
Whole Process Persistence with
coreboot

Bachelor’s Thesis
submitted by

Max Streicher
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: Yussuf Khalil, M.Sc.

September 18, 2023 – February 15, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and that I
did not use any source or auxiliary means other than these referenced. This thesis
was carried out in accordance with the Rules for Safeguarding Good Scientific
Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, February 15, 2024

iv

Abstract

This thesis introduces a novel approach to preserving data processed and stored by
software applications, addressing the risk posed by computer crashes that can erase
the state of applications and lead to data loss. The concept of making applications
persistent across system crashes without having to change or recompile them,
termed Whole Process Persistence (WPP), is introduced in "Zhuque: Failure is not
an Option, it’s an Exception", where the authors introduce a runtime relying on
persistent memory in the system [14]. Motivated by the need to ensure data integrity
against unexpected system failures, this thesis explores the feasibility of WPP in
environments lacking native persistent memory. We developed a system to achieve
WPP in the absence of traditional persistent memory solutions, such as Intel’s
discontinued Optane brand, by modifying the Linux kernel and firmware of the
system [27]. This adaptation enables the saving of PTE, PCB, and virtual memory
regions onto an FPGA device accessible via PCIe when the system experiences a
power loss.

By modifying system components, the thesis outlines a methodology for per-
sisting the entire state of a process, aiming to mitigate the impact of crashes.
The practical implementation of WPP, tested on a system configured with a 12th
generation Intel x86 CPU demonstrates the technical viability of this approach.

The implementation reveals a significant performance overhead, with synthetic
load tests indicating more than 35 times increase in execution time and a worst
time slowdown of more than 90% on other processes running on the same machine.
Real world benchmarks are depending heavily on how much memory a process
allocates, simple redis benchmarks are not experiencing a noticeable slowdown.
The process of persisting is able to copy 1.3GB/s of allocated memory to the
FPGA device, necessitating the need for an external UPS.

v

vi CHAPTER 0. ABSTRACT

Contents

Abstract v

Contents 1

1 Introduction 3

2 Foundations 5
2.1 System Firmware . 5
2.2 Coreboot . 7
2.3 Intel Optane . 8
2.4 Linux . 9

3 Related Work 13
3.1 Zhuque . 13
3.2 Whole-System Persistence . 14
3.3 eADR . 14
3.4 Emerging Nonvolatile Memory 15

4 Design 17
4.1 Requirements . 17
4.2 Process Tracking . 18
4.3 Process Recreation . 19

5 Implementation 21
5.1 Kernel . 21

5.1.1 Process Tracking . 22
5.1.2 Power Loss Event Handling 23
5.1.3 Process Recreation . 24
5.1.4 PCIe Base Address Remapping 25

5.2 Firmware . 25
5.2.1 Coreboot Implementation 26

1

2 CONTENTS

5.2.2 Event Handlers . 27
5.2.3 FPGA Device Communication 32
5.2.4 Development and Debugging of Firmware 33

6 Evaluation 35
6.1 Test Environment & Methodology 35
6.2 Runtime Performance Impact . 36

6.2.1 Synthetic Load . 37
6.2.2 Redis . 38
6.2.3 Impact on other Workloads 39

6.3 Persisting Performance . 40
6.4 Discussion . 41

7 Conclusion 45
7.1 Future Work . 46

Acronyms 51

Glossary 53

Bibliography 55

Chapter 1

Introduction

Today, many critical workloads are processed by computers. These include, but are
not limited to banking, managing data in the health sector, and powering consumer
services [1]. While many client devices feature a battery, servers do not. There
are several approaches to mitigate data loss when a system crashes due to power
loss. Solutions include general patterns like atomic operations up to "whole system
persistence" enabled by persistent memory [22]. Persistent memory is a new form
of system memory closing the gap between high-performance volatile memory and
persistent storage [21]. This type of memory makes it possible for applications
to transparently persist all their memory contents thus preventing data loss. The
primary implementation of persistent memory is Intel Optane, which is available
in DIMM format to replace traditional DRAM [27]. While possible, swapping out
the complete memory with NVDIMMs comes with a performance penalty.

System memory that consists of traditional and persistent memory can only
be used in a meaningful way by software that was modified for this memory
configuration. Hodkins [14] et al. propose "whole process persistence" for systems
with persistent memory. The proposed system tracks the process at runtime and
places all private memory regions on persistent memory, making them crash-
tolerant. While this approach only comes with minor performance penalties and
does not need software changes, it needs persistent memory in the system. Since
the only provider of persistent memory, Intel, discontinued its Optane product,
approaches reliant on persistent memory are not fit for use in the future [27].

Achieving whole process persistence, where a process is persisted and then
recreated in the same state it was in before a shutdown or power loss, involves
preserving several properties of the process. This includes all memory allocated to
the process, various kernel-tracked properties such as file descriptors, and the layout
of the process’s virtual memory space. Additionally, the CPU’s state, including the
program counter and registers, must also be saved.

In this thesis, we propose a system that tracks the state of a process like the

3

4 CHAPTER 1. INTRODUCTION

approach described in "Zhuque: Failure is Not an Option, it’s an Exception [14]."
In contrast to the runtime proposed in the paper, we implement whole process
persistence without being reliant on persistent memory in the host system.

To accomplish whole process persistence, the kernel actively monitors and
records the memory allocations of a process during its runtime, relaying this
information to the system firmware. Upon receiving a simulated power loss signal,
the process is immediately paused by halting all its threads, and further details from
the Process Control Block (PCB) are transmitted to the firmware. Subsequently,
the firmware takes responsibility for preserving all the acquired data by saving it to
a storage device connected through Peripheral Component Interconnect Express
(PCIe). In addition to this, the contents of all mapped memory pages are also stored
on the same device, ensuring a snapshot of the process’s state. After the system
restarts, the operating system kernel can restart the previously persisted binary at
the exact state it was stopped when the power loss signal was received.

Overview

Chapter 2 of this thesis introduces foundational topics like system firmware, x86
System Management Mode (SMM), coreboot, Intel Optane Persistent Memory
(PMem), the Field Programmable Gate Array (FPGA) device used to access Optane,
and Linux’s memory and process management, which we need to modify for our
solution. Chapter 3 provides background on previous research in this area. In
Chapter 4, we outline the system’s requirements and describe our method for
tracking process memory allocations and process recreation after power loss.

Chapter 5 details the implementation, focusing on modifications in the Linux
kernel and system firmware. Chapter 6 evaluates the solution, discussing the test
environment, challenges, limitations, and performance impacts.

In Chapter 7, we conclude the thesis, summarizing key findings and exploring
potential research directions.

Chapter 2

Foundations

In this chapter, we establish the background information for this thesis. The
chapter introduces system firmware, including interfaces like Unified Extensible
Firmware Interface (UEFI) and Advanced Configuration and Power Interface
(ACPI) emphasizing coreboot as an open-source implementation. We introduce
the SMM of the x86 ISA, one example for non-volatile memory, Intel Optane
Persistent Memory, and look into the memory and process subsystems of the Linux
kernel that are the base for our modifications to the kernel.

2.1 System Firmware
On modern computers, the system firmware is a layer bridging the gap between
device hardware and the operating system kernel. It is the first software component
to be executed when a system boots and performs initialization of the mainboard,
the CPU, and DRAM. In most cases, firmware resides on a flash chip on the
mainboard. After the basic components are initialized the firmware executes a
piece of software that implements one of the firmware interfaces Basic Input/Output
System (BIOS) or UEFI [56].

The firmware not only initializes the hardware on startup but remains active and
is needed to perform hardware-related tasks like power and thermal management.
To communicate with the operating system, the ACPI standard is used [30, 52].

Since firmware hides away the differences of individual mainboard and CPU
models, it has to be customized for each mainboard and CPU model. Most
implementations are closed source which makes it infeasible to modify them [40].

5

6 CHAPTER 2. FOUNDATIONS

For our modifications to the firmware, we need to have access to a chunk of
system memory. To reserve a portion of memory for this, we modify the e820
parser in the kernel [47]. The e820 interface is included in the ACPI specification
and is used to forward information about the system memory to the kernel [52].
Some parts of memory are not usable for the kernel because the regions are
memory-mapped I/O devices or reserved by the firmware for internal use.

x86 System Management Mode

The x86 and x86_64 ISAs specify several operating modes [16]. The processor
starts in and executes the operating system in the kernel mode ring 0. Other
processes not related to the kernel run in ring 3 which gives them no direct access
to hardware resources. This allows the operating system to provide an abstraction
layer over the hardware and prevents processes in the userspace from interfering
with the kernel. While ring 0 is designed to be used by operating system kernels, it
has to be possible for the system firmware to be invoked even after the initialization
phase in the boot process is over. Therefore the x86 / x86_64 ISA specifies the
SMM. The SMM is entered when a System Management Interrupt (SMI) occurs.
While the hardware is being initialized, the firmware is able to specify when an
SMI should be triggered. The SMM is completely transparent to the kernel, so
tasks that run in SMM have to have a short runtime to prevent latency spikes in
the kernel. When a SMI is triggered, the processor temporarily halts its current
tasks, saving its state (processor’s context), and switches to a distinct operating
environment in a new address space. This shift activates the system management
software executive, or SMI handler, which resides within a protected physical
memory region known as SMRAM, where it is placed by the firmware at the
beginning of the boot process. The SMI handler executes specialized tasks like
power management for disk drives or monitors or suspending the system. Once
these operations are complete, the handler issues a RSM ("resume") instruction
[16]. This instruction reloads the processor’s saved context and transitions it back
to its previous operating mode (protected or real mode), allowing the interrupted
application or operating system to continue where it left off.

ACPI

SMM predates ACPI, originally handling low-level functions like thermal manage-
ment and CPU performance directly in firmware [52]. ACPI introduced a shift,
enabling the OS to manage power, thermal properties, and performance through
ACPI Machine Language (AML) code provided by the firmware. This theoretically
reduces the need for SMM in modern systems.

2.2. COREBOOT 7

The division of responsibilities between firmware and OS is defined by the
firmware developer. This can range from comprehensive management by the
OS, guided by detailed AML code, to a minimal role where the OS prompts the
firmware to handle events via SMIs. An example is the power button: initially,
firmware handles shutdowns directly; after the OS takes over, it manages shutdown
procedures based on ACPI signals, allowing for orderly shutdowns and system
management [52].

2.2 Coreboot
Coreboot is an open-source system firmware implementation designed to perform
platform initialization across various mainboards and CPU architectures. As the
first code executed on a CPU after a system reset, coreboot configures the DRAM,
and initializes connected devices, including PCIe devices. It starts the chipset
(called Platform Controller Hub on Intel systems) along with all its attached
devices and setups the ACPI table [17]. Adhering to the principle of separation of
concerns, coreboot does not incorporate a bootloader or BIOS; rather, it is solely
utilized for initializing the underlying hardware [34].

Boot Stages

The boot sequence of coreboot is structured into several stages, each compiled as
separate binaries. The sequence begins with the bootblock, responsible for setting
up a C programming environment and implementing cache-as-RAM (CAR) for
memory management.

Following the bootblock, the verstage initiates a secure boot process, establish-
ing a root-of-trust essential for maintaining firmware integrity. Next, the romstage
prepares the system for device initialization by setting up DRAM. This is succeeded
by the postcar stage, which marks the transition from CAR to regular DRAM
operation.

The ramstage is tasked with the main device initialization and configuring
various system tables. Concluding the coreboot process, the payload is executed.

A coreboot payload is a software component that coreboot executes after it has
initialized the hardware of the system. Unlike traditional BIOS or UEFI, which
have a fixed set of functionalities, coreboot is designed to be minimal and modular,
handing off control to a payload for specific tasks after the system is initialized.

Examples of coreboot payloads include SeaBIOS [7], which provides a tra-
ditional BIOS interface for booting operating systems, and TianoCore [51], an
open-source implementation of UEFI that allows coreboot to boot systems requir-
ing UEFI support. Other payloads like GRUB, a bootloader, can be used for directly

8 CHAPTER 2. FOUNDATIONS

loading and managing different operating systems [6]. Dasharo, the distribution of
coreboot used in this thesis, includes TianoCore edk2 as payload [36].

Logging

Coreboot offers multiple output channels for conveying logs to developers [35].
Given that we do not alter the firmware’s boot stages, our interest lies exclusively
in logs generated after the system has booted. The available tool, cbmem, enables
us to display firmware logs in the Linux environment that are retrieved from a
memory region that is shared with, and exclusively writable by, the firmware.

2.3 Intel Optane
Intel Optane is a non-volatile memory technology, distinct from traditional RAM
and NVRAM. It is based on a non-volatile phase-change memory technology called
3DXpoint developed by Intel and Micron [13]. This technology is particularly
interesting because of its fast, byte-addressable and persistent nature.

Regarding its applications, Optane can be used in two primary ways:

• As standard NVMe PCIe SSDs: In this format, Optane SSDs were broadly
compatible with various systems, not requiring special drivers or CPU sup-
port.

• As memory or onboard acceleration devices: Optane could also function as
non-volatile main memory (NVDIMM) or for caching and accelerating tasks.
This application, however, necessitates hardware that explicitly supports
Optane [15]. Within the memory/storage hierarchy, Optane occupies a
unique position. It does not fit into the traditional categories of RAM or flash
SSDs; instead, it forms its distinct category within this pyramid [21].

In 2022, Intel announced the discontinuation of Optane persistent memory
[27].

FPGA Device

For this thesis, we require a storage device that is accessible from SMM and with a
capacity that at least matches the size of our main memory. To minimize complexity
for the code running in SMM, the device should be byte-addressable and offer low
latency. We use a PCIe device containing Optane non-volatile memory based on
an Intel FPGA accelerator, designed to address the performance challenges of Intel
Optane Persistent Memory [53]. The FPGA device supports a write bandwidth
of up 12GiB/s. This device empowers us to fully utilize the bandwidth of the

2.4. LINUX 9

PMem with just a single CPU thread, thanks to its support for "asynchronous copy
offloading." This feature allows the CPU to initiate subsequent commands to copy
memory sections to the FPGA without waiting for the completion of previous ones,
thereby preventing CPU stalls that could occur due to numerous, yet small, page
transfers.

PCIe

The PCIe bus is a high-speed serial computer expansion bus standard. PCIe is
used for connecting high-speed components in computers and servers, including
graphics cards, solid-state drives (SSDs), and network interfaces.

It operates through serial connections with data transferred over point-to-point
data lanes. These can be combined to create wider interfaces, enhancing bandwidth.
It is scalable, with configurations from x1 to x32 lanes. PCIe 3, which we are using
to connect to the FPGA device, is capable of transmitting 8Gbit/s per lane.

Base Address Registers (BARs) are crucial components within the PCIe speci-
fication, serving as the mechanism through which a PCIe device communicates its
memory and I/O requirements to the host system. When a PCIe device is added to
a system, it must be configured to interact with the system’s memory space. BARs
are used by the device to inform the OS how much memory space it needs and
at what address this space should be accessible. The system’s BIOS or firmware
typically handles the allocation of address space to each device during the system
boot-up process.

While there are several types of BARs, we only use Memory Mapped I/O
(MMIO) BARs. These are used for mapping device memory into the system’s
memory address space. MMIO BARs can specify whether the device requires a
32-bit or 64-bit address space.

2.4 Linux
In implementing this thesis, we have chosen to use the Linux kernel. It is well-
documented and comes with support for a wide range of devices. Using Linux
allows us to modify the kernel and implement changes in core components like the
memory subsystem.

Virtual Memory Management

In the realm of virtual memory management, on x86_64 architectures, memory
is organized in a paged format. This eliminates the need for contiguous physical
memory and allows for efficient and flexible memory utilization. Paging involves

10 CHAPTER 2. FOUNDATIONS

the division of virtual memory into discrete blocks, known as pages. On x86_64
systems, the default settings set the size of a memory page to 4096 bytes, and the
operating system maintains a page table to map these virtual pages to physical
memory frames [16].

In the x86_64 architecture, the virtual memory is managed through a four-level
page table structure as illustrated in 2.1. This structure includes the Page Global
Directory (PGD), Page Upper Directory (PUD), Page Middle Directory (PMD),
and Page Table Entries (PTE). The PGD, at the top level, points to PUDs, which
further divide the virtual address space. PUDs point to PMDs, and PMDs lead
to the PTEs, the final level where actual virtual-to-physical address mappings are
stored [16].

Virtual Address

12 bit9 bit9 bit9 bit9 bit

PGD PUD PMD PTE Memory Page

Page
Global

Directory

Page
Upper

Directory

Page
Middle

Directory

Page
Table
Entry

Memory
Page

Figure 2.1: Representation of the x86_64 architecture’s 4-level page table structure,
showcasing the sequential mapping from a virtual address to physical memory.
Each segment of the virtual address is mapped to its respective level in the page
table.

In Linux, each process has a list of vm_area_structs which describe a con-
tiguous memory area in the process address spaces [48]. This includes information
like access permissions and whether the memory region is backed by a file and a
pointer to the PGD of the process.

Process Creation

To persist a running process, we need to access some of its data in addition to
mapped memory pages. Also, to recreate a previously persisted process, we need
to create a new process that we adjust according to the data we backed up.

2.4. LINUX 11

The Linux kernel keeps track of processes using the task_struct data
structure, which contains comprehensive information about each process, such as
its state, memory usage, and identifiers [49].

Process creation in the kernel is primarily facilitated through two system calls:
fork and clone [42]. The fork() system call creates a new process by duplicating
the calling process, resulting in a child process that is an exact copy of the parent
but with a unique process ID. However, fork() can be resource-intensive as it
involves copying the entire memory space of the parent process.

To offer a more efficient and flexible alternative, the kernel provides the
clone() system call. clone() is used for both thread and process creation,
allowing specific control over shared resources between the parent and the child
processes. This approach is particularly effective for creating lightweight threads
as it reduces the overhead of process creation by sharing certain resources like the
address space.

12 CHAPTER 2. FOUNDATIONS

Chapter 3

Related Work

In this chapter, we highlight existing research that aligns with the themes of our
thesis. This chapter reviews the Zhuque paper, which introduces a runtime for
applications to achieve crash consistency, even if they are not inherently persistent
memory-aware. While our thesis implements a similar system, our approach is not
dependent on PMem.

We also examine eADR, a set of instructions in certain Intel CPUs that enable
flushing of all modified data in caches to memory in the event of power loss.

Additionally, we highlight some emerging non-volatile memory systems to
provide a comprehensive view of the current landscape in non-volatile memory
systems.

3.1 Zhuque
Hodkins et al. [14] introduce Whole Process Persistence (WPP), a new program-
ming model designed for systems with persistent caches, specifically addressing
the challenges posed by PMem. In the paper, they focus on making it possible
to profit from properties like byte-addressability while solving the challenges of
having to rewrite software and losing performance.

WPP aims to simplify PMem programming by making the entire state of a
process persistent. In the event of a power failure, this state can be reloaded, and
execution resumes with an application-defined interrupt handler. The paper also
discusses the Zhuque runtime, which provides WPP transparently by interposing
on C system call bindings in userspace. This runtime requires minimal programmer
effort and significantly outperforms existing PMem libraries by a factor of 5.24x
for PMDK, 3.01x for Mnemosyne, 5.43x for Atlas, and 4.11x for Clobber-NVM.

The paper identifies limitations in previous PMem systems and proposes WPP
as a solution that treats power failure as a recoverable exception. It showcases

13

14 CHAPTER 3. RELATED WORK

the performance improvements of WPP over existing systems and its flexibility in
supporting legacy programs and complex locking schemes.

3.2 Whole-System Persistence
Databases and key-value stores are predominantly maintaining all their data in
main memory in server clusters potentially housing hundreds of terabytes of data.
The recovery of the system from a backend storage becomes exceedingly time-
consuming, ranging from minutes for a single server to several hours for an entire
cluster.

The paper "Whole-System Persistence" proposes a technique of the same name
as a solution for systems equipped with non-volatile memory, aiming to signifi-
cantly reduce recovery times [31]. Whole-System Persistence (WSP) distinguishes
itself by eliminating runtime overheads through a "flush on fail" strategy, where
transient state data in processor registers and caches are flushed to non-volatile
RAM (NVRAM) only upon detecting a power loss. This method leverages the
residual energy from the system power supply to ensure the data flush can be
finished even with power to the server lost.

Comparative analysis with existing solutions, such as Mnemosyne - which
flushes caches upon each commit - reveals that WSP offers a substantial perfor-
mance advantage. For instance, WSP outperforms Mnemosyne by more than
2.4 times in an OpenLDAP benchmark. Furthermore, WSP simplifies the failure
recovery process, making a power outage appear akin to a system suspend/resume
event, with complete restoration of the stack, heap, and thread context.

WSP addresses the issue of persistent objects’ dependency on volatile ones
by persisting the entire system state. Utilizing residual energy for data flushing,
tests on their system demonstrated a capability to sustain power for at least 10ms
after energy loss, with cache flushing requiring less than 5ms across all systems.
The approach employs the PWR_OK signal from Advanced Technology Extended
(ATX) specifications, monitored via a microcontroller, to detect power loss timely.

The exploration of "Process Persistence" is highlighted as a potential area for
future work.

3.3 eADR
In the realm of persistent memory and its integration into system architectures, the
concept of atomic durability is critical for ensuring crash consistency in applica-
tions. Traditional atomic durability techniques for PMem systems, which rely on

3.4. EMERGING NONVOLATILE MEMORY 15

volatile cache, often lead to significant performance overhead. Intel’s introduction
of enhanced Asynchronous DRAM Refresh (eADR) for Optane PMem presents
an opportunity to develop a more efficient system for atomic durability in PMem
environments [20].

The paper "Efficient Atomic Durability on eADR-Enabled Persistent Memory"
discusses a technique named LOAD, which is a low-overhead atomic durability
method built upon eADR [55]. LOAD is designed to leverage the memory hierarchy
effectively. It introduces two key components: Transaction-aware Cache (TaC)
and Device-Friendly Logging (DFL). TaC utilizes the memory hierarchy to move
older, yet valid data from higher-level caches (like L1) to lower levels (such as L2),
thereby retaining old version data in caches for crash recovery. On the other hand,
DFL is responsible for recording necessary old version data into logs. This ensures
that transactional data can be atomically moved from the last-level cache to PMem.

In terms of data movement, the path typically follows from the core to L1, then
to L2, LLC (or L3), WPQ (Write Pending Queue), and finally to the DIMM [19].
While ADR ensures that data in the WPQ is saved to the DIMM during power
loss, eADR expands this to include the entire memory subsystem within the CPU,
encompassing the whole cache hierarchy. This includes specific instructions to
flush caches and implement fence instructions.

However, a challenge arises with the performance overhead incurred when
flushing cache lines. LOAD addresses this by implementing DFL. DFL logs data
written to PMem from the LLC. In the event of a reboot, DFL allows for partially
updated data in PMem to be rolled back to a valid state using the logs. Notably,
LOAD achieves this with only a 1% performance overhead [55].

3.4 Emerging Nonvolatile Memory
Focusing on emerging memory technologies, the discussion extends beyond 3D
XPoint, highlighting that it is not the only persistent memory solution available.
MRAM (Magnetoresistive RAM) is another notable technology in this space
[54]. It is a type of RAM based on magnetic effects and is commonly used
in microcontrollers where non-volatile properties are essential. Looking ahead,
MRAM could potentially be used in CPU caches [23].

A recent development in this field is SOT-MRAM (Spin Orbit Transfer Mag-
netoresistive RAM) [12]. This technology is a successor to STT-MRAM (Spin-
Transfer Torque MRAM) but is not yet commercially available. SOT-MRAM is
recognized for being faster and more energy-efficient than its predecessor.

Despite the discontinuation of Optane, there continues to be active develop-
ment and innovation in non-volatile memory (NVM) technologies, presenting
alternatives for future research.

16 CHAPTER 3. RELATED WORK

Chapter 4

Design

In this chapter, we present the system requirements, both functional and non-
functional. The chapter discusses the design aspects at a high level, particularly
focusing on how memory allocations are tracked and persisted. Additionally, we
explore the design strategy behind the recreation of processes, providing insights
into the methodologies and considerations involved in accurately restoring a process
to its previous state post-recovery. The actual details on our implementation follow
in Chapter 5.

4.1 Requirements

The design of the whole process persistence, integrated into coreboot, focuses on
three key requirements: accurately restoring the process to its original state,
ensuring low performance impact during runtime, and minimizing energy
usage after receiving the power loss signal.

To restore a process as closely as possible to its original state, the system has
to capture a snapshot of the process while it is running. This includes storing the
memory region layout, encompassing file backings and other details crucial for
the process’s environment. Additionally, it involves capturing the entire state of
the process stored in the PCB, including PID, CPU state with all registers, threads,
open files, permissions, and all physical page frames.

The recreation phase involves recreating the process using the same binary as
the persisted one reconstructing all memory regions, including shared libraries and
open files. The process’s pages are restored to their previous state, and the process
information, such as PID and general settings, are set to mirror the persisted process.
The newly created process’s execution state, including the program counter and
registers, is altered to match where the previously persisted process was at the
moment of persistence.

17

18 CHAPTER 4. DESIGN

The focus of this design is to minimize the impact on runtime performance.
This is achieved by limiting the operations to storing or removing page mappings
and memory regions in RAM managed by the firmware, avoiding any heavy com-
putations or PCIe device access. This approach ensures that the regular operation
of the system remains largely unaffected while the process persistence activities
are carried out.

When a power loss signal is received, the firmware writes all memory pages
and other captured data like memory mappings, memory regions, and information
from the PCB to the FPGA introduced in Chapter 2. The final step of writing an
OK bit to the FPGA marks the completion of the persistence process.

4.2 Process Tracking

The tracking of a process during its runtime begins with a specialized starter

binary that receives an executable as an argument. This binary clones itself using
specific arguments, adapting the standard process creation mechanism to tell the
kernel that the newly started binary should be tracked during runtime and persisted
on a given signal.

The Linux kernel is modified to include a should_be_persisted flag in
the task_struct [48], allowing the kernel to identify the process that it should
persist. When a process with this flag is started, the kernel communicates this event
to firmware, which then resets its state in preparation for the new process.

The specialized starter binary executes the given executable using the
execve system call [44]. The kernel tracks all memory region creations and dele-
tions associated with the process, including details like virtual address, length, flags,
backing file, and protection levels, and copies this information to the firmware.

When new page table entries are created during memory access, the kernel
communicates the virtual and physical address combinations to the firmware. This
happens when the program is accessing an address that does not already have a
Page Table Entry (PTE) leading to a page fault. Similarly, the deletion of PTEs is
communicated to the firmware.

Since we are tracking PTEs, we are not capturing memory pages that are
swapped out by the operating system. It is possible to persist these pages, but
this would increase the complexity of the implementation and add latency to the
persisting of the process. Thus, it is possible that our solution will not correctly
recreate a process on a system with enabled swap.

4.3. PROCESS RECREATION 19

Firmware

We install a special SMI handler in the coreboot firmware that reacts to certain
events sent by the Linux kernel and writes the gathered data to the FPGA device on
a given event. To make it possible for the kernel and the firmware to exchange data,
a specific memory location is used as a mailbox for both the kernel and firmware
to put data for the other party to read.

4.3 Process Recreation
The recreation process begins with the initiation of a specialized recreator
binary, which is given the binary that needs to be restarted as a parameter. The sys-
tem assumes the process was already persisted as described in the previous section.
This recreator binary is designed to clone itself with special parameters that
inform the kernel it should start the recreation procedure.

The recreation is happening completely in the kernel. It starts by reading
general metadata, such as the previously persisted process’s binary name, from the
firmware and conducts a sanity check to ensure the correct binary is recreated. As
part of the clone() system call, the kernel adds additional memory regions to
the virtual memory of the process, which it loads from the firmware. The recreated
memory regions also include file backings and permissions.

The kernel then iterates through the PTEs that it reads from the firmware,
adding new PTEs to the new process within the boundaries of the already created
memory regions. This process results in the same virtual memory layout but
different physical addresses than those in the original process, due to the dynamic
nature of memory allocation.

Next, the state of the process, including the PID, CPU state like registers and
file descriptors, is set. This ensures that the recreated process mirrors the state of
the originally persisted process.

An important aspect of this process recreation is that it occurs not during normal
runtime but before the actual start of the process. While recreating a process, the
firmware is used to access data stored on the FPGA.

20 CHAPTER 4. DESIGN

Chapter 5

Implementation

We shift our focus from theoretical designs to their practical implementation. This
implementation is specifically carried out on a 12th generation Intel x86 CPU
and an MSI Z690-A PRO motherboard, which is selected for its compatibility
with coreboot. A key component of this implementation is the use of the already
introduced FPGA device, which is used as a storage device. This chapter details
how the concepts and designs previously discussed are actualized in a real-world
hardware and software environment.

5.1 Kernel

For implementing the firmware-based whole process persistence, a Linux kernel
based on the upstream version 6.1 is used. The approaches used are not limited
to this version and could be backported to older versions or implemented in the
current mainline kernel from kernel.org.

Kernel Firmware Communication

Communication with the firmware is encapsulated within an extra kernel module,
smi-trigger. This module provides methods for the rest of the kernel to
either communicate events to the firmware or read data from it. To transport
data packets between firmware and kernel, we reserved the first 16MiB of the
previously mentioned firmware memory for a mailbox shared between the kernel
and the firmware. To use this mailbox from within the kernel, another kernel
module smi-mailbox provides interfaces for mailbox read and write operations.

smi-trigger internally writes to the mailbox and performs several checks.
These checks include whether the system is in the correct state to receive the given
event and if the properties of the received data are within defined boundaries. To

21

22 CHAPTER 5. IMPLEMENTATION

send these events and invoke the firmware, the kernel triggers a SMI in software by
writing to the I/O port 0xb2, with the value written to the port corresponding to
the specific event type. The subsequent sections will provide a detailed account of
the various events that we implemented.

Our function to trigger an SMI from within the kernel is shown in the listing
5.1.

Listing 5.1: Triggering SMI in the kernel
1 void trigger_smi_interrupt(enum EventType eventType)
2 {
3 printk(
4 KERN_DEBUG "SMI triggered with EventType: %i\n",
5 (u32)eventType
6);
7
8 asm volatile("mov %0, %%eax;"
9 :

10 : "r"((int)eventType)
11 : "eax"
12);
13
14 asm volatile("out %eax, $0xb2");
15 }

5.1.1 Process Tracking
Process tracking within the Linux kernel involves several modifications.

The first modification is in the e820 parser, which is adapted to reserve 256MiB
of memory for the firmware to store internal data at a specific address. This location
of this memory is required to be within the lower 32 bits due to coreboot executing
the SMM handler in x86 real mode. We chose 0x10000000 as the address, which
is hardcoded into the kernel and the coreboot firmware.

To be able to persist a specific process, we have to add a property the kernel’s
abstraction of processes, the task_struct. We did this by adding a boolean
should_be_persisted. To tell the kernel that a newly started process should
be persisted, we modified the clone system call. In our modified kernel, the
clone() system call includes a check for a flag. We chose the currently unused
CLONE_DETACHED flag [49]. If it is set, the should_be_persisted flag
in task_struct is set to true. This flag in the task_struct is used by the
memory subsystem to identify the marked process. We expose this flag to userspace
by adding it to the /proc filesystem as shown in the figure 5.2 Additionally, an
init event is communicated to the firmware which resets its state.

5.1. KERNEL 23

Listing 5.2: Struct for requesting memory page
1 $ cat /proc/42/process_persistence
2 Process Persistence flag: true

The kernel’s page table entry management is also involved in process tracking. Dur-
ing do_anonymous_page, do_file_page, do_no_page and zap_pte_range
operations, when PTEs are added to or removed from the current process’s virtual
memory area, these events are communicated to the firmware [50]. However,
no additional logic is added to the kernel side for these operations. The PTE
communicated consists of both the virtual and physical addresses.

Finally, in do_mmap and unmap_region functions, the information passed to
these functions is communicated to the firmware and stored there. This includes
details such as the file, virtual address, permissions, flags, and size of the memory
regions [50].

5.1.2 Power Loss Event Handling

To separate the concerns of being able to detect power losses in a system and
being able to recreate a process, we choose to simulate the power loss events. It
is possible to detect an imminent power loss by checking the voltage level of the
ATX PWR_GOOD line [31], but this was out of scope for this thesis.

Our kernel includes a module that creates a special file in the /dev directory,
/dev/wpp-trigger. This file acts as an interface to communicate with the
WPP system. When a predefined magic number is written to this file, the kernel
module initiates the power loss handling procedure.

Magic number Description
10 Trigger power loss procedure
20 Reset state of firmware
30 Send test PTE
40 Send test memory region
50 Toggle debug flag 1
60 Toggle debug flag 2

Figure 5.1: Magic numbers for /dev/wpp-trigger device

This procedure involves identifying and managing the process marked for persis-
tence. The kernel module searches for a process with the
should_be_persisted flag set. If such a process is found, the module re-
moves it from the scheduler, effectively halting its execution on any CPU core.
Halting the process needs to be done before any data can be persisted because the

24 CHAPTER 5. IMPLEMENTATION

state of the process is not captured in an atomic operation. A process that changes
content in memory while they get persisted would be captured inconsistently.

To make sure all data in the cache hierarchy of the CPU is written back into
system memory, we flush all caches into memory. To this, the kernel issues a
WBINVD instruction on all cores using the wbinvd_on_all_cpus function
provided by the kernel [16, 45].

Once the process is halted, the kernel module proceeds to communicate the
PCB to the firmware. The PCB includes information about the process, such as
open files, the CPU state, and other relevant data. This transmission is a crucial
step in ensuring that all necessary details of the process state are available for
persistence.

Following the halting of the process and the communication of its state, the
kernel module then signals the power loss event to the firmware. In response, the
firmware initiates the process of persisting the halted process to the FPGA device.
This step completes the power loss handling sequence within the kernel, ensuring
that the process state is preserved in the event of an actual power loss.

After the firmware completes the persisting, the process will be killed by the
kernel to prevent it from changing the state of the machine. If the process would
alter open files this could corrupt the recreated process that was recreated from the
snapshot saved on the FPGA.

5.1.3 Process Recreation
The implementation of the process recreation is implemented based on the clone()
system call. To recreate a previously persisted process, a special recreation
binary is being executed. When the clone() system call is invoked with the
CLONE_DETACHED parameter by the recreation binary, the system under-
takes additional steps [49]. Both the need to track a process and to recreate a
previously persisted process are expressed by adding the CLONE_DETACHED
flag. To distinguish both cases, the kernel also takes into account the name of the
binary. If it is equal to recreator, it executes the process recreation codepath.
Initially, it retrieves the metadata of the last persisted process from the firmware
and conducts a sanity check on the binary name. This step ensures that the correct
process is being recreated.

If the sanity check is successful, the kernel retrieves memory region information
from the firmware. These memory regions are then added to the newly created
process. At this stage, the virtual memory area of the process includes all necessary
components such as mapped open files, the process binary, and dynamically linked
libraries. These components are set to be loaded by the kernel upon access.

However, to restore the contents of private memory regions or modified parts
of regions, like open files, the actual pages must be loaded into memory. The

5.2. FIRMWARE 25

firmware, having tracked all added PTEs and saved the contents of the pages to the
FPGA, provides the necessary information for this restoration.

The process involves filling the memory inside the already created memory
regions with PTEs stored in the FPGA. This step restores the actual data that the
process was using. However, it also leads to changes in the existing physical
addresses.

5.1.4 PCIe Base Address Remapping

In the SMM, a challenge arises from the limitations imposed by the x86_64 real
mode where only the lower 4GiB of RAM are usable. This constraint becomes
significant when dealing with the FPGA that exposes 511 PCIe virtual functions
[53]. These virtual functions cannot fit within memory regions accessible from
real mode.

The Linux kernel assigns the first BAR, BAR0 of the FPGA to a memory region
that lies outside the lower 4GiB of RAM accessible from SMM. Coreboot is not
able to access these memory regions, necessitating a modification in the kernel to
prevent any remapping outside the lower 4GiB of memory.

The kernel typically utilizes the pci_assign_resource function to adjust
memory regions [46]. In this case, the function is modified to avoid remapping the
memory regions of any PCIe device that matches the FPGA’s vendor and device
IDs.

5.2 Firmware

Similar to the Linux kernel itself, coreboot is not distributed as a pre-compiled
binary but in a source-code format [40]. There is a very limited choice of modern
mainboards that are supported by open-source firmware. Dasharo is a distribution
of coreboot and provides ports of the coreboot firmware to several mainboards.
Thus, we can modify the firmware of a modern Alderlake-based mainboard, the
MSI Z690-A PRO [9].

The main goal for the firmware implementation is to handle incoming data
from the kernel and keep track of the memory regions and PTEs of the process. On
a given signal, it is able to dump all this data and the content of the pages to the
FPGA device. After system restart, it restores its internal state from the FPGA and
waits for the kernel to request information about the previously persisted process
while the kernel recreates it.

26 CHAPTER 5. IMPLEMENTATION

5.2.1 Coreboot Implementation

To implement a generic handler for SMIs in coreboot, a function
int mainboard_smi_apmc(u8 data) has to be implemented [46]. This
function will be called by the coreboot SMI handler with u8 data being the value
written to the SMI port by the kernel, as shown in 5.3. The process persistence
logic implemented in firmware has 256MiB of system memory reserved. The base
memory address is 0x10000000 and is sectioned as displayed in 5.2.

Memory start address Description Section size
0x10000000 Mailbox 0x01000000
0x11000000 Metadata 0x02000000
0x13000000 Memory Regions 0x03000000
0x16000000 Internal Buffers 0x02000000
0x18000000 Page Mappings 0x08000000

Figure 5.2: Layout for the memory that is reserved for the firmware to save
temporary data about the process to persist.

Kernel Memory subsystem SMI Kernel Module Firmware

communicate_page_mapping()
write_to_mailbox()

trigger_smi()

SMI interrupt

Figure 5.3: Example for the flow of information through kernel and firmware: A
newly created PTE from the kernel memory subsystem is forwarded to the SMI
kernel module developed in this thesis, which writes information about the PTE
into the shared mailbox and triggers an SMI. This will invoke the firmware, which
will perform actions depending on the received event.

5.2. FIRMWARE 27

5.2.2 Event Handlers

Init

The Init event handler clears the memory reserved for firmware operations and sets
up the environment to be able to process incoming memory regions and page table
entries. To accomplish this, the memory region for PTEs, kernel memory regions,
and metadata is reset.

Add Memory Region

Calls to mmap() or files that are opened by a process will be creating new memory
regions in the process’s virtual memory area. To make it possible to persist these
regions, we added a pair of events communicating addition or removal of such a
region. To fully recreate the region, we need the properties listed in the listing 5.3.
These include the start of the region at virtual_address, its size length,
an optional path of the file backing the region file_path, and the protection
and flags which are analogous to the parameters given to the mmap() system call.
The Memory Region section is sectioned into slots of size
sizeof(struct memory_region_information). The struct in the listing
5.3 will be placed in the Memory Regions section of firmware memory. To find
a slot for the incoming memory_region_information, the Add Memory
Region handler iterates over all slots in the Memory Regions section until it finds
an empty one.

Listing 5.3: Add memory region information
1 struct memory_region_information {
2 char file_path[100];
3 u64 virtual_address;
4 u64 length;
5 u64 protection;
6 u64 flags;
7 };

Remove Memory Region

When a memory region is unmapped or a file closed, the corresponding removal
of this memory region will be forwarded to the firmware by passing the virtual
address of the region to the firmware which is removing the corresponding struct
memory_region_information from its memory.

28 CHAPTER 5. IMPLEMENTATION

Add Page Table Entry

This handler receives a PTE in the form of the struct in listing 5.4 from the kernel
and saves it in the Page Mappings section.

Listing 5.4: Memory page mapping struct
1 struct memory_page_mapping {
2 u64 virtual_address;
3 u64 physical_address;
4 };

The Page Mappings memory region is sectioned into slots of size
sizeof(struct memory_page_mapping). When receiving a new map-
ping, the handler searches for the first free slot and copies the incoming mapping
into the slot. To prevent the handler from having to search through the whole Page
Mappings region to find a new slot, the region is further divided into indices. There
are 16 sections, and the index of the section is determined by the following formula:
(virtual_address & 0xF000) » 12. This reduces the worst time effort
to find an empty slot by a factor of 16.

Userspace process Kernel Firmware

mmap()
forward_memory_region

page fault
forward_page_mapping

munmap()
remove_page_mapping

remove_memory_region

Figure 5.4: The creation of new memory regions and the creation of new PTEs
through page faults is forwarded to the firmware transparent to the process.

5.2. FIRMWARE 29

Remove Page Table Entry

This handler also receives a struct memory_page_mapping. It searches
the slots in the Page Mappings memory region for the pair of virtual and physical
addresses and zeroes out the section when found. Similar to the addition of new
page mappings, the removal handler also only has to scan through one of the 16
indices to find the matching entry.

Write Data

The Write Data handler is used to write data to the Metadata section of the
firmware memory. Since all of the memory sections except the Metadata section
are managed by the firmware itself, this event handler can only be used to write the
Metadata section. Data received from mailbox is shown in listing 5.5.

Listing 5.5: Struct to write data

1 struct data_command {
2 enum memory_sections section;
3 u32 offset;
4 u32 size;
5 };

The only valid section for writing data is the Metadata section, but the interface
is used for reading data as well. Through the offset and size parameters, the
kernel tells the firmware which exact memory section should be overwritten. The
firmware will copy the number of bytes given in the size parameter from the
mailbox into the specified section of memory at the given offset.

Read Data

The Read Data handler is built analogous to the Write Data handler. It receives
a struct data_command and copies the number of bytes given in size from
the given section and the given offset to the mailbox. After the handler runs, the
kernel can read the mailbox.

30 CHAPTER 5. IMPLEMENTATION

Kernel Firmware FPGA Device

Stop userspace process

add_process_metadata
trigger_persisting

Persist Metadata

Persist Memory-Regions

Persist PTEs

Persist memory pages

Write OK Bit

Figure 5.5: Sequence of persisting the previously tracked process onto the FPGA.
After the process is stopped and process metadata is sent to the firmware, it writes
each memory region to the FPGA and copies all used pages from memory to the
FPGA.

Trigger Persisting

The Trigger Persisting handler is the core of the persistence operation in the
firmware. It gets triggered when the process that should be persisted is running
and a power loss signal is received. After the kernel stops the process and copies
metadata like the PCB into the Metadata section, this handler copies all data to

5.2. FIRMWARE 31

the FPGA. First, the handler copies all of the memory sections of the firmware to
the FPGA. This includes the sections Metadata, Memory Regions, and Memory
Pages. The whole 256MiB of internal memory is getting copied to the FPGA.
After copying the internal state of the firmware, the memory pages have to be
copied. All memory pages in the Page Mappings section are copied from system
memory to the FPGA in the same order they appear in the Page Mappings section.
We copy the pages by issuing a command to copy 4KiB of memory from the base
address of the page to the FPGA. This process is detailed in 5.5 After all pages are
saved to the FPGA, an OK bit is set to indicate a finished persistence process. The
layout of the FPGA memory is shown in 5.6.

Restore from FPGA

The Restore from FPGA handler is called as part of the recreation process. After
the process was performed and the system experienced a shutdown, this event
handler is executed. It takes the firmware sections that were copied to the FPGA in
the Trigger Persisting handler and copies them from the FPGA back to the reserved
firmware memory. This makes it easier for the kernel to copy data from the sections
using the Read Data command.

Get Pages from FPGA

After Restore from FPGA, the kernel can use Read Data to access all data except
the actual content of the memory pages. Access to the pages saved on the FPGA is
given through this command handler.

Listing 5.6: Struct for requesting memory page
1 struct get_page {
2 u32 index;
3 u64 address;
4 };

The firmware reads the 4KiB page at the given index from the FPGA and places
them in the main memory at the give address.

FPGA start address Description Section size
0x40000000 Firmware Metadata 0x002000000
0x42000000 Firmware Memory Regions 0x003000000
0x45000000 Firmware Internal Buffers 0x002000000
0x47000000 Firmware Page Mappings 0x008000000
0x50000000 System Memory Pages (up to) 0x800000000

Figure 5.6: FPGA storage layout of a persisted process

32 CHAPTER 5. IMPLEMENTATION

Debug

The debug handler is only used for development purposes and performs several
actions. These include:

• Discover the FPGA device on the PCIe Bus

• Activate the FPGA device and setup its queues

• Check whether the FPGA device functions correctly by writing to it and
reading from the same address

• Log information about the internal state of the firmware memory sections

• Log contents of the mailbox

5.2.3 FPGA Device Communication
The FPGA device is connected via PCIe and employs Persistent Memory (PMem)
to access the entire RAM of the system while exclusively using MMIO for its
operations [24]. The initialization of the FPGA involves mapping its registers into
memory and resetting the device. Coreboot provides the necessary primitives for
communicating with PCIe devices and setting them up.

FPGA Initialization

For the FPGA initialization, the first task is to locate the FPGA by enumerating all
PCIe devices and filtering them based on the vendor and device ID. Once identified,
the PCIe device is enabled, setting the bus master and memory flags. This
enables the FPGA to access the entire RAM of the host system using DMA [32].
The FPGA is capable of performing operations such as copying from any Optane
address to a host memory address and vice versa.

These operations are managed through individual ring buffers of requests, and
the memory for these buffers must be allocated from the firmware, not the FPGA.
The memory locations of these buffers are then written to the memory-mapped
registers of the FPGA.

FPGA Functions

The read and write functions of the FPGA utilize their own queues but are analogous
to each other. The ring buffer is updated once the FPGA completes a command.
When issuing a command, it is queued into the ring buffer, and the FPGA registers,
which contain the index of the most recent object in the buffer, are incremented.

5.2. FIRMWARE 33

However, every 128th element of the ring buffer is unusable due to the FPGA
implementation, requiring these entries to be skipped.

It is possible to issue commands at a rate faster than the FPGA can process
them. To prevent overwriting commands in the ring buffer that have not yet been
completed, it is necessary to track the number of in-flight commands. If this
number reaches the buffer capacity, the system must wait until a command is
finished before issuing new ones. This process ensures all commands are handled.

5.2.4 Development and Debugging of Firmware

In this section, we show some of the problems and subtleties you encounter when
developing and debugging system firmware. In contrast to the kernel, it is much
harder to update firmware and broken builds are harder to recover from, since
a broken firmware means your mainboard does not boot anymore. Also, logs
generated by system firmware are harder to read than userland or kernel logs.

Coreboot Build and Deployment

Building the coreboot image for a board involves different configuration steps [39].
We use the Dasharo distribution of coreboot, which has already established

a configuration for booting EDK2 on the mainboard in use [8]. Dasharo offers
a Docker image that comes pre-equipped with all necessary dependencies for
compiling their coreboot distribution, simplifying the build process.

Additionally, Dasharo provides scripts for building coreboot and deploying
it onto the MSI board. Our configuration process involves several critical steps:
providing the serial number and UUID of the board, enabling an entry point for
SMIs, activating logging within the SMM, and deactivating lockdown and security
features. The latter is particularly important during the development phase to ease
the re-flashing of the board.

To flash the firmware onto the board’s onboard flash memory, we employ
flashrom [41], a tool for interacting with flash chips. We are proceeding according
to Dasharo’s resources when adding the previously extracted serial number and
system uuid into the binary and resigning the binary before flashing it.

Firmware Debugging

There are several challenges when developing and debugging system firmware.
Changes do not only require a lengthy compilation, but the firmware also has to be
written to flash memory and the whole system has to be restarted. To test multiple
changes without having to recompile and restart the system, we use feature flags in

34 CHAPTER 5. IMPLEMENTATION

the firmware that can be triggered via the interface the kernel uses to communicate
with the firmware.

Since a system with malfunctioning firmware is probably not going to boot we
added a source of non-determinism for changes to firmware code that is used in
the boot sequence. Changes that can break the boot process are placed behind a
should_use_new_feature switch that chooses to run the new feature 90%
of the time based on the timestamp_get function in coreboot, which on x86_64
systems is based on the timestamp counter rdtsc instruction [37] [16].

If a change nevertheless is preventing the system from booting, there are several
ways to get the system out of this bricked state. Since version 1.1.2 from September
2023, the Dasharo coreboot version for the MSI Z690-A PRO is supporting MSI
FLASHBIOS. This feature helps with recovery by allowing the board to flash
the original firmware from a USB drive. To enable this, in the last 64KiB of
the firmware image, some special symbols contain information about the board
identification and currently installed firmware [38].

Similar to the kernel’s printk infrastructure, coreboot also provides print
functions. Logs that are emitted through these functions can be piped to various
outputs. Since we are not interested in logs from the early boot stages, access to
the coreboot logs from the running operating system is sufficient [35]. All logs
emitted by our software are prefixed with wpp: to make it easy to omit all other
output produced by the firmware.

Several challenges can arise when writing to and reading from the Optane
memory using the FPGA. During the development phase, we encountered an
unexpected configuration change in the host machine, where the system was
initiated with the Input/Output Memory Management Unit (IOMMU) enabled. The
FPGA’s inability to access all memory protected by the IOMMU led to a situation
where the system froze while awaiting the completion of write commands.

To be able to debug this issue, we implemented a timeout mechanism. If the
system is waiting for the completion of all commands for more than 5 seconds, it
will continue even if not all commands succeeded but logging the timeout.

Chapter 6

Evaluation

Now, we focus on assessing the practicality and effectiveness of our implementa-
tion. This chapter showcases our test system and outlines the performance impact
on runtime and the duration of the persistence process across several applications
with varying patterns of memory access. Additionally, we discuss the inherent limi-
tations of the concept as well as those arising specifically from our implementation
approach.

6.1 Test Environment & Methodology
To be able to make meaningful statements about the performance of our solution,
we have to present the setup of our testing environment, detailing the hardware and
software configurations utilized to evaluate the implementation’s performance.

Environment

The test machine is based on an MSI Z690-A PRO motherboard, equipped with 32
GB of DDR5-5600 DRAM (4x 8GB). The CPU is an Intel Core 12700K, including
8 performance and 4 efficiency cores. Since all performance cores support 2x
hyperthreading, the CPU supports up to 20 threads. This MSI board is one of the
only modern mainboards with coreboot support from Dasharo.

The kernel and custom starter and recreation binary were compiled
with gcc 11.2. The operating system used for the tests is Ubuntu 22.04, running a
modified version of the Linux kernel based on version 6.1.55. The firmware used
for testing was based on the Dasharo coreboot firmware, version 1.1.2. Kernel and
firmware were modified as described in the previous chapters. The test system was
equipped with the FPGA device developed by Werling et. al. [53].

35

36 CHAPTER 6. EVALUATION

For controlling the test machine without physical access, we utilized PiKVM,
a Keyboard Video Mouse (KVM) solution [11]. PiKVM helped with tasks such as
resetting and rebooting the system and settings in the boot process.

Test Methodology

We conduct benchmarks to assess the runtime performance of our WPP solution,
focusing on single-threaded applications. The data collection process faced chal-
lenges, particularly in identifying applications that could be effectively restored
with our current implementation and pinpointing real-world applications where
performance is primarily constrained by the creation and removal of PTEs rather
than CPU limitations.

To maintain consistency across evaluations, all tests were conducted using the
same revision of the kernel and firmware. All debug logs related to adding or
removing PTEs in the kernel and firmware were removed for the testing. Addi-
tionally, the firmware was reset to its default state between tests to eliminate any
potential carryover effects. We did not experience any problems when not resetting
the firmware but added the resets as a precaution. To ensure the reproducibility of
our findings, tests were executed using an automated script. Time measurements
were conducted using the date command to get the passed time in milliseconds
[43].

6.2 Runtime Performance Impact

Now, we delve into the performance implications of our whole process persistence
solution on process runtime, as initially outlined in the design chapter. We aim
to minimize the performance impact, particularly noting that the main overhead
arises during the creation of numerous memory mappings. The effect on workloads
varies based on the frequency of creation and deletion of PTEs. We explore both
the theoretical performance implications by comparing against a default state under
a synthetic load scenario and the actual performance impact through testing with
a real in-memory database, Redis [33]. This approach provides a comprehensive
view of how our implementation affects system performance in both controlled
and practical environments.

6.2. RUNTIME PERFORMANCE IMPACT 37

1 5 10 50 100 500
100

101

102

103

104

200
375

550

2,180
4,390

24,700

1 1

10

60
130

660

MB

D
ur

at
io

n
(m

ill
is

ec
on

ds
)

With persistence Without persistence

Figure 6.1: Duration of a pass of our synthetic benchmark which is allocating and
freeing memory regions of the given size, thus highlighting the bottleneck of our
implementation, the creation and removal of PTEs.

6.2.1 Synthetic Load

In this section, we examine the runtime performance impact of our whole process
persistence solution under a controlled environment. For these tests, programs are
not recompiled for persistence but are initiated using a starter binary. The test
program is designed to allocate large, contiguous chunks of memory ranging from
1MiB to 500MiB using the mmap() system call, deliberately avoiding malloc to
bypass the standard library’s memory allocation strategies. With this benchmark,
we test the overhead of creating and removing a large amount of PTEs.

The program executes a cycle of calling mmap(), populating the allocated
memory with random content, and then releasing it with munmap(), repeating
this process 10 times. Our evaluation focuses on measuring two primary aspects:
the one-time overhead at the start due to the use of the starter binary instead
of launching the real binary directly, and the overhead associated with memory
mapping. The latter is considered negligible as it occurs only 10 times. However,
the overhead for each newly assigned PTE is significant due to the requirement for
a context switch into SMM for every PTE assignment, which is resource-intensive.

Our findings indicate a substantial initial overhead, with program runtime in-

38 CHAPTER 6. EVALUATION

creasing by 150ms. This overhead originates from the need to start the starter
binary which needs to clone itself to start the real application. When a process that
has to be persisted is started, the firmware is resetting its state, contributing to the
initial performance overhead. However, as the size of the data sets increases, this
overhead stabilizes around a 35x increase for workloads involving frequent map-
ping and freeing of memory regions. We have to keep in mind that this workload
is not a representation of real processes and that most real world workloads are not
experiencing a slowdown of this magnitude.

The tests, conducted 500 times to ensure reliability, present the median result
for consistency.

6.2.2 Redis

We extend our performance testing beyond synthetic loads to include a real world
application. We selected Redis version 5.6, a widely used in-memory key-value
store, for this purpose [33]. Redis facilitates a single-threaded architecture and
offers an included benchmarking tool that we used to simulate 50 clients accessing
the server with payloads of different sizes.

Our tests encompassed SET, LRANGE, and LPUSH commands, varying the
sizes of the data involved. We use one Redis instance started with our starter
binary and thus being in tracked mode and another one being normal Redis pro-
cess. To benchmark these, we use the included redis-benchmark tool with
4 different payload sizes, doing 50 requests in parallel and performing 100000
requests. The results are laid out in 6.2. Initial findings indicate that for smaller
data sizes, where the server does not require additional memory allocation, the per-
formance of Redis remains consistent, showing no statistically significant deviation
from the not persisted version. However, as the data size increases, necessitating
the allocation of larger memory chunks and consequently the creation of more
PTEs, we observed a notable impact on performance. This effect was particularly
pronounced in the LRANGE_600 test, where a significant drop in performance
was attributed to frequent reallocations of memory, highlighting the relationship
between memory management operations and application performance.

6.2. RUNTIME PERFORMANCE IMPACT 39

100 500 1000 2000
1.4

1.6

1.8

2

2.2

2.4
·105

Payload (Byte)

T
hr

ou
gh

pu
t(

re
q/

s)

SET

100 500 1000 2000

101

102

103

104

Payload (Byte)
T

hr
ou

gh
pu

t(
re

q/
s)

LRANGE_600

100 500 1000 2000

1

2

·105

Payload (Byte)

T
hr

ou
gh

pu
t(

re
q/

s)

LPUSH

With persistence Without persistence

Figure 6.2: Throughput of common redis operations. Operations with a small
payload size see a small or no performance impact, while larger payloads force the
application to allocate more memory which is slowing it down noticeably when
the redis process is tracked by our solution.

6.2.3 Impact on other Workloads

We also have to test the impact of a process being tracked on other workloads on the
same machine. We use the 7z LZMA benchmark that runs in parallel to one process
allocating 10GiB of memory while being tracked by our solution [29]. We used
one thread and standard dictionary sizes of 4MiB - 32MiB. In our benchmark 6.3

40 CHAPTER 6. EVALUATION

we see that the throughput of the runs that are executed in parallel to the process
marked for persistence suffers is only about 10 % of the control group. Although
our system can execute 20 threads in parallel, the constant invoking of the SMM by
the process to persist is causing all other cores to enter SMM [10]. This degrades
the performance of each running userland process and kernel operations.

4 8 16 32

103

104

782
638

551
507

8,414

6,301
5,152

4,529

Dictionary size (MiB)

T
hr

ou
gh

pu
t(

K
iB

/s
)

Compress

4 8 16 32

104

105

7,133 7,050 6,999 6,916

64,733 64,381 63,886 62,974

Dictionary size (MiB)

T
hr

ou
gh

pu
t(

K
iB

/s
)

Decompress

With other process that is tracked With other untracked process

Figure 6.3: Throughput of the 7z LZMA benchmark for various Dictionary sizes
for both compression and decompression. We compare the differences in through-
put that is caused by another process being tracked by our solution. Since the
tracked process forces all other cores into SMM frequently, the performance of the
benchmark drops to 10% of it’s original throughput.

6.3 Persisting Performance
Now, we focus on the performance aspects of persisting a process using our solution.
One inherent challenge in this process is the overhead incurred from the continuous
transfer of metadata. The firmware’s data sections, amounting to 256MiB, are
transferred in their whole, resulting in approximately 160ms of overhead. This
transfer time increases with the amount of memory allocated by a process.

The time to persist a process is heavily dependent on the amount of allocated
memory. The time to persist a process for various amounts of allocated memory
is shown in 6.4. Our system is achieving a transfer speed of up to 1.3GiB/s of
allocated memory per second to the FPGA. The FPGA faces a constraint due to the
necessity of conducting 4KiB move operations, rather than more efficient 1MiB

6.4. DISCUSSION 41

transfers.

1 5 10 50 100 500 1000 5000

102.5

103

103.5

160 160 170 190
220

500

850

3,600

MiB of allocated memory

D
ur

at
io

n
(m

ill
is

ec
on

ds
)

Figure 6.4: Duration of the complete persisting process after the power-loss event
was received for different sizes of allocated memory. The initial 160ms are a static
overhead that arises from the firmware copying a fixed amount of metadata.

To evaluate the performance of our persistence approach, we conducted bench-
marks using a synthetic load. This load involves allocating a specified amount of
RAM, populating it with data, thus creating a specific number of PTEs, and then
triggering a power loss (simulated by writing to /dev/wpp-trigger).

6.4 Discussion
In the following, we address the constraints and challenges encountered both in the
conceptual framework and the specific implementation. One key limitation at the
conceptual level is the inability to recreate any process accurately due to significant
changes in the environment. From the implementation perspective, our approach is
heavily reliant on specific technologies and architectures, including the use of a
custom FPGA, x86 processors, SMM, and the handling of normal page sizes.

Concept

The concept of whole process persistence as described faces several limitations.
These limitations stem from the inherent complexity of accurately recreating a

42 CHAPTER 6. EVALUATION

process’s state and the environment it operates in.
One key limitation is the expectation that processes to be persisted should

remain unaware of this persistence mechanism and should not require any changes
to their source code to help with the persistence. This requirement poses signifi-
cant challenges in maintaining the exact state of the environment during process
recreation.

Time-sensitive aspects present another challenge. The passage of time can
lead to discrepancies, such as changes in the system time or timeout issues in
communication protocols like Bluetooth and TCP/IP. These protocols might have
moved past the state they were in when the process was originally persisted, leading
to potential communication breakdowns or synchronization issues.

Applications like the Chrome Browser or the Media Subsystem in Android
[4, 28] are sectioned into several running processes to isolate different parts of the
application from one another. Processes that are part of a larger set of interdepen-
dent processes pose additional complexity. For the system to function correctly,
all these related processes would need to be recreated simultaneously, maintaining
their inter-process communication and synchronization.

Resource allocation presents further challenges. Upon recreation, previously
used resources like files or network ports might be unavailable or blocked, which
could hinder the process’s ability to resume its normal operation.

Implementation

There are other limitations inherent to the specific choices made in the implemen-
tation strategy and the technologies employed.

One of the primary limitations arises from the use of SMM, which is not
portable to other architectures like ARM or RISC-V. This reliance on SMM restricts
the implementation to platforms that support this specific mode, primarily x86
architectures. However, there is a potential workaround that involves implementing
the required functionality solely within the kernel, which could offer greater
portability across different architectures.

Another challenge is related to the kernel setup of the process’s virtual mem-
ory layout, such as the stack address. Modern operating systems are employing
strategies like Address Space Layout Randomization (ASLR) to randomize the ad-
dress space of userspace processes [2]. This complicates the process of accurately
recreating the process state, necessitating the disabling of ASLR.

The implementation is also only implemented for standard 4KiB x86 pages
and does not support huge pages. While any storage device that can be accessed
over the PCIe Bus can be used from a concept point of view, the implementation
relies on an FPGA device that is not publicly accessible.

The frequent usage of SMM is a severe performance problem both for the

6.4. DISCUSSION 43

process that is being tracked and other processes running on the same system. A
SMI forces all of the cores to enter the SMM. So each clock cycle our solution
resides in SMM essentially halts all other processes on the system until we leave
SMM.

Residual energy

The current solution’s portability is limited due to the absence of a standardized
guideline on the amount of energy a Power Supply Unit (PSU) should be able to
supply after a power loss on the grid before voltage begins to drop. Moreover,
external variables such as connected devices or the CPU’s workload can further
accelerate the depletion of residual energy. Consequently, any solution predicated
solely on a PSU’s residual energy lacks universality and necessitates testing across
each used hardware configuration to ensure that the time to persist a process is
actually covered by the residual energy of the PSU.

44 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

In this chapter, we revisit the concept of Whole Process Persistence, initially ex-
plored in the Zhuque paper [14], and address the question of whether it is feasible to
achieve process persistence without relying on system-inherent persistent memory.
Our investigation confirms this possibility through a firmware-aided approach that
leverages an FPGA as a persistent storage device.

Our solution introduces a low-complexity firmware role, primarily acting as a
bridge to the FPGA while the process is running. We decided to reduce the com-
plexity of operations executed by the firmware, due to the challenges in debugging
it. We have integrated PCIe primitives, FPGA specific logic, and mechanisms for
kernel communication into coreboot-based firmware, alongside adjustments to the
process and memory subsystems of the Linux kernel to communicate information
about a currently running process to the firmware. Additionally, we introduce
modifications to the subsystem creating new processes in the kernel, enabling the
recreation of a previously persisted process.

Notably, our approach is not exclusively dependent on FPGA technology, as
it can be extended to other PCIe devices. We demonstrated our solution on a
modern consumer motherboard equipped with an Alder Lake CPU. The observed
performance penalty is highly dependent on the memory allocation strategy of the
software being persisted.

While we have a worst-case performance decrease of about 35 times, real
world benchmarks show that applications that are not allocating much memory
during runtime are not slowed down at all. This is indicating that our solution is
competitive with existing models. However, performance significantly declines
with frequent allocations and deallocations of PTEs and a large amount of PTEs,
highlighting a limitation in our approach. Moreover, the feasibility of persistence
is constrained to processes of low complexity due to the challenge of accurately
recreating them in a changed environment.

45

46 CHAPTER 7. CONCLUSION

When looking back to the requirements formulated in Chapter 4, our solution
makes it possible to accurately track, persist and recreate low complex processes
with a small memory footprint. As long as the allocated memory of an applica-
tion is not above 100MiB, the duration of persisting the process is consistently
below 220ms, so it is possible to accurately restore a process while only bringing
small performance regressions during runtime when the memory footprint of the
application is small enough.

7.1 Future Work

Following the presentation and evaluation of our approach to whole process persis-
tence, we identified several key areas ripe for further improvement and research.
These areas encompass the exploration of the novel Compute Express Link (CXL)
protocol, the development of a real power loss detection mechanism, cross-platform
portability of our solution and the exploration of performance enhancements.

CXL

CXL is a cache-coherent interconnect that is electrically compatible with PCIe
and connects processors and accelerators similar to PCIe [5]. It supports several
protocols, including CXL.io, which is based on existing PCIe mechanisms, as well
as CXL.cache and CXL.mem for cache and memory protocols, respectively.

CXL is particularly interesting for use cases that involve the memory system.
CXL.mem is integrated into the cache and memory subsystem of a processor and
can be used to address memory on an accelerator card at the byte level. This
capability could be leveraged to offload data to an external device, such as the
FPGA device used in this thesis. It presents the possibility of sharing a single
device for data storage between multiple servers, all running a version of process
persistence.

CXL.mem and CXL.cache could simplify the implementation of functionalities
like crash-consistent transactions, memory snapshots, or compression of memory
by offering mechanisms to share memory and introduce cache coherence into the
bus. These capabilities, named „Enhanced memory functions“ by Boles et. al.
could replace the need for custom implementations in the kernel or userland [3].

The approach taken in this thesis with PCIe could be redone using CXL. This
shift might even allow for bypassing the coreboot stage entirely and relying solely
on kernel-based changes with CXL, offering a streamlined process for the process
persistence mechanism.

7.1. FUTURE WORK 47

Power Loss Detection

In this thesis, the mechanism for detecting power loss is not an actual hardware-
based detection but rather an event simulated by the user and sent to the kernel.
This approach is due to the lack of a standardized method for the system to notify
about a power loss.

While the ATX specification does include a PWR_OK signal line, it does not
generate an interrupt [18, 31]. To effectively use this signal for power loss detection,
it would be necessary to continuously read the line and forward this information
to the kernel. One possible method for achieving this could be through a micro-
controller that monitors the PWR_OK signal and triggers an interrupt upon changes
[31].

However, this approach is not ideal as it lacks portability and general applicabil-
ity across different hardware setups. It requires additional hardware and integration
efforts, making it a less elegant solution. Therefore, more research is needed to
develop a more universally applicable and efficient method for detecting power
loss in systems designed for WPP.

An improvement could be achieved through the integration of an Uninterrupted
Power Supply (UPS), which can supply significantly more energy than the residual
energy typically available in the PSU. This would enable the system to remain
powered for minutes, rather than just milliseconds, during a power loss.

The implementation of such a system would require the UPS to communicate
a shutdown signal to the operating system. For Linux systems, tools such as
Network UPS Tools (NUT) and Apcupsd offer robust solutions for managing
communications with UPS devices across various vendors [25, 26]. NUT is a
cross-platform tool with support for multiple UPS communication protocols from
different vendors and configuration flexibility via config files. It also allows the
execution of custom scripts in response to specific events, such as power failures.

For our purposes, a custom script could be devised to initiate the power loss
persistence process as previously outlined, followed by a system shutdown. This
approach would not only extend the available time window for data persistence
during power outages but also enhance the overall reliability because the chances
of the system shutting down before the persistence process is finished are reduced.

Performance Optimization

An important factor influencing performance is the tradeoff between runtime
performance and persistence performance. This becomes particularly evident in
scenarios where there is a significant amount of memory allocated that is not
backed by a file, adversely affecting persistence performance and reducing the
likelihood of timely process persistence.

48 CHAPTER 7. CONCLUSION

The frequency of memory allocations and deallocations also has an impact.
Regularly allocating and deallocating memory pages can incur a performance
penalty during runtime. The optimal strategy for managing this tradeoff is highly
dependent on the memory allocation behaviour of the process. For instance,
optimizations aimed at reducing the time required for persisting data might lead to
reduced performance of the application while it is running.

One potential solution for improving performance involves writing memory
pages to the FPGA while the process is running. This approach could be particularly
beneficial for processes with a large memory footprint that is infrequently written
to, on the other hand not helping processes that allocate little memory and changing
it frequently.

In addition to these optimizations based on the memory allocation profile, there
are possible general optimizations that can be applied regardless of allocation
patterns. For example, it may be advantageous to avoid saving any pages that
belong to backed files marked as clean or pages that belong to read-only files. By
implementing these optimizations, it is possible to enhance the performance of the
persistence process.

Portability

Since our current approach is bound to x86 features like the SMM and needs
customized firmware to work, it is not portable and hard to deploy. There is no
need to use system firmware to collect the data of a process during its runtime and
dumping it onto a storage device like the FPGA. A solution implemented as an
out-of-tree kernel module would be more performant since it would not slow down
other processes due to the frequent triggering of the SMM. Also, being not reliant
on system firmware would make the solution portable and thus compatible across a
wide range of mainboards and even other CPU architectures like ARM or RISC-V.

Event Batching

A problem of our solution is the loss of performance both for the process to
persist and other processes running on the same system. Entering SMM is causing
significant overhead for all other processes since all cores enter SMM, and we
should minimize time spent in this mode. One solution to this could be to not
invoke the firmware for every PTE but to collect created or removed PTEss in
the kernel and forward them to firmware in one batch. The Linux kernel already
implements a similar performance optimization. When a page fault occurs, it is
not only mapping the page related to the faulting memory address but a few pages
around the faulting one. This is done in the do_fault_around function [50].
While this is a performance optimization in the kernel, at the moment it could

7.1. FUTURE WORK 49

decrease the performance of a process tracked by our solution. Batching PTE
creations and removals would decrease the bottleneck introduced by frequently
switching into SMM.

50 CHAPTER 7. CONCLUSION

Acronyms

ACPI Advanced Configuration and Power Interface. 5–7, Glossary: ACPI

ASLR Address Space Layout Randomization. 42, Glossary: ASLR

ATX Advanced Technology Extended. 14, 23, 47, Glossary: ATX

BIOS Basic Input/Ouput System. 5, 7, 54, Glossary: BIOS

CXL Compute Express Link. 46, Glossary: CXL

DMA Direct Memory Access. 32, Glossary: DMA

FPGA Field Programmable Gate Array. v, 4, 8, 9, 18, 19, 24, 25, 30–35, 40–42,
45, 46, 48, Glossary: FPGA

IOMMU Input/Output Memory Management Unit. 34, Glossary: IOMMU

PCB Process Control Block. v, 4, 17, 18, 24, 30, Glossary: PCB

PCIe Peripheral Component Interconnect Express. v, 4, 7–9, 18, 25, 32, 45, 46,
Glossary: PCIe

PMem Persistent Memory. 4, 9, 13–15, Glossary: PMem

PSU Power Supply Unit. 43, Glossary: PSU

PTE Page Table Entry. v, 18, 19, 23, 25–28, 30, 36–38, 41, 45, 48, 49, Glossary:
PTE

SMI System Management Interrupt. 6, 7, 19, 22, 26, 33, 43, Glossary: SMI

SMM System Management Mode. 4–6, 8, 22, 25, 33, 37, 40–43, 48, 49, Glossary:
SMM

51

52 Acronyms

UEFI Unified Extensible Firmware Interface. 5, 7, Glossary: UEFI

UPS Uninterrupted Power Supply. v, 47, Glossary: UPS

WPP Whole Process Persistence. v, 13, 14, 23, 36, 47, Glossary: WPP

Glossary

ACPI A specification that enables operating systems to control the amount of
power given to each device attached to the computer, facilitating power
management and device configuration. 5

ASLR A security technique used in operating systems to randomly position the
address space of process components. This makes it harder for attackers to
predict the location of specific instructions or structures, thereby mitigating
certain types of attacks. 42

ATX A motherboard and power supply configuration specification that improves
on previous standards like AT by rearranging the layout to allow for better
airflow and more efficient use of space. 14

BIOS Firmware used to perform hardware initialization during the booting process
and to provide runtime services for operating systems and programs. It acts
as an intermediary between the operating system and the computer hardware.
5

CXL A high-speed CPU-to-Device and CPU-to-Memory interconnect aimed at
high-performance computing, offering efficient performance and scalability
for future computing environments. 46

DMA A feature allowing connected peripherals to directly access the main system
memory without the CPU being involved. 32

FPGA An integrated circuit designed to be configured by a customer or a designer
after manufacturing, allowing for customizable hardware solutions in var-
ious applications. In this thesis, FPGA always refers to the FPGA device
introduced in "Analyzing and Improving CPU and Energy Efficiency of PM
File Systems" [53]. 4

53

54 Glossary

IOMMU A memory management unit that connects a DMA-capable I/O bus to
the main memory, providing address translation and memory protection from
I/O devices, enhancing system security. 34

PCB A data structure used by computer operating systems to store all the infor-
mation about a process, including process state, process number, registers,
and memory management information. 4

PCIe A high-speed serial computer expansion bus standard designed to replace
older bus standards like PCI, allowing for faster data transfer between the
motherboard and attached devices. 4

PMem A type of non-volatile storage technology that retains data even when
power is turned off, combining the speed of RAM with the data persistence
of traditional storage. 4

PSU A component that converts electrical power from a source to the correct
voltage and current to run a computer system. 43

PTE An entry in a page table, which contains information about how virtual
memory addresses map to physical addresses, including details like the
physical address itself, protection attributes, and presence bit. 18

SMI A special interrupt type that is used for system management, allowing the
operating system to be temporarily suspended for hardware or firmware to
perform low-level tasks. 6

SMM A special operating mode in Intel and compatible CPUs intended for han-
dling system-wide functions like power management, system hardware con-
trol, and proprietary OEM designed code. 4

UEFI A specification that defines a software interface between an operating
system and platform firmware, replacing the legacy BIOS with a more
modern, feature-rich interface that includes boot and runtime service calls
available to the operating system. 5

UPS A device that offers emergency power to servers and computers to prevent
data loss or hardware damage during power failures. 47

WPP A programming model introduced by Hodkins et. al ensuring all process
states remain persistent. Upon system restart after a power failure, the
process state is fully reloaded, allowing execution to resume seamlessly with
minimal programmer intervention [14]. v, 13

Bibliography

[1] Uchenna P Daniel Ani, Hongmei He, and Ashutosh Tiwari. Review of
cybersecurity issues in industrial critical infrastructure: manufacturing in
perspective. Journal of Cyber Security Technology, 1(1):32–74, 2017.

[2] David Herrera Aristizabal, David Mora Rodriguez, and Ricardo Yepes Gue-
vara. Measuring aslr implementations on modern operating systems. In 2013
47th International Carnahan Conference on Security Technology (ICCST),
pages 1–6. IEEE, 2013.

[3] David Boles, Daniel Waddington, and David A Roberts. Cxl-enabled en-
hanced memory functions. IEEE Micro, 43(2):58–65, 2023.

[4] Jeongdong Choe. Memory technology 2021: Trends & challenges. In 2021
International Conference on Simulation of Semiconductor Processes and
Devices (SISPAD), pages 111–115. IEEE, 2021.

[5] Compute Express Link Consortium. Compute express link specification,
2024.

[6] coreboot authors. Coreboot docs: Grub, 2024. https://www.coreboot.
org/GRUB2.

[7] coreboot authors. Coreboot docs: Seabios, 2024. https://www.
coreboot.org/SeaBIOS.

[8] Dasharo. Msi desktops: Initial deployment, 2024. https://docs.
dasharo.com/unified/msi/initial-deployment/.

[9] Dasharo. Releases: Msi pro z690-a (wifi) (ddr4) dasharo release
notes, 2024. https://docs.dasharo.com/variants/msi_
z690/releases. Accessed at 20.01.2024.

[10] Brian Delgado and Karen L Karavanic. Performance implications of system
management mode. In 2013 IEEE International Symposium on Workload
Characterization (IISWC), pages 163–173. IEEE, 2013.

55

https://www.coreboot.org/GRUB2
https://www.coreboot.org/GRUB2
https://www.coreboot.org/SeaBIOS
https://www.coreboot.org/SeaBIOS
https://docs.dasharo.com/unified/msi/initial-deployment/
https://docs.dasharo.com/unified/msi/initial-deployment/
https://docs.dasharo.com/variants/msi_z690/releases
https://docs.dasharo.com/variants/msi_z690/releases

56 BIBLIOGRAPHY

[11] Devaev, Maxim. Pikvm faq, 2024. https://docs.pikvm.org/
first_steps/.

[12] Tetsuo Endoh, Hiroaki Honjo, Koichi Nishioka, and Shoji Ikeda. Recent
progresses in stt-mram and sot-mram for next generation mram. In 2020
IEEE Symposium on VLSI Technology, pages 1–2. IEEE, 2020.

[13] Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. Platform
storage performance with 3d xpoint technology. Proceedings of the IEEE,
105(9):1822–1833, 2017.

[14] George Hodgkins, Yi Xu, Steven Swanson, and Joseph Izraelevitz. Zhuque:
Failure is not an option, it’s an exception. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23), pages 833–849, 2023.

[15] Intel. Intel optane persistent memory - start up guide, 2020.

[16] Intel. Intel 64 and ia-32 architectures software developer’s manual combined
volumes: 1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d, and 4, 2023.

[17] Intel. Intel 100 series and intel c230 series chipset family plat-
form controller hub (pch) datasheet volume 1 of 2, 2024. https:
//www.intel.de/content/www/de/de/content-details/
332690/intel-100-series-chipset-family-platform\
-controller-hub-pch-datasheet-volume-1.html.

[18] Intel Corporation. Atx specification - version 2.2, 2024. https:
//cdn.instructables.com/ORIG/FS8/5ILB/GU59Z1AT/
FS85ILBGU59Z1AT.pdf.

[19] Intel Corporation. eadr: New opportunities for persistent
memory applications, 2024. https://www.intel.com/
content/www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-memory\
-applications.html.

[20] Intel Corporation. Intel optane persistent memory 200 series brief, 2024.
https://www.intel.de/content/www/de/de/products/
docs/memory-storage/optane-persistent-memory/
optane-persistent-memory-200-series-brief.html.

[21] Maciej Jakubowski and Piotr Sypek. Electromagnetic simulations with 3d fem
and intel optane persistent memory. In 2022 24th International Microwave
and Radar Conference (MIKON), pages 1–5. IEEE, 2022.

https://docs.pikvm.org/first_steps/
https://docs.pikvm.org/first_steps/
https://www.intel.de/content/www/de/de/content-details/332690/intel-100-series-chipset-family-platform\-controller-hub-pch-datasheet-volume-1.html
https://www.intel.de/content/www/de/de/content-details/332690/intel-100-series-chipset-family-platform\-controller-hub-pch-datasheet-volume-1.html
https://www.intel.de/content/www/de/de/content-details/332690/intel-100-series-chipset-family-platform\-controller-hub-pch-datasheet-volume-1.html
https://www.intel.de/content/www/de/de/content-details/332690/intel-100-series-chipset-family-platform\-controller-hub-pch-datasheet-volume-1.html
https://cdn.instructables.com/ORIG/FS8/5ILB/GU59Z1AT/FS85ILBGU59Z1AT.pdf
https://cdn.instructables.com/ORIG/FS8/5ILB/GU59Z1AT/FS85ILBGU59Z1AT.pdf
https://cdn.instructables.com/ORIG/FS8/5ILB/GU59Z1AT/FS85ILBGU59Z1AT.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory\-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory\-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory\-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory\-applications.html
https://www.intel.de/content/www/de/de/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.de/content/www/de/de/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html
https://www.intel.de/content/www/de/de/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html

BIBLIOGRAPHY 57

[22] Jungi Jeong, Jianping Zeng, and Changhee Jung. Capri: Compiler and
architecture support for whole-system persistence. In Proceedings of the
31st International Symposium on High-Performance Parallel and Distributed
Computing, pages 71–83, 2022.

[23] Thomas Jew. Mram in microcontroller and microprocessor product applica-
tions. In 2020 IEEE International Electron Devices Meeting (IEDM), pages
11.1.1–11.1.4, 2020.

[24] Yussuf Khalil. Fpga-accelerated non-volatile memory access, October 27
2022.

[25] Kroll, Russell and Quette, Arnaud and de Korte, Arjen. Network ups
tools user manual, 2024. https://networkupstools.org/docs/
user-manual.pdf.

[26] Kropelin, Adam and Sibbald, Kern. Apcupsd user manual, 2024. https:
//networkupstools.org/docs/user-manual.pdf.

[27] Tianxi Li, Yang Wang, and Xiaoyi Lu. On the discontinuation of persistent
memory: Looking back to look forward. Memory, 8:10, 2023.

[28] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich.
The android platform security model. ACM Transactions on Privacy and
Security (TOPS), 24(3):1–35, 2021.

[29] Mohammed Adnene Trojette. 7z(1) - linux man page, 2024. https://
linux.die.net/man/1/7z.

[30] R Muralidhar, H Seshadri, V Bhimarao, V Rudramuni, I Mansoor, S Thomas,
B Veera, Y Singh, and S Ramachandra. Experiences with power management
enabling on the intel medfield phone. In Proc. of Linux Symposium, pages
35–46, 2012.

[31] Dushyanth Narayanan and Orion Hodson. Whole-system persistence. In
Proceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, pages 401–410,
2012.

[32] PCI-SIG. Pci express base specification revision 4.0, version 1.0, 2024.

[33] Redis Ltd. Introduction to redis, 2024. https://redis.io/docs/
about.

https://networkupstools.org/docs/user-manual.pdf
https://networkupstools.org/docs/user-manual.pdf
https://networkupstools.org/docs/user-manual.pdf
https://networkupstools.org/docs/user-manual.pdf
https://linux.die.net/man/1/7z
https://linux.die.net/man/1/7z
https://redis.io/docs/about
https://redis.io/docs/about

58 BIBLIOGRAPHY

[34] The coreboot authors. Coreboot: Architecture, 2024. https://doc.
coreboot.org/getting_started/architecture.html. Ac-
cessed at 28.01.2024.

[35] The coreboot authors. Coreboot docs: Output and consoles, 2024. https:
//www.coreboot.org/Console_and_outputs. Accessed at
15.01.2024.

[36] The coreboot authors. Coreboot source code configs/con-
fig.msi_ms7d25_ddr5, 2024. https://github.com/Dasharo/
coreboot/blob/dasharo/configs/config.msi_ms7d25_
ddr5. Accessed at 15.01.2024.

[37] The coreboot authors. Coreboot source code src/include/cpu/x86/tsc.h,
2024. https://github.com/coreboot/coreboot/blob/
5191623149e5f15b869cd103597eb7a26f399bd9/src/
include/cpu/x86/tsc.h. Accessed at 15.01.2024.

[38] The coreboot authors. Coreboot source code sr-
c/mainboard/msi/ms7d25/msi_id.s, 2024. https:
//github.com/Dasharo/coreboot/blob/
ad90f0fbdd27842cc8a371747fc589fee4b40cae/src/
mainboard/msi/ms7d25/msi_id.S. Accessed at 15.01.2024.

[39] The coreboot authors. Coreboot: Starting from scratch, 2024. https:
//doc.coreboot.org/tutorial/part1.html. Accessed at
22.01.2024.

[40] The coreboot authors. Welcome to the coreboot documentation,
2024. https://doc.coreboot.org/index.html. Accessed at
10.01.2024.

[41] The flashrom authors . flashrom - manual page, 2024. https:
//flashrom.org/classic_cli_manpage.html. Accessed at
09.02.2024.

[42] The Linux authors. clone(2): create a child process, 2024. https://
linux.die.net/man/2/clone.

[43] The linux authors. date(1) - linux manual page, 2024. https://
man7.org/linux/man-pages/man1/date.1.html. Accessed at
30.01.2024.

https://doc.coreboot.org/getting_started/architecture.html
https://doc.coreboot.org/getting_started/architecture.html
https://www.coreboot.org/Console_and_outputs
https://www.coreboot.org/Console_and_outputs
https://github.com/Dasharo/coreboot/blob/dasharo/configs/config.msi_ms7d25_ddr5
https://github.com/Dasharo/coreboot/blob/dasharo/configs/config.msi_ms7d25_ddr5
https://github.com/Dasharo/coreboot/blob/dasharo/configs/config.msi_ms7d25_ddr5
https://github.com/coreboot/coreboot/blob/5191623149e5f15b869cd103597eb7a26f399bd9/src/include/cpu/x86/tsc.h
https://github.com/coreboot/coreboot/blob/5191623149e5f15b869cd103597eb7a26f399bd9/src/include/cpu/x86/tsc.h
https://github.com/coreboot/coreboot/blob/5191623149e5f15b869cd103597eb7a26f399bd9/src/include/cpu/x86/tsc.h
https://github.com/Dasharo/coreboot/blob/ad90f0fbdd27842cc8a371747fc589fee4b40cae/src/mainboard/msi/ms7d25/msi_id.S
https://github.com/Dasharo/coreboot/blob/ad90f0fbdd27842cc8a371747fc589fee4b40cae/src/mainboard/msi/ms7d25/msi_id.S
https://github.com/Dasharo/coreboot/blob/ad90f0fbdd27842cc8a371747fc589fee4b40cae/src/mainboard/msi/ms7d25/msi_id.S
https://github.com/Dasharo/coreboot/blob/ad90f0fbdd27842cc8a371747fc589fee4b40cae/src/mainboard/msi/ms7d25/msi_id.S
https://doc.coreboot.org/tutorial/part1.html
https://doc.coreboot.org/tutorial/part1.html
https://doc.coreboot.org/index.html
https://flashrom.org/classic_cli_manpage.html
https://flashrom.org/classic_cli_manpage.html
https://linux.die.net/man/2/clone
https://linux.die.net/man/2/clone
https://man7.org/linux/man-pages/man1/date.1.html
https://man7.org/linux/man-pages/man1/date.1.html

BIBLIOGRAPHY 59

[44] The linux authors. execve(2) - linux manual page, 2024. https://
man7.org/linux/man-pages/man2/execve.2.html. Accessed
at 15.01.2024.

[45] The Linux authors. Linux source code arch/x86/lib/cache-smp.c,
2024. https://github.com/torvalds/linux/blob/v6.1/
arch/x86/lib/cache-smp.c. Accessed at 10.02.2024.

[46] The Linux authors. Linux source: drivers/pci/setup-res.c, 2024.
https://github.com/torvalds/linux/blob/master/
drivers/pci/setup-res.c.

[47] The Linux authors. Linux source: include/arch/x86/kernel/e820.c,
2024. https://github.com/torvalds/linux/blob/master/
arch/x86/kernel/e820.c.

[48] The Linux authors. Linux source: include/linux/mm_types.h, 2024.
https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/include/linux/mm_types.h.
Accessed at 25.01.2024.

[49] The Linux authors. Linux source: include/linux/sched.h, 2024.
https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/include/linux/sched.h. Ac-
cessed at 25.01.2024.

[50] The Linux authors. Linux source: mm/memory.c, 2024.
https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/mm/memory.c. Accessed at
22.01.2024.

[51] tianocore/edk2 authors. Build and integration instructions, 2024.
https://github.com/tianocore/edk2/blob/master/
UefiPayloadPkg/BuildAndIntegrationInstructions.txt.

[52] Unified EFI Forum. Advanced configuration and power interface spec-
ification, 2017. https://uefi.org/sites/default/files/
resources/ACPI_6_2.pdf.

[53] Lukas Werling, Yussuf Khalil, Peter Maucher, Thorsten Gröninger, and Frank
Bellosa. Analyzing and improving cpu and energy efficiency of pm file
systems. In Proceedings of the 1st Workshop on Disruptive Memory Systems,
pages 31–37, 2023.

https://man7.org/linux/man-pages/man2/execve.2.html
https://man7.org/linux/man-pages/man2/execve.2.html
https://github.com/torvalds/linux/blob/v6.1/arch/x86/lib/cache-smp.c
https://github.com/torvalds/linux/blob/v6.1/arch/x86/lib/cache-smp.c
https://github.com/torvalds/linux/blob/master/drivers/pci/setup-res.c
https://github.com/torvalds/linux/blob/master/drivers/pci/setup-res.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/e820.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/e820.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/mm_types.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/mm_types.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/sched.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/sched.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/mm/memory.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/mm/memory.c
https://github.com/tianocore/edk2/blob/master/UefiPayloadPkg/BuildAndIntegrationInstructions.txt
https://github.com/tianocore/edk2/blob/master/UefiPayloadPkg/BuildAndIntegrationInstructions.txt
https://uefi.org/sites/default/files/resources/ACPI_6_2.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_2.pdf

60 BIBLIOGRAPHY

[54] Shimeng Yu and Pai-Yu Chen. Emerging memory technologies: Recent
trends and prospects. IEEE Solid-State Circuits Magazine, 8(2):43–56, 2016.

[55] Taiyu Zhou, Yajuan Du, Fan Yang, Xiaojian Liao, and Youyou Lu. Efficient
atomic durability on eadr-enabled persistent memory. In Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques, pages 124–134, 2022.

[56] Vincent Zimmer, Michael Rothman, and Suresh Marisetty. Beyond BIOS:
developing with the unified extensible firmware interface. Walter de Gruyter
GmbH & Co KG, 2017.

	Abstract
	Contents
	Introduction
	Foundations
	System Firmware
	Coreboot
	Intel Optane
	Linux

	Related Work
	Zhuque
	Whole-System Persistence
	eADR
	Emerging Nonvolatile Memory

	Design
	Requirements
	Process Tracking
	Process Recreation

	Implementation
	Kernel
	Process Tracking
	Power Loss Event Handling
	Process Recreation
	PCIe Base Address Remapping

	Firmware
	Coreboot Implementation
	Event Handlers
	FPGA Device Communication
	Development and Debugging of Firmware

	Evaluation
	Test Environment & Methodology
	Runtime Performance Impact
	Synthetic Load
	Redis
	Impact on other Workloads

	Persisting Performance
	Discussion

	Conclusion
	Future Work

	Acronyms
	Glossary
	Bibliography

