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Abstract
The first commercial implementations of CXL-based hybrid 
SSDs (i.e., SSDs that are both byte- and block-addressable) 
are looming on the horizon. Although previous works have 
conducted design studies on hardware concepts as well as 
potential use cases, none have analyzed operating system 
considerations and abstractions for such storage devices. We 
find existing abstractions (i.e., DAX in Windows and Linux) 
to be insufficient for hybrid SSDs and propose more appropri-
ate resource management techniques and interfaces in this 
work. In our evaluation we demonstrate improved through-
put by up to 4.1× for applications with strong persistence 
requirements using the in-memory key-value store Valkey.

CCS Concepts: • Hardware → Memory and dense stor-
age; Non-volatile memory; • Software and its engineer-
ing → File systems management; Memory management; • 
Information systems → Storage management.
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1 Introduction
In-memory databases such as Valkey [3] (a fork of the more 
widely known Redis [2]) allow configuring persistence by 
defining a policy for how often fsync() shall be called to syn-
chronize the database’s append-only file (AOF) from volatile 
memory to non-volatile storage. In Valkey, the AOF acts as a
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Figure 1. Valkey write throughput for different fsync() poli-
cies (pipeline length = 10). Strong persistence (always) re-
duces throughput by 76.5 % over implicit persistence (never).

redo log and contains all write operations since the last full
base file rewrite (which happens whenever the AOF grows
too large). Generally, smaller synchronization intervals re-
sult in less write transaction throughput as shown in Fig. 1.
As can be seen in the plot, synchronizing once per second
(everysec) does not show significant performance impact over
using the operating system’s implicit periodic synchroniza-
tion mechanism (never). However, the always policy, which
forces every AOF update to be written back immediately,
does reduce throughput by 76.5 % on write-only workloads.

The novel Compute Express Link (CXL) standard [17] has
sparked interest among database researchers [28, 29]. CXL
promises cache-coherency and low-latency data transmis-
sion for accelerator hardware and memory expanders [18].
Starting with CXL 2.0, the notion of persistent memory is
introduced together with a flush-on-fail mechanism known
as Global Persistent Flush (GPF) [17] that enables persistent
CPU caches, similar to Intel’s eADR feature on past Optane
platforms [21]. Among the upcoming CXL-based persistent
memory implementations are hybrid SSDs that offer byte-
granular access via CXL in addition to NVMe. Commercial
implementations have been announced by Samsung under
the name CXL Memory Module – Hybrid (CMM-H) [34] as
well as Wolley, dubbed NVMe-over-CXL [35]. However, at
the time of writing, none are publicly available yet.

Although several works have already explored the viability
of such hybrid SSD designs as well as potential use cases [7,
11, 24, 42], the authors focused on hardware design aspects
and did not put deep thought into implications for operating
system design as well as the necessary abstractions.
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In this work, we review existing OS abstractions for persis-
tent memory and explain how they are inadequate for hybrid
SSDs. Based on these insights, we propose modifications and
optimizations for the traditional POSIX APIs. Our design in-
creases the performance of Valkey’s always synchronization
policy by up to 4.1×. Our contributions are as follows:

• We establish a model for the design of hybrid SSDs
from an OS perspective (§ 3.1)

• We analyze the suitability of existing abstractions in
the context of hybrid SSDs (§ 3.2)

• We adapt existing user space interfaces (§ 4.1)
• We propose a persistence-aware kernel page cache for
hybrid SSDs (§ 4.2)

• We simulate a virtual hybrid SSD (§ 5)
• We evaluate our design for performance and energy
consumption using a real-world key-value store (§ 6)

2 Background
2.1 Compute Express Link (CXL)
CXL [17] has evolved as a new interconnect standard for data
center applications, offering interesting new possibilities
such as rack-level memory pooling [30] or cache-coherent
accelerators [14]. In the context of databases, Lerner and
Alonso show that CXL expands the borders for scale-up
approaches [29].

Fundamentally, CXL builds on the physical and electrical
interfaces of PCI Express (PCIe), but offers three new proto-
cols [17]: CXL.io, which essentially equals PCIe’s Transac-
tion Layer, CXL.mem, which offers access to device-attached
memory, and CXL.cache, which exchanges cache-coherency
information over the bus. Although vendor-specific inter-
connect standards such as OpenCAPI, CCIX, and Gen-Z [12,
15, 36] already supported various subsets of CXL’s features,
CXL is the first implementation of a cache-coherent CPU-
to-device interconnect that has gained enough traction to
achieve broad industry support. CXL is supported in current
data center CPUs from major vendors, including Intel [32],
AMD [13], and Arm [33]. Sun et al. provide an overview of
the performance characteristics of real-world CXL implemen-
tations [37]. They show that CXL memory expanders can
offer latencies less than 2× (ASIC-based) or 5× (FPGA-based)
higher than CPU-local DDR5 memory.

2.2 Hybrid SSDs
Bae et al. first proposed making SSDs byte-addressable. With
2B-SSD [11], they suggest adding an additional Base Address
Register (BAR) to a conventional block-addressable PCIe-
attached NVMe SSD that is used to directly address the SSD’s
DRAM cache via memory-mapped I/O. The primary BAR
remains as management interface as in traditional SSDs.
Crucially, they identified SSD-side cache management as
a major issue for performance and resorted to offering a
simple ioctl()-based interface to explicitly pin pages from

user space. In turn, 2B-SSD lacks an OS-based abstraction
mechanism for automated cache and resource management.

FlatFlash is another approach proposed byAbulila et al. [7].
Their design employs a tiered memory hierarchy where
pages are transparently promoted by the operating system
from a byte-addressable SSD to system memory. They argue
that the reduced interconnect traffic achieved by transmit-
ting only cache lines instead of entire blocks improves SSD
performance and lifetime. However, although they ensure
that atomic PCIe memory operations and cache line flushes
are used when dealing with addresses mapped to the SSD,
they cannot guarantee persistence for promoted pages as
they reside in volatile DRAM. In turn, they resort to disabling
promotion for pages that require strong persistence.

Jung introduced the idea of using CXL to implement a byte-
addressable SSD [24]. They argue that an inherent limitation
of PCIe-based designs is the uncacheable BAR space, i.e., the
SSD’s flash memory contents cannot be cached in the CPU,
hence it may only serve as “workingmemory.” However, they
did not employ real CXL hardware for their evaluation and
instead resorted to an FPGA-based simulation using a custom
RISC-V processor core and an OpenExpress [23] device. Using
an algorithm benchmark, they show that a hybrid SSD design
could perform well for varying grades of data locality. Their
work does not consider OS-level abstractions.

Yang et al. explore the design space for CXL-enabled SSDs
by collecting physical memory access traces from various
workloads and running them through a custom SSD simu-
lation tool [42]. Similar to other works, they focus on hard-
ware design aspects such as prefetching algorithms. They
show that, depending on the workload, a hybrid SSD could
serve between 68% to 91 % of memory accesses with sub-
microsecond latency.
Samsung has announced the first commercial implemen-

tation of CXL-based hybrid SSDs, known as CMM-H [34].
CMM-H offers a Persistent Memory (PM) mode as well as a
Tiered Memory (TM) mode. In PM mode, the SSD only ex-
poses a CXL.mem interface, whereas TM mode additionally
supports NVMe via CXL.io. CXL’s Global Persistent Flush
(GPF) feature for automated cache flushes on power loss is
only supported in PM mode.

2.3 Direct Access (DAX)
Sparked by Intel’s (now obsolete) Optane DCPMM [20] mem-
ory technology, several operating systems (e.g., Linux [26]
and Windows [31]) have introduced Direct Access (DAX) in-
terfaces. Linux offers two DAX modes, devdax and fsdax.
With devdax, applications can map portions of the persistent
memory directly into their virtual address space. A file sys-
tem on top of an fsdax device allows mmap()-ing files into
processes while bypassing the operating system’s volatile
page cache. fsdax is supported by several file systems includ-
ing ext4, but requires a per-inode flag to be set on files that
should employ DAX-based mappings.
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Figure 2. Overview of the hybrid SSD model we base our
design on. The OS cache manager can initiate direct transfers
with an optional on-device cache manager.

3 Problem Analysis
We have now seen several proposals for hybrid SSDs. Since
such devices are not yet commercially available, we now
propose our own model for hybrid SSDs. We base our model
on available information on future real-world hardware such
as CMM-H [34] as well as requirements for OS control. To
motivate our design, we then discuss why existing Linux
DAX support is insufficient for this model.

3.1 Hybrid SSD Model
Our hybrid SSD model consists of three main components,
pictured in Fig. 2: a persistent cache, a conventional Flash-
based backing storage, and a cache management component.
As conventional Flash-based storage does not provide byte-
granular media access, the device requires a byte-addressable
cache for implementing the load/store interface. Since the
load/store interface provides synchronous media access, the
cache’s access latency must be low, i.e., in the order of few
hundreds nanoseconds, in order to avoid stall cycles due
to slow media accesses. This, however, requires a memory
technology that is more expensive than conventional Flash
(e.g., DRAM). Consequently, our model assumes that the
cache only offers a small fraction of the storage’s capacity,
i.e., few GiB of cache per TiB of backing storage. Further,
we assume the availability of a flush-on-fail mechanism,
like CXL GPF, to write all modifications in volatile CPU and
device caches to the SSD’s non-volatile backing storage.With
this flush-on-fail mechanism, we can ensure persistence of
the on-device cache even when it uses volatile DRAM.
For our approach, we assume a minimal device that only

offers an interface for hardware-assisted data movement
between cache and storage and leaves cache management to
the operating system. This includes the mapping between
cache and storage, the allocation of cache space, and a paging
mechanism for providing load/store access on the entire
storage capacity. The device exposes the cache as device-
attached memory to the host.
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Figure 3. Random write throughput and CPU efficiency for
CXL-attached DRAM and a conventional NVMe SSD.

3.2 Hybrid SSD with Linux DAX
When we apply our hybrid SSD model to Linux’s existing
DAX support, we notice two problems. First, Linux assumes
non-blocking load/store access on the entire storage capacity
at all times [26]. The hybrid SSD, however, can only provide
this access through the much smaller cache. Consequently,
when an application accesses an uncached file range through
memory-mapped I/O, the resulting memory access stalls the
CPU for the entire duration of the much slower access to the
backing storage. There is no mechanism in place to defer the
access until the required data is present in the cache. As a
result, the CPU efficiency of I/O drops.

The second problem concerns control over DAXmappings.
As of now, Linux uses a per-inode DAX flag to determine
whether I/O goes through the volatile page cache or uses
direct access to storage [26]. Given that Linux expects that
the entire device is byte-addressable at all times, there is
little use in supporting more fine-granular control over DAX
even when only a small subset of a file requires DAX for
strong persistence guarantees (e.g., consistency of metadata).
If we apply the same approach to our hybrid SSD model,
parts of a file with strong persistence requirements will have
to compete with other, non-critical parts for cache capacity,
resulting in a higher latency for critical writes. Regarding
hybrid SSDs, we consider this to be themost severe limitation
of Linux’s existing DAX support.
Cache capacity is not the only resource that operating

systems need to consider. When saturating the bandwidth of
the load/store interface, the access latency rises. In turn, the
number of stall cycles increases and the CPU efficiency (in
s/GiB as defined by Werling et al. [40]) of I/O drops. Figure 3
shows this effect for a random write fio [10] (version 3.37)
workload on CXL-attached DRAM. Unlike the CXL-attached
DRAM, the NVMe SSD’s block interface is not prone to
decreased CPU efficiency with I/O-heavy workloads.
Windows suffers from similar limitations. For example,

DAX control is limited to entire NTFS volumes [38]. To sup-
port hybrid SSDs efficiently, storage abstractions require (1)
fine-granular control over where to use the load/store inter-
face and the block interface, and (2) strategies for mitigating
the CPU overhead of a cache miss on the load/store interface.
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4 Approach
Based on our problem analysis in § 3, we now propose op-
erating system abstractions for storage I/O that unfold the
full potential of future hybrid SSDs. This includes a new
user space API for DAX (§ 4.1) that enables fine-granular
control over persistent cache usage as well as a new take on
the on-device cache management that uses the page cache
(§ 4.2). Figure 4 gives an overview of our design.

4.1 User Space API
To give applications fine-granular control over DAX use,
we introduce a new mmap() flag (MAP_DAX) for requesting
DAX mappings explicitly. This flag guarantees direct access
to storage, meaning that writes on a mapping established
with MAP_DAX are not buffered in volatile memory. While file
ranges covered by DAX mappings are required to use the
load/store interface of a hybrid SSD, all other mappings may
be backed by volatile system memory.

By default, all DAX users contend for the same on-device
cache capacity. In order to provide better performance isola-
tion between tasks, we propose mlock() for pinning pages
into the hybrid SSD’s cache. For this, we introduce a new re-
source limit that allows to configure the maximum amount of
DAX pages pinned on a per-task basis. Due to the differences
in the device model assumed by Linux DAX and our hybrid
SSD model, pinning DAX pages was previously unnecessary
which resulted in mlock() skipping those pages.

4.2 Persistence-Aware Page Cache
For seamlessly integrating emerging hybrid SSDs into the I/O
stack of modern operating systems, we propose a persistence-
aware page cache. The idea of this design is to insert pages
from the hybrid device’s cache, so called DAX pages, into the
page cache to provide direct access to storage. In addition,
certain operations can leverage strong persistence guaran-
tees of DAX pages (e.g., fsync()). With this approach, we
put the operating system in control of the device’s cache
management. Apart from hardware-assisted data movement
between cache and backing storage, we assume that a hybrid
SSD exposes its on-device cache as device-attached memory.

Most of storage I/O goes through the page cache including
memory-mapped file I/O and regular POSIX I/O calls like
read() and write(). To provide a coherent view on the
hybrid SSD irrespective of the storage interface used, we
can leverage the fact that both direct access and buffered
I/O go through the persistence-aware page cache. For DAX
pages, direct I/O can be served from the page cache. While
this might seem counter-intuitive, it does not contradict the
definition of direct I/O, namely that the I/O request is served
between the user buffer and the storage device [1], which
includes the on-device cache.

(1) Fine-Granular DAX Mappings  (3) Sync. Writeback Bypass

mmap(MAP_DAX)

DAX-aware AppDAX-aware AppDAX-aware App

(2) Hybrid-aware Page Cache Allocation 

File DAX volatilevolatile

File DAX volatilevolatile

load

V P V
Page

Cache

  allocate persistent page for DAX

alloc page

File DAXvolatile

v p v
Page
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V volatile RAM persistent cacheP
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Hybrid-aware File System

Writeback
Request

Hybrid SSD

P skippedWriteback
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Figure 4. Overview of our design.

Another benefit of letting the operating system manage
the on-device cache mapping through the page cache is that
the operating system can reflect the cache mapping state in
its page tables. This enables the operating system to defer
load/store accesses that miss the cache until storage contents
are fetched from the backing storage. For DAX-mapped file
contents not present in the cache, the present bit in page
table entries (PTEs) is cleared. When applications try to
access such a page, the page fault handler uses the hardware-
assisted data movement to bring in file contents from the
backing storage. In the meantime, the operating system can
schedule a different task.
To bring persistence awareness to the page cache, our

design adds two components. The first is the page cache’s
DAX-aware page allocation. To determine the type of page
the page cache needs to allocate, it checks if there is any
overlapping DAX mapping for this file range. This DAX
mapping is not required to belong to the task that triggered
the allocation, but can originate from any task with a mem-
ory mapping on the associated file. If such an overlapping
mapping exists, the page cache allocates a clean page in the
hybrid device’s cache, fetches the storage contents from the
backing storage, and inserts it into the page cache. Other-
wise, volatile system memory is allocated and file contents
are obtained through the block interface. The page cache
stores the mapping between cache and backing storage anal-
ogous to the mapping between buffered file contents and the
backing block device.

When regular mappings and DAX mappings overlap, the
DAX mapping takes precedence for determining the page al-
location type due to the stronger persistence requirements of
DAXmappings. When establishing a new DAXmapping, file
contents buffered in volatile system memory for the mapped
file range would violate the invariant of the persistence-
aware page cache. To restore the invariant, volatile page
cache entries must be either migrated to DAX pages (DAX
upgrade) or evicted from the page cache. If there is free cache
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capacity, those page cache entries can be migrated with a
fast on-CPU memcpy(). Otherwise, we drop them from the
page cache. This, however, might incur slow I/O for writing
dirty pages back to permanent storage.

The second component of our approach are optimizations
to I/O calls that can benefit from persistence guarantees of
DAX pages. Synchronous writeback, like calls of fsync(),
block the calling task until file data is guaranteed to have
reached the storage device. As fsync() becomes a perfor-
mance bottleneck for applications with strong persistence re-
quirements (Fig. 3), we use the persistence guarantee of DAX
mappings to increase their performance. During synchro-
nous writeback, DAX pages can be skipped without breaking
fsync() semantics. Only during asynchronous writeback or
when being evicted from the page cache, file contents from
DAX pages are synced with the backing storage.

5 Implementation
We implement the persistence-aware page cache in Linux
6.6.0 [39]. Our design requires explicit support by file sys-
tems as parts of the writeback code path reside in file system
code. Supporting the MAP_DAX flag and our writeback opti-
mizations in a particular file system requires modifications
of less than 150 LoC. Currently, we support ext2 and ext4.
In total, our modifications including memory management
code and file system changes account for approximately 1500
LoC. Since there are no commercial hybrid SSDs available for
evaluating our prototype, we emulate a hybrid SSD using a
commodity NVMe SSD and a CXL memory expander based
on Altera’s Agilex 7 I-Series FPGA [9]. In place of an on-
device cache manager, our prototype uses the host’s storage
stack for moving storage pages between the cache (CXL-
attached DRAM) and the backing storage (NVMe SSD). This
emulated device still provides a good performance model
for workloads that are dominated by on-device cache hits.
The CXL-attached DRAM is exposed to the host system as a
memory-only NUMA node. Thus, we can use Linux’s page
allocation and reclaim mechanisms.
In order to track DAX mappings on files, we add a per-

file interval tree [27] of DAX virtual memory areas (VMAs)
alongside the interval tree of all VMAs already used by Linux.
This enables the efficient lookup of DAX mappings without
having to scan all VMAs of a cacheable object. When al-
locating memory, the page cache checks if the underlying
device is a hybrid SSD, i.e., it has a reference on an object
describing a hybrid SSD. This object includes the NUMA
node information required for allocating cache pages. If the
underlying device is a hybrid SDD and a DAX mapping over-
laps the new page cache entry, the page cache allocates a
cache page and marks it as persistent using a new page flag.
Otherwise, volatile system memory is allocated using the
existing allocation logic.

On the generic writeback code path, we add a flag in-
dicating that file systems should skip DAX pages during
writeback. This flag is set for all types of synchronous write-
back, e.g., fsync() and fdatasync(), sync_file_range(),
or msync() with MS_SYNC. Asynchronous writeback, how-
ever, is not affected. File systems supporting hybrid SSDs
leave DAX pages marked dirty and do not tag them for write-
back, thus reducing the latency of synchronous writeback.
Currently, our file system support limits lightweight fsync()
to data pages. Metadata and journal blocks do not make use
of the on-device cache.

6 Evaluation
To showcase the potential of hybrid SSDs for workloads with
strong persistence requirements, we evaluate our software
prototype using the key-value store Valkey [3] (version 7.2.5)
with AOF persistence [5]. As discussed in § 1, the always AOF
fsync() policy drastically impacts performance, reducing
the usefulness of Valkey’s strongest persistence mode. In
order to mitigate this overhead, we propose to employ a
DAX mapping on the AOF that enables lightweight fsync()
without weakening any durability guarantees.

Since Valkey’s AOF implementation uses appendingwrites
(i.e., O_APPEND [1]), we implement ammap AOF backend that
uses memory-mapped I/O for writing to the AOF. When run-
ning out of allocated space in the AOF, the mmap backend
resizes the AOF using fallocate() and pre-fetches newly
allocated blocks into the page cache. AOF resizing is done
in a background worker. Thus, Valkey’s main thread han-
dling command processing is not slowed down. To avoid
page cache pollution with already written AOF contents,
the mmap backend explicitly drops previously written parts
from the page cache during resize. The AOF’s page cache
footprint never exceeds 40MiB.

To use the load/store interface of hybrid SSDs, our mmap
AOF backend can optionally use the MAP_DAX mmap() flag
for the AOF mapping. With this option, the writeback of the
on-device cache is deferred to the eviction of AOF contents
from the page cache during the background AOF resize.

6.1 Evaluation Setup and Methodology
For our emulated hybrid SSD, we use a Samsung 970 Pro
1 TB NVMe SSD as the backing permanent storage and a
CXL memory expander based on an Altera Agilex 7 I-Series
FPGA [9]. The CXL memory expander is equipped with
16GiB DDR4 @ 3200MT/s. On our evaluation setup fea-
turing an Intel Xeon Silver 4416+ with 128GiB DDR5 @
4800MT/s, we disable Turbo Boost andHyper Threading in an
effort to reduce variance in our measurements. The memory
latency measured with Intel MLC [22] is about 3.2× higher
for the CXL-attached DRAM (∼358 ns) than for CPU-local
DRAM (∼111 ns). We use the same NVMe SSD as a baseline
for our evaluation.
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We argue that our emulated hybrid SSD provides a real-
istic performance outlook for future hybrid SSD products
in the evaluated workload because the main difference be-
tween our emulated device and future hybrid SSD hardware,
namely the data movement between Flash storage and the
on-device cache, is not present on the hot path of Valkey’s
AOF persistence. Instead, data movement between storage
and cache is offloaded to the background worker that is only
invoked during AOF resize operations.

Before each test run, we format the storage device under
test with a clean ext4 file system that has journaling disabled.
For measuring the CPU and energy efficiency, we adopt

the efficiency metrics for analyzing PM file systems pro-
posed byWerling et al. [40]. This CPU efficiency is quantified
by dividing the sum of CPU time each core was active1 by
the amount of work done (i.e., the number of requests pro-
cessed). Analogously, the energy efficiency is quantified by
the consumed energy divided by the work done. We obtain
the amount of energy consumed by measuring the average
power at the wall plug. Similar to Werling et al., we measure
the idle CPU load and idle power consumption of our evalua-
tion system before running our benchmark and subtract this
base load from our measurements to isolate the evaluated
workload from the rest of the system.

As the CPU efficiency metric considers the load on the
entire system, thus also including CPU overhead of the data
movement between storage and cache, we expect real-world
hybrid SSDs to improve CPU efficiency over our emulated
device. The energy efficiency measured when using the em-
ulated device suffers from similar limitations.

6.2 Valkey AOF Performance
In the following, we present throughput and latency statis-
tics from valkey-benchmark’s write-only SET benchmark [4].
In our testing, other write-only workloads showed similar
behavior to SET.

As shown in Fig. 5 (a), our mmap AOF backend offers per-
formance similar to the default AOF implementation when

1∑ 𝑡𝑠𝑦𝑠 + 𝑡𝑢𝑠𝑒𝑟 + 𝑡𝑖𝑟𝑞 + 𝑡𝑠𝑜𝑓 𝑡𝑖𝑟𝑞 with 𝑡𝑥 as reported in /proc/stat

using conventional storage. With the hybrid SSD, the mmap
backend achieves a 237.6 % higher throughput for the costly
always AOF fsync() policy. In the case of everysec and never,
Valkey’s performance is hardly affected by the use of the
hybrid SSD. This is expected as these policies issue few to
none fsync() calls. We do not see a negative effect from the
increased memory latency of our CXL-attached DRAM.

Fig. 5 (b) shows percentiles for the request latency with the
always fsync() policy. Compared to the default AOF back-
end, the median request latency of the mmap backend with
our hybrid SSD is reduced by 71.5 %, and the 99𝑡ℎ percentile
even more by 77.8 %. The worst-case latency, however, does
not follow this trend, and is only reduced by 67.4 %. This
behavior is not exclusive to the hybrid SSD, but visible for
the mmap backend in general.
We suspect that the comparatively high worst-case la-

tencies of the mmap backend are caused by fsync() calls
syncing outstanding file metadata following AOF writes. For
the most cases, calls to fsync() after an AOFwrite only need
to persist data pages. The AOFmetadata only changes during
a resize operation. If a call to fsync() in the main thread
occurs during an AOF resize in the background worker, the
fsync() writes the AOF metadata even though the main
thread is only concerned with syncing AOF writes that do
not require the updated metadata for persistence. If our the-
ory is correct, we expect to solve this problem by using a
synchronous writeback interface for AOF writes, in order to
only sync specific ranges of the AOF (e.g., msync()).
Valkey can improve throughput with command pipelin-

ing [6]. When the pipeline length increases, the number of
AOF writes per request decreases because Valkey coalesces
commands from the pipeline into a single AOFwrite [5]. Con-
sequently, the number of fsync() calls under the always
policy is anti-proportional to the pipeline length.
Figure 6 (a) shows the impact of the pipeline length on

the throughput. When each write command is synced im-
mediately, the hybrid SSD achieves a throughput of up to
4.1×. Due to the decreased fsync()-to-write ratio for long
pipelines, the lead of the hybrid SSD over conventional I/O
shrinks (Fig. 6 (b)). Similar to the throughput, the mmap
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Figure 6. Throughput, speedup factor, CPU efficiency, and energy efficiency as a function of the pipeline length for the always
fsync() policy. The impact of lightweight fsync() decreases with an increasing pipeline length.

backend with the hybrid SSD also improves the CPU and
energy efficiency of request processing. Figure 6 (c) shows
that our hybrid SSD helps to reduce the per-request CPU
overhead by up to 78 %. The per-request energy consumption
(Fig. 6 (d)) is reduced by up to 74 %.

6.3 Discussion
One problem that we observed during fsync()micro bench-
marks on DAXmappings concerns the dirty state tracking of
Linux. Since our current implementation leaves DAX pages
marked dirty during synchronous writeback, the number
of dirty pages continuously grows until the next asynchro-
nous writeback. During calls of fsync(), file systems scan
all dirty pages of a file, but when the dirty set of this file
grows too large, the CPU overhead of frequently scanning
all dirty pages gets impractical. In order to avoid this prob-
lem, we propose to introduce a third dirty state, namely the
out-of-sync state, that describes a page whose content is guar-
anteed to persist but is not synced with the backing storage.
During lightweight fsnyc() calls, we skip the writeback of
dirty DAX pages but mark them out-of-sync, thus excluding
them from future synchronous writeback. As our AOFmmap
backend maintains a small page cache footprint for DAX-
mapped contents, it does not suffer from the limitations of
the currently implemented dirty state tracking.
Although real hardware is not yet available, we believe

our hybrid SSD model closely reflects what can be expected
from future devices. Despite this limitation, our evaluation
shows that the OS-level abstractions we devised can achieve
substantial performance improvements when it comes to
in-memory database synchronization. We argue that our ap-
proach makes the trade-off between performance and strong
persistence guarantees less painful. However, we acknowl-
edge that future hardware may deviate from our model. Re-
evaluating on real-world hardware will show whether our
design works in practice.
As various industry stakeholders push for bringing CXL

into consumer hardware [8, 16], we argue that end-user
software with an internal database (e.g., SQLite [19]) may be
another potential use case for our design.

7 Future Work
While our current design provides an easy-to-use interface
for DAX that requires minimal changes to code already us-
ing memory-mapped I/O, applications require modifications
regardless. As seen with Optane DCPMM, shipping explicit
DAX support in applications takes time and significant ef-
fort. Especially for consumer applications where developers
lack the resources to support upcoming technologies with
few initial users, this is a serious obstacle in the widespread
adoption of hybrid SSDs.
In order to utilize otherwise unused on-device cache ca-

pacity, we propose Transparent DAX Mappings (TDMs) as
a future extension to our design. With TDMs, we aim to
opportunistically provide user space applications with trans-
parent DAX access (i.e., within read() and write()) with-
out having to explicitly request a DAX mapping, thereby
bypassing the kernel and avoiding block layer protocol over-
head. Although prior works like FLEX [41], SplitFS [25], or
MadFS [43] previously explored DAX for bypassing the ker-
nel on data operations, they assume a storage device that
does not require careful resource management. Unlike prior
research, we plan to build TDMs around our ideas of fine-
granular DAX control and hybrid SSD-aware resource man-
agement. Further, we intend to explore techniques for dy-
namically detecting frequently synced file ranges and specu-
latively migrate them to the on-device cache.

8 Conclusion
In this work, we looked at future hybrid SSDs from an op-
erating system’s perspective. We have established a model
and, building on that model, devised OS-level abstractions
and interfaces that we deem more appropriate than what
is offered by state-of-the-art operating systems. Our evalu-
ation using Valkey has shown that our design can reduce
the performance disadvantage of strong persistence with
an 4.1× increase in throughput, thereby reducing the trade-
off between persistence and performance. However, further
evaluation using real hardware in the future is necessary.
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