Full-Scale File System Acceleration on GPU

Peter Maucher Lennard Kittner Nico Rath
Karlsruhe Institute of Technology Karlsruhe Institute of Technology = Karlsruhe Institute of Technology
Germany Germany Germany
Gregor Lucka Lukas Werling Yussuf Khalil

Karlsruhe Institute of Technology = Karlsruhe Institute of Technology = Karlsruhe Institute of Technology

Germany

Thorsten Groninger

Germany

Germany

Frank Bellosa

Karlsruhe Institute of Technology Karlsruhe Institute of Technology

Germany

ABSTRACT

Modern HPC and AI Computing solutions regularly use
GPUs as their main source of computational power. This
creates a significant imbalance for storage operations for
GPU applications, as every such storage operation has to be
signalled to and handled by the CPU. In GPU4FS, we propose
a radical solution to this imbalance: Move the file system
implementation to the application, and run the complete file
system on the GPU. This requires multiple changes to the
complete file system stack, from the actual storage layout
up to the file system interface. Additionally, this approach
frees the CPU from file system management tasks, which
allows for more meaningful usage of the CPU. In our pre-
liminary implementation, we show that a fully-featured file
system running on GPU with minimal CPU interaction is
possible, and even bandwidth-competitive depending on the
underlying storage medium.

KEYWORDS

File System, GPU, Direct Storage Access, GPU-Acceleration,
GPU-Offloading

1 INTRODUCTION

Graphics processing units (GPUs) offer massive parallelism
for data-parallel applications. This data needs to be loaded
into GPU memory in some way. Currently, the data manage-
ment is handled mostly on CPU, with the GPU only signalling
progress to the CPU. Assuming this data comes from storage,
the request has to go through the interconnect to the CPU.
After the CPU actually starts working on the request, the

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License. DOI: https://doi.org/10.18420/fgbs2024f-03. FGBS ’24,
March 14-15, 2024, Bochum, Germany.

Germany

CPU will have to go through the file system (FS) implemen-
tation until it hits the storage device, and after receiving the
response, has to signal completion to the GPU. Some of this
latency is unavoidable, especially the storage latency, but a
lot of the latency can be avoided if GPU hits storage directly.
Even with CPU file systems, Volos et al. [26] argue that some
overhead is added by old FS interfaces originally designed
for HDDs.

In this paper, we present GPU4FS, a modern, fully-featured
GPU-side FS designed to solve both the latency induced by
the FS interface as well as by the trip through the inter-
connect. GPU4FS runs on the GPU, in parallel to the actual
GPU-side application, which allows for low latency access
and shared memory communication between application
and the FS. Given the lack of a system call instruction on
GPUs, this communication is done via shared video mem-
ory (VRAM), utilizing a parallel work queue implementation.
We also place work queues in DRAM, which enables fast,
parallel, user space access for CPU-side applications to the
FS.

We designed a file system with a feature set closely follow-
ing modern file systems, as the file system interface is widely
used and well understood by programmers. Instead of having
to port each and every application, we can completely hide
the implementation details to unaware applications, but en-
able an opt-in for CPU-side applications to benefit from the
changed semantics. On the GPU, the application needs to be
modified for any kind of storage access. Using GPUfs, Silber-
stein et al. [24] demonstrate that offering a library interface
to CPU FS eases access to storage for GPU programmers, but
GPUfs only calls a CPU-side file system. GPU4FS offers a
similar interface to GPUfs, but runs the file system on the
GPU.

In our preliminary implementation, we demonstrate GPU
access to Intel Optane Persistent Memory (PMem) [19], and

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.18420/fgbs2024f-03

show that we are write-bandwidth competitive to contempo-
rary Optane file systems. We also demonstrate an implemen-
tation for GPU-optimized folder structures and a RAID im-
plementation. We argue that this shows that a fully-featured
GPU-side file system is both useful and can work well.

2 METHODOLOGY

Given the novel idea to attempt to move the implementa-
tion from the CPU to the GPU, GPU4FS shows major differ-
ences to contemporary file systems in the implementation.
To benefit from the compatibility with preexisting CPU-side
applications and also with the familiarity for new GPU-side
applications, these differences need to be hidden by the in-
terface.

2.1 Interface

The most interesting aspect for compatibility is the file sys-
tem interface. In POSIX [17], accesses are commonly handled
using syscalls, which is not feasible in GPU4FS for several
reasons: A classical system call instruction is not available
on GPUs, and even with such an instruction, it would most
certainly not be usable from the CPU. Instead, we elected the
common approach (e.g., FUSE [6]) to use a shared-memory
buffer for communication. A requesting process will insert a
command for every intended file system operation, while the
GPU4FS process can then parse the information and handle
the request.

GPU4FS is intended to offer two sets of commands: One
closely aligned to the POSIX interface, and a high-level in-
terface intended to reduce the number of requests and thus
decrease latency and increase bandwidth. Volos et al. [26]
show that major improvements can be achieved by reduc-
ing the number of interactions: To read a single file into
memory using POSIX interfaces requires five operating sys-
tem interactions: A call to open() for the file descriptor, a
call to fstatat() to get the length of the file, followed by
malloc() for memory allocation, then one or more calls to
read() to fetch the actual data and close() to release the
file descriptor. This does not meaningfully improve with the
usage of mmap(), as the only call to be left out is the call to
malloc(). In both cases, read() and mmap(), the process is
inherently racy, as other tasks might change both file con-
tent as well as metadata like length at any time. Instead, we
offer an interface to load a complete file, with the allocation
of memory for the loaded file handled inside the command
handler. The resulting data is written into the shared buffer,
and a pointer/length pair is returned. This way, the operation
can be handled atomically, and only one request is needed.
We expect a mixture of both interfaces to be used in GPU ap-
plications: For parallel reads of a folder, the POSIX interface
can be used so that each item is only loaded once, but each

Maucher et al.

individual file can be loaded using the atomic request. Nev-
ertheless, the POSIX interface is required for compatibility.

One important consideration for the compatible applica-
tions is supporting mmap(). In Linux, one can either use a
private or a shared mapping, which governs two independent
features: A shared mapping implies that modified memory
is written back to disk, but also allows for shared memory
communication with other processes. We assume that most
applications use a shared mapping to persist their changes,
rather than for shared memory communication. In a CPU-
only file system with a DRAM page cache, implementing
both is relatively easy, but mixing in multiple devices with
their own memory adds complications, and forces the data
to be held in DRAM to allow access from all devices. To
allow for high-bandwidth VRAM-side mmap, we add an ad-
ditional write-back mode that only flushes data to disk when
unmapped. Additionally, this lets us avoid costly page table
changes. We expect this mode to be widely used in GPU-side
applications that are inherently incompatible with any other
file system.

2.2 GPU Implementation

As a broad overview, a system running GPU4FS has at least
two corresponding processes running: the main GPU-side
GPUA4FS process handling the complete file system, and a
CPU-side process responsible to set the GPU process and to
establish communication. Additionally, there may be multi-
ple additional processes running on both CPU and GPU that
interface with the two GPU4FS processes. In this section, we
present the GPU-side implementation, which is responsible
for communicating to requesting processes using the shared
command buffers as described above and communicating
to the storage backend. FS management tasks like garbage
collection and defragmentation are also controlled on and
run by the GPU.

A request to the file system will always occur through one
of the command buffers, either through a buffer in VRAM
issued by another GPU-side process or through a buffer in
DRAM for any other request. Such a request usually causes
accesses to the disk or PMem, either to load or to store in-
formation. Additionally, even a data load request can cause
data changes on the storage medium, as metadata needs to
be updated.

Read Request. First, we describe a read request without
any data changes: After the request is parsed, the GPU tries
to load data from one of its caches, either in VRAM or in
DRAM. We employ both caching levels, as VRAM is usually a
lot smaller and DRAM is still a lot faster than contemporary
storage devices like NVMe and PMem, and an early paper
suggests the same behavior for Compute Express Link (CXL)
implementations [25]. If the requested data is not cached,

Full-Scale File System Acceleration on GPU

the data is instead fetched from storage. The main goal of
GPUA4ES is to bypass the CPU for storage access: PMem is
mapped directly to the GPU, and NVMe memory is accessed
via Peer to Peer-DMA (P2PDMA) as suggested by Qureshi
et al. [21] for their BaM system architecture. After the data is
fetched, it is possibly cached depending on application hints.
We add caching hints as some applications only require a file
once, thus freeing up cache capacity for repeated accesses.
Except in a shared mmap mapping, we allocate space for the
result in the shared memory area, and store the fetched data
there. To signal completion, we store the data pointer and
length into the initial command structure, and conclude the
interaction with an atomic store to a completion flag.

Write Request. In the opposite direction, when data is to
be written, a few more steps are required to guarantee data
consistency and to allocate space for new files. Even though
latency reduction for GPU-side application is a major goal
for GPUA4FS, the overall latency for CPU-side applications
is expected to grow. This increases the amount of data in-
flight, and therefore the pressure on the consistency system.
We intend to solve this issue using a combination of log-
structuring [23] and journaling [20]: Data writes are done in
a log-structured way, while metadata updates are journaled.
The journal therefore is a major point of contention. To solve
this issue, we reserve a big chunk of persistent storage to
the journal, and assign each independent GPU workgroup
one smaller subarea of the large chunk. To avoid multiple
conflicting journal entries for the same object, we limit ev-
ery file system object to at most one workgroup at runtime.
A journal entry is fixed-size, and allocated using a single
atomic store to a flag variable. Another atomic store marks
the completion of the journal entry setup. That way, should
a crash occur, the whole journal area can be scanned and op-
eration completion can be verified. To commit a data-write,
the inode structure needs to be modified to add the pointers
to the new file system blocks. As compared to a file system
on a block device, PMem only allows for smaller granularity
of data persistence, which means that we cannot atomically
change the inode in-place. Instead, the journal allows for
recovery of either the old or the new state even though we
use in-place modifications.

GPU4FS is designed from the ground up for modern stor-
age with good random access performance, and for PMem
direct mapping capabilities. WineFS [11] shows the advan-
tages of using hugepages for direct mapping, as compared
to only 4 kB pages. GPU4FS incorporates this into its design,
combined with a novel take on extents, a common feature in
multiple file systems [7, 22] . We use 64 bit pointers where
two bits are used for a flag bit to discern between aligned
4KiB, 2 MiB and 1 GiB pages as well as 256 byte inodes. Not
only does this allow for direct mapping, but it also decreases

the number of block pointers. On GPU, a decrease in block
pointers has the additional advantage of having less pointer
divergence, which means the GPUs memory management
unit can coalesce more accesses. Similar to WineFS, the allo-
cator maintains free-lists of aligned pages for each of the sizes
which are split up into smaller blocks as needed. GPU4FS
assumes a flat address space, and does not reserve special
areas for inodes, directories, or indirect blocks filled with
block pointers. This means that gradual fragmentation is a
major concern, which we combat mainly by reusing garbage-
collected space and partial defragmentation if needed.

Additional Features. Additionally, GPU4FS implements fea-
tures found in modern file systems like BTRFS [22] and ZFS
[2], namely checksums, deduplication and storage distribu-
tion over multiple drives (RAID) [18]. We can use checksums
to notify the application if data has been modified, which
avoids propagating erroneous data into the application. On
top of that, checksums enable deduplication to increase the
usable storage area if identical blocks are stored, and improve
mapping write-back performance. A RAID implementation
lets us combine the storage capacity of multiple drives for
larger data sets. Additionally, in combination with check-
sums, we can use the redundant information in the RAID to
recover from checksum errors. Both checksums and RAID re-
quire parallel computations, which is well-suited for a GPU.

For the checksum functionality, we select BLAKE3 [15] as
the hash function as it is designed for parallel computations,
but is still secure with 128 bit collision resistance. To further
increase the exploitable parallelism, we checksum each block
individually. To differentiate between changes in the check-
sum as compared to the data, we also calculate the hash for
every block storing checksums. We further utilize them to
avoid storing the same data twice. At runtime, checksums
help with the mmap implementation: If we use mmap in
VRAM, the buffer is mapped as read/write to avoid page
table modifications, but then, no pagefaults occurs on modifi-
cation. To detect changes when writing back to disk, instead
of having to compare every byte and potentially having to
fetch them first, we can simply compare the checksums, thus
increasing performance and decreasing storage latency.

The other important feature we implement is software
RAID: GPU4FS takes heavy inspiration from the BTRFS vol-
umes, and similarly offers runtime-configurable RAID levels
using volumes. The design goal of supporting direct map-
ping is leads to difficulties with parity information, so direct
mapping is enabled on a per-file basis. We tag each block
pointer to be either physical, or virtual, with physical point-
ers encoding a disk and an offset, while virtual pointers are
translated through a BTRFS-inspired volume tree to blocks
on disk, potentially multiple. This flexibility even allows
different RAID levels for different parts of the file.

2.3 CPU Implementation

In GPU4FS, the GPU is mainly responsible for the file system.
Nonetheless, the CPU-side GPU4FS implementation plays a
major role in establishing communication to the FS for both
GPU-side and CPU-side clients, and CPU-side application
are able to access the FS on the GPU.

The connection is always established on the CPU, as some
parts of the procedure require page table changes and thus
kernel privileges. Hence, if a GPU-side client desires to in-
terface to GPU4FS, its CPU-side process managing the GPU-
side client is responsible for initializing the communication.
The requesting CPU-side process starts by sending an inter-
process communication (IPC) message to the GPU4FS CPU-
side process, which includes the desired size for the GPU4FS
communication buffer. The CPU-side GPU4FS process allo-
cates a part of VRAM for GPU4FS, which is used for shared
memory buffers, caches, and internal data, with the remain-
der of VRAM being used by actual applications. Similarly, the
CPU-side GPU4FS process controls shared memory buffers
in DRAM for CPU-side FS clients. After the request, GPU4FS
allocates some space in its VRAM area or in DRAM for com-
munication, and maps it as a buffer in the requesting process.
Here, the page tables need to be modified, so this part needs
to run on the CPU. Given that the GPU controls the file
system, the GPU-side GPUA4FS is notified before communi-
cation can be fully established. The CPU-side and GPU-side
GPU4FS processes communicate via the same shared mem-
ory interface as the other processes, the only difference is the
existence of a few higher-privilege commands. One of these
higher-privilege commands is used here by the CPU-side
process to inform the GPU of the new connection and the
newly allocated buffer. The GPU then initializes the buffer
and further data structures needed for communication, and
signals completion to the GPU4FS CPU-side process. With
this completion, the CPU-side process sends a response with
the address of the new buffer to the requesting CPU-side
process, which can then finally start using GPU4FS. The only
difference between a CPU-side GPU4FS client and a GPU-
side GPUA4FS client is that in the GPU case, two buffers, one
in DRAM and one in VRAM, are initialized, and the CPU-
side requesting process hands the buffer address to its GPU
process.

As mentioned above, during the communication setup,
certain changes to the page table of the requesting process
need to be made. Additionally, this operation is needed for
the shared mmap case. This operation is usually forbidden
in user space, and can only be implemented in the kernel.
Following the design of Aerie [26] we add a minor kernel
modification that allows the CPU-side implementation to
map pages in other processes. In normal operation, FS access
completely bypasses the kernel, which makes GPU4FS a user

Maucher et al.

CPU | 2x Xeon Silver 4215, operating at 2.5 GHz

DRAM | 8x DDR4 at 2400 MT/s, 16 GiB

PMem | 4x DDR-T at 2400 MT/s, 128 GiB

GPU | AMD Radeon RX 6800, VRAM 16 GiB, 16 PCle
Gen3 lanes

Table 1: Test Platform

space file system, and opens the possibility for performance
gains. Figure 1 shows the complete setup with the command
flow, including the kernel doing page table modifications for
shared mmap.

3 PRELIMINARY RESULTS

We implement a demonstrator to build the case for a full-
blown GPU4FS implementation. The main concerns are band-
width and latency of the file system as compared to a simple
GPU access to storage without the file system overhead. Our
demonstrator uses Vulkan [9] as the programming interface,
running on the RADV [5] driver on Linux. Our implemen-
tation adds a simple write path to Optane PMem, and we
evaluate the directory creation using an EXT-inspired H-Tree
approach [7] and RAID address translation overhead. Due
to the Vulkan implementation, we have to restart the file
system for every test, which incorporates a startup latency
of 12ms. All the tests run using Intel Optane as the stor-
age medium, the exact specification can be found in Table 1.
We make sure that the GPU accesses Optane without going
through the inter-processor interconnect.

We achieve a bandwidth maximum of 1.5GBs™! to one
Optane DIMM using our configuration. Even though the CPU
can write with up to 2 GB s~!, we use the GPU bandwidth
as the baseline for our evaluation. Similarly, we also have to
wait about 12 ms for the GPU to respond to our command,
even if nothing in the file system happens. We assume this
is because we have to reinitialize large buffers, which seems
to be uncommon in the video game applications the driver is
optimized for. In our complete implementation, we expect to
reach bandwidth equality to the CPU with all storage media,
and we expect the latency to reduce to a few microseconds
if GPU4FS is already running instead of having to be started.

The first file system test inserts a single file into a folder,
to verify that given a large enough file size, the bandwidth
limit mentioned above is reached. In the plot given in Figure
2, we reach the maximum possible bandwidth at a file size
of 128 MiB with 1.49 GB s~ 1. This means that the file system
does not add an inherent overhead to every copy operation.
This plot includes the 12 ms startup latency, to show that
we can be bandwidth-competitive even including the higher
latency.

Full-Scale File System Acceleration on GPU

Processes GPU CPU-side
GPU4FS
mmap () Kernel
(D R x e = I R *
cmd
xR
— ——
|_ nage
- FS Caches)

Figure 1: Full-Scale GPU4FS design. Processes either in DRAM or VRAM communicate their requests to the GPU,
which accesses storage. Optionally, shared mmap is handed to the kernel for page table modifications.

We also evaluate metadata operations in isolation, but
subtract the latency here as the runtime of the metadata
operation is similar to the startup latency. As the metadata
operation, we create a deep directory chain, similar to a call
tomkdir -p a/b/c/d/....On the GPU, we issue a single
command, which also shows the benefit of our more general
interface, whereas the CPU has to issue repeated mkdirat ()
calls, which incurs repeated syscall overhead. We compare
to EXT4, as GPU4FS uses EXT4-inspired H-trees. The results
can be seen in Figure 3. GPU4FS is slightly slower than the
CPU for large enough requests, but we expect metadata
operations to be few and the latency to be hidden by other
operations. Also, we expect to reduce the additional latency
in the future. The main takeaway is that even dependent
metadata operations, though rare, can be efficiently executed
on the GPU.

3.1 Discussion

Our current implementation is not fully optimized, as can be
seen by the sub-optimal bandwidth and latency. Currently,
we use the RADV driver, which is designed for video games,
not for compute, which might contribute to especially the
latency issues. In the future, we intend to use AMD’s ROCm
stack [1], an actual compute-focused AP, and to optimize our
code to the used hardware based on that new implementation.
This will also enable GPU4FS to operate as a daemon instead
of having to start the system and incurring other slowdowns,
such as TLB misses or cache misses. We expect the latency
to further drop when requests are issued from the GPU, and
when the file system runs as a daemon instead of having to
setup the GPU for every run. We also expect the bandwidth
to increase with further optimizations. Nonetheless, there
are definitely cases in which the GPU-side comes close to
CPU-side implementations, even when tested using CPU

1.5 -
=
[1
<
ﬁ
e
2
E
g 05
[as)]
07

I I I I I
10* 10° 10° 107 108
File Size [Bytes]

Figure 2: GPU write bandwidth to Intel Optane, for one
file with different sizes. The bandwidth increases to
the measured max of 1.5GBs™!.

access to the GPU, and when incurring additional latency.
The results show the potential for a full implementation.

4 RELATED WORK

In this section, we compare GPU4FS to other file systems
and GPU projects.

4.1 File Systems

Kernel File Systems. File systems have been a major compo-
nent of operating systems that they are part of the Portable
Operating System Interface (POSIX) [17]. POSIX suggests a
file system implementation inside the kernel, thus enforcing
system calls for most operations. In Linux, the system calls

1071 ___—___—____—__——_-—~’/””—~””"//,,///

—— GPU4FS
CPU EXT4
I I I I
10° 10! 10? 10°
Number of Directories

Figure 3: Directory creation time per directory tree
depth. At about 1000 directories deep, the GPU and
CPU come close.

are the defined interface. POSIX also lists metadata which
can be requested for file system objects. Examples of mostly
POSIX-compliant file system are the EXT family of file sys-
tems [7] for a simple file system, and more feature rich file
systems with RAID, full data checksums, deduplication and
encryption like ZFS [2] and BTRFS [22]. To reach our goal
of POSIX compliance for legacy applications, we take inspi-
ration of the aforementioned file systems in both features
and data layout.

A recent comparison are PMem file systems: In NOVA [27],
the file system uses direct pointers instead of indices into
data structures to cater to modern storage media, and uses
different logging strategies for data and metadata, similar
to GPU4FS. In comparison to NOVA, GPU4FS changes the
metadata log to a classical journal for ease of access and to
move the point of parallelization from the file system object
to the workgroup. WineFS [11] inspired our tiered allocator
for the pages, but we also use the pages as a lightweight
implementation of extents, thus keeping the indirection tree
small.

User Space File Systems. As compared to file systems com-
pletely or mostly implemented in the kernel, Aerie [26]
shows the benefit of file systems in user space, especially for
PMem storage. To support POSIX, they add a small kernel
module to implement the required semantics. Strata [13] and
EVFS [28] show the use of tiered storage and of multiple
layers of caching inside the user space file systems. However,
these file systems all run on the CPU. A GPU is much less
optimized for random jumps and pointer chasing, a common
feature in these file systems. In comparison, we optimize to

Maucher et al.

extract as much parallelism from the file system as possible,
while keeping the benefits of a user space file system.

An interesting hybrid between kernel space and user space
file systems is the “Filesystem in Userspace” (FUSE) [6]. FUSE
allows the implementation of file systems in user space while
preserving the kernel interface, by performing an upcall from
the kernel into the user space FUSE driver whenever the ker-
nel is called by an application. FUSE is also implemented
using shared memory buffers between user and kernel, simi-
lar to GPU4FS, but these buffers are in the DRAM, instead
of VRAM or even the memory of a different device.

4.2 GPUs

Applications running on GPU include graphics [4], high
performance computing applications [14] and artificial in-
telligence applications [8], which all require frequent data
access or are currently limited by VRAM capacity. Each of
these applications can profit from GPUA4FS.

GPU-side File Systems. The main comparison point in GPU
file systems is GPUfs [24], which demonstrates the use of
a file system interface on the GPU by allowing the GPU
to access the CPU-side file system. In GPU4FS, we run the
complete file system on GPU, and let the CPU access the
file system. [21] and [16] show the validity of direct storage
access to the GPU, but they never use it for full file systems.

Prior work has implemented several parts of the file sys-
tem on accelerators, e.g., RAID [3, 12] or checksums [15] or
encryption [10], but these parts have never been integrated
into one file system.

5 CONCLUSION

In conclusion, in this paper we propose the design of GPU4FS,
a novel GPU-side file system with interfaces to be used from
the CPU as well as the GPU. We also build the case for a
complete realization using our preliminary implementation,
which demonstrates that the bandwidth limits are not im-
posed by the file system implementation, but instead by the
storage bandwidth.

With this result, we intent to first finish the port to the
new ROCm [1] platform, and use it to increase performance.
The next step is to implement the consistency mode, as the
complexity is high and it is a central part of the design. Going
from there, we will focus on allocation and garbage collection,
and integrate the remaining features like RAID, checksum-
ming as well as kernel communication on top.

REFERENCES

[1] Advanced Micro Devices, Inc. 2021. AMD ROCm™ documentation.
https://rocmdocs.amd.com/en/latest/index.html

[2] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee,
and Mark Shellenbaum. 2002. The Zettabyte File System.

https://rocmdocs.amd.com/en/latest/index.html

Full-Scale File System Acceleration on GPU

(12]

(14]

(15]

(16]

(17]

(18]

https://www.cs.hmc.edu/~rhodes/courses/cs134/fa20/readings/
The%20Zettabyte%20File%20System.pdf

Matthew L. Curry, H. Lee Ward, Anthony Skjellum, and Ron
Brightwell. 2010. A Lightweight, GPU-Based Software RAID System.
In 2010 39th International Conference on Parallel Processing. 565-572.
https://doi.org/10.1109/ICPP.2010.64

Blender Developers. 2022. blender. https://www.blender.org/
Freedesktop Developers. 2022. RADV

RADV is a Vulkan driver for AMD GCN/RDNA GPUs. https://docs.
mesa3d.org/drivers/radv.html

FUSE Developers. May 06, 2022. Filesystem in Userspace.
//github.com/libfuse/libfuse

Linux Kernel Developers. September 20, 2016. EXT4 Linux kernel wiki.
https://ext4.wiki.kernel.org/index.php/Main_Page

TensorFlow Developers. 2022. TensorFlow. Zenodo (2022).
Khronos® Group. 2022. Khronos Vulkan Registry. https://registry.
khronos.org/vulkan/

Keisuke Iwai, Naoki Nishikawa, and Takakazu Kurokawa. 2012. Ac-
celeration of AES encryption on CUDA GPU. International Journal of
Networking and Computing 2, 1 (2012), 131-145.

Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad
Shirwadkar, Gregory R. Ganger, Aasheesh Kolli, and Vijay Chi-
dambaram. 2021. WineFS: a hugepage-aware file system for persistent
memory that ages gracefully. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP °21). Association for Computing Machinery, New York, NY, USA,
804-818. https://doi.org/10.1145/3477132.3483567

Aleksandr Khasymski, M. Mustafa Rafique, Ali R. Butt, Sudharshan S.
Vazhkudai, and Dimitrios S. Nikolopoulos. 2012. On the Use of GPUs
in Realizing Cost-Effective Distributed RAID. In 2012 IEEE 20th Inter-
national Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems. 469-478. https://doi.org/10.1109/
MASCOTS.2012.59

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP ’17). Association for Computing
Machinery, New York, NY, USA, 460-477. https://doi.org/10.1145/
3132747.3132770

Christoph A Niedermeier, Christian F Janflen, and Thomas Indinger.
2018. Massively-parallel multi-GPU simulations for fast and accurate
automotive aerodynamics. In Proceedings of the 7th European Confer-
ence on Computational Fluid Dynamics, Glasgow, Scotland, UK, Vol. 6.
2018.

Jack O’Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko
Wilcox-O’Hearn. 2021. BLAKE3 - One function, fast everywhere. https:
//github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2022. GPM:
leveraging persistent memory from a GPU. In Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS °22). Association for Computing Machinery, New York, NY, USA,
142-156. https://doi.org/10.1145/3503222.3507758

PASC. 2018. The Open Group Base Specifications Issue 7, 2018 edition.
https://pubs.opengroup.org/onlinepubs/9699919799/

David A. Patterson, Garth Gibson, and Randy H. Katz. 1988. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In Proceedings of the
1988 ACM SIGMOD International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD °88). Association for Computing
Machinery, New York, NY, USA, 109-116. https://doi.org/10.1145/
50202.50214

https:

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. 2019. System Evalu-
ation of the Intel Optane Byte-Addressable NVM. In Proceedings of the
International Symposium on Memory Systems (Washington, District of
Columbia, USA) (MEMSYS ’19). Association for Computing Machin-
ery, New York, NY, USA, 304-315. https://doi.org/10.1145/3357526.
3357568

Vijayan Prabhakaran, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2005. Analysis and Evolution of Journaling File Systems.. In
USENIX Annual Technical Conference, General Track, Vol. 194. 196-215.
Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min,
Amna Masood, Jeongmin Park, Jinjun Xiong, C. J. Newburn, Dmitri
Vainbrand, I-Hsin Chung, Michael Garland, William Dally, and Wen-
mei Hwu. 2023. GPU-Initiated On-Demand High-Throughput Storage
Access in the BaM System Architecture. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 325-339. https://doi.org/10.1145/3575693.3575748

Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-
Tree Filesystem. ACM Trans. Storage 9, 3, Article 9 (aug 2013), 32 pages.
https://doi.org/10.1145/2501620.2501623

Mendel Rosenblum and John K. Ousterhout. 1992. The Design and
Implementation of a Log-Structured File System. ACM Trans. Comput.
Syst. 10, 1 (feb 1992), 26-52. https://doi.org/10.1145/146941.146943
Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013.
GPUfs: Integrating a File System with GPUs. SIGARCH Comput. Archit.
News 41, 1 (mar 2013), 485-498. https://doi.org/10.1145/2490301.
2451169

Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, Ren Wang,
and Nam Sung Kim. 2023. Demystifying CXL Memory with Genuine
CXL-Ready Systems and Devices. arXiv:2303.15375 [cs.PF] https:
//doi.org/10.48550/arXiv.2303.15375

Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. 2014. Aerie: Flexible File-System Interfaces to Storage-Class
Memory. In Proceedings of the Ninth European Conference on Computer
Systems (Amsterdam, The Netherlands) (EuroSys '14). Association
for Computing Machinery, New York, NY, USA, Article 14, 14 pages.
https://doi.org/10.1145/2592798.2592810

Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16). USENIX Associ-
ation, Santa Clara, CA, 323-338. https://www.usenix.org/conference/
fast16/technical-sessions/presentation/xu

Takeshi Yoshimura, Tatsuhiro Chiba, and Hiroshi Horii. 2019. EVFES:
User-Level, Event-Driven File System for Non-Volatile Memory. In
Proceedings of the 11th USENIX Conference on Hot Topics in Storage and
File Systems (Renton, WA, USA) (HotStorage’19). USENIX Association,
USA, 16. https://dl.acm.org/doi/10.5555/3357062.3357083

https://www.cs.hmc.edu/~rhodes/courses/cs134/fa20/readings/The%20Zettabyte%20File%20System.pdf
https://www.cs.hmc.edu/~rhodes/courses/cs134/fa20/readings/The%20Zettabyte%20File%20System.pdf
https://doi.org/10.1109/ICPP.2010.64
https://www.blender.org/
https://docs.mesa3d.org/drivers/radv.html
https://docs.mesa3d.org/drivers/radv.html
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://ext4.wiki.kernel.org/index.php/Main_Page
https://registry.khronos.org/vulkan/
https://registry.khronos.org/vulkan/
https://doi.org/10.1145/3477132.3483567
https://doi.org/10.1109/MASCOTS.2012.59
https://doi.org/10.1109/MASCOTS.2012.59
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/3132747.3132770
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://doi.org/10.1145/3503222.3507758
https://pubs.opengroup.org/onlinepubs/9699919799/
https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/3357526.3357568
https://doi.org/10.1145/3357526.3357568
https://doi.org/10.1145/3575693.3575748
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/2490301.2451169
https://doi.org/10.1145/2490301.2451169
https://arxiv.org/abs/2303.15375
https://doi.org/10.48550/arXiv.2303.15375
https://doi.org/10.48550/arXiv.2303.15375
https://doi.org/10.1145/2592798.2592810
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://dl.acm.org/doi/10.5555/3357062.3357083

	Abstract
	1 Introduction
	2 Methodology
	2.1 Interface
	2.2 GPU Implementation
	2.3 CPU Implementation

	3 Preliminary Results
	3.1 Discussion

	4 Related Work
	4.1 File Systems
	4.2 GPUs

	5 Conclusion
	References

