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Abstract

In recent years, the access latency of non-volatile storage devices has decreased,
with an increase in bandwidth. This has led to the system call and kernel overhead
becoming the bottleneck for storage I/O. The Linux kernel recently introduced the
io_uring interface for I/O operations to address these and other shortcomings. This
interface is based on two ring buffers shared between a userspace process and the
kernel. One ring buffer is used to submit commands to the kernel, the other to
receive the results.

Alternatively, allowing applications direct access to storage device bypass-
ing the kernel shows significant performance benefits for I/O-heavy applications.
Previous approaches such as Intel SPDK rely on a custom interface for kernel
bypass which requires explicit application support. Also, they commonly allow an
application full access to the storage device with no isolation on a process or file
system level.

In this thesis, we present a library for transparently providing kernel bypass for
storage I/O based on the io_uring interface. This means our approach is usable with
a range of existing applications without modification. We chose an FPGA-based
PCIe device equipped with Intel Optane Persistent Memory for our experiments.
By utilizing this FPGA device to restrict access via kernel bypass to specific ranges
of the persistent memory, we are able to provide similar isolation guarantees as the
kernel for access to the storage device.

We show compatibility of our library with existing applications and are able
to demonstrate read latency speedups of up to 3.37× compared to kernel-based
io_uring when reading files which are not in the page cache.
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Chapter 1

Introduction

Over the last years, especially with the arrival of higher performance flash memory
and new storage technologies like Intel Optane [15,21], performance of non-volatile
storage has improved both in terms of latency and bandwidth. For traditional system
call-based storage I/O the mode switch and kernel overhead have now become the
bottleneck for application performance [15, 33].

A new interface called io_uring was recently introduced into the Linux kernel
to try to alleviate some of these issues. Commands and results are communicated
between the kernel and application via ring buffers in memory shared between
application and kernel. This reduces the number of copy operations compared to
traditional I/O. Also, an application can place many commands in the submission
ring buffer and submit all of them with a single system call [10, 15].

The io_uring interface has been adopted by multiple applications and libraries.
Several databases are able to use it, such as the NoSQL wide column data store
ScyllaDB, compatible with Apache Cassandra [14, 32] (via the underlying seastar
framework [31]), Dragonfly, a drop-in replacement for the popular Redis data
store [26] (via the helio framework [16]), and the ClickHouse database [12]. Also,
io_uring support is transparently used in the JavaScript runtime NodeJS via the
libuv library [25, 29].

In this thesis, we propose adopting io_uring as a means of kernel bypass. By
handling storage I/O commands submitted by the application fully in userspace,
we can avoid the overhead introduced by the submission system call and kernel
I/O stack. By adopting a well-established interface, we can support existing
applications without modifications and provide transparent kernel bypass to them.
This is in contrast to approaches like Intel SPDK, which utilizes a custom API and
thus requires specific support in applications [39].

To gain direct access to the storage device from user space while maintaining
desirable properties usually provided by the kernel I/O stack such as access control,
we utilize the FPGA based storage device presented by Khalil in 2022 [22, 37].

3



4 CHAPTER 1. INTRODUCTION

In this thesis, we will first discuss existing approaches for kernel bypass for
storage I/O and present the io_uring interface and the FPGA-based storage device
in more detail in Chapter 2. Then, in Chapter 3 we present the design of our library
for achieving kernel bypass based on io_uring and consider different design options
for its components. In Chapter 4, we present our implementation in detail. Then,
we evaluate our approach in Chapter 5 with benchmarks and discuss the results.
Finally, we present our conclusion in Chapter 6 and propose possible improvements
to our approach and potential future research.



Chapter 2

Background

To give some context to the goals of this thesis, we will discuss some prior work
for providing kernel bypass to applications and will highlight their shortcomings
which this thesis attempts to address. Then, we give a more thorough introduction
to the technologies mentioned in Chapter 1 which this thesis will build upon.

2.1 Related Work
Multiple approaches for offering kernel bypass for storage I/O have been pro-
posed in the past. We will present some of these and highlight their benefits and
downsides.

2.1.1 Intel SPDK

Presented by Intel in 2017, the Storage Performance Development Kit (SPDK)
project provides a user-space implementation of an NVMe driver, block device
abstraction, and basic file system abstraction [39]. It also provides a library
for writing high-performance applications on top of these implementations. By
exposing the NVMe queues of the storage device directly into userspace, all
overhead usually incurred by kernel mode switches and copies between kernel and
user space memory can be avoided. Also, SPDK uses asynchronous polling instead
of interrupts to detect completion of a request and it utilizes a lockless architecture,
overall providing performance benefits from 6× up to 10× more IOPS on an NVMe
drive compared to utilizing the kernel driver.

However, the design does not support traditional Linux file system implemen-
tations, only offering a simpler non-POSIX-compliant file system. It therefore
cannot benefit from services traditionally offered by the kernel such as access con-
trol [15,39] and may not be compatible with existing applications. Also, because it
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6 CHAPTER 2. BACKGROUND

grants direct access to NVMe queues, SPDK allows the application unrestricted
access to the whole storage device.

In conclusion, SPDK offers full kernel bypass for storage I/O, however it gives
up any kernel cooperation for access control. This may be appropriate for use
cases where a single application can safely be granted exclusive full access to a
storage device, such as cloud storage solutions where the application itself enforces
access control [15]. However, in cases where isolation between user space and the
storage device is required, this approach falls short. In addition, the benefits of
SPDK can only be utilized by applications specifically built with support for its
custom interface. For example, the Ceph storage system has specific support to
utilize SPDK to access the underlying block devices [11].

2.1.2 rkt-io

Building on top of SPDK, rkt-io, presented in 2021 as a “Direct I/O stack for
Shielded Execution,” [33] has its focus on Trusted Execution Environments (TEEs)
such as those provided by Intel SGX [8] or AMD SEV [7], providing stronger
security guarantees for their storage and network I/O stacks when running on
untrusted host systems. They achieve this by moving the file system and block
device layers usually provided by the kernel into user space implementations
running inside the TEE and use SPDK to access the actual storage device. In doing
so, they expose a fully POSIX/Linux ABI-compatible interface to the application,
making the kernel bypass transparent to the application [33].

However, like SPDK itself, this approach still provides full exclusive control
over the storage device to userspace. Also, the focus of rkt-io on Trusted Exe-
cution Environments may make the approach less appealing in scenarios where
applications do not require this level of isolation. While offering significantly
higher storage throughput compared to other I/O solutions for TEEs, it still offers
significantly worse performance (about a quarter of read throughput and a third of
write throughput) compared to native system call-based storage I/O [33].

In addition, serious concerns have been raised about the level of confidentiality
technologies like Intel SGX purportedly provide. Side-channel attacks which allow
retrieval of memory contents from the TEE have been demonstrated [36], allowing
to break many of the fundamental guarantees provided by SGX. In practice this
means an overreliance on the security promises of SGX may actually weaken the
entire system [35].
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2.2 Introduction to io_uring
This thesis proposes achieving kernel bypass by utilizing the io_uring interface. To
clarify our approach, we first give an introduction to how this interface is used by
an application, which is further visualized in Figure 2.1.

The io_uring interface was added to the Linux kernel with version 5.1 in
May 2019 [15]. It offers a new interface for asynchronous I/O based on ring buffers
in memory shared between userspace and the kernel [10].

Setup Using the io_uring_setup() system call, an io_uring instance is set
up with a specified number of entries in the ring buffers and additional optional
parameters [10]. On success, the kernel will return a file descriptor that is later
used to refer to the specific io_uring instance.

Submission To submit requests for processing to the kernel, the application
places them into the Submission Queue (SQ) [10]. The Submission Queue is made
up of structs referred to as Submission Queue Entries (SQEs), each containing an
opcode that identifies the requested operation, arguments such as a file descriptor,
and additional arguments and flags. The operations and arguments correspond
closely to existing system calls such as read() or write(). Additionally, they
contain a 64 bit field for user data which is returned again in the corresponding
completion. This is commonly used to hold a pointer into the application heap.

By default, all submissions are processed independently of each other. If
sequential processing is required, an SQE can be linked to the subsequent one
by setting a flag [10]. If a request fails, all subsequent requests linked to it are
canceled.

To notify the kernel of the new submissions, the application updates the tail
of the Submission Queue and issues an io_uring_enter() system call with the
file descriptor referring to the io_uring instance [10]. This will cause the kernel to
update the head of the ring buffer and start processing the submissions.

Alternatively, the io_uring instance can be set up for kernel-side polling. In
this mode, a kernel thread automatically monitors the Submission Queue and picks
up submissions without requiring a system call [10, 15]. This mode will not be
further explored by our implementation but briefly discussed in Chapter 6.

Completion After processing the submitted request, the kernel will place the
results into the Completion Queue (CQ). Each Completion Queue Entry (CQE)
contains an integer result, which matches the return value of the system call
corresponding to the io_uring operation. For example, for a READ operation, it
contains the number of bytes read from the file descriptor.
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userspace kernel

Application io_uring

submit

poll for
completions

submit/wait syscall

SQ

CQ

Figure 2.1: Interaction between an application and io_uring. The SQ and CQ are
shared between userspace and kernel. The application submits requests to the SQ
and issues a system call to notify the kernel. The kernel takes the SQEs, processes
them, and places completions into the CQ. The application polls the CQ or waits
for completions via system call.

Additionally, the CQE contains a field for flags which appears to currently
be unused, and the user data provided in the submission [10]. The user data
field allows the application to correlate completions with the earlier submissions.
This is necessary, as submissions can be processed out-of-order unless explicitly
linked [10].

To retrieve the completions after submission, the application can poll the Com-
pletion Queue tail set by the kernel. Alternatively, it can call io_uring_enter()
again with the number of completions that should be awaited. This system call can
signal additional submissions too, potentially further reducing the total number of
required system calls [15]. Once the CQEs have been processed by the application,
it updates the CQ head accordingly to signal back to the kernel that these CQ slots
can safely be overwritten.

liburing Library To simplify the use of the io_uring interface, the liburing
library can be used. It provides a simplified API for setting up and interacting with
the io_uring interface [10]. We will explain some of the functions it provides later
in this thesis when we go through our implementation in Section 3.3.
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2.3 Introduction to dcpmm-fpga
Our design heavily relies on the FPGA-based device for accelerating access to
non-volatile storage presented by Khalil in 2022 [22]. We will refer to the device
as dcpmm-fpga in this thesis. The FPGA device contains an Intel Optane persistent
memory DIMM [21] and is connected to the computer via PCI Express.

Its main functionality is a memcpy-like interface for copying data between
system RAM and the persistent memory. This is implemented as two ring buffers
for commands, one for each copy direction, from the host to the FPGA device and
vice versa. These ring buffers are exposed as Base Address Register (BAR) regions
to the operating system. Similar to io_uring, signaling is done via head and tail
pointers, with the tail pointer being updated by the CPU and the head pointer by
the FPGA. This interaction is demonstrated in Figure 2.2.

There is no separate ring buffer for signaling completion of a request. Instead,
all requests are processed in-order and completion is signaled to the application by
dcpmm-fpga updating the head pointer [22].

Block Device Driver To allow use with standard OS interfaces, a block device
driver was later implemented. It exposes the persistent memory attached to the
FPGA as a standard Linux block device. This allows the use of any Linux file
system on the device [37].

Virtual Functions In addition to the privileged access utilized by the block
device driver, dcpmm-fpga also exposes multiple PCIe Virtual Functions (VFs)
via the Single Root I/O Virtualization (SR-IOV) feature. Each VF offers its own
set of ring buffers for command submission. Additionally, dcpmm-fpga offers a
simple MMU for restricting access per VF to specific address ranges with 2 MiB
granularity [37].

The Virtual Functions are managed via the character device provided by the
dcpmm-fpga kernel module. By opening the character device, a VF is allocated to
the process. Then, the ioctl system call can be used to issue different commands,
for example preparing pages from user space for DMA access from the FPGA [22].

It is important to note that the isolation mechanism and security guarantees
provided by the Virtual Function and MMU rely on the system having an IOMMU
which can isolate the I/O address space belonging to a VF from other processes [22].
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userspace

Application dcpmm_fpga

device to host
requests

update
head

poll
head

host to device
requests

d2h

h2d

Figure 2.2: Interaction between an application and dcpmm-fpga. The application
places requests into the appropriate ring buffer. The FPGA executes them and
updates the head index on success. The application polls the head position to wait
for completion.



Chapter 3

Design

In this chapter, we present our design for achieving kernel bypass by intercepting
the io_uring interface. We discuss different options for the implementation of this
approach and their benefits and downsides.

3.1 io_uring Call Interception
io_uring is a system call-based interface offered by the Linux kernel [10], as
described in Section 2.2. To achieve kernel bypass, we need to intercept the
application before it actually issues the system calls. Multiple approaches for this
are conceivable.

Interception Target One option is to intercept all system calls, check the sys-
tem call number, and either forward the system call as-is or jump into a custom
user space handler instead. This can be achieved by overriding the system call
wrapper provided by libc. This has two distinct downsides: It introduces some
overhead, albeit low, to all system calls. Additionally, applications may not neces-
sarily use libc to issue system calls in the first place, such as those written in the go
programming language [23]. This means this approach is not fully universal.

Alternatively, a new approach called zpoline, presented by Yasukata et al. in
2023 [40] relies on binary rewriting of the target application. It replaces system
call instructions with jump instructions of the same instruction length into a custom
handler. Thus, it is more universal than targeting the system call wrappers provided
by libc. However, this approach relies on some specifics of the x86-64 CPU
architecture and is for example not applicable to ARM CPUs.

Another option is interception at an even higher level: liburing is the rec-
ommended wrapper library for interacting with io_uring [10] and is commonly
used by applications utilizing the io_uring interface such as ScyllaDB [14] and

11



12 CHAPTER 3. DESIGN

ClickHouse [12]. This excludes applications which utilize the system call inter-
face directly, but in turn avoids having to intercept all system calls. Due to the
more high-level nature of the liburing interface, this method is possibly simpler to
implement than intercepting system calls directly.

Interception Method To intercept calls to libc or liburing, there are still different
methods of how exactly to achieve interception. Depending on the needs of the
target application, two options are available:

If the application is statically linked against the library, some symbols provided
by the library can instead be wrapped at compile time using the -wrap option of
the linker and overridden by a custom library at link time [6].

Alternatively, if the application is dynamically linked against the library, a
simpler approach can be taken: A custom library containing the symbols to be
overridden can be specified in the LD_PRELOAD environment variable to instruct
the dynamic linker to load a custom library first [4], which can override some
symbols otherwise provided by the target library. Arguably, this is the more elegant
approach as it does not require recompilation of the application and allows quick
experimentation.

3.2 Access Control

One important reason for isolating devices from applications using an operating
system is for enforcing constraints on how applications can access them. For
storage devices, this includes enforcing what kind of access certain users (and their
processes) have to specific files [9]. When implementing any sort of kernel bypass,
these constraints have to either be waived or weakened, or implemented in some
other way.

The dcpmm-fpga device as discussed in Section 2.3 offers a basic implemen-
tation of an MMU which is configurable from its kernel module and can be used
to grant specific Virtual Functions access to ranges of addresses on the attached
persistent memory. This can be used to limit what areas of the storage device the
application can access via the kernel bypass.

To determine which ranges the application should have access to when trying
to access a file, the permissions have to be checked and the sectors on the storage
device belonging to the file have to be determined by the kernel. We will further
describe how we achieve this in Section 4.1.
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3.3 Design of libuseruring
This thesis presents a library we call libuseruring which provides a user space
implementation of the liburing interface. It overrides the symbols provided by
liburing for the setup of an io_uring instance, submission of commands, and
retrieval of results. By conforming to the interface provided by liburing (and the
kernel’s implementation of io_uring), an application can seamlessly use this library
instead and transparently benefit from kernel bypass.

Because only some of the operations offered by io_uring refer to pure stor-
age I/O (namely read[v]() and write[v]()) and can thus be handled com-
pletely in user space, kernel support is still needed for the rest of the operations,
such as the socket-related operations ACCEPT or SEND. Theoretically, these could
all be implemented using traditional system calls if completely avoiding kernel-
based io_uring is desired, in turn losing most of the benefits of the interface. The
approach taken in this thesis is to instead utilize a regular kernel-based io_uring
instance and forward all operations that cannot be handled in user space to the
kernel. This kernel backend is shown in the top right of Figure 3.1.

In addition to the kernel backend, a dcpmm-fpga-based backend is introduced.
Incoming commands can then be dispatched to the appropriate backend, and results
gathered from all backends and provided back to the application. The dcpmm-fpga
backend is shown in the bottom right of Figure 3.1.

Linking An additional challenge arises from the possibility to link multiple
operations, as described in Section 2.2: By setting a flag on a Submission Queue
Entry, the following SQE is linked to it, meaning its execution will not start before
the previous SQE completed successfully. If the first operation results in an error,
the linked SQEs are not executed [10]. When dispatching all linked SQEs to the
kernel, this causes no issues as the ordering can then be enforced by the kernel.
Also, if all linked requests are dispatched to the dcpmm-fpga, ordering is preserved
as the command queue is always handled in-order [22].

However, if one request is to be dispatched to one backend and the second to
another, linking has to be ensured some other way. Perhaps the simplest solution is
to always dispatch linked requests to the kernel, sidestepping the issue at the cost
of not using kernel bypass even when available. Alternatively, information about
the linked request can be attached to the first request, and only upon completion,
the second request is dispatched.
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userspace kernel
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Figure 3.1: Interaction between an application and the libuseruring library. The
application has the same ring buffer-based interface as in Figure 2.1. On the other
side, libuseruring dispatches commands to either the kernel-based io_uring instance
or to the command queues of dcpmm-fpga.



Chapter 4

Implementation

After discussing the general approach and design considerations for implementing
kernel bypass using the io_uring interface in the previous chapter, we will now
present our implementation. We will start by examining the most low-level ad-
ditions required to the Linux kernel itself, then present necessary changes to the
kernel driver for dcpmm-fpga and its accompanying library, and finally present the
implementation of libuseruring itself.

4.1 Kernel Patches

As mentioned in Section 3.2, the dcpmm-fpga supports access control for VFs via
a block-based MMU. We need to configure this MMU accordingly to only grant
the userspace process access to specific files.

To achieve this, the physical extents of the file on the storage device have to
be determined. How files are laid out and managed on the block device differs by
file system. Some modern file systems such as ZFS offer advanced features such
as RAID support or encryption [13, 38]. The interface offered by dcpmm-fpga
currently does not support these advanced features directly. Instead, we can only
support file systems where file contents directly correspond to sectors on the block
device.

We choose the exFAT file system for our demonstration, as it is comparatively
simple in design, while still offering the most basic features expected of modern
file systems, such as support for large files and unicode [28]. It uses a simple
file allocation table and stores file contents in clusters, whose size is determined
based on the size of the entire file system [27]. Due to this simplicity, the required
changes are minimal and easy to integrate into the Linux kernel.

To retrieve the extents of a file, we add and export one function from the
Linux kernel exFAT module: exfat_get_extents_for_inode(). It receives

15
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a kernel inode structure1, a pointer to a target buffer for the file extents, and a
pointer to the length of the buffer. Then, it determines the physical offset of the file
system partition on the block device and the exFAT cluster size of the specific file
system. It calls the internal exFAT function exfat_map_cluster()2 repeatedly
with incrementing cluster index to determine the sector offsets of all the clusters of
the given inode. These offsets are converted to physical addresses and written back
into the target buffer as pairs of start and end addresses for each cluster or group
of contiguous clusters. The specific cluster size of the file system is used for this,
together with the actual size of the file. This ensures we truncate the last extent to
the actual file length instead of also including the rest of the cluster.

The function returns an error if the given buffer is not long enough to store all
extents of the file. On success, the provided length is updated to signal to the caller
how many addresses were written to the buffer.

4.2 dcpmm-fpga Kernel Module and Library Changes
To expose the described functionality of determining file extents to applications and
to configure the MMU to allow access to the file, changes to the dcpmm-fpga kernel
module are required. Additionally, to make this feature conveniently available to
applications, we make some additions to the dcpmm-fpga library.

4.2.1 Kernel Module Additions
The kernel module for the dcpmm-fpga provides a character device for communi-
cation with userspace processes [22], as previously described in Section 2.3. The
process can then use the ioctl system call to issue requests.

We introduce a new ioctl request IOCTL_REQUEST_FILE. It takes a pointer to
a dcpmm_fpga_request_file_data struct which contains the file descriptor
number for the requested file, a pointer to a buffer for the file extents in the same
format as described in Section 4.1, and the buffer length.

The kernel module then gets the in-kernel representation of the file descriptor
using fdget()3, retrieves the contained inode and checks that the file actually re-
sides on an exFAT file system. It then calls exfat_get_extents_for_inode()
as defined in Section 4.1 to retrieve the file extents from the file system. Next, it
iterates over the extents to add appropriate mappings to the MMU for the current
virtual function. The MMU currently only supports a block size of 2 MiB [37],
which is larger than the default cluster size even up to a 256 TB drive [27].

1struct inode in Linux 6.3 source, include/linux/fs.h:641
2In Linux 6.3 source, fs/exfat/inode.c:111
3In Linux 6.3 source, include/linux/file.h:61
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To still ensure full access to the file, we round up to a full block if an extent
does not fully cover an MMU block. This however breaks the principle of only
giving access to the actual specific files and may expose other parts of the file
system to the application. This is undesirable and could be overcome in the future
by tuning the block size of the MMU to that of the desired cluster size.

After retrieving the file extents and configuring the MMU accordingly, the
extent buffer and length are returned to userspace by updating the provided struct.

4.2.2 dcpmm-fpga Library Changes

To give convenient access to the newly introduced ioctl command described in
Section 4.2.1, we add a thin wrapper request_file_dcpmm() to the library.

For initiating an asynchronous transfer between main memory and the dcpmm-
fpga-attached persistent memory, the two functions memcpy_from_dcpmm() and
memcpy_to_dcpmm() are provided by the library [22]. Additionally, *_wait()
variants of the functions are provided which busy-loop until the completion pointer
of the dcpmm-fpga has reached the submitted request.

However, to allow fully asynchronous operation, we need the ability to submit
multiple requests and wait for them at a later point in time. To achieve this, we
modify the memcpy_* functions to return the index after the submitted request.
We add the dcpmm_fpga_get_[h2d|d2h]_completed_pointer() functions
to make it possible to wait for the completion of a specific request at a later point
in time.

4.3 libuseruring Implementation

To intercept the calls to io_uring, we choose the LD_PRELOAD approach, as de-
scribed in Section 3.1. Our library libuseruring provides a shared object that can
be preloaded which overrides a handful of symbols usually provided by liburing.
These symbols internally resolve to implementations with the user_uring* prefix
as opposed to io_uring* used by liburing [19].

Since our library also needs to interface with an actual kernel-based io_uring
instance, we also want to use some symbols provided by liburing. Usually, the
dynamic linker automatically resolves symbols on application startup. However, we
are ourselves overriding symbols also provided by liburing. By calling dlsym(),
a symbol can be resolved at runtime [3]. By additionally passing the RTLD_NEXT
handle, instead of returning the first occurrence of the symbol in the search order
(which would the implementation provided by our library), the next occurrence
after the current object is returned, which will be the symbol provided by liburing.
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4.3.1 Initialization
When an io_uring instance is requested by the application via the intercepted
io_uring_queue_init[_params]() functions, we take multiple steps:

A kernel-based io_uring instance is initialized in the kernel backend by calling
the real init function provided by liburing. The same parameters as provided by
the application are passed.

Also, the dcpmm-fpga backend is initialized by calling dcpmm_fpga_init()
provided by the dcpmm-fpga library. This allocates a virtual function for the
process and sets up the command queues for communication to the FPGA.

Finally, regular heap buffers are allocated for the submission and completion
queues and the io_uring struct is set to point to these buffers instead of the
buffers shared with the kernel and is then returned to the application. Also, instead
of passing the file descriptor referring to the real kernel-based io_uring instance,
an invalid file descriptor is returned. This way, we notice if the application tries
to directly issue io_uring_enter() system calls instead of utilizing our library.
This is useful for catching potential bugs or other liburing functions that also need
to be overridden.

We will refer to the “fake” io_uring instance returned to the application as the
user uring.

4.3.2 Dispatching Submissions
To submit new requests, the application adds SQEs to the Submission Queue and
then calls io_uring_submit(). We intercept this function and retrieve new
submissions from the SQ based on the head and tail pointers of the queue and
update the head pointer accordingly to signal completed dispatch of the submissions.
The full dispatch flow is shown in Figure 4.1.

File Descriptor Hashmap To keep track of which file descriptors can be handled
by the dcpmm-fpga backend, we keep a hashmap of all encountered file descriptors.
We utilize the uthash library [17] for managing the hashmap. The file descriptor
number is used as the key, the values of the hashmap are user_uring_file

structs. They contain the file descriptor number, a pointer to a buffer for the
physical extents of the file as determined by the dcpmm-fpga kernel module, and
the length of the buffer.

When a file descriptor is first encountered, its extents are requested and an
MMU mapping established by calling request_file_dcpmm(). If an error is
returned, the file cannot be handled by the dcpmm-fpga backend. To signal this,
the buffer pointer in the struct is set to the NULL pointer. Either way, the resulting
user_uring_file struct is added to the hashmap for later lookups.
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Figure 4.1: Flow for dispatching submissions in libuseruring. The opcode and file
descriptor of the operation are checked. Depending on the results, the submission
is dispatched to the kernel or FPGA backend.

Dispatch When new SQEs are submitted to the library, they have to be dispatched
to the appropriate backend. First, the opcode of the SQE is checked. Currently, we
have only implemented support for READ and READV requests in the dcpmm-fpga
backend, so all other requests are immediately dispatched to the kernel backend
instead. In the future, write support can be added.

If a read request is dispatched, the file descriptor hashmap is checked to retrieve
(or add, if not found) the corresponding user_uring_file struct. If extents
for the file are available, the request is dispatched to the dcpmm-fpga backend,
otherwise the kernel backend is used.

Each time an SQE is dispatched to a particular backend, a corresponding
inflight counter is incremented. This counter is needed when waiting for
completions to determine how many completions can be provided by each backend.

Completion liburing offers multiple functions for retrieving and optionally wait-
ing for completions. They internally all refer to __io_uring_get_cqe(), which
is overridden by our library.

The application can pass a number of new SQEs to this function that should be
submitted before getting the completions. In this case, the same dispatch logic as
for io_uring_submit() is utilized.

Additionally, the wait_nr argument specifies the number of completions
that should be waited for. Based on the inflight counters mentioned above,
we can determine how many completions we can expect from each backend at
most. However, if we have more requests spread across backends in flight than
the requested number of completions, different strategies for distributing the wait
requests are possible.
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The strategy we choose is to always retrieve completions from the FPGA
backend first and prefer waiting for completions from the FPGA backend. If the
FPGA requests have already concluded, this results in no waiting, otherwise we
will waste some CPU time spinning until the operations have concluded. This way
however, we give the kernel some more time to complete the already submitted
requests in the kernel-based io_uring instance. If in the kernel backend, the
number of already available completions is greater than the wait_nr requested, we
save having to issue an io_uring_enter() system call to wait for the required
completions.

Independent of whether a specific wait_nr was specified or not, both backends
are asked to return the awaited and all additional available completions. To return
the completions, the user uring instance is passed to the backends and they place
their CQEs into the user uring Completion Queue and update the tail accordingly.

The number of completions received from each backend is then subtracted
from the corresponding inflight counter.

4.3.3 Kernel Backend

The kernel backend of the library is fairly straightforward, as it primarily copies
entries between queues with no manipulation.

For submission, it obtains a Submission Queue Entry from the kernel io_uring
instance via io_uring_get_sqe() and copies the contents of the SQE pro-
vided by the calling application. After all submissions are dispatched from a call to
user_uring_submit(), the kernel backend calls the real io_uring_submit()
function to issue a system call to instruct the kernel to start processing [10, 19].

Completions are requested via the real __io_uring_get_cqe(). All re-
turned Completion Queue Entries are then copied to the user uring CQ and marked
to the kernel as seen by calling io_uring_cqe_seen() to update the head pointer
in the kernel-side Completion Queue accordingly.

4.3.4 FPGA Backend

The dcpmm-fpga also utilizes ring buffers for submission of commands as further
described in Section 2.3, but some additional work is required to translate between
its interface and the one specified by io_uring.

Dispatch

Due to the nature of the dcpmm-fpga interface, multiple steps need to be taken
to generate the appropriate commands for the FPGA from an io_uring Submis-
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sion Queue Entry, and some additional work is needed for being able to generate
matching Completion Queue Entries later on.

Submitting read operations Currently, we only support the READ and READV

opcodes in the dcpmm-fpga backend. These correspond fairly directly to the system
calls pread() and preadv2() [1]. A READ io_uring submission contains a file
descriptor, an offset from the start of the file, the length of the read, and a pointer to
a destination buffer. A READV submission also contains a file descriptor and offset,
and an array of iovec structs each containing a destination pointer and length.

To service either of these submission types, the file extents contained in the
user_uring_file struct as described in Section 4.3.4 are consulted. The in-
ternal function copy_file_from_fpga() receives this struct, along with an
offset, read length, and pointer to the target buffer. It will then iterate through the
file extents until the requested offset is reached and issue one or multiple calls
to memcpy_from_dcpmm() with the appropriate physical address on the block
device and offset into the target buffer. If the requested length spans multiple
extents of the file, these are copied bit by bit.

Additionally, the dcpmm-fpga currently only supports copying into pages which
are contiguous in I/O virtual address space [22]. This is not necessarily the case
with buffers provided by applications. To alleviate this somewhat, we further break
down the memcpy requests to only cover one page size at a time. This works if the
buffers are page-aligned, but will still fail otherwise.

Breaking up the copy operation into single pages will likely degrade the per-
formance compared to a single copy operation. This will be further discussed in
Section 4.4.1.

The completion index returned by the last call to memcpy_from_dcpmm() as
modified in Section 4.2.2 is returned by copy_file_from_fpga(). Since the
FPGA processes requests in sequence, if this last completion index is reached, all
previous requests have also concluded [22]. Additionally, the number of bytes for
which a copy request was actually issued is returned (which may be lower than the
requested length if the file ends before the requested length is reached).

Save Data Needed for CQE To be able to generate an appropriate CQE when
requested later, some information about the issued copy requests needs to be
retained. For this, we use a ring buffer with the same length as the FPGA queue.
It contains fpga_cqe structs which store a completion index, integer result and
pointer for user data.

After dispatching a read, a new entry is appended to the ring buffer, containing
the last completion index of the read, the result (which is the number of bytes for
read requests), and the user data pointer provided in the SQE.
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4.3.5 Generating Completions

When completions are requested from the FPGA backend, the first entry from
the fpga_cqe ring buffer is retrieved. It is checked (and potentially waited for)
whether the current completion index has reached or passed the one recorded in the
struct. If the operation has concluded, a CQE is constructed from the integer result
and user data pointer stored in the fpga_cqe, and copied into the user uring CQ.

4.4 Limitations

The implementation presented here still has limitations, some of which were already
mentioned above and will be repeated here briefly. Some of these are the direct
result of limitations of the dcpmm-fpga device, whereas others are introduced by
our library.

4.4.1 Limitations Introduced by dcpmm-fpga

MMU Unit Size As mentioned in Section 4.2.1, the unit size of the MMU of
the dcpmm-fpga does not match the utilized cluster size. This results in granting
user space less restricted access to the block device than desired. This could be
rectified by either enforcing a cluster size that matches the MMU block size, or
modifying the dcpmm-fpga to allow granting smaller units of memory.

Contiguous Pages As we discussed in Section 4.3.4, on our current development
platform, the dcpmm-fpga can only copy from or to buffers which are in contiguous
pages in I/O virtual address space. Since our source and target buffers are passed
in from the application, we can make no such guarantees. Thus, we have to break
up copies into smaller chunks, sacrificing some performance.

Possible solutions could be modifying the allocator used by the application.
A more thorough approach might be using Linux kernel DMA scatterlists in the
character device driver for the DMA mappings. The most elegant and simplest
solution to this problem is likely switching to a platform which supports an IOMMU
with Shared Virtual Addressing, as is available from Intel starting with the Sapphire
Rapids generation [24]. This would also eliminate the ioctl calls necessary
to ensure a DMA mapping for a target page [22], which likely helps improve
performance as we will show in Section 5.3.

Copy Size Finally, the dcpmm-fpga can only copy data in chunks of 32 bit or 4
bytes. This may not match the requested length of bytes. Problematically, if we



4.4. LIMITATIONS 23

round down, we do not copy enough bytes, but if we round up, we may exceed the
size of the target buffer and potentially corrupt other heap data.

A possible workaround is to allocate an internal buffer in this case, copy the
rounded-up number of bytes into this buffer and then copy the precise number
into the application-provided target buffer, at the cost of introducing additional
allocations and copies. This has not been implemented yet as we did not encounter
this issue in our testing.

4.4.2 Limitations of our Approach
Right now, we only support read access via kernel bypass. Extending the im-
plementation to cover write access is simple at first glance, but some additional
questions will be encountered. If a file is written to at its end, the file will need to
grow. This requires kernel cooperation from the file system to allocate new clusters
to the file.

A related issue occurs with the current approach: The size of an already opened
file may change if some process writes to or truncates it. Right now, we have
no way of observing these changes and updating the MMU mappings and library
representation of extents accordingly. Similarly, a file may be closed by the
application, after which the kernel bypass path should also refuse access to the
corresponding file descriptor.

Both of these issues may be partially addressed by monitoring writes to files (via
both the io_uring instance and other system calls) by the process and requesting
updated file extents from the kernel module. This however does not address
changes made to the file by another process. Solving this requires further research
to guarantee correct behavior, as further discussed in Section 6.1.3.
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Chapter 5

Evaluation

In this chapter, we describe our approach for initially developing and validating
our library libuseruring. We then present benchmarks to compare native kernel-
based io_uring performance with kernel bypass using our approach and assess the
overhead introduced to requests forwarded to the kernel.

5.1 System Setup
All benchmarks were executed on a system with an Intel Core i7-12700K CPU
on an msi PRO Z690-A mainboard with four 8 GiB DDR5 memory DIMMs and
a 1 TB Samsung 980 NVMe SSD. The dcpmm-fpga device is attached via a
PCIe 3.0 ×16 link.

The Intel Core i7-12700K is an SMT-capable 12-core (8 performance, 4 effi-
ciency cores) x86-64 processor from the Alder Lake generation [20].

We used Ubuntu 20.04 with a modified Linux 6.3.0 kernel and liburing 2.4.1,
backported from Ubuntu 23.10. The kernel as well as our other components were
compiled with gcc 11.4.0 with optimization level -O2. Our library libuseruring was
compiled with optimization level -O3 and the -flto setting to enable link-time
optimization.

5.2 Initial Validation
For initial development and validation we used the cat_liburing tool from the
suite of io_uring examples from the Lord of the io_uring guide [18, 19]. This
program reads a file via io_uring and prints its contents to STDOUT. Hence, it
was chosen as an ideal minimal example for demonstrating io_uring interface
interception and kernel bypass for read operations. It issues a single READV

operation for reading the file into buffers, as further described in Section 4.3.4.

25
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5.3 cat_liburing Benchmark
Since cat_liburing issues a single read access, it is an ideal target for comparing
the performance of a kernel-based read compared to our approach for kernel bypass.

cat_liburing Modifications We modified cat_liburing to measure the time
between submitting the requests to io_uring and receiving the results to exclude any
initialization overhead from our benchmarks. For this, we obtain high precision
timestamps using clock_gettime() (using the CLOCK_MONOTONIC clock) [2]
just before calling io_uring_submit_and_wait() and right after it returns.
We then calculate the difference and print it to STDERR. This allows us to measure
just the submission and processing latency.

With the default kernel configuration, cat_liburing is only able to read files
up to 1 MiB, since the maximum number of iovecs supported by READV is 1024 [5],
and cat_liburing uses 1 KiB iovec target buffers. We increased the target buffer
size to 4 KiB (the typical page size on x86), and modified cat_liburing to split
the read into multiple READV operations if the iovec limit is reached to allow
reading larger files.

Benchmark Setup We used a python script to execute cat_liburing for
a specified number of iterations, redirecting the STDOUT output to /dev/null

and collecting the timing results from STDERR into a file. We use this script
to run different configurations of cat_liburing on files of increasing sizes
with random content. We ran cat_liburing with kernel-based native io_uring,
with libuseruring in passthrough mode without kernel bypass, and finally with
libuseruring with kernel bypass.

For the native and passthrough methods, we also added variants where we
clear the page cache between executions to force the file contents to be read
from the dcpmm-fpga instead of the page cache. To clear the caches, we ex-
ecute echo 3 > /proc/sys/vm/drop_caches before each cat_liburing

invocation [34].
Initial testing showed significant overhead introduced in the dcpmm-fpga library

for ensuring a DMA mapping is present for the target page of a copy. Setting
up this mapping requires another system call for each target page [22, 37]. This
would not be required on a platform with Shared Virtual Addressing, as mentioned
in Section 4.4.1. To quantify this overhead, we added a -premap variant of the
benchmark. Here, we manually request DMA mappings for all target buffers before
submitting the request, removing the overhead from the time we measure.

We then use a second python script to read the files with the timing results of
each benchmark run and calculate the mean and standard deviation of the results.



5.3. CAT_LIBURING BENCHMARK 27

12
8

51
2

89
6

1,
28
0

1,
66
4

2,
04
8

0

2

4

File size [KiB]

L
at

en
cy

[m
s]

2 8 14 20 26 32

0

5

10

15

File size [MiB]

native native-clear-cache
uuring-bypass uuring-bypass-premap

Figure 5.1: Read benchmarks using cat_liburing comparing native io_uring (with
and without page cache) with our design uuring (with and without pre-mapped
target pages). The performance of our solution surpasses the kernel without page
cache at 1 MiB, whereas the kernel with caching remains the fastest variant across
all file sizes.

Benchmark Results For each data point, we collected the timing from 100
invocations of cat_liburing. We executed the benchmarks on two adjacent
ranges of file size, from 128 KiB to 2048 KiB, and from 2 MiB to 32 MiB.

In the first graph in Figure 5.1, we observe fairly linear behavior of all bench-
mark variants. For all read sizes, native io_uring has the shortest read times, likely
because the target file resides in the page cache after the first invocation, meaning
only a copy in main memory is necessary instead of a DMA transfer from the
dcpmm-fpga. This is confirmed by comparing native execution to native execution
without the file residing in the page cache, which has a significantly higher slope.
Our design libuseruring (uuring) starts at a slightly higher base latency than the
native variants. We are unsure why this is the case. From 640 KiB, our solution
with pre-mapped pages is faster than kernel-based io_uring if the file is not in the
page cache, from 1 MiB, our solution without pre-mapping also is.

In the second graph in Figure 5.1, we observe some less-than-linear growth in
the native io_uring execution without the page cache. We assume some optimiza-
tion in the read path of the kernel is starting to take effect around this size.1 All
other benchmark variants show close to linear growth, with kernel bypass without

1Some experimentation confirmed a similar effect on an NVMe block device, suggesting this
effect is not unique to the dcpmm-fpga.
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pre-mapping being consistently faster than native io_uring without caching, with a
maximum speedup of 2.62× at 8 MiB. In turn, libuseruring with pre-mapped pages
is consistently faster than without pre-mapping, with a speedup of up to 3.37×
compared to native execution without caching, again at 8 MiB. Native io_uring
with the page cache is still the fastest option. However, we can see our approach
with pre-mapping closing the gap to native execution with larger file sizes.

For both size ranges, using libuseruring in passthrough mode (forwarding all
requests to a kernel io_uring instance) yielded very consistent low overhead for
dispatching the requests and collecting results with a maximum additional average
latency of 246 µs across all file sizes. Hence, we decided to exclude these series
from the graphs in Figure 5.1 to improve clarity.

We initially planned to benchmark a third range of file sizes from 32 MiB
to 512 MiB to investigate whether libuseruring with pre-mapping will eventually
become faster than native io_uring even when the file is in the page cache. However,
we unfortunately encountered issues with establishing the MMU mappings as
described in Section 4.2.1. It appeared as if after a certain number of iterations of
granting large MMU ranges to a VF and freeing those VFs, read requests to the
dcpmm-fpga started to hang, likely because of an MMU fault.

We were unfortunately unable to fix or work around this issue before the end of
this thesis. However, initial experimentation suggested continued linear growth of
all test series, suggesting libuseruring with pre-mapped pages will indeed be faster
than kernel-based io_uring for larger file sizes.

5.4 Demonstration and Benchmark with ScyllaDB
To evaluate our approach on a more realistic workload, we choose ScyllaDB, which
also provides the cassandra-stress utility which can be used for benchmarking [30].

We compare native execution of ScyllaDB on kernel-based io_uring to running
ScyllaDB with the required LD_PRELOAD environment variables to use libuser-
uring, but with all kernel bypass disabled, so it just uses the kernel backend.
As described in the following, we were unable to benchmark ScyllaDB under
libuseruring with kernel bypass via the dcpmm-fpga.

Benchmarks were based on a development build of ScyllaDB version 5.4.0
with io_uring support enabled in the libseastar backend. Since we are primarily
interested in comparative data and not absolute performance, a development build
was used to ease debugging.

dcpmm-fpga Bug Unfortunately, during work on this thesis, a read-write-ordering
bug in the dcpmm-fpga firmware was discovered, affecting both use via the privi-
leged block device driver and when using Virtual Functions. We were only able to
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Figure 5.2: Read benchmarks using cassandra-stress on ScyllaDB, comparing
throughput in operations per second and request latency of native kernel-based
io_uring with our design uuring in passthrough mode. Native execution consistently
shows higher throughput and slightly lower latency than our approach.

reproduce this bug with ScyllaDB and only with large benchmark sizes of about
one million write operations. This bug led to partition files of ScyllaDB being
corrupted, hence leading to the benchmark being aborted.

The dcpmm-fpga firmware is out of our scope for the matters of this bachelor
thesis, and unfortunately we were not able to resolve this bug while ensuring
correct operation of the Virtual Functions.

Still, with smaller benchmark sizes, we were able to observe correct operation
of both forwarding to the kernel and kernel bypass.

Benchmark Without Kernel Bypass To still collect some insights on the impact
our solution has on real-world applications, we choose to run benchmarks on the
NVMe SSD of our test system, using libuseruring in passthrough mode. We prepare
a test database using cassandra-stress write. In Figure 5.2, we show the
results of running cassandra-stress read executing 1 million read operations
with and without kernel bypass. The benchmark utility starts with four concurrent
threads for reads and increases the thread count automatically until it identifies
the performance peak is surpassed. We observe moderately higher read latency
of about 0.8 ms when using libuseruring in passthrough mode. Execution with
native io_uring reaches its throughput peak of 74 kOps/s at 81 threads. ScyllaDB
running with libuseruring consistently shows lower throughput, reaching its peak
of 56 kOps/s only with a much higher thread count of 271.
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5.5 Discussion
In this thesis, we set out to provide transparent kernel bypass to applications by
intercepting the io_uring interface in order to reduce the overhead introduced to
storage I/O operations by the kernel.

In Section 3.1, we discuss different approaches for intercepting calls to io_uring.
The LD_PRELOAD approach to intercept calls to liburing chosen in this thesis is
not able to intercept applications which do not utilize liburing. In practice, this
excludes the use of our approach for applications such as NodeJS, as the libuv
library does not utilize liburing [25]. Still, we were able to successfully demonstrate
interception with the cat_liburing and ScyllaDB applications.

We hoped that the higher-level interface provided by liburing would make it
easier to write interception code compared to directly intercepting system calls.
However, we discovered many code paths exist in liburing to trigger system calls,
so a rather large number of functions needed to be intercepted. We suspect directly
intercepting the system calls would lead to less code being required, however this
also poses its own downsides discussed in Section 3.1: It introduces additional
overhead to all system calls, and no truly universal method for achieving this
interception exists.

We observe some overhead introduced to io_uring commands which are dis-
patched to the kernel backend in both benchmarks, with a measured additional
latency of 246 µs measured with cat_liburing in Section 5.3. However, we
measured a higher end-to-end overhead introduced to ScyllaDB of 0.8 ms in Sec-
tion 5.4. Some overhead is to be expected, as in this case, our library introduces
additional checks, function calls, and a copy of the SQE to the kernel Submission
Queue. Some of this overhead may be amortized by kernel bypass for read requests.
However, as described in Section 3.3, many io_uring operations will still have to
be passed to the kernel. This indicates the actual latency overhead experienced by
applications depends on their specific usage pattern of the io_uring interface.

For read commands dispatched to the dcpmm-fpga backend, in Section 5.3 we
observe speedups of up to 3.37× compared to kernel-based io_uring if the file is
not in the page cache. Since our solution is still outperformed by the kernel if the
file is already in the page cache, we can conclude the kernel mode change is not
the relevant factor here, but indeed our solution is more performant than the kernel
I/O read path.

Crucially, our benchmark variant with pre-mapped pages should be equivalent
to the performance on a platform with Shared Virtual Addressing, as described
in Section 4.4.1. The performance of this benchmark variant approaches that
of the kernel even if the file is in the page cache. This suggests our solution
can outperform the kernel even with cached files for sufficiently large read sizes
somewhere above 32 MiB.
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Conclusion

Improvements in the performance of storage devices with novel types of devices
such as persistent memory becoming available over the last years have highlighted
the kernel can be the bottleneck in I/O-heavy applications. Thus, allowing applica-
tions to bypass the kernel is desirable.

Many previous approaches for kernel bypass pose significant downsides, such
as requiring use of a custom interface such as with SPDK [39], and granting the
application unrestricted access to the storage device, as is the case with SPDK and
rkt-io [33] which builds upon it. Thus, applications and the whole system need to
be developed with kernel bypass in mind.

In this thesis, we presented an approach for transparently providing kernel
bypass to applications by intercepting the io_uring interface. By utilizing the
MMU capabilities of the dcpmm-fpga, we also were able to restrict the access of
applications to the storage device, although not with the granularity needed for full
isolation guarantees.

We showed consistent possible speedups of our approach of up to 3.37× com-
pared to kernel-based io_uring from read sizes above around 640 KiB if the target
file is not already in the kernel page cache. We also showed our solution approaches
the performance of the kernel even when the file is cached for larger read sizes.

Despite some limitations, we consider our work a successful proof of concept
for utilizing the io_uring interface for kernel bypass and were able to demonstrate
compatibility with existing applications and possible performance improvements.

6.1 Future Work
We have already discussed several limitations of our current implementation and
of the dcpmm-fpga in Section 4.4. We will now present some ideas to further build
and improve upon our approach.
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6.1.1 Supporting other Backends
The use of the custom dcpmm-fpga device allows us to provide some unique
guarantees such as enforcing access control. However, it also limits the universality
of our approach.

To make our library more universally usable, a SPDK backend can be added.
In conjunction with the simple BlobFS FUSE file system offered by SPDK [39],
it would be possible to provide transparent kernel bypass on NVMe drives to
applications, bypassing the kernel overhead of the BlobFS FUSE file system. This
is only feasible if the application can safely be given exclusive access to the storage
device, and if it is compatible with the limited, non-POSIX compliant BlobFS file
system.

6.1.2 Submission Queue Polling Support
As mentioned in Section 2.2, in the io_uring setup it is possible to request the
kernel to poll the Submission Queue. This further eliminates system calls, as the
application no longer needs to actively inform the kernel of new submissions.

By spawning a userspace thread for polling in libuseruring, it is possible to
replicate this behavior for the application side Submission Queue. This would
enable zero-function-call kernel bypass for the application by eliminating the
submission call. By also enabling kernel side polling in the io_uring instance in
the kernel backend, system calls from libuseruring can also be further reduced.

6.1.3 Full Compliance with Linux Kernel Behavior
In Section 4.4, we mention some scenarios especially relating to concurrent access
to the same file which currently are not handled correctly. As kernel bypass
may be implemented for more io_uring opcodes, the complexity of providing
behavior consistent with the guarantees of the io_uring interface increases. This is
because for correct behavior, both the guarantees of the io_uring interface and the
underlying related system call implementations need to be upheld.

In practice, the intersection of the guarantees of the io_uring interface and
execution of the operation seems to not be well documented and researched. Further
work documenting the guarantees and interactions of these interfaces is needed for
correctly re-implementing them.
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Glossary

Base Address Register (BAR) Memory-mapped area provided by PCIe endpoint
9

Completion Queue (CQ) Ring buffer for receiving io_uring completions from
the kernel 7, 8, 20, 22, 37

Completion Queue Entry (CQE) Item in CQ 7, 8, 20–22

io_uring Ring buffer-based kernel interface for asynchronous I/O v, 3, 4, 7–9, 11,
13–15, 17, 18, 20, 23, 25–32, 37

libc The C standard library, providing among other things functions and types for
interacting with the operating system 11

Single Root I/O Virtualization (SR-IOV) PCIe feature for multiplexing a physi-
cal PCIe endpoint device 9

Storage Performance Development Kit (SPDK) User-Space storage stack pre-
sented by Intel [39] v, 3, 5, 6, 31

Submission Queue (SQ) Ring buffer for submitting io_uring requests to the ker-
nel 7, 8, 18, 30, 32, 37

Submission Queue Entry (SQE) Item in SQ 7, 8, 13, 18–21, 30

Trusted Execution Environment (TEE) Hardware-assisted mechanism for pro-
viding secure memory regions to applications, protected from other privi-
leged system components such as the kernel [33] 6

Virtual Function (VF) Virtual PCIe endpoint offered by a physical endpoint 9,
12, 15, 28, 29
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