operating system-level design that expects the
CPU to enter a low-power state as soon as all cores are idle
and execution is fully halted. In turn, the operating system
can decide to leave peripheral hardware (e.g., NICs) pow-
ered. S0ix therefore aims to be able to wake the system for
notifications or incoming calls while also promising shorter
resume times due to removing firmware from the equation.
Researchers have brought forward several ideas around

system suspend, e.g., page priority analysis to improve S4
resume times [9, 15], or suspending to PCRAM [22]. Instant-
on/off approaches that are typically found in consumer ap-
pliances such as smart TVs are related to system suspend,
but also different in central aspects. Typically, they focus on
resuming to a predefined system state (i.e., not an arbitrary
previous one) [13] or degrade runtime performance by fully
exchanging DRAM for a persistent memory technology [14].
In this work, we present a novel design that aims to pro-

vide wake-up times similar to suspend-to-memory, while also
being as energy-efficient as suspend-to-disk. For this goal,
we employ CXL-based hybrid SSD technology that we em-
bed into a co-design approach that includes both system
firmware as well as the operating system. We thereby sig-
nificantly reduce the amount of work that needs to be done
when resuming from a powered-off state in a manner that is
agnostic of specific firmware or OS implementations.

2 Background
CXL is a recent CPU-to-device interconnect standard that
offers, among other new features, byte-granular access to
device-attached memory [7]. Despite being a data center-
focused standard, several stakeholders have voiced an in-
terest for bringing CXL into the consumer space [4, 6, 8].
Based upon CXL, various vendors have announced hybrid
SSD products, e.g., Samsung CMM-H [17] and Wolley NVMe-
over-CXL [18]. Unlike traditional SSDs, which solely expose a
block-granular and asynchronous access interface via NVMe,
hybrid SSDs additionally offer a byte-granular synchronous
interface via the CXL.mem protocol. Various studies have
explored the design space and possible use cases for hybrid
SSDs [3, 5, 12, 21].



Khalil et al.

3 Design
Our approach encompasses several novel design aspects that
form a suspend mode that aims to bring together three, pre-
viously contradicting, design goals: fast resume times, zero
power consumption in suspended state, and near-zero run-
time performance impact. We will describe our system sus-
pend design by iterating over the high-level steps performed
during suspend and resume. Generally, we assume the pres-
ence of a hybrid SSD as described in the previous section.

First, the suspend process in our design starts off in a sim-
ilar fashion to an S3 suspend. The operating system freezes
all processes and stores important peripheral hardware state
into system memory. However, unlike during S3, we then
migrate all user space memory pages to the hybrid SSD. Mi-
grating in this context encompasses not only the process of
copying page contents, but also incurs modifying the page ta-
bles to make all pages point directly to the hybrid SSD. After
completing OS-level suspend preparations, control is handed
over to the firmware (i.e., on x86, a System Management In-
terrupt (SMI) is triggered to enter System Management Mode
(SMM) [10]). Firmware then copies the OS kernel’s memory
to the hybrid SSD. Doing this in firmware ensures that the
kernel memory is precisely in the same state it would be
in during an S3 suspend process at the moment of giving
up control. Now that all memory contents are preserved on
non-volatile storage, firmware powers off the system.
On resume (i.e., when powering on the system), the spe-

cific preparations done while entering suspend allow tak-
ing several shortcuts to bring the system into a ready state.
Notably, within firmware, our design can take an S3-like
initialization path where peripheral hardware initialization
is skipped and only CPU silicon initialization needs to be
performed. To this end, firmware establishes a minimal CXL
link and then copies back kernel memory from the hybrid
SSD device into system memory. At this point, the system is
already in the same state it was in before suspending from an
OS perspective. An S4 resume would, in contrast, require to
fully initialize peripheral hardware as well as the respective
EFI drivers before control can be handed over to a bootloader
and then, the operating system. Our design then jumps back
to the operating system’s S3 resume vector and the kernel
can perform its typical resume duties. After that, the system
is directly usable from an end user’s point of view as user
space processes can operate immediately as all their virtual
memory pages point to the hybrid SSD. If we were to use
NVMe instead of CXL, a substantial amount of page faults
along with asynchronous page copies would be incurred,
which would arguably slow down the system to the point of
being unusable from an end user’s perspective. Operating
processes from the hybrid SSD, however, has a performance
impact compared to operation in main memory. We there-
fore propose migrating pages back to system memory in
an asynchronous fashion in a background kernel worker.

ACPI S4

Our Prototype

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Platform Delay romstage
ramstage edk2
Kernel Copy (ramstage) OS Resume

11.2 s

65.4 s

Figure 1. Resume time from power button press to Linux
HDMI video output (seconds).

This migration must be performed carefully to ensure that
no user-perceivable system lag is created by competing for
bandwidth with actively running processes, while also mini-
mizing the time taken until all memory is restored.

We add a 1MiB shared memory buffer for implementation-
agnostic communication between the operating system and
firmware to enable their cooperation. Based on this close
cooperation scheme, we expect our design to allow an in-
teractive system to resume from non-volatile storage to a
usable state with only minimally larger delay compared to
an S3 implementation.

4 Evaluation
We implement a prototype of our design in Linux 6.9 and
coreboot 24.05 [1] on a mainboard equipped with a CXL-
capable Intel Xeon Silver 4410Y and 16 GB DDR5 memory.
As hybrid SSDs are not yet commercially available, we resort
to an FPGA-based CXL memory expander for our prototype.

Figure 1 shows preliminary results. We evaluate the time
it takes the system to resume from the moment the power
button is pressed until there is video output via HDMI from a
GUI environment running on Linux, i.e., the user-perceived
resume delay. Our prototype is able to resume the system
within 11.2 s, whereas an S4 resume takes 65.4 s. In the plot,
platform delay denotes the time between power-on and first
x86 code execution within firmware, romstage and ramstage
form the time spent in coreboot, and edk2 [2] is the EFI
DXE [20] firmware component. As we are currently working
on firmware-level support for S3 and suspend-to-idle on this
system, a direct comparison is unfortunately not yet possible
at the time of writing. However, we expect a S3 resume to be
merely 4.2 % faster than our prototype as our only additional
overhead is the kernel copy process (472ms, 1.5GiB).
We plan to evaluate energy efficiency, runtime perfor-

mance and interactivity impact, as well as potential data
center use cases in the future.

5 Conclusion
We have presented the first design approach for system sus-
pend that achieves the combination of zero power consump-
tion while suspended, short wake-up times, and nearly unaf-
fected runtime performance. An early prototype implemen-
tation of our design resumes 5.8× faster than S4.



Towards Fast and Power-Efficient System Suspend

References
[1] 2024. coreboot: Fast, secure and flexible Open Source firmware. https:

//www.coreboot.org/
[2] 2024. What is TianoCore? https://www.tianocore.org/
[3] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang,

Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu. 2019. FlatFlash:
Exploiting the Byte-Accessibility of SSDs within a Unified Memory-
Storage Hierarchy. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 971–985. https:
//doi.org/10.1145/3297858.3304061

[4] Paul Alcorn. 2022. AMD Working to Bring CXL Memory Tech to Fu-
ture Consumer CPUs. https://www.tomshardware.com/news/amd-
working-to-bring-cxl-technology-to-consumer-cpus

[5] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang,
Sangyeun Cho, Dong-Gi Lee, and Jaeheon Jeong. 2018. 2B-SSD:
The Case for Dual, Byte- and Block-Addressable Solid-State Drives.
In 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, Los Angeles, CA, 425–438. https:
//doi.org/10.1109/ISCA.2018.00043

[6] San Chang. 2023. Making the Case for CXL Native
Memory. https://conferenceconcepts.app.box.com/s/
k5awbwpyxteq9u4r8a3ey75yfx16aue1

[7] CXL Consortium. 2023. Compute Express Link Specification Revision
3.1.

[8] Bill Gervasi. 2024. FleX: Bringing CXL to the Motherboard.
https://files.futurememorystorage.com/proceedings/2024/20240807_
CXLT-201-1_Gervasi.pdf

[9] Chien-Chung Ho, Sheng-Wei Cheng, Yuan-Hao Chang, Yu-Ming
Chang, Sheng-Yen Hong, and Che-Wei Chang. 2015. Efficient hi-
bernation resuming with classification-based prefetching scheme for
embedded computing systems. ACM SIGAPP Applied Computing Re-
view 15, 1 (2015), 33–43. https://doi.org/10.1145/2753060.2753064

[10] Intel Corporation. 2024. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual. https://cdrdv2.intel.com/v1/dl/getContent/671200

[11] Intel Corporation. 2024. Intel® Core™ Ultra 200V Series Processors
Datasheet, Volume 1 of 2. https://www.intel.com/content/www/us/
en/content-details/829568/intel-core-ultra-200v-series-processors-
datasheet-volume-1-of-2.html

[12] Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCIe storage meets
compute express link formemory expansion (CXL-SSD). In Proceedings
of the 14th ACM Workshop on Hot Topics in Storage and File Systems
(Virtual Event) (HotStorage ’22). Association for ComputingMachinery,
New York, NY, USA, 45–51. https://doi.org/10.1145/3538643.3539745

[13] Hiroki Kaminaga. 2006. Improving linux startup time using software
resume (and other techniques). In Linux symposium, Vol. 17. https:
//www.kernel.org/doc/mirror/ols2006v2.pdf#page=25

[14] Hyojeen Kim, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H
Noh. 2011. Building fully functional instant on/off systems by making
use of non-volatile RAM. In 2011 IEEE International Conference on
Consumer Electronics (ICCE). IEEE, 675–676. https://doi.org/10.1109/
ICCE.2011.5722803

[15] Shi-wu Lo, Wei-shiuan Tsai, Jeng-gang Lin, and Guan-shiung Cheng.
2010. Swap-before-hibernate: a time efficient method to suspend an
OS to a flash drive. In Proceedings of the 2010 ACM Symposium on
Applied Computing. 201–205. https://doi.org/10.1145/1774088.1774129

[16] Microsoft Corporation. 2020. Modern Standby vs S3. https:
//learn.microsoft.com/en-us/windows-hardware/design/device-
experiences/modern-standby-vs-s3

[17] Rekha Pitchumani. 2023. CMM-H (CXL Memory Module – Hybrid):
Samsung’s CXL-based SSD for the Memory-centric Computing Era.
Samsung. https://semiconductor.samsung.com/us/news-events/tech-
blog/webinar-memory-semantic-ssd/

[18] Bernard Shung, San Chang, and Terry Cheng. 2023. NVMe over
CXL (NVMe-oC): An Ultimate Optimization of Host-Device Data Move-
ment. https://sc23.supercomputing.org/proceedings/exhibitor_forum/
exhibitor_forum_files/exforum118s2-file2.pdf

[19] UEFI Forum, Inc. 2022. Advanced Configuration and Power Interface
(ACPI) Specification Release 6.5. https://uefi.org/sites/default/files/
resources/ACPI_Spec_6_5_Aug29.pdf

[20] UEFI Forum, Inc. 2024. UEFI Platform Initialization Specification Version
1.8 Errata A. https://uefi.org/sites/default/files/resources/PI_Spec_1_
8_A_final_2024.03.05.pdf

[21] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin yong
Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S. Kim.
2023. Overcoming the Memory Wall with CXL-Enabled SSDs. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). USENIX Asso-
ciation, Boston, MA, 601–617. https://www.usenix.org/conference/
atc23/presentation/yang-shao-peng

[22] Chenyang Zi, Chao Zhang, Qian Lin, Zhengwei Qi, and Shang Gao.
2013. Suspend-to-PCM: a new power-aware strategy for operating
system’s rapid suspend and resume. In Emerging Technologies for
Information Systems, Computing, and Management. Springer, 667–674.
https://doi.org/10.1007/978-1-4614-7010-6_75

https://www.coreboot.org/
https://www.coreboot.org/
https://www.tianocore.org/
https://doi.org/10.1145/3297858.3304061
https://doi.org/10.1145/3297858.3304061
https://www.tomshardware.com/news/amd-working-to-bring-cxl-technology-to-consumer-cpus
https://www.tomshardware.com/news/amd-working-to-bring-cxl-technology-to-consumer-cpus
https://doi.org/10.1109/ISCA.2018.00043
https://doi.org/10.1109/ISCA.2018.00043
https://conferenceconcepts.app.box.com/s/k5awbwpyxteq9u4r8a3ey75yfx16aue1
https://conferenceconcepts.app.box.com/s/k5awbwpyxteq9u4r8a3ey75yfx16aue1
https://files.futurememorystorage.com/proceedings/2024/20240807_CXLT-201-1_Gervasi.pdf
https://files.futurememorystorage.com/proceedings/2024/20240807_CXLT-201-1_Gervasi.pdf
https://doi.org/10.1145/2753060.2753064
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.intel.com/content/www/us/en/content-details/829568/intel-core-ultra-200v-series-processors-datasheet-volume-1-of-2.html
https://www.intel.com/content/www/us/en/content-details/829568/intel-core-ultra-200v-series-processors-datasheet-volume-1-of-2.html
https://www.intel.com/content/www/us/en/content-details/829568/intel-core-ultra-200v-series-processors-datasheet-volume-1-of-2.html
https://doi.org/10.1145/3538643.3539745
https://www.kernel.org/doc/mirror/ols2006v2.pdf#page=25
https://www.kernel.org/doc/mirror/ols2006v2.pdf#page=25
https://doi.org/10.1109/ICCE.2011.5722803
https://doi.org/10.1109/ICCE.2011.5722803
https://doi.org/10.1145/1774088.1774129
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/modern-standby-vs-s3
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/modern-standby-vs-s3
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/modern-standby-vs-s3
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/
https://semiconductor.samsung.com/us/news-events/tech-blog/webinar-memory-semantic-ssd/
https://sc23.supercomputing.org/proceedings/exhibitor_forum/exhibitor_forum_files/exforum118s2-file2.pdf
https://sc23.supercomputing.org/proceedings/exhibitor_forum/exhibitor_forum_files/exforum118s2-file2.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf
https://uefi.org/sites/default/files/resources/PI_Spec_1_8_A_final_2024.03.05.pdf
https://uefi.org/sites/default/files/resources/PI_Spec_1_8_A_final_2024.03.05.pdf
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
https://doi.org/10.1007/978-1-4614-7010-6_75

	Abstract
	1 Introduction
	2 Background
	3 Design
	4 Evaluation
	5 Conclusion
	References

